[infinispan-commits] Infinispan SVN: r2523 - trunk/core/src/main/java/org/infinispan/util/concurrent and 1 other directory.

infinispan-commits at lists.jboss.org infinispan-commits at lists.jboss.org
Wed Oct 20 06:34:58 EDT 2010


Author: trustin
Date: 2010-10-20 06:34:58 -0400 (Wed, 20 Oct 2010)
New Revision: 2523

Modified:
   branches/4.2.x/core/src/main/java/org/infinispan/util/concurrent/BoundedConcurrentHashMap.java
   trunk/core/src/main/java/org/infinispan/util/concurrent/BoundedConcurrentHashMap.java
Log:
* Fixed the indentation and license header of BoundedConcurrentHashMap
* Fixed some Eclipse Java compiler warnings


Modified: branches/4.2.x/core/src/main/java/org/infinispan/util/concurrent/BoundedConcurrentHashMap.java
===================================================================
--- branches/4.2.x/core/src/main/java/org/infinispan/util/concurrent/BoundedConcurrentHashMap.java	2010-10-20 10:03:11 UTC (rev 2522)
+++ branches/4.2.x/core/src/main/java/org/infinispan/util/concurrent/BoundedConcurrentHashMap.java	2010-10-20 10:34:58 UTC (rev 2523)
@@ -1,4 +1,26 @@
 /*
+ * JBoss, Home of Professional Open Source
+ *
+ * Copyright ${year}, Red Hat, Inc. and individual contributors
+ * by the @authors tag. See the copyright.txt in the distribution
+ * for a full listing of individual contributors.
+ *
+ * This is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU Lesser General Public License as
+ * published by the Free Software Foundation; either version 2.1 of
+ * the License, or (at your option) any later version.
+ *
+ * This software is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with this software; if not, write to the Free
+ * Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
+ * 02110-1301 USA, or see the FSF site: http://www.fsf.org.
+ */
+/*
  * Written by Doug Lea with assistance from members of JCP JSR-166
  * Expert Group and released to the public domain, as explained at
  * http://creativecommons.org/licenses/publicdomain
@@ -92,208 +114,207 @@
  */
 public class BoundedConcurrentHashMap<K, V> extends AbstractMap<K, V>
         implements ConcurrentMap<K, V>, Serializable {
-    private static final long serialVersionUID = 7249069246763182397L;
+   private static final long serialVersionUID = 7249069246763182397L;
 
-    /*
-     * The basic strategy is to subdivide the table among Segments,
-     * each of which itself is a concurrently readable hash table.
-     */
+   /*
+    * The basic strategy is to subdivide the table among Segments,
+    * each of which itself is a concurrently readable hash table.
+    */
 
-    /* ---------------- Constants -------------- */
+   /* ---------------- Constants -------------- */
 
-    /**
-     * The default initial capacity for this table,
-     * used when not otherwise specified in a constructor.
-     */
-    static final int DEFAULT_MAXIMUM_CAPACITY = 512;
+   /**
+    * The default initial capacity for this table,
+    * used when not otherwise specified in a constructor.
+    */
+   static final int DEFAULT_MAXIMUM_CAPACITY = 512;
 
-    /**
-     * The default load factor for this table, used when not
-     * otherwise specified in a constructor.
-     */
-    static final float DEFAULT_LOAD_FACTOR = 0.75f;
+   /**
+    * The default load factor for this table, used when not
+    * otherwise specified in a constructor.
+    */
+   static final float DEFAULT_LOAD_FACTOR = 0.75f;
 
-    /**
-     * The default concurrency level for this table, used when not
-     * otherwise specified in a constructor.
-     */
-    static final int DEFAULT_CONCURRENCY_LEVEL = 16;
+   /**
+    * The default concurrency level for this table, used when not
+    * otherwise specified in a constructor.
+    */
+   static final int DEFAULT_CONCURRENCY_LEVEL = 16;
 
-    /**
-     * The maximum capacity, used if a higher value is implicitly
-     * specified by either of the constructors with arguments.  MUST
-     * be a power of two <= 1<<30 to ensure that entries are indexable
-     * using ints.
-     */
-    static final int MAXIMUM_CAPACITY = 1 << 30;
+   /**
+    * The maximum capacity, used if a higher value is implicitly
+    * specified by either of the constructors with arguments.  MUST
+    * be a power of two <= 1<<30 to ensure that entries are indexable
+    * using ints.
+    */
+   static final int MAXIMUM_CAPACITY = 1 << 30;
 
-    /**
-     * The maximum number of segments to allow; used to bound
-     * constructor arguments.
-     */
-    static final int MAX_SEGMENTS = 1 << 16; // slightly conservative
+   /**
+    * The maximum number of segments to allow; used to bound
+    * constructor arguments.
+    */
+   static final int MAX_SEGMENTS = 1 << 16; // slightly conservative
 
-    /**
-     * Number of unsynchronized retries in size and containsValue
-     * methods before resorting to locking. This is used to avoid
-     * unbounded retries if tables undergo continuous modification
-     * which would make it impossible to obtain an accurate result.
-     */
-    static final int RETRIES_BEFORE_LOCK = 2;
+   /**
+    * Number of unsynchronized retries in size and containsValue
+    * methods before resorting to locking. This is used to avoid
+    * unbounded retries if tables undergo continuous modification
+    * which would make it impossible to obtain an accurate result.
+    */
+   static final int RETRIES_BEFORE_LOCK = 2;
 
-    /* ---------------- Fields -------------- */
+   /* ---------------- Fields -------------- */
 
-    /**
-     * Mask value for indexing into segments. The upper bits of a
-     * key's hash code are used to choose the segment.
-     */
-    final int segmentMask;
+   /**
+    * Mask value for indexing into segments. The upper bits of a
+    * key's hash code are used to choose the segment.
+    */
+   final int segmentMask;
 
-    /**
-     * Shift value for indexing within segments.
-     */
-    final int segmentShift;
+   /**
+    * Shift value for indexing within segments.
+    */
+   final int segmentShift;
 
-    /**
-     * The segments, each of which is a specialized hash table
-     */
-    final Segment<K,V>[] segments;
+   /**
+    * The segments, each of which is a specialized hash table
+    */
+   final Segment<K,V>[] segments;
 
-    transient Set<K> keySet;
-    transient Set<Map.Entry<K,V>> entrySet;
-    transient Collection<V> values;
+   transient Set<K> keySet;
+   transient Set<Map.Entry<K,V>> entrySet;
+   transient Collection<V> values;
 
-    /* ---------------- Small Utilities -------------- */
+   /* ---------------- Small Utilities -------------- */
 
-    /**
-     * Applies a supplemental hash function to a given hashCode, which
-     * defends against poor quality hash functions.  This is critical
-     * because ConcurrentHashMap uses power-of-two length hash tables,
-     * that otherwise encounter collisions for hashCodes that do not
-     * differ in lower or upper bits.
-     */
-    private static int hash(int h) {
-        // Spread bits to regularize both segment and index locations,
-        // using variant of single-word Wang/Jenkins hash.
-        h += h <<  15 ^ 0xffffcd7d;
-        h ^= h >>> 10;
-        h += h <<   3;
-        h ^= h >>>  6;
-        h += (h <<   2) + (h << 14);
-        return h ^ h >>> 16;
-    }
+   /**
+    * Applies a supplemental hash function to a given hashCode, which
+    * defends against poor quality hash functions.  This is critical
+    * because ConcurrentHashMap uses power-of-two length hash tables,
+    * that otherwise encounter collisions for hashCodes that do not
+    * differ in lower or upper bits.
+    */
+   private static int hash(int h) {
+      // Spread bits to regularize both segment and index locations,
+      // using variant of single-word Wang/Jenkins hash.
+      h += h <<  15 ^ 0xffffcd7d;
+      h ^= h >>> 10;
+      h += h <<   3;
+      h ^= h >>>  6;
+      h += (h <<   2) + (h << 14);
+      return h ^ h >>> 16;
+   }
 
-    /**
-     * Returns the segment that should be used for key with given hash
-     * @param hash the hash code for the key
-     * @return the segment
-     */
-    final Segment<K,V> segmentFor(int hash) {
-        return segments[hash >>> segmentShift & segmentMask];
-    }
+   /**
+    * Returns the segment that should be used for key with given hash
+    * @param hash the hash code for the key
+    * @return the segment
+    */
+   final Segment<K,V> segmentFor(int hash) {
+      return segments[hash >>> segmentShift & segmentMask];
+   }
 
-    /* ---------------- Inner Classes -------------- */
+   /* ---------------- Inner Classes -------------- */
 
-    /**
-     * ConcurrentHashMap list entry. Note that this is never exported
-     * out as a user-visible Map.Entry.
-     *
-     * Because the value field is volatile, not final, it is legal wrt
-     * the Java Memory Model for an unsynchronized reader to see null
-     * instead of initial value when read via a data race.  Although a
-     * reordering leading to this is not likely to ever actually
-     * occur, the Segment.readValueUnderLock method is used as a
-     * backup in case a null (pre-initialized) value is ever seen in
-     * an unsynchronized access method.
-     */
-    static final class HashEntry<K, V> {
-       final K key;
-       final int hash;
-       volatile V value;
-       final HashEntry<K, V> next;
-       volatile Recency state;
+   /**
+    * ConcurrentHashMap list entry. Note that this is never exported
+    * out as a user-visible Map.Entry.
+    *
+    * Because the value field is volatile, not final, it is legal wrt
+    * the Java Memory Model for an unsynchronized reader to see null
+    * instead of initial value when read via a data race.  Although a
+    * reordering leading to this is not likely to ever actually
+    * occur, the Segment.readValueUnderLock method is used as a
+    * backup in case a null (pre-initialized) value is ever seen in
+    * an unsynchronized access method.
+    */
+   static final class HashEntry<K, V> {
+      final K key;
+      final int hash;
+      volatile V value;
+      final HashEntry<K, V> next;
+      volatile Recency state;
 
-       HashEntry(K key, int hash, HashEntry<K, V> next, V value) {
-           this.key = key;
-           this.hash = hash;
-           this.next = next;
-           this.value = value;
-           this.state = Recency.HIR_RESIDENT;
-       }
+      HashEntry(K key, int hash, HashEntry<K, V> next, V value) {
+         this.key = key;
+         this.hash = hash;
+         this.next = next;
+         this.value = value;
+         this.state = Recency.HIR_RESIDENT;
+      }
 
-       @Override
+      @Override
       public int hashCode() {
-           int result = 17;
-           result = result * 31 + hash;
-           result = result * 31 + key.hashCode();
-           return result;
-       }
+         int result = 17;
+         result = result * 31 + hash;
+         result = result * 31 + key.hashCode();
+         return result;
+      }
 
-       @Override
+      @Override
       public boolean equals(Object o) {
-           // HashEntry is internal class, never leaks out of CHM, hence slight optimization
-           if (this == o) {
+         // HashEntry is internal class, never leaks out of CHM, hence slight optimization
+         if (this == o) {
             return true;
          }
-           if (o == null) {
+         if (o == null) {
             return false;
          }
-           HashEntry<?, ?> other = (HashEntry<?, ?>) o;
-           return hash == other.hash && key.equals(other.key);
-       }
+         HashEntry<?, ?> other = (HashEntry<?, ?>) o;
+         return hash == other.hash && key.equals(other.key);
+      }
 
-       public void transitionToLIRResident() {
-           state = Recency.LIR_RESIDENT;
-       }
+      public void transitionToLIRResident() {
+         state = Recency.LIR_RESIDENT;
+      }
 
-       public void transitionHIRResidentToHIRNonResident() {
-           state = Recency.HIR_NONRESIDENT;
-       }
+      public void transitionHIRResidentToHIRNonResident() {
+         state = Recency.HIR_NONRESIDENT;
+      }
 
-       public void transitionLIRResidentToHIRResident() {
-           state = Recency.HIR_RESIDENT;
-       }
+      public void transitionLIRResidentToHIRResident() {
+         state = Recency.HIR_RESIDENT;
+      }
 
-       public Recency recency() {
-           return state;
-       }
+      public Recency recency() {
+         return state;
+      }
 
-       @SuppressWarnings("unchecked")
-       static <K, V> HashEntry<K, V>[] newArray(int i) {
-           return new HashEntry[i];
-       }
+      @SuppressWarnings("unchecked")
+      static <K, V> HashEntry<K, V>[] newArray(int i) {
+         return new HashEntry[i];
+      }
    }
 
-    private enum Recency {
-       HIR_RESIDENT, LIR_RESIDENT, HIR_NONRESIDENT
+   private enum Recency {
+      HIR_RESIDENT, LIR_RESIDENT, HIR_NONRESIDENT
    }
 
    public enum Eviction {
-       NONE {
-           @Override
-           public <K, V> EvictionPolicy<K, V> make(Segment<K, V> s, int capacity, float lf) {
-               return new NullEvictionPolicy<K, V>();
-           }
-       },
-       LRU {
+      NONE {
+         @Override
+         public <K, V> EvictionPolicy<K, V> make(Segment<K, V> s, int capacity, float lf) {
+            return new NullEvictionPolicy<K, V>();
+         }
+      },
+      LRU {
+         @Override
+         public <K, V> EvictionPolicy<K, V> make(Segment<K, V> s, int capacity, float lf) {
+            return new LRU<K, V>(s,capacity,lf,capacity*10,lf);
+         }
+      },
+      LIRS {
+         @Override
+         public <K, V> EvictionPolicy<K, V> make(Segment<K, V> s, int capacity, float lf) {
+            return new LIRS<K,V>(s,capacity,capacity*10,lf);
+         }
+      };
 
-           @Override
-           public <K, V> EvictionPolicy<K, V> make(Segment<K, V> s, int capacity, float lf) {
-               return new LRU<K, V>(s,capacity,lf,capacity*10,lf);
-           }
-       },
-       LIRS {
-           @Override
-           public <K, V> EvictionPolicy<K, V> make(Segment<K, V> s, int capacity, float lf) {
-               return new LIRS<K,V>(s,capacity,lf,capacity*10,lf);
-           }
-       };
-
-       abstract <K, V> EvictionPolicy<K, V> make(Segment<K, V> s, int capacity, float lf);
+      abstract <K, V> EvictionPolicy<K, V> make(Segment<K, V> s, int capacity, float lf);
    }
 
    public interface EvictionListener<K, V> {
-       void onEntryEviction(K key, V value);
+      void onEntryEviction(K key, V value);
    }
 
    static class NullEvictionListener<K, V> implements EvictionListener<K, V> {
@@ -305,1676 +326,1707 @@
 
    public interface EvictionPolicy<K, V> {
 
-       public final static int MAX_BATCH_SIZE = 64;
+      public final static int MAX_BATCH_SIZE = 64;
 
-       /**
-        * Invokes eviction policy algorithm and returns set of evicted entries.
-        *
-        * <p>
-        * Set cannot be null but could possibly be an empty set.
-        *
-        * @return set of evicted entries.
-        */
-       Set<HashEntry<K, V>> execute();
+      /**
+       * Invokes eviction policy algorithm and returns set of evicted entries.
+       *
+       * <p>
+       * Set cannot be null but could possibly be an empty set.
+       *
+       * @return set of evicted entries.
+       */
+      Set<HashEntry<K, V>> execute();
 
-       /**
-        * Invoked to notify EvictionPolicy implementation that there has been an attempt to access
-        * an entry in Segment, however that entry was not present in Segment.
-        *
-        * @param e
-        *            accessed entry in Segment
-        *
-        * @return non null set of evicted entries.
-        */
-       Set<HashEntry<K, V>> onEntryMiss(HashEntry<K, V> e);
+      /**
+       * Invoked to notify EvictionPolicy implementation that there has been an attempt to access
+       * an entry in Segment, however that entry was not present in Segment.
+       *
+       * @param e
+       *            accessed entry in Segment
+       *
+       * @return non null set of evicted entries.
+       */
+      Set<HashEntry<K, V>> onEntryMiss(HashEntry<K, V> e);
 
-       /**
-        * Invoked to notify EvictionPolicy implementation that an entry in Segment has been
-        * accessed. Returns true if batching threshold has been reached, false otherwise.
-        * <p>
-        * Note that this method is potentially invoked without holding a lock on Segment.
-        *
-        * @return true if batching threshold has been reached, false otherwise.
-        *
-        * @param e
-        *            accessed entry in Segment
-        */
-       boolean onEntryHit(HashEntry<K, V> e);
+      /**
+       * Invoked to notify EvictionPolicy implementation that an entry in Segment has been
+       * accessed. Returns true if batching threshold has been reached, false otherwise.
+       * <p>
+       * Note that this method is potentially invoked without holding a lock on Segment.
+       *
+       * @return true if batching threshold has been reached, false otherwise.
+       *
+       * @param e
+       *            accessed entry in Segment
+       */
+      boolean onEntryHit(HashEntry<K, V> e);
 
-       /**
-        * Invoked to notify EvictionPolicy implementation that an entry e has been removed from
-        * Segment.
-        *
-        * @param e
-        *            removed entry in Segment
-        */
-       void onEntryRemove(HashEntry<K, V> e);
+      /**
+       * Invoked to notify EvictionPolicy implementation that an entry e has been removed from
+       * Segment.
+       *
+       * @param e
+       *            removed entry in Segment
+       */
+      void onEntryRemove(HashEntry<K, V> e);
 
-       /**
-        * Invoked to notify EvictionPolicy implementation that all Segment entries have been
-        * cleared.
-        *
-        */
-       void clear();
+      /**
+       * Invoked to notify EvictionPolicy implementation that all Segment entries have been
+       * cleared.
+       *
+       */
+      void clear();
 
-       /**
-        * Returns type of eviction algorithm (strategy).
-        *
-        * @return type of eviction algorithm
-        */
-       Eviction strategy();
+      /**
+       * Returns type of eviction algorithm (strategy).
+       *
+       * @return type of eviction algorithm
+       */
+      Eviction strategy();
 
-       /**
-        * Returns true if batching threshold has expired, false otherwise.
-        * <p>
-        * Note that this method is potentially invoked without holding a lock on Segment.
-        *
-        * @return true if batching threshold has expired, false otherwise.
-        */
-       boolean thresholdExpired();
+      /**
+       * Returns true if batching threshold has expired, false otherwise.
+       * <p>
+       * Note that this method is potentially invoked without holding a lock on Segment.
+       *
+       * @return true if batching threshold has expired, false otherwise.
+       */
+      boolean thresholdExpired();
    }
 
    static class NullEvictionPolicy<K, V> implements EvictionPolicy<K, V> {
 
-       @Override
-       public void clear() {
-       }
+      @Override
+      public void clear() {
+         // Do nothing.
+      }
 
-       @Override
-       public Set<HashEntry<K, V>> execute() {
-           return Collections.emptySet();
-       }
+      @Override
+      public Set<HashEntry<K, V>> execute() {
+         return Collections.emptySet();
+      }
 
-       @Override
-       public boolean onEntryHit(HashEntry<K, V> e) {
-           return false;
-       }
+      @Override
+      public boolean onEntryHit(HashEntry<K, V> e) {
+         return false;
+      }
 
-       @Override
-       public Set<HashEntry<K, V>> onEntryMiss(HashEntry<K, V> e) {
-          return Collections.emptySet();
-       }
+      @Override
+      public Set<HashEntry<K, V>> onEntryMiss(HashEntry<K, V> e) {
+         return Collections.emptySet();
+      }
 
-       @Override
-       public void onEntryRemove(HashEntry<K, V> e) {
-       }
+      @Override
+      public void onEntryRemove(HashEntry<K, V> e) {
+         // Do nothing.
+      }
 
-       @Override
-       public boolean thresholdExpired() {
-           return false;
-       }
+      @Override
+      public boolean thresholdExpired() {
+         return false;
+      }
 
-       @Override
-       public Eviction strategy() {
-           return Eviction.NONE;
-       }
+      @Override
+      public Eviction strategy() {
+         return Eviction.NONE;
+      }
    }
 
    static final class LRU<K, V> implements EvictionPolicy<K, V> {
-       private final ConcurrentLinkedQueue<HashEntry<K, V>> accessQueue;
-       private final Segment<K,V> segment;
-       private final LinkedList<HashEntry<K, V>> lruQueue;
-       private final int maxBatchQueueSize;
-       private final int trimDownSize;
-       private final float batchThresholdFactor;
+      private final ConcurrentLinkedQueue<HashEntry<K, V>> accessQueue;
+      private final Segment<K,V> segment;
+      private final LinkedList<HashEntry<K, V>> lruQueue;
+      private final int maxBatchQueueSize;
+      private final int trimDownSize;
+      private final float batchThresholdFactor;
 
-       public LRU(Segment<K,V> s, int capacity, float lf, int maxBatchSize, float batchThresholdFactor) {
-           this.segment = s;
-           this.trimDownSize = (int) (capacity * lf);
-           this.maxBatchQueueSize = maxBatchSize > MAX_BATCH_SIZE ? MAX_BATCH_SIZE : maxBatchSize;
-           this.batchThresholdFactor = batchThresholdFactor;
-           this.accessQueue = new ConcurrentLinkedQueue<HashEntry<K, V>>();
-           this.lruQueue = new LinkedList<HashEntry<K, V>>();
-       }
+      public LRU(Segment<K,V> s, int capacity, float lf, int maxBatchSize, float batchThresholdFactor) {
+         this.segment = s;
+         this.trimDownSize = (int) (capacity * lf);
+         this.maxBatchQueueSize = maxBatchSize > MAX_BATCH_SIZE ? MAX_BATCH_SIZE : maxBatchSize;
+         this.batchThresholdFactor = batchThresholdFactor;
+         this.accessQueue = new ConcurrentLinkedQueue<HashEntry<K, V>>();
+         this.lruQueue = new LinkedList<HashEntry<K, V>>();
+      }
 
-       @Override
-       public Set<HashEntry<K, V>> execute() {
-           Set<HashEntry<K, V>> evicted = Collections.emptySet();
-           if (isOverflow()) {
-               evicted = new HashSet<HashEntry<K, V>>();
-           }
-           try {
-               for (HashEntry<K, V> e : accessQueue) {
-                   if (lruQueue.remove(e)) {
-                       lruQueue.addFirst(e);
-                   }
+      @Override
+      public Set<HashEntry<K, V>> execute() {
+         Set<HashEntry<K, V>> evicted = Collections.emptySet();
+         if (isOverflow()) {
+            evicted = new HashSet<HashEntry<K, V>>();
+         }
+         try {
+            for (HashEntry<K, V> e : accessQueue) {
+               if (lruQueue.remove(e)) {
+                  lruQueue.addFirst(e);
                }
-               while (isOverflow()) {
-                   HashEntry<K, V> first = lruQueue.getLast();
-                   segment.remove(first.key, first.hash, null);
-                   evicted.add(first);
-               }
-           } finally {
-               accessQueue.clear();
-           }
-           return evicted;
-       }
+            }
+            while (isOverflow()) {
+               HashEntry<K, V> first = lruQueue.getLast();
+               segment.remove(first.key, first.hash, null);
+               evicted.add(first);
+            }
+         } finally {
+            accessQueue.clear();
+         }
+         return evicted;
+      }
 
-       private boolean isOverflow() {
-           return lruQueue.size() > trimDownSize;
-       }
+      private boolean isOverflow() {
+         return lruQueue.size() > trimDownSize;
+      }
 
-       @Override
-       public Set<HashEntry<K, V>> onEntryMiss(HashEntry<K, V> e) {
-           lruQueue.addFirst(e);
-           return Collections.emptySet();
-       }
+      @Override
+      public Set<HashEntry<K, V>> onEntryMiss(HashEntry<K, V> e) {
+         lruQueue.addFirst(e);
+         return Collections.emptySet();
+      }
 
-       /*
-        * Invoked without holding a lock on Segment
-        */
-       @Override
-       public boolean onEntryHit(HashEntry<K, V> e) {
-           accessQueue.add(e);
-           return accessQueue.size() >= maxBatchQueueSize * batchThresholdFactor;
-       }
+      /*
+       * Invoked without holding a lock on Segment
+       */
+      @Override
+      public boolean onEntryHit(HashEntry<K, V> e) {
+         accessQueue.add(e);
+         return accessQueue.size() >= maxBatchQueueSize * batchThresholdFactor;
+      }
 
-       /*
-        * Invoked without holding a lock on Segment
-        */
-       @Override
-       public boolean thresholdExpired() {
-           return accessQueue.size() >= maxBatchQueueSize;
-       }
+      /*
+       * Invoked without holding a lock on Segment
+       */
+      @Override
+      public boolean thresholdExpired() {
+         return accessQueue.size() >= maxBatchQueueSize;
+      }
 
-       @Override
-       public void onEntryRemove(HashEntry<K, V> e) {
-           lruQueue.remove(e);
-           // we could have multiple instances of e in accessQueue; remove them all
-           while (accessQueue.remove(e)) {
+      @Override
+      public void onEntryRemove(HashEntry<K, V> e) {
+         lruQueue.remove(e);
+         // we could have multiple instances of e in accessQueue; remove them all
+         while (accessQueue.remove(e)) {
             continue;
-           }
-       }
+         }
+      }
 
-       @Override
-       public void clear() {
-           lruQueue.clear();
-           accessQueue.clear();
-       }
+      @Override
+      public void clear() {
+         lruQueue.clear();
+         accessQueue.clear();
+      }
 
-       @Override
-       public Eviction strategy() {
-           return Eviction.LRU;
-       }
+      @Override
+      public Eviction strategy() {
+         return Eviction.LRU;
+      }
    }
 
    static final class LIRS<K, V> implements EvictionPolicy<K, V> {
-       private final static int MIN_HIR_SIZE = 2;
-       private final Segment<K,V> segment;
-       private final ConcurrentLinkedQueue<HashEntry<K, V>> accessQueue;
-       private final LinkedHashMap<K, HashEntry<K, V>> stack;
-       private final LinkedList<HashEntry<K, V>> queue;
-       private final int maxBatchQueueSize;
-       private final int lirSizeLimit;
-       private final int hirSizeLimit;
-       private int currentLIRSize;
-       private final float batchThresholdFactor;
+      private final static int MIN_HIR_SIZE = 2;
+      private final Segment<K,V> segment;
+      private final ConcurrentLinkedQueue<HashEntry<K, V>> accessQueue;
+      private final LinkedHashMap<K, HashEntry<K, V>> stack;
+      private final LinkedList<HashEntry<K, V>> queue;
+      private final int maxBatchQueueSize;
+      private final int lirSizeLimit;
+      private final int hirSizeLimit;
+      private int currentLIRSize;
+      private final float batchThresholdFactor;
 
-       public LIRS(Segment<K,V> s, int capacity, float lf, int maxBatchSize, float batchThresholdFactor) {
-           this.segment = s;
-           int tmpLirSize = (int) (capacity * 0.9);
-           int tmpHirSizeLimit = capacity - tmpLirSize;
-           if (tmpHirSizeLimit < MIN_HIR_SIZE) {
-               hirSizeLimit = MIN_HIR_SIZE;
-               lirSizeLimit = capacity - hirSizeLimit;
-           } else {
-               hirSizeLimit = tmpHirSizeLimit;
-               lirSizeLimit = tmpLirSize;
-           }
-           this.maxBatchQueueSize = maxBatchSize > MAX_BATCH_SIZE ? MAX_BATCH_SIZE : maxBatchSize;
-           this.batchThresholdFactor = batchThresholdFactor;
-           this.accessQueue = new ConcurrentLinkedQueue<HashEntry<K, V>>();
-           this.stack = new LinkedHashMap<K, HashEntry<K, V>>();
-           this.queue = new LinkedList<HashEntry<K, V>>();
-       }
+      public LIRS(Segment<K,V> s, int capacity, int maxBatchSize, float batchThresholdFactor) {
+         this.segment = s;
+         int tmpLirSize = (int) (capacity * 0.9);
+         int tmpHirSizeLimit = capacity - tmpLirSize;
+         if (tmpHirSizeLimit < MIN_HIR_SIZE) {
+            hirSizeLimit = MIN_HIR_SIZE;
+            lirSizeLimit = capacity - hirSizeLimit;
+         } else {
+            hirSizeLimit = tmpHirSizeLimit;
+            lirSizeLimit = tmpLirSize;
+         }
+         this.maxBatchQueueSize = maxBatchSize > MAX_BATCH_SIZE ? MAX_BATCH_SIZE : maxBatchSize;
+         this.batchThresholdFactor = batchThresholdFactor;
+         this.accessQueue = new ConcurrentLinkedQueue<HashEntry<K, V>>();
+         this.stack = new LinkedHashMap<K, HashEntry<K, V>>();
+         this.queue = new LinkedList<HashEntry<K, V>>();
+      }
 
-       @Override
-       public Set<HashEntry<K, V>> execute() {
-           Set<HashEntry<K, V>> evicted = new HashSet<HashEntry<K, V>>();
-           try {
-               for (HashEntry<K, V> e : accessQueue) {
-                   if (present(e)) {
-                       if (e.recency() == Recency.LIR_RESIDENT) {
-                           handleLIRHit(e, evicted);
-                       } else if (e.recency() == Recency.HIR_RESIDENT) {
-                           handleHIRHit(e, evicted);
-                       }
-                   }
+      @Override
+      public Set<HashEntry<K, V>> execute() {
+         Set<HashEntry<K, V>> evicted = new HashSet<HashEntry<K, V>>();
+         try {
+            for (HashEntry<K, V> e : accessQueue) {
+               if (present(e)) {
+                  if (e.recency() == Recency.LIR_RESIDENT) {
+                     handleLIRHit(e, evicted);
+                  } else if (e.recency() == Recency.HIR_RESIDENT) {
+                     handleHIRHit(e, evicted);
+                  }
                }
-               removeFromSegment(evicted);
-           } finally {
-               accessQueue.clear();
-           }
-           return evicted;
-       }
+            }
+            removeFromSegment(evicted);
+         } finally {
+            accessQueue.clear();
+         }
+         return evicted;
+      }
 
-       private void handleHIRHit(HashEntry<K, V> e, Set<HashEntry<K, V>> evicted) {
-           boolean inStack = stack.containsKey(e.key);
-           if (inStack) {
+      private void handleHIRHit(HashEntry<K, V> e, Set<HashEntry<K, V>> evicted) {
+         boolean inStack = stack.containsKey(e.key);
+         if (inStack) {
             stack.remove(e.key);
          }
 
-           // first put on top of the stack
-           stack.put(e.key, e);
+         // first put on top of the stack
+         stack.put(e.key, e);
 
-           if (inStack) {
-               queue.remove(e);
-               e.transitionToLIRResident();
-               switchBottomostLIRtoHIRAndPrune(evicted);
-           } else {
-               queue.remove(e);
-               queue.addLast(e);
-           }
-       }
+         if (inStack) {
+            queue.remove(e);
+            e.transitionToLIRResident();
+            switchBottomostLIRtoHIRAndPrune(evicted);
+         } else {
+            queue.remove(e);
+            queue.addLast(e);
+         }
+      }
 
-       private void handleLIRHit(HashEntry<K, V> e, Set<HashEntry<K, V>> evicted) {
-           stack.remove(e.key);
-           stack.put(e.key, e);
-           for (Iterator<HashEntry<K, V>> i = stack.values().iterator(); i.hasNext();) {
-               HashEntry<K, V> next = i.next();
-               if (next.recency() == Recency.LIR_RESIDENT) {
-                   break;
-               } else {
-                   i.remove();
-                   evicted.add(next);
-               }
-           }
-       }
+      private void handleLIRHit(HashEntry<K, V> e, Set<HashEntry<K, V>> evicted) {
+         stack.remove(e.key);
+         stack.put(e.key, e);
+         for (Iterator<HashEntry<K, V>> i = stack.values().iterator(); i.hasNext();) {
+            HashEntry<K, V> next = i.next();
+            if (next.recency() == Recency.LIR_RESIDENT) {
+               break;
+            } else {
+               i.remove();
+               evicted.add(next);
+            }
+         }
+      }
 
-       private boolean present(HashEntry<K, V> e) {
-           return stack.containsKey(e.key) || queue.contains(e);
-       }
+      private boolean present(HashEntry<K, V> e) {
+         return stack.containsKey(e.key) || queue.contains(e);
+      }
 
-       @Override
-       public Set<HashEntry<K, V>> onEntryMiss(HashEntry<K, V> e) {
-           // initialization
-          Set<HashEntry<K, V>> evicted = Collections.emptySet();
-           if (currentLIRSize + 1 < lirSizeLimit) {
-               currentLIRSize++;
-               e.transitionToLIRResident();
+      @Override
+      public Set<HashEntry<K, V>> onEntryMiss(HashEntry<K, V> e) {
+         // initialization
+         Set<HashEntry<K, V>> evicted = Collections.emptySet();
+         if (currentLIRSize + 1 < lirSizeLimit) {
+            currentLIRSize++;
+            e.transitionToLIRResident();
+            stack.put(e.key, e);
+         } else {
+            if (queue.size() < hirSizeLimit) {
+               queue.addLast(e);
+            } else {
+               boolean inStack = stack.containsKey(e.key);
+               HashEntry<K, V> first = queue.removeFirst();
+               first.transitionHIRResidentToHIRNonResident();
+
                stack.put(e.key, e);
-           } else {
-               if (queue.size() < hirSizeLimit) {
-                   queue.addLast(e);
+
+               evicted = new HashSet<HashEntry<K, V>>();
+               if (inStack) {
+                  e.transitionToLIRResident();
+                  switchBottomostLIRtoHIRAndPrune(evicted);
                } else {
-                   boolean inStack = stack.containsKey(e.key);
-                   HashEntry<K, V> first = queue.removeFirst();
-                   first.transitionHIRResidentToHIRNonResident();
-
-                   stack.put(e.key, e);
-
-                   evicted = new HashSet<HashEntry<K, V>>();
-                   if (inStack) {
-                       e.transitionToLIRResident();
-                       switchBottomostLIRtoHIRAndPrune(evicted);
-                   } else {
-                       queue.addLast(e);
-                       evicted.add(first);
-                   }
-                   // evict from segment
-                   removeFromSegment(evicted);
+                  queue.addLast(e);
+                  evicted.add(first);
                }
-           }
-           return evicted;
-       }
+               // evict from segment
+               removeFromSegment(evicted);
+            }
+         }
+         return evicted;
+      }
 
-       private void removeFromSegment(Set<HashEntry<K, V>> evicted) {
-           for (HashEntry<K, V> e : evicted) {
-               segment.remove(e.key, e.hash, null);
-           }
-       }
+      private void removeFromSegment(Set<HashEntry<K, V>> evicted) {
+         for (HashEntry<K, V> e : evicted) {
+            segment.remove(e.key, e.hash, null);
+         }
+      }
 
-       private void switchBottomostLIRtoHIRAndPrune(Set<HashEntry<K, V>> evicted) {
-           boolean seenFirstLIR = false;
-           for (Iterator<HashEntry<K, V>> i = stack.values().iterator(); i.hasNext();) {
-               HashEntry<K, V> next = i.next();
-               if (next.recency() == Recency.LIR_RESIDENT) {
-                   if (!seenFirstLIR) {
-                       seenFirstLIR = true;
-                       i.remove();
-                       next.transitionLIRResidentToHIRResident();
-                       queue.addLast(next);
-                   } else {
-                       break;
-                   }
+      private void switchBottomostLIRtoHIRAndPrune(Set<HashEntry<K, V>> evicted) {
+         boolean seenFirstLIR = false;
+         for (Iterator<HashEntry<K, V>> i = stack.values().iterator(); i.hasNext();) {
+            HashEntry<K, V> next = i.next();
+            if (next.recency() == Recency.LIR_RESIDENT) {
+               if (!seenFirstLIR) {
+                  seenFirstLIR = true;
+                  i.remove();
+                  next.transitionLIRResidentToHIRResident();
+                  queue.addLast(next);
                } else {
-                   i.remove();
-                   evicted.add(next);
+                  break;
                }
-           }
-       }
+            } else {
+               i.remove();
+               evicted.add(next);
+            }
+         }
+      }
 
-       /*
-        * Invoked without holding a lock on Segment
-        */
-       @Override
-       public boolean onEntryHit(HashEntry<K, V> e) {
-           accessQueue.add(e);
-           return accessQueue.size() >= maxBatchQueueSize * batchThresholdFactor;
-       }
+      /*
+       * Invoked without holding a lock on Segment
+       */
+      @Override
+      public boolean onEntryHit(HashEntry<K, V> e) {
+         accessQueue.add(e);
+         return accessQueue.size() >= maxBatchQueueSize * batchThresholdFactor;
+      }
 
-       /*
-        * Invoked without holding a lock on Segment
-        */
-       @Override
-       public boolean thresholdExpired() {
-           return accessQueue.size() >= maxBatchQueueSize;
-       }
+      /*
+       * Invoked without holding a lock on Segment
+       */
+      @Override
+      public boolean thresholdExpired() {
+         return accessQueue.size() >= maxBatchQueueSize;
+      }
 
-       @Override
-       public void onEntryRemove(HashEntry<K, V> e) {
-           HashEntry<K, V> removed = stack.remove(e.key);
-           if (removed != null && removed.recency() == Recency.LIR_RESIDENT) {
-               currentLIRSize--;
-           }
-           queue.remove(e);
-           // we could have multiple instances of e in accessQueue; remove them all
-           while (accessQueue.remove(e)) {
-              continue;
-           }
-       }
+      @Override
+      public void onEntryRemove(HashEntry<K, V> e) {
+         HashEntry<K, V> removed = stack.remove(e.key);
+         if (removed != null && removed.recency() == Recency.LIR_RESIDENT) {
+            currentLIRSize--;
+         }
+         queue.remove(e);
+         // we could have multiple instances of e in accessQueue; remove them all
+         while (accessQueue.remove(e)) {
+            continue;
+         }
+      }
 
-       @Override
-       public void clear() {
-           stack.clear();
-           accessQueue.clear();
-       }
+      @Override
+      public void clear() {
+         stack.clear();
+         accessQueue.clear();
+      }
 
-       @Override
-       public Eviction strategy() {
-           return Eviction.LIRS;
-       }
+      @Override
+      public Eviction strategy() {
+         return Eviction.LIRS;
+      }
    }
 
-    /**
-     * Segments are specialized versions of hash tables.  This
-     * subclasses from ReentrantLock opportunistically, just to
-     * simplify some locking and avoid separate construction.
-     */
-    static final class Segment<K,V> extends ReentrantLock implements Serializable {
-        /*
-         * Segments maintain a table of entry lists that are ALWAYS
-         * kept in a consistent state, so can be read without locking.
-         * Next fields of nodes are immutable (final).  All list
-         * additions are performed at the front of each bin. This
-         * makes it easy to check changes, and also fast to traverse.
-         * When nodes would otherwise be changed, new nodes are
-         * created to replace them. This works well for hash tables
-         * since the bin lists tend to be short. (The average length
-         * is less than two for the default load factor threshold.)
-         *
-         * Read operations can thus proceed without locking, but rely
-         * on selected uses of volatiles to ensure that completed
-         * write operations performed by other threads are
-         * noticed. For most purposes, the "count" field, tracking the
-         * number of elements, serves as that volatile variable
-         * ensuring visibility.  This is convenient because this field
-         * needs to be read in many read operations anyway:
-         *
-         *   - All (unsynchronized) read operations must first read the
-         *     "count" field, and should not look at table entries if
-         *     it is 0.
-         *
-         *   - All (synchronized) write operations should write to
-         *     the "count" field after structurally changing any bin.
-         *     The operations must not take any action that could even
-         *     momentarily cause a concurrent read operation to see
-         *     inconsistent data. This is made easier by the nature of
-         *     the read operations in Map. For example, no operation
-         *     can reveal that the table has grown but the threshold
-         *     has not yet been updated, so there are no atomicity
-         *     requirements for this with respect to reads.
-         *
-         * As a guide, all critical volatile reads and writes to the
-         * count field are marked in code comments.
-         */
+   /**
+    * Segments are specialized versions of hash tables.  This
+    * subclasses from ReentrantLock opportunistically, just to
+    * simplify some locking and avoid separate construction.
+    */
+   static final class Segment<K,V> extends ReentrantLock {
+      /*
+       * Segments maintain a table of entry lists that are ALWAYS
+       * kept in a consistent state, so can be read without locking.
+       * Next fields of nodes are immutable (final).  All list
+       * additions are performed at the front of each bin. This
+       * makes it easy to check changes, and also fast to traverse.
+       * When nodes would otherwise be changed, new nodes are
+       * created to replace them. This works well for hash tables
+       * since the bin lists tend to be short. (The average length
+       * is less than two for the default load factor threshold.)
+       *
+       * Read operations can thus proceed without locking, but rely
+       * on selected uses of volatiles to ensure that completed
+       * write operations performed by other threads are
+       * noticed. For most purposes, the "count" field, tracking the
+       * number of elements, serves as that volatile variable
+       * ensuring visibility.  This is convenient because this field
+       * needs to be read in many read operations anyway:
+       *
+       *   - All (unsynchronized) read operations must first read the
+       *     "count" field, and should not look at table entries if
+       *     it is 0.
+       *
+       *   - All (synchronized) write operations should write to
+       *     the "count" field after structurally changing any bin.
+       *     The operations must not take any action that could even
+       *     momentarily cause a concurrent read operation to see
+       *     inconsistent data. This is made easier by the nature of
+       *     the read operations in Map. For example, no operation
+       *     can reveal that the table has grown but the threshold
+       *     has not yet been updated, so there are no atomicity
+       *     requirements for this with respect to reads.
+       *
+       * As a guide, all critical volatile reads and writes to the
+       * count field are marked in code comments.
+       */
 
-        private static final long serialVersionUID = 2249069246763182397L;
+      private static final long serialVersionUID = 2249069246763182397L;
 
-        /**
-         * The number of elements in this segment's region.
-         */
-        transient volatile int count;
+      /**
+       * The number of elements in this segment's region.
+       */
+      transient volatile int count;
 
-        /**
-         * Number of updates that alter the size of the table. This is
-         * used during bulk-read methods to make sure they see a
-         * consistent snapshot: If modCounts change during a traversal
-         * of segments computing size or checking containsValue, then
-         * we might have an inconsistent view of state so (usually)
-         * must retry.
-         */
-        transient int modCount;
+      /**
+       * Number of updates that alter the size of the table. This is
+       * used during bulk-read methods to make sure they see a
+       * consistent snapshot: If modCounts change during a traversal
+       * of segments computing size or checking containsValue, then
+       * we might have an inconsistent view of state so (usually)
+       * must retry.
+       */
+      transient int modCount;
 
-        /**
-         * The table is rehashed when its size exceeds this threshold.
-         * (The value of this field is always <tt>(int)(capacity *
-         * loadFactor)</tt>.)
-         */
-        transient int threshold;
+      /**
+       * The table is rehashed when its size exceeds this threshold.
+       * (The value of this field is always <tt>(int)(capacity *
+       * loadFactor)</tt>.)
+       */
+      transient int threshold;
 
-        /**
-         * The per-segment table.
-         */
-        transient volatile HashEntry<K,V>[] table;
+      /**
+       * The per-segment table.
+       */
+      transient volatile HashEntry<K,V>[] table;
 
-        /**
-         * The load factor for the hash table.  Even though this value
-         * is same for all segments, it is replicated to avoid needing
-         * links to outer object.
-         * @serial
-         */
-        final float loadFactor;
+      /**
+       * The load factor for the hash table.  Even though this value
+       * is same for all segments, it is replicated to avoid needing
+       * links to outer object.
+       * @serial
+       */
+      final float loadFactor;
 
-        transient final EvictionPolicy<K, V> eviction;
+      transient final EvictionPolicy<K, V> eviction;
 
-        transient final EvictionListener<K, V> evictionListener;
+      transient final EvictionListener<K, V> evictionListener;
 
-        Segment(int cap, float lf, Eviction es, EvictionListener<K, V> listener) {
-           loadFactor = lf;
-           eviction = es.make(this, cap, lf);
-           evictionListener = listener;
-           setTable(HashEntry.<K, V> newArray(cap));
-       }
+      Segment(int cap, float lf, Eviction es, EvictionListener<K, V> listener) {
+         loadFactor = lf;
+         eviction = es.make(this, cap, lf);
+         evictionListener = listener;
+         setTable(HashEntry.<K, V> newArray(cap));
+      }
 
-        @SuppressWarnings("unchecked")
-        static final <K,V> Segment<K,V>[] newArray(int i) {
-            return new Segment[i];
-        }
+      @SuppressWarnings("unchecked")
+      static final <K,V> Segment<K,V>[] newArray(int i) {
+         return new Segment[i];
+      }
 
-        EvictionListener<K, V> getEvictionListener() {
-           return evictionListener;
-        }
+      EvictionListener<K, V> getEvictionListener() {
+         return evictionListener;
+      }
 
-        /**
-         * Sets table to new HashEntry array.
-         * Call only while holding lock or in constructor.
-         */
-        void setTable(HashEntry<K,V>[] newTable) {
-            threshold = (int)(newTable.length * loadFactor);
-            table = newTable;
-        }
+      /**
+       * Sets table to new HashEntry array.
+       * Call only while holding lock or in constructor.
+       */
+      void setTable(HashEntry<K,V>[] newTable) {
+         threshold = (int)(newTable.length * loadFactor);
+         table = newTable;
+      }
 
-        /**
-         * Returns properly casted first entry of bin for given hash.
-         */
-        HashEntry<K,V> getFirst(int hash) {
-            HashEntry<K,V>[] tab = table;
-            return tab[hash & tab.length - 1];
-        }
+      /**
+       * Returns properly casted first entry of bin for given hash.
+       */
+      HashEntry<K,V> getFirst(int hash) {
+         HashEntry<K,V>[] tab = table;
+         return tab[hash & tab.length - 1];
+      }
 
-        /**
-         * Reads value field of an entry under lock. Called if value
-         * field ever appears to be null. This is possible only if a
-         * compiler happens to reorder a HashEntry initialization with
-         * its table assignment, which is legal under memory model
-         * but is not known to ever occur.
-         */
-        V readValueUnderLock(HashEntry<K,V> e) {
+      /**
+       * Reads value field of an entry under lock. Called if value
+       * field ever appears to be null. This is possible only if a
+       * compiler happens to reorder a HashEntry initialization with
+       * its table assignment, which is legal under memory model
+       * but is not known to ever occur.
+       */
+      V readValueUnderLock(HashEntry<K,V> e) {
+         lock();
+         try {
+            return e.value;
+         } finally {
+            unlock();
+         }
+      }
+
+      /* Specialized implementations of map methods */
+
+      V get(Object key, int hash) {
+         int c = count;
+         if (c != 0) { // read-volatile
+            V result = null;
+            HashEntry<K, V> e = getFirst(hash);
+            loop: while (e != null) {
+               if (e.hash == hash && key.equals(e.key)) {
+                  V v = e.value;
+                  if (v != null) {
+                     result = v;
+                     break loop;
+                  } else {
+                     result = readValueUnderLock(e); // recheck
+                     break loop;
+                  }
+               }
+               e = e.next;
+            }
+            // a hit
+            if (result != null) {
+               if (eviction.onEntryHit(e)) {
+                  Set<HashEntry<K, V>> evicted = attemptEviction(false);
+                  // piggyback listener invocation on callers thread outside lock
+                  if (evicted != null) {
+                     for (HashEntry<K, V> he : evicted) {
+                        evictionListener.onEntryEviction(he.key, he.value);
+                     }
+                  }
+               }
+            }
+            return result;
+         }
+         return null;
+      }
+
+      private Set<HashEntry<K, V>> attemptEviction(boolean lockedAlready) {
+         Set<HashEntry<K, V>> evicted = null;
+         boolean obtainedLock = !lockedAlready ? tryLock() : true;
+         if (!obtainedLock && eviction.thresholdExpired()) {
             lock();
+            obtainedLock = true;
+         }
+         if (obtainedLock) {
             try {
-                return e.value;
+               evicted = eviction.execute();
             } finally {
-                unlock();
+               if (!lockedAlready) {
+                  unlock();
+               }
             }
-        }
+         }
+         return evicted;
+      }
 
-        /* Specialized implementations of map methods */
-
-        V get(Object key, int hash) {
-           int c = count;
-           if (c != 0) { // read-volatile
-               V result = null;
-               HashEntry<K, V> e = getFirst(hash);
-               loop: while (e != null) {
-                   if (e.hash == hash && key.equals(e.key)) {
-                       V v = e.value;
-                       if (v != null) {
-                           result = v;
-                           break loop;
-                       } else {
-                           result = readValueUnderLock(e); // recheck
-                           break loop;
-                       }
-                   }
-                   e = e.next;
+      boolean containsKey(Object key, int hash) {
+         if (count != 0) { // read-volatile
+            HashEntry<K,V> e = getFirst(hash);
+            while (e != null) {
+               if (e.hash == hash && key.equals(e.key)) {
+                  return true;
                }
-               // a hit
-               if (result != null) {
-                   if (eviction.onEntryHit(e)) {
-                       Set<HashEntry<K, V>> evicted = attemptEviction(false);
-                       // piggyback listener invocation on callers thread outside lock
-                       if (evicted != null) {
-                           for (HashEntry<K, V> he : evicted) {
-                               evictionListener.onEntryEviction(he.key, he.value);
-                           }
-                       }
-                   }
-               }
-               return result;
-           }
-           return null;
-       }
+               e = e.next;
+            }
+         }
+         return false;
+      }
 
-       private Set<HashEntry<K, V>> attemptEviction(boolean lockedAlready) {
-           Set<HashEntry<K, V>> evicted = null;
-           boolean obtainedLock = !lockedAlready ? tryLock() : true;
-           if (!obtainedLock && eviction.thresholdExpired()) {
-               lock();
-               obtainedLock = true;
-           }
-           if (obtainedLock) {
-               try {
-                   evicted = eviction.execute();
-               } finally {
-                   if (!lockedAlready) {
-                     unlock();
+      boolean containsValue(Object value) {
+         if (count != 0) { // read-volatile
+            HashEntry<K,V>[] tab = table;
+            int len = tab.length;
+            for (int i = 0 ; i < len; i++) {
+               for (HashEntry<K,V> e = tab[i]; e != null; e = e.next) {
+                  V v = e.value;
+                  if (v == null) {
+                     v = readValueUnderLock(e);
                   }
-               }
-           }
-           return evicted;
-       }
-
-        boolean containsKey(Object key, int hash) {
-            if (count != 0) { // read-volatile
-                HashEntry<K,V> e = getFirst(hash);
-                while (e != null) {
-                    if (e.hash == hash && key.equals(e.key)) {
+                  if (value.equals(v)) {
                      return true;
                   }
-                    e = e.next;
-                }
+               }
             }
-            return false;
-        }
+         }
+         return false;
+      }
 
-        boolean containsValue(Object value) {
-            if (count != 0) { // read-volatile
-                HashEntry<K,V>[] tab = table;
-                int len = tab.length;
-                for (int i = 0 ; i < len; i++) {
-                    for (HashEntry<K,V> e = tab[i]; e != null; e = e.next) {
-                        V v = e.value;
-                        if (v == null) {
-                           v = readValueUnderLock(e);
-                        }
-                        if (value.equals(v)) {
-                           return true;
-                        }
-                    }
-                }
+      boolean replace(K key, int hash, V oldValue, V newValue) {
+         lock();
+         Set<HashEntry<K, V>> evicted = null;
+         try {
+            HashEntry<K, V> e = getFirst(hash);
+            while (e != null && (e.hash != hash || !key.equals(e.key))) {
+               e = e.next;
             }
-            return false;
-        }
 
-        boolean replace(K key, int hash, V oldValue, V newValue) {
-           lock();
-           Set<HashEntry<K, V>> evicted = null;
-           try {
-               HashEntry<K, V> e = getFirst(hash);
-               while (e != null && (e.hash != hash || !key.equals(e.key))) {
-                  e = e.next;
+            boolean replaced = false;
+            if (e != null && oldValue.equals(e.value)) {
+               replaced = true;
+               e.value = newValue;
+               if (eviction.onEntryHit(e)) {
+                  evicted = attemptEviction(true);
                }
-
-               boolean replaced = false;
-               if (e != null && oldValue.equals(e.value)) {
-                   replaced = true;
-                   e.value = newValue;
-                   if (eviction.onEntryHit(e)) {
-                       evicted = attemptEviction(true);
-                   }
+            }
+            return replaced;
+         } finally {
+            unlock();
+            // piggyback listener invocation on callers thread outside lock
+            if (evicted != null) {
+               for (HashEntry<K, V> he : evicted) {
+                  evictionListener.onEntryEviction(he.key, he.value);
                }
-               return replaced;
-           } finally {
-               unlock();
-               // piggyback listener invocation on callers thread outside lock
-               if (evicted != null) {
-                   for (HashEntry<K, V> he : evicted) {
-                       evictionListener.onEntryEviction(he.key, he.value);
-                   }
-               }
-           }
-       }
+            }
+         }
+      }
 
-       V replace(K key, int hash, V newValue) {
-           lock();
-           Set<HashEntry<K, V>> evicted = null;
-           try {
-               HashEntry<K, V> e = getFirst(hash);
-               while (e != null && (e.hash != hash || !key.equals(e.key))) {
-                  e = e.next;
-               }
+      V replace(K key, int hash, V newValue) {
+         lock();
+         Set<HashEntry<K, V>> evicted = null;
+         try {
+            HashEntry<K, V> e = getFirst(hash);
+            while (e != null && (e.hash != hash || !key.equals(e.key))) {
+               e = e.next;
+            }
 
-               V oldValue = null;
-               if (e != null) {
-                   oldValue = e.value;
-                   e.value = newValue;
-                   if (eviction.onEntryHit(e)) {
-                       evicted = attemptEviction(true);
-                   }
+            V oldValue = null;
+            if (e != null) {
+               oldValue = e.value;
+               e.value = newValue;
+               if (eviction.onEntryHit(e)) {
+                  evicted = attemptEviction(true);
                }
-               return oldValue;
-           } finally {
-               unlock();
-               // piggyback listener invocation on callers thread outside lock
-               if(evicted != null) {
-                   for (HashEntry<K, V> he : evicted) {
-                       evictionListener.onEntryEviction(he.key, he.value);
-                   }
+            }
+            return oldValue;
+         } finally {
+            unlock();
+            // piggyback listener invocation on callers thread outside lock
+            if(evicted != null) {
+               for (HashEntry<K, V> he : evicted) {
+                  evictionListener.onEntryEviction(he.key, he.value);
                }
-           }
-       }
+            }
+         }
+      }
 
-
-       V put(K key, int hash, V value, boolean onlyIfAbsent) {
-          lock();
-          Set<HashEntry<K, V>> evicted = null;
-          try {
-              int c = count;
-              if (c++ > threshold && eviction.strategy() == Eviction.NONE) {
+      V put(K key, int hash, V value, boolean onlyIfAbsent) {
+         lock();
+         Set<HashEntry<K, V>> evicted = null;
+         try {
+            int c = count;
+            if (c++ > threshold && eviction.strategy() == Eviction.NONE) {
                rehash();
             }
-              HashEntry<K, V>[] tab = table;
-              int index = hash & tab.length - 1;
-              HashEntry<K, V> first = tab[index];
-              HashEntry<K, V> e = first;
-              while (e != null && (e.hash != hash || !key.equals(e.key))) {
+            HashEntry<K, V>[] tab = table;
+            int index = hash & tab.length - 1;
+            HashEntry<K, V> first = tab[index];
+            HashEntry<K, V> e = first;
+            while (e != null && (e.hash != hash || !key.equals(e.key))) {
                e = e.next;
             }
 
-              V oldValue;
-              if (e != null) {
-                  oldValue = e.value;
-                  if (!onlyIfAbsent) {
-                      e.value = value;
-                      eviction.onEntryHit(e);
+            V oldValue;
+            if (e != null) {
+               oldValue = e.value;
+               if (!onlyIfAbsent) {
+                  e.value = value;
+                  eviction.onEntryHit(e);
+               }
+            } else {
+               oldValue = null;
+               ++modCount;
+               count = c; // write-volatile
+               if (eviction.strategy() != Eviction.NONE) {
+                  if (c > tab.length) {
+                     // remove entries;lower count
+                     evicted = eviction.execute();
+                     // re-read first
+                     first = tab[index];
                   }
-              } else {
-                  oldValue = null;
-                  ++modCount;
-                  count = c; // write-volatile
-                  if (eviction.strategy() != Eviction.NONE) {
-                      if (c > tab.length) {
-                          // remove entries;lower count
-                          evicted = eviction.execute();
-                          // re-read first
-                          first = tab[index];
-                      }
-                      // add a new entry
-                      tab[index] = new HashEntry<K, V>(key, hash, first, value);
-                      // notify a miss
-                      Set<HashEntry<K, V>> newlyEvicted = eviction.onEntryMiss(tab[index]);
-                      if (!newlyEvicted.isEmpty()) {
-                         if (evicted != null) {
-                           evicted.addAll(newlyEvicted);
-                        } else {
-                           evicted = newlyEvicted;
-                        }
-                      }
-                  } else {
-                      tab[index] = new HashEntry<K, V>(key, hash, first, value);
+                  // add a new entry
+                  tab[index] = new HashEntry<K, V>(key, hash, first, value);
+                  // notify a miss
+                  Set<HashEntry<K, V>> newlyEvicted = eviction.onEntryMiss(tab[index]);
+                  if (!newlyEvicted.isEmpty()) {
+                     if (evicted != null) {
+                        evicted.addAll(newlyEvicted);
+                     } else {
+                        evicted = newlyEvicted;
+                     }
                   }
-              }
-              return oldValue;
-          } finally {
-              unlock();
-              // piggyback listener invocation on callers thread outside lock
-              if(evicted != null) {
-                  for (HashEntry<K, V> he : evicted) {
-                      evictionListener.onEntryEviction(he.key, he.value);
-                  }
-              }
-          }
+               } else {
+                  tab[index] = new HashEntry<K, V>(key, hash, first, value);
+               }
+            }
+            return oldValue;
+         } finally {
+            unlock();
+            // piggyback listener invocation on callers thread outside lock
+            if(evicted != null) {
+               for (HashEntry<K, V> he : evicted) {
+                  evictionListener.onEntryEviction(he.key, he.value);
+               }
+            }
+         }
       }
 
+      void rehash() {
+         HashEntry<K,V>[] oldTable = table;
+         int oldCapacity = oldTable.length;
+         if (oldCapacity >= MAXIMUM_CAPACITY) {
+            return;
+         }
 
-        void rehash() {
-            HashEntry<K,V>[] oldTable = table;
-            int oldCapacity = oldTable.length;
-            if (oldCapacity >= MAXIMUM_CAPACITY) {
-               return;
-            }
+         /*
+          * Reclassify nodes in each list to new Map.  Because we are
+          * using power-of-two expansion, the elements from each bin
+          * must either stay at same index, or move with a power of two
+          * offset. We eliminate unnecessary node creation by catching
+          * cases where old nodes can be reused because their next
+          * fields won't change. Statistically, at the default
+          * threshold, only about one-sixth of them need cloning when
+          * a table doubles. The nodes they replace will be garbage
+          * collectable as soon as they are no longer referenced by any
+          * reader thread that may be in the midst of traversing table
+          * right now.
+          */
 
-            /*
-             * Reclassify nodes in each list to new Map.  Because we are
-             * using power-of-two expansion, the elements from each bin
-             * must either stay at same index, or move with a power of two
-             * offset. We eliminate unnecessary node creation by catching
-             * cases where old nodes can be reused because their next
-             * fields won't change. Statistically, at the default
-             * threshold, only about one-sixth of them need cloning when
-             * a table doubles. The nodes they replace will be garbage
-             * collectable as soon as they are no longer referenced by any
-             * reader thread that may be in the midst of traversing table
-             * right now.
-             */
+         HashEntry<K,V>[] newTable = HashEntry.newArray(oldCapacity<<1);
+         threshold = (int)(newTable.length * loadFactor);
+         int sizeMask = newTable.length - 1;
+         for (int i = 0; i < oldCapacity ; i++) {
+            // We need to guarantee that any existing reads of old Map can
+            //  proceed. So we cannot yet null out each bin.
+            HashEntry<K,V> e = oldTable[i];
 
-            HashEntry<K,V>[] newTable = HashEntry.newArray(oldCapacity<<1);
-            threshold = (int)(newTable.length * loadFactor);
-            int sizeMask = newTable.length - 1;
-            for (int i = 0; i < oldCapacity ; i++) {
-                // We need to guarantee that any existing reads of old Map can
-                //  proceed. So we cannot yet null out each bin.
-                HashEntry<K,V> e = oldTable[i];
+            if (e != null) {
+               HashEntry<K,V> next = e.next;
+               int idx = e.hash & sizeMask;
 
-                if (e != null) {
-                    HashEntry<K,V> next = e.next;
-                    int idx = e.hash & sizeMask;
+               //  Single node on list
+               if (next == null) {
+                  newTable[idx] = e;
+               } else {
+                  // Reuse trailing consecutive sequence at same slot
+                  HashEntry<K,V> lastRun = e;
+                  int lastIdx = idx;
+                  for (HashEntry<K,V> last = next;
+                  last != null;
+                  last = last.next) {
+                     int k = last.hash & sizeMask;
+                     if (k != lastIdx) {
+                        lastIdx = k;
+                        lastRun = last;
+                     }
+                  }
+                  newTable[lastIdx] = lastRun;
 
-                    //  Single node on list
-                    if (next == null) {
-                     newTable[idx] = e;
-                  } else {
-                        // Reuse trailing consecutive sequence at same slot
-                        HashEntry<K,V> lastRun = e;
-                        int lastIdx = idx;
-                        for (HashEntry<K,V> last = next;
-                             last != null;
-                             last = last.next) {
-                            int k = last.hash & sizeMask;
-                            if (k != lastIdx) {
-                                lastIdx = k;
-                                lastRun = last;
-                            }
-                        }
-                        newTable[lastIdx] = lastRun;
+                  // Clone all remaining nodes
+                  for (HashEntry<K,V> p = e; p != lastRun; p = p.next) {
+                     int k = p.hash & sizeMask;
+                     HashEntry<K,V> n = newTable[k];
+                     newTable[k] = new HashEntry<K,V>(p.key, p.hash,
+                           n, p.value);
+                  }
+               }
+            }
+         }
+         table = newTable;
+      }
 
-                        // Clone all remaining nodes
-                        for (HashEntry<K,V> p = e; p != lastRun; p = p.next) {
-                            int k = p.hash & sizeMask;
-                            HashEntry<K,V> n = newTable[k];
-                            newTable[k] = new HashEntry<K,V>(p.key, p.hash,
-                                                             n, p.value);
-                        }
-                    }
-                }
+      /**
+       * Remove; match on key only if value null, else match both.
+       */
+      V remove(Object key, int hash, Object value) {
+         lock();
+         try {
+            int c = count - 1;
+            HashEntry<K, V>[] tab = table;
+            int index = hash & tab.length - 1;
+            HashEntry<K, V> first = tab[index];
+            HashEntry<K, V> e = first;
+            while (e != null && (e.hash != hash || !key.equals(e.key))) {
+               e = e.next;
             }
-            table = newTable;
-        }
 
-        /**
-         * Remove; match on key only if value null, else match both.
-         */
-        V remove(Object key, int hash, Object value) {
-           lock();
-           try {
-               int c = count - 1;
-               HashEntry<K, V>[] tab = table;
-               int index = hash & tab.length - 1;
-               HashEntry<K, V> first = tab[index];
-               HashEntry<K, V> e = first;
-               while (e != null && (e.hash != hash || !key.equals(e.key))) {
-                  e = e.next;
-               }
+            V oldValue = null;
+            if (e != null) {
+               V v = e.value;
+               if (value == null || value.equals(v)) {
+                  oldValue = v;
+                  // All entries following removed node can stay
+                  // in list, but all preceding ones need to be
+                  // cloned.
+                  ++modCount;
 
-               V oldValue = null;
-               if (e != null) {
-                   V v = e.value;
-                   if (value == null || value.equals(v)) {
-                       oldValue = v;
-                       // All entries following removed node can stay
-                       // in list, but all preceding ones need to be
-                       // cloned.
-                       ++modCount;
+                  // e was removed
+                  eviction.onEntryRemove(e);
 
-                       // e was removed
-                       eviction.onEntryRemove(e);
+                  HashEntry<K, V> newFirst = e.next;
+                  for (HashEntry<K, V> p = first; p != e; p = p.next) {
+                     // allow p to be GC-ed
+                     eviction.onEntryRemove(p);
+                     newFirst = new HashEntry<K, V>(p.key, p.hash, newFirst, p.value);
+                     // and notify eviction algorithm about new hash entries
+                     eviction.onEntryMiss(newFirst);
+                  }
 
-                       HashEntry<K, V> newFirst = e.next;
-                       for (HashEntry<K, V> p = first; p != e; p = p.next) {
-                           // allow p to be GC-ed
-                           eviction.onEntryRemove(p);
-                           newFirst = new HashEntry<K, V>(p.key, p.hash, newFirst, p.value);
-                           // and notify eviction algorithm about new hash entries
-                           eviction.onEntryMiss(newFirst);
-                       }
+                  tab[index] = newFirst;
+                  count = c; // write-volatile
+               }
+            }
+            return oldValue;
+         } finally {
+            unlock();
+         }
+      }
 
-                       tab[index] = newFirst;
-                       count = c; // write-volatile
-                   }
+      void clear() {
+         if (count != 0) {
+            lock();
+            try {
+               HashEntry<K, V>[] tab = table;
+               for (int i = 0; i < tab.length; i++) {
+                  tab[i] = null;
                }
-               return oldValue;
-           } finally {
+               ++modCount;
+               eviction.clear();
+               count = 0; // write-volatile
+            } finally {
                unlock();
-           }
-       }
+            }
+         }
+      }
+   }
 
-        void clear() {
-           if (count != 0) {
-               lock();
-               try {
-                   HashEntry<K, V>[] tab = table;
-                   for (int i = 0; i < tab.length; i++) {
-                     tab[i] = null;
-                  }
-                   ++modCount;
-                   eviction.clear();
-                   count = 0; // write-volatile
-               } finally {
-                   unlock();
-               }
-           }
-       }
-    }
 
+   /* ---------------- Public operations -------------- */
 
 
-    /* ---------------- Public operations -------------- */
-
-
-    /**
-     * Creates a new, empty map with the specified maximum capacity, load factor and concurrency
-     * level.
-     *
-     * @param capacity
-     *            is the upper bound capacity for the number of elements in this map
-     *
-     * @param concurrencyLevel
-     *            the estimated number of concurrently updating threads. The implementation performs
-     *            internal sizing to try to accommodate this many threads.
-     *
-     * @param evictionStrategy
-     *            the algorithm used to evict elements from this map
-     *
-     * @param evictionListener
-     *            the evicton listener callback to be notified about evicted elements
-     *
-     * @throws IllegalArgumentException
-     *             if the initial capacity is negative or the load factor or concurrencyLevel are
-     *             nonpositive.
-     */
-    public BoundedConcurrentHashMap(int capacity, int concurrencyLevel,
-                    Eviction evictionStrategy, EvictionListener<K, V> evictionListener) {
-        if (capacity < 0 || concurrencyLevel <= 0) {
+   /**
+    * Creates a new, empty map with the specified maximum capacity, load factor and concurrency
+    * level.
+    *
+    * @param capacity
+    *            is the upper bound capacity for the number of elements in this map
+    *
+    * @param concurrencyLevel
+    *            the estimated number of concurrently updating threads. The implementation performs
+    *            internal sizing to try to accommodate this many threads.
+    *
+    * @param evictionStrategy
+    *            the algorithm used to evict elements from this map
+    *
+    * @param evictionListener
+    *            the evicton listener callback to be notified about evicted elements
+    *
+    * @throws IllegalArgumentException
+    *             if the initial capacity is negative or the load factor or concurrencyLevel are
+    *             nonpositive.
+    */
+   public BoundedConcurrentHashMap(int capacity, int concurrencyLevel,
+         Eviction evictionStrategy, EvictionListener<K, V> evictionListener) {
+      if (capacity < 0 || concurrencyLevel <= 0) {
          throw new IllegalArgumentException();
       }
 
-        concurrencyLevel = Math.min(capacity / 2, concurrencyLevel); // concurrencyLevel cannot be > capacity/2
-        concurrencyLevel = Math.max(concurrencyLevel, 1); // concurrencyLevel cannot be less than 1
+      concurrencyLevel = Math.min(capacity / 2, concurrencyLevel); // concurrencyLevel cannot be > capacity/2
+      concurrencyLevel = Math.max(concurrencyLevel, 1); // concurrencyLevel cannot be less than 1
 
-        // minimum two elements per segment
-        if (capacity < concurrencyLevel * 2 && capacity != 1) {
+      // minimum two elements per segment
+      if (capacity < concurrencyLevel * 2 && capacity != 1) {
          throw new IllegalArgumentException("Maximum capacity has to be at least twice the concurrencyLevel");
       }
 
-        if (evictionStrategy == null || evictionListener == null) {
+      if (evictionStrategy == null || evictionListener == null) {
          throw new IllegalArgumentException();
       }
 
-        if (concurrencyLevel > MAX_SEGMENTS) {
+      if (concurrencyLevel > MAX_SEGMENTS) {
          concurrencyLevel = MAX_SEGMENTS;
       }
 
-        // Find power-of-two sizes best matching arguments
-        int sshift = 0;
-        int ssize = 1;
-        while (ssize < concurrencyLevel) {
-            ++sshift;
-            ssize <<= 1;
-        }
-        segmentShift = 32 - sshift;
-        segmentMask = ssize - 1;
-        this.segments = Segment.newArray(ssize);
+      // Find power-of-two sizes best matching arguments
+      int sshift = 0;
+      int ssize = 1;
+      while (ssize < concurrencyLevel) {
+         ++sshift;
+         ssize <<= 1;
+      }
+      segmentShift = 32 - sshift;
+      segmentMask = ssize - 1;
+      this.segments = Segment.newArray(ssize);
 
-        if (capacity > MAXIMUM_CAPACITY) {
+      if (capacity > MAXIMUM_CAPACITY) {
          capacity = MAXIMUM_CAPACITY;
       }
-        int c = capacity / ssize;
-        if (c * ssize < capacity) {
+      int c = capacity / ssize;
+      if (c * ssize < capacity) {
          ++c;
       }
-        int cap = 1;
-        while (cap < c) {
+      int cap = 1;
+      while (cap < c) {
          cap <<= 1;
       }
 
-        for (int i = 0; i < this.segments.length; ++i) {
-         this.segments[i] = new Segment<K, V>(cap, DEFAULT_LOAD_FACTOR, evictionStrategy,
-                         evictionListener);
+      for (int i = 0; i < this.segments.length; ++i) {
+         this.segments[i] = new Segment<K, V>(cap, DEFAULT_LOAD_FACTOR, evictionStrategy, evictionListener);
       }
-    }
+   }
 
-    /**
-     * Creates a new, empty map with the specified maximum capacity, load factor, concurrency
-     * level and LRU eviction policy.
-     *
-     * @param capacity
-     *            is the upper bound capacity for the number of elements in this map
-     *
-     * @param concurrencyLevel
-     *            the estimated number of concurrently updating threads. The implementation performs
-     *            internal sizing to try to accommodate this many threads.
-     *
-     * @throws IllegalArgumentException
-     *             if the initial capacity is negative or the load factor or concurrencyLevel are
-     *             nonpositive.
-     */
-    public BoundedConcurrentHashMap(int capacity, int concurrencyLevel) {
-        this(capacity, concurrencyLevel, Eviction.LRU);
-    }
+   /**
+    * Creates a new, empty map with the specified maximum capacity, load factor, concurrency
+    * level and LRU eviction policy.
+    *
+    * @param capacity
+    *            is the upper bound capacity for the number of elements in this map
+    *
+    * @param concurrencyLevel
+    *            the estimated number of concurrently updating threads. The implementation performs
+    *            internal sizing to try to accommodate this many threads.
+    *
+    * @throws IllegalArgumentException
+    *             if the initial capacity is negative or the load factor or concurrencyLevel are
+    *             nonpositive.
+    */
+   public BoundedConcurrentHashMap(int capacity, int concurrencyLevel) {
+      this(capacity, concurrencyLevel, Eviction.LRU);
+   }
 
-    /**
-     * Creates a new, empty map with the specified maximum capacity, load factor, concurrency
-     * level and eviction strategy.
-     *
-     * @param capacity
-     *            is the upper bound capacity for the number of elements in this map
-     *
-     * @param concurrencyLevel
-     *            the estimated number of concurrently updating threads. The implementation performs
-     *            internal sizing to try to accommodate this many threads.
-     *
-     * @param evictionStrategy
-     *            the algorithm used to evict elements from this map
-     *
-     * @throws IllegalArgumentException
-     *             if the initial capacity is negative or the load factor or concurrencyLevel are
-     *             nonpositive.
-     */
-    public BoundedConcurrentHashMap(int capacity, int concurrencyLevel, Eviction evictionStrategy) {
-        this(capacity, concurrencyLevel, evictionStrategy, new NullEvictionListener<K, V>());
-    }
+   /**
+    * Creates a new, empty map with the specified maximum capacity, load factor, concurrency
+    * level and eviction strategy.
+    *
+    * @param capacity
+    *            is the upper bound capacity for the number of elements in this map
+    *
+    * @param concurrencyLevel
+    *            the estimated number of concurrently updating threads. The implementation performs
+    *            internal sizing to try to accommodate this many threads.
+    *
+    * @param evictionStrategy
+    *            the algorithm used to evict elements from this map
+    *
+    * @throws IllegalArgumentException
+    *             if the initial capacity is negative or the load factor or concurrencyLevel are
+    *             nonpositive.
+    */
+   public BoundedConcurrentHashMap(int capacity, int concurrencyLevel, Eviction evictionStrategy) {
+      this(capacity, concurrencyLevel, evictionStrategy, new NullEvictionListener<K, V>());
+   }
 
-    /**
-     * Creates a new, empty map with the specified maximum capacity, default concurrency
-     * level and LRU eviction policy.
-     *
-     *  @param capacity
-     *            is the upper bound capacity for the number of elements in this map
-     *
-     *
-     * @throws IllegalArgumentException if the initial capacity of
-     * elements is negative or the load factor is nonpositive
-     *
-     * @since 1.6
-     */
-    public BoundedConcurrentHashMap(int capacity) {
-        this(capacity, DEFAULT_CONCURRENCY_LEVEL);
-    }
+   /**
+    * Creates a new, empty map with the specified maximum capacity, default concurrency
+    * level and LRU eviction policy.
+    *
+    *  @param capacity
+    *            is the upper bound capacity for the number of elements in this map
+    *
+    *
+    * @throws IllegalArgumentException if the initial capacity of
+    * elements is negative or the load factor is nonpositive
+    *
+    * @since 1.6
+    */
+   public BoundedConcurrentHashMap(int capacity) {
+      this(capacity, DEFAULT_CONCURRENCY_LEVEL);
+   }
 
-    /**
-     * Creates a new, empty map with the default maximum capacity
-     */
-    public BoundedConcurrentHashMap() {
-        this(DEFAULT_MAXIMUM_CAPACITY, DEFAULT_CONCURRENCY_LEVEL);
-    }
+   /**
+    * Creates a new, empty map with the default maximum capacity
+    */
+   public BoundedConcurrentHashMap() {
+      this(DEFAULT_MAXIMUM_CAPACITY, DEFAULT_CONCURRENCY_LEVEL);
+   }
 
-    /**
-     * Returns <tt>true</tt> if this map contains no key-value mappings.
-     *
-     * @return <tt>true</tt> if this map contains no key-value mappings
-     */
-    @Override
+   /**
+    * Returns <tt>true</tt> if this map contains no key-value mappings.
+    *
+    * @return <tt>true</tt> if this map contains no key-value mappings
+    */
+   @Override
    public boolean isEmpty() {
-        final Segment<K,V>[] segments = this.segments;
-        /*
-         * We keep track of per-segment modCounts to avoid ABA
-         * problems in which an element in one segment was added and
-         * in another removed during traversal, in which case the
-         * table was never actually empty at any point. Note the
-         * similar use of modCounts in the size() and containsValue()
-         * methods, which are the only other methods also susceptible
-         * to ABA problems.
-         */
-        int[] mc = new int[segments.length];
-        int mcsum = 0;
-        for (int i = 0; i < segments.length; ++i) {
-            if (segments[i].count != 0) {
+      final Segment<K,V>[] segments = this.segments;
+      /*
+       * We keep track of per-segment modCounts to avoid ABA
+       * problems in which an element in one segment was added and
+       * in another removed during traversal, in which case the
+       * table was never actually empty at any point. Note the
+       * similar use of modCounts in the size() and containsValue()
+       * methods, which are the only other methods also susceptible
+       * to ABA problems.
+       */
+      int[] mc = new int[segments.length];
+      int mcsum = 0;
+      for (int i = 0; i < segments.length; ++i) {
+         if (segments[i].count != 0) {
+            return false;
+         } else {
+            mcsum += mc[i] = segments[i].modCount;
+         }
+      }
+      // If mcsum happens to be zero, then we know we got a snapshot
+      // before any modifications at all were made.  This is
+      // probably common enough to bother tracking.
+      if (mcsum != 0) {
+         for (int i = 0; i < segments.length; ++i) {
+            if (segments[i].count != 0 || mc[i] != segments[i].modCount) {
                return false;
-            } else {
-               mcsum += mc[i] = segments[i].modCount;
             }
-        }
-        // If mcsum happens to be zero, then we know we got a snapshot
-        // before any modifications at all were made.  This is
-        // probably common enough to bother tracking.
-        if (mcsum != 0) {
-            for (int i = 0; i < segments.length; ++i) {
-                if (segments[i].count != 0 ||
-                    mc[i] != segments[i].modCount) {
-                  return false;
-               }
-            }
-        }
-        return true;
-    }
+         }
+      }
+      return true;
+   }
 
-    /**
-     * Returns the number of key-value mappings in this map.  If the
-     * map contains more than <tt>Integer.MAX_VALUE</tt> elements, returns
-     * <tt>Integer.MAX_VALUE</tt>.
-     *
-     * @return the number of key-value mappings in this map
-     */
-    @Override
+   /**
+    * Returns the number of key-value mappings in this map.  If the
+    * map contains more than <tt>Integer.MAX_VALUE</tt> elements, returns
+    * <tt>Integer.MAX_VALUE</tt>.
+    *
+    * @return the number of key-value mappings in this map
+    */
+   @Override
    public int size() {
-        final Segment<K,V>[] segments = this.segments;
-        long sum = 0;
-        long check = 0;
-        int[] mc = new int[segments.length];
-        // Try a few times to get accurate count. On failure due to
-        // continuous async changes in table, resort to locking.
-        for (int k = 0; k < RETRIES_BEFORE_LOCK; ++k) {
-            check = 0;
-            sum = 0;
-            int mcsum = 0;
-            for (int i = 0; i < segments.length; ++i) {
-                sum += segments[i].count;
-                mcsum += mc[i] = segments[i].modCount;
+      final Segment<K,V>[] segments = this.segments;
+      long sum = 0;
+      long check = 0;
+      int[] mc = new int[segments.length];
+      // Try a few times to get accurate count. On failure due to
+      // continuous async changes in table, resort to locking.
+      for (int k = 0; k < RETRIES_BEFORE_LOCK; ++ k) {
+         check = 0;
+         sum = 0;
+         int mcsum = 0;
+         for (int i = 0; i < segments.length; ++ i) {
+            sum += segments[i].count;
+            mcsum += mc[i] = segments[i].modCount;
+         }
+         if (mcsum != 0) {
+            for (int i = 0; i < segments.length; ++ i) {
+               check += segments[i].count;
+               if (mc[i] != segments[i].modCount) {
+                  check = -1; // force retry
+                  break;
+               }
             }
-            if (mcsum != 0) {
-                for (int i = 0; i < segments.length; ++i) {
-                    check += segments[i].count;
-                    if (mc[i] != segments[i].modCount) {
-                        check = -1; // force retry
-                        break;
-                    }
-                }
-            }
-            if (check == sum) {
-               break;
-            }
-        }
-        if (check != sum) { // Resort to locking all segments
-            sum = 0;
-            for (int i = 0; i < segments.length; ++i) {
-               segments[i].lock();
-            }
-            for (int i = 0; i < segments.length; ++i) {
-               sum += segments[i].count;
-            }
-            for (int i = 0; i < segments.length; ++i) {
-               segments[i].unlock();
-            }
-        }
-        if (sum > Integer.MAX_VALUE) {
+         }
+         if (check == sum) {
+            break;
+         }
+      }
+      if (check != sum) { // Resort to locking all segments
+         sum = 0;
+         for (int i = 0; i < segments.length; ++ i) {
+            segments[i].lock();
+         }
+         for (int i = 0; i < segments.length; ++ i) {
+            sum += segments[i].count;
+         }
+         for (int i = 0; i < segments.length; ++ i) {
+            segments[i].unlock();
+         }
+      }
+      if (sum > Integer.MAX_VALUE) {
          return Integer.MAX_VALUE;
       } else {
-         return (int)sum;
+         return (int) sum;
       }
-    }
+   }
 
-    /**
-     * Returns the value to which the specified key is mapped,
-     * or {@code null} if this map contains no mapping for the key.
-     *
-     * <p>More formally, if this map contains a mapping from a key
-     * {@code k} to a value {@code v} such that {@code key.equals(k)},
-     * then this method returns {@code v}; otherwise it returns
-     * {@code null}.  (There can be at most one such mapping.)
-     *
-     * @throws NullPointerException if the specified key is null
-     */
-    @Override
+   /**
+    * Returns the value to which the specified key is mapped,
+    * or {@code null} if this map contains no mapping for the key.
+    *
+    * <p>More formally, if this map contains a mapping from a key
+    * {@code k} to a value {@code v} such that {@code key.equals(k)},
+    * then this method returns {@code v}; otherwise it returns
+    * {@code null}.  (There can be at most one such mapping.)
+    *
+    * @throws NullPointerException if the specified key is null
+    */
+   @Override
    public V get(Object key) {
-        int hash = hash(key.hashCode());
-        return segmentFor(hash).get(key, hash);
-    }
+      int hash = hash(key.hashCode());
+      return segmentFor(hash).get(key, hash);
+   }
 
-    /**
-     * Tests if the specified object is a key in this table.
-     *
-     * @param  key   possible key
-     * @return <tt>true</tt> if and only if the specified object
-     *         is a key in this table, as determined by the
-     *         <tt>equals</tt> method; <tt>false</tt> otherwise.
-     * @throws NullPointerException if the specified key is null
-     */
-    @Override
+   /**
+    * Tests if the specified object is a key in this table.
+    *
+    * @param  key   possible key
+    * @return <tt>true</tt> if and only if the specified object
+    *         is a key in this table, as determined by the
+    *         <tt>equals</tt> method; <tt>false</tt> otherwise.
+    * @throws NullPointerException if the specified key is null
+    */
+   @Override
    public boolean containsKey(Object key) {
-        int hash = hash(key.hashCode());
-        return segmentFor(hash).containsKey(key, hash);
-    }
+      int hash = hash(key.hashCode());
+      return segmentFor(hash).containsKey(key, hash);
+   }
 
-    /**
-     * Returns <tt>true</tt> if this map maps one or more keys to the
-     * specified value. Note: This method requires a full internal
-     * traversal of the hash table, and so is much slower than
-     * method <tt>containsKey</tt>.
-     *
-     * @param value value whose presence in this map is to be tested
-     * @return <tt>true</tt> if this map maps one or more keys to the
-     *         specified value
-     * @throws NullPointerException if the specified value is null
-     */
-    @Override
+   /**
+    * Returns <tt>true</tt> if this map maps one or more keys to the
+    * specified value. Note: This method requires a full internal
+    * traversal of the hash table, and so is much slower than
+    * method <tt>containsKey</tt>.
+    *
+    * @param value value whose presence in this map is to be tested
+    * @return <tt>true</tt> if this map maps one or more keys to the
+    *         specified value
+    * @throws NullPointerException if the specified value is null
+    */
+   @Override
    public boolean containsValue(Object value) {
-        if (value == null) {
+      if (value == null) {
          throw new NullPointerException();
       }
 
-        // See explanation of modCount use above
+      // See explanation of modCount use above
 
-        final Segment<K,V>[] segments = this.segments;
-        int[] mc = new int[segments.length];
+      final Segment<K, V>[] segments = this.segments;
+      int[] mc = new int[segments.length];
 
-        // Try a few times without locking
-        for (int k = 0; k < RETRIES_BEFORE_LOCK; ++k) {
-            int sum = 0;
-            int mcsum = 0;
-            for (int i = 0; i < segments.length; ++i) {
-                int c = segments[i].count;
-                mcsum += mc[i] = segments[i].modCount;
-                if (segments[i].containsValue(value)) {
-                  return true;
+      // Try a few times without locking
+      for (int k = 0; k < RETRIES_BEFORE_LOCK; ++ k) {
+         int sum = 0;
+         int mcsum = 0;
+         for (int i = 0; i < segments.length; ++ i) {
+            int c = segments[i].count;
+            mcsum += mc[i] = segments[i].modCount;
+            if (segments[i].containsValue(value)) {
+               return true;
+            }
+         }
+         boolean cleanSweep = true;
+         if (mcsum != 0) {
+            for (int i = 0; i < segments.length; ++ i) {
+               int c = segments[i].count;
+               if (mc[i] != segments[i].modCount) {
+                  cleanSweep = false;
+                  break;
                }
             }
-            boolean cleanSweep = true;
-            if (mcsum != 0) {
-                for (int i = 0; i < segments.length; ++i) {
-                    int c = segments[i].count;
-                    if (mc[i] != segments[i].modCount) {
-                        cleanSweep = false;
-                        break;
-                    }
-                }
-            }
-            if (cleanSweep) {
-               return false;
-            }
-        }
-        // Resort to locking all segments
-        for (int i = 0; i < segments.length; ++i) {
+         }
+         if (cleanSweep) {
+            return false;
+         }
+      }
+      // Resort to locking all segments
+      for (int i = 0; i < segments.length; ++ i) {
          segments[i].lock();
       }
-        boolean found = false;
-        try {
-            for (int i = 0; i < segments.length; ++i) {
-                if (segments[i].containsValue(value)) {
-                    found = true;
-                    break;
-                }
+      boolean found = false;
+      try {
+         for (int i = 0; i < segments.length; ++ i) {
+            if (segments[i].containsValue(value)) {
+               found = true;
+               break;
             }
-        } finally {
-            for (int i = 0; i < segments.length; ++i) {
-               segments[i].unlock();
-            }
-        }
-        return found;
-    }
+         }
+      } finally {
+         for (int i = 0; i < segments.length; ++ i) {
+            segments[i].unlock();
+         }
+      }
+      return found;
+   }
 
-    /**
-     * Legacy method testing if some key maps into the specified value
-     * in this table.  This method is identical in functionality to
-     * {@link #containsValue}, and exists solely to ensure
-     * full compatibility with class {@link java.util.Hashtable},
-     * which supported this method prior to introduction of the
-     * Java Collections framework.
+   /**
+    * Legacy method testing if some key maps into the specified value
+    * in this table.  This method is identical in functionality to
+    * {@link #containsValue}, and exists solely to ensure
+    * full compatibility with class {@link java.util.Hashtable},
+    * which supported this method prior to introduction of the
+    * Java Collections framework.
 
-     * @param  value a value to search for
-     * @return <tt>true</tt> if and only if some key maps to the
-     *         <tt>value</tt> argument in this table as
-     *         determined by the <tt>equals</tt> method;
-     *         <tt>false</tt> otherwise
-     * @throws NullPointerException if the specified value is null
-     */
-    public boolean contains(Object value) {
-        return containsValue(value);
-    }
+    * @param  value a value to search for
+    * @return <tt>true</tt> if and only if some key maps to the
+    *         <tt>value</tt> argument in this table as
+    *         determined by the <tt>equals</tt> method;
+    *         <tt>false</tt> otherwise
+    * @throws NullPointerException if the specified value is null
+    */
+   public boolean contains(Object value) {
+      return containsValue(value);
+   }
 
-    /**
-     * Maps the specified key to the specified value in this table.
-     * Neither the key nor the value can be null.
-     *
-     * <p> The value can be retrieved by calling the <tt>get</tt> method
-     * with a key that is equal to the original key.
-     *
-     * @param key key with which the specified value is to be associated
-     * @param value value to be associated with the specified key
-     * @return the previous value associated with <tt>key</tt>, or
-     *         <tt>null</tt> if there was no mapping for <tt>key</tt>
-     * @throws NullPointerException if the specified key or value is null
-     */
-    @Override
+   /**
+    * Maps the specified key to the specified value in this table.
+    * Neither the key nor the value can be null.
+    *
+    * <p> The value can be retrieved by calling the <tt>get</tt> method
+    * with a key that is equal to the original key.
+    *
+    * @param key key with which the specified value is to be associated
+    * @param value value to be associated with the specified key
+    * @return the previous value associated with <tt>key</tt>, or
+    *         <tt>null</tt> if there was no mapping for <tt>key</tt>
+    * @throws NullPointerException if the specified key or value is null
+    */
+   @Override
    public V put(K key, V value) {
-        if (value == null) {
+      if (value == null) {
          throw new NullPointerException();
       }
-        int hash = hash(key.hashCode());
-        return segmentFor(hash).put(key, hash, value, false);
-    }
+      int hash = hash(key.hashCode());
+      return segmentFor(hash).put(key, hash, value, false);
+   }
 
-    /**
-     * {@inheritDoc}
-     *
-     * @return the previous value associated with the specified key,
-     *         or <tt>null</tt> if there was no mapping for the key
-     * @throws NullPointerException if the specified key or value is null
-     */
-    public V putIfAbsent(K key, V value) {
-        if (value == null) {
+   /**
+    * {@inheritDoc}
+    *
+    * @return the previous value associated with the specified key,
+    *         or <tt>null</tt> if there was no mapping for the key
+    * @throws NullPointerException if the specified key or value is null
+    */
+   @Override
+   public V putIfAbsent(K key, V value) {
+      if (value == null) {
          throw new NullPointerException();
       }
-        int hash = hash(key.hashCode());
-        return segmentFor(hash).put(key, hash, value, true);
-    }
+      int hash = hash(key.hashCode());
+      return segmentFor(hash).put(key, hash, value, true);
+   }
 
-    /**
-     * Copies all of the mappings from the specified map to this one.
-     * These mappings replace any mappings that this map had for any of the
-     * keys currently in the specified map.
-     *
-     * @param m mappings to be stored in this map
-     */
-    @Override
+   /**
+    * Copies all of the mappings from the specified map to this one.
+    * These mappings replace any mappings that this map had for any of the
+    * keys currently in the specified map.
+    *
+    * @param m mappings to be stored in this map
+    */
+   @Override
    public void putAll(Map<? extends K, ? extends V> m) {
-        for (Map.Entry<? extends K, ? extends V> e : m.entrySet()) {
+      for (Map.Entry<? extends K, ? extends V> e: m.entrySet()) {
          put(e.getKey(), e.getValue());
       }
-    }
+   }
 
-    /**
-     * Removes the key (and its corresponding value) from this map.
-     * This method does nothing if the key is not in the map.
-     *
-     * @param  key the key that needs to be removed
-     * @return the previous value associated with <tt>key</tt>, or
-     *         <tt>null</tt> if there was no mapping for <tt>key</tt>
-     * @throws NullPointerException if the specified key is null
-     */
-    @Override
+   /**
+    * Removes the key (and its corresponding value) from this map.
+    * This method does nothing if the key is not in the map.
+    *
+    * @param  key the key that needs to be removed
+    * @return the previous value associated with <tt>key</tt>, or
+    *         <tt>null</tt> if there was no mapping for <tt>key</tt>
+    * @throws NullPointerException if the specified key is null
+    */
+   @Override
    public V remove(Object key) {
-        int hash = hash(key.hashCode());
-        return segmentFor(hash).remove(key, hash, null);
-    }
+      int hash = hash(key.hashCode());
+      return segmentFor(hash).remove(key, hash, null);
+   }
 
-    /**
-     * {@inheritDoc}
-     *
-     * @throws NullPointerException if the specified key is null
-     */
-    public boolean remove(Object key, Object value) {
-        int hash = hash(key.hashCode());
-        if (value == null) {
+   /**
+    * {@inheritDoc}
+    *
+    * @throws NullPointerException if the specified key is null
+    */
+   @Override
+   public boolean remove(Object key, Object value) {
+      int hash = hash(key.hashCode());
+      if (value == null) {
          return false;
       }
-        return segmentFor(hash).remove(key, hash, value) != null;
-    }
+      return segmentFor(hash).remove(key, hash, value) != null;
+   }
 
-    /**
-     * {@inheritDoc}
-     *
-     * @throws NullPointerException if any of the arguments are null
-     */
-    public boolean replace(K key, V oldValue, V newValue) {
-        if (oldValue == null || newValue == null) {
+   /**
+    * {@inheritDoc}
+    *
+    * @throws NullPointerException if any of the arguments are null
+    */
+   @Override
+   public boolean replace(K key, V oldValue, V newValue) {
+      if (oldValue == null || newValue == null) {
          throw new NullPointerException();
       }
-        int hash = hash(key.hashCode());
-        return segmentFor(hash).replace(key, hash, oldValue, newValue);
-    }
+      int hash = hash(key.hashCode());
+      return segmentFor(hash).replace(key, hash, oldValue, newValue);
+   }
 
-    /**
-     * {@inheritDoc}
-     *
-     * @return the previous value associated with the specified key,
-     *         or <tt>null</tt> if there was no mapping for the key
-     * @throws NullPointerException if the specified key or value is null
-     */
-    public V replace(K key, V value) {
-        if (value == null) {
+   /**
+    * {@inheritDoc}
+    *
+    * @return the previous value associated with the specified key,
+    *         or <tt>null</tt> if there was no mapping for the key
+    * @throws NullPointerException if the specified key or value is null
+    */
+   @Override
+   public V replace(K key, V value) {
+      if (value == null) {
          throw new NullPointerException();
       }
-        int hash = hash(key.hashCode());
-        return segmentFor(hash).replace(key, hash, value);
-    }
+      int hash = hash(key.hashCode());
+      return segmentFor(hash).replace(key, hash, value);
+   }
 
-    /**
-     * Removes all of the mappings from this map.
-     */
-    @Override
+   /**
+    * Removes all of the mappings from this map.
+    */
+   @Override
    public void clear() {
-        for (int i = 0; i < segments.length; ++i) {
+      for (int i = 0; i < segments.length; ++ i) {
          segments[i].clear();
       }
-    }
+   }
 
-    /**
-     * Returns a {@link Set} view of the keys contained in this map.
-     * The set is backed by the map, so changes to the map are
-     * reflected in the set, and vice-versa.  The set supports element
-     * removal, which removes the corresponding mapping from this map,
-     * via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
-     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
-     * operations.  It does not support the <tt>add</tt> or
-     * <tt>addAll</tt> operations.
-     *
-     * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
-     * that will never throw {@link ConcurrentModificationException},
-     * and guarantees to traverse elements as they existed upon
-     * construction of the iterator, and may (but is not guaranteed to)
-     * reflect any modifications subsequent to construction.
-     */
-    @Override
+   /**
+    * Returns a {@link Set} view of the keys contained in this map.
+    * The set is backed by the map, so changes to the map are
+    * reflected in the set, and vice-versa.  The set supports element
+    * removal, which removes the corresponding mapping from this map,
+    * via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
+    * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
+    * operations.  It does not support the <tt>add</tt> or
+    * <tt>addAll</tt> operations.
+    *
+    * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
+    * that will never throw {@link ConcurrentModificationException},
+    * and guarantees to traverse elements as they existed upon
+    * construction of the iterator, and may (but is not guaranteed to)
+    * reflect any modifications subsequent to construction.
+    */
+   @Override
    public Set<K> keySet() {
-        Set<K> ks = keySet;
-        return ks != null ? ks : (keySet = new KeySet());
-    }
+      Set<K> ks = keySet;
+      return ks != null? ks : (keySet = new KeySet());
+   }
 
-    /**
-     * Returns a {@link Collection} view of the values contained in this map.
-     * The collection is backed by the map, so changes to the map are
-     * reflected in the collection, and vice-versa.  The collection
-     * supports element removal, which removes the corresponding
-     * mapping from this map, via the <tt>Iterator.remove</tt>,
-     * <tt>Collection.remove</tt>, <tt>removeAll</tt>,
-     * <tt>retainAll</tt>, and <tt>clear</tt> operations.  It does not
-     * support the <tt>add</tt> or <tt>addAll</tt> operations.
-     *
-     * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
-     * that will never throw {@link ConcurrentModificationException},
-     * and guarantees to traverse elements as they existed upon
-     * construction of the iterator, and may (but is not guaranteed to)
-     * reflect any modifications subsequent to construction.
-     */
-    @Override
+   /**
+    * Returns a {@link Collection} view of the values contained in this map.
+    * The collection is backed by the map, so changes to the map are
+    * reflected in the collection, and vice-versa.  The collection
+    * supports element removal, which removes the corresponding
+    * mapping from this map, via the <tt>Iterator.remove</tt>,
+    * <tt>Collection.remove</tt>, <tt>removeAll</tt>,
+    * <tt>retainAll</tt>, and <tt>clear</tt> operations.  It does not
+    * support the <tt>add</tt> or <tt>addAll</tt> operations.
+    *
+    * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
+    * that will never throw {@link ConcurrentModificationException},
+    * and guarantees to traverse elements as they existed upon
+    * construction of the iterator, and may (but is not guaranteed to)
+    * reflect any modifications subsequent to construction.
+    */
+   @Override
    public Collection<V> values() {
-        Collection<V> vs = values;
-        return vs != null ? vs : (values = new Values());
-    }
+      Collection<V> vs = values;
+      return vs != null? vs : (values = new Values());
+   }
 
-    /**
-     * Returns a {@link Set} view of the mappings contained in this map.
-     * The set is backed by the map, so changes to the map are
-     * reflected in the set, and vice-versa.  The set supports element
-     * removal, which removes the corresponding mapping from the map,
-     * via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
-     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
-     * operations.  It does not support the <tt>add</tt> or
-     * <tt>addAll</tt> operations.
-     *
-     * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
-     * that will never throw {@link ConcurrentModificationException},
-     * and guarantees to traverse elements as they existed upon
-     * construction of the iterator, and may (but is not guaranteed to)
-     * reflect any modifications subsequent to construction.
-     */
-    @Override
-   public Set<Map.Entry<K,V>> entrySet() {
-        Set<Map.Entry<K,V>> es = entrySet;
-        return es != null ? es : (entrySet = new EntrySet());
-    }
+   /**
+    * Returns a {@link Set} view of the mappings contained in this map.
+    * The set is backed by the map, so changes to the map are
+    * reflected in the set, and vice-versa.  The set supports element
+    * removal, which removes the corresponding mapping from the map,
+    * via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
+    * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
+    * operations.  It does not support the <tt>add</tt> or
+    * <tt>addAll</tt> operations.
+    *
+    * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
+    * that will never throw {@link ConcurrentModificationException},
+    * and guarantees to traverse elements as they existed upon
+    * construction of the iterator, and may (but is not guaranteed to)
+    * reflect any modifications subsequent to construction.
+    */
+   @Override
+   public Set<Map.Entry<K, V>> entrySet() {
+      Set<Map.Entry<K, V>> es = entrySet;
+      return es != null? es : (entrySet = new EntrySet());
+   }
 
-    /**
-     * Returns an enumeration of the keys in this table.
-     *
-     * @return an enumeration of the keys in this table
-     * @see #keySet()
-     */
-    public Enumeration<K> keys() {
-        return new KeyIterator();
-    }
+   /**
+    * Returns an enumeration of the keys in this table.
+    *
+    * @return an enumeration of the keys in this table
+    * @see #keySet()
+    */
+   public Enumeration<K> keys() {
+      return new KeyIterator();
+   }
 
-    /**
-     * Returns an enumeration of the values in this table.
-     *
-     * @return an enumeration of the values in this table
-     * @see #values()
-     */
-    public Enumeration<V> elements() {
-        return new ValueIterator();
-    }
+   /**
+    * Returns an enumeration of the values in this table.
+    *
+    * @return an enumeration of the values in this table
+    * @see #values()
+    */
+   public Enumeration<V> elements() {
+      return new ValueIterator();
+   }
 
-    /* ---------------- Iterator Support -------------- */
+   /* ---------------- Iterator Support -------------- */
 
-    abstract class HashIterator {
-        int nextSegmentIndex;
-        int nextTableIndex;
-        HashEntry<K,V>[] currentTable;
-        HashEntry<K, V> nextEntry;
-        HashEntry<K, V> lastReturned;
+   abstract class HashIterator {
+      int nextSegmentIndex;
 
-        HashIterator() {
-            nextSegmentIndex = segments.length - 1;
-            nextTableIndex = -1;
-            advance();
-        }
+      int nextTableIndex;
 
-        public boolean hasMoreElements() { return hasNext(); }
+      HashEntry<K, V>[] currentTable;
 
-        final void advance() {
-            if (nextEntry != null && (nextEntry = nextEntry.next) != null) {
+      HashEntry<K, V> nextEntry;
+
+      HashEntry<K, V> lastReturned;
+
+      HashIterator() {
+         nextSegmentIndex = segments.length - 1;
+         nextTableIndex = -1;
+         advance();
+      }
+
+      public boolean hasMoreElements() {
+         return hasNext();
+      }
+
+      final void advance() {
+         if (nextEntry != null && (nextEntry = nextEntry.next) != null) {
+            return;
+         }
+
+         while (nextTableIndex >= 0) {
+            if ((nextEntry = currentTable[nextTableIndex --]) != null) {
                return;
             }
+         }
 
-            while (nextTableIndex >= 0) {
-                if ( (nextEntry = currentTable[nextTableIndex--]) != null) {
-                  return;
+         while (nextSegmentIndex >= 0) {
+            Segment<K, V> seg = segments[nextSegmentIndex --];
+            if (seg.count != 0) {
+               currentTable = seg.table;
+               for (int j = currentTable.length - 1; j >= 0; -- j) {
+                  if ((nextEntry = currentTable[j]) != null) {
+                     nextTableIndex = j - 1;
+                     return;
+                  }
                }
             }
+         }
+      }
 
-            while (nextSegmentIndex >= 0) {
-                Segment<K,V> seg = segments[nextSegmentIndex--];
-                if (seg.count != 0) {
-                    currentTable = seg.table;
-                    for (int j = currentTable.length - 1; j >= 0; --j) {
-                        if ( (nextEntry = currentTable[j]) != null) {
-                            nextTableIndex = j - 1;
-                            return;
-                        }
-                    }
-                }
-            }
-        }
+      public boolean hasNext() {
+         return nextEntry != null;
+      }
 
-        public boolean hasNext() { return nextEntry != null; }
+      HashEntry<K, V> nextEntry() {
+         if (nextEntry == null) {
+            throw new NoSuchElementException();
+         }
+         lastReturned = nextEntry;
+         advance();
+         return lastReturned;
+      }
 
-        HashEntry<K,V> nextEntry() {
-            if (nextEntry == null) {
-               throw new NoSuchElementException();
-            }
-            lastReturned = nextEntry;
-            advance();
-            return lastReturned;
-        }
+      public void remove() {
+         if (lastReturned == null) {
+            throw new IllegalStateException();
+         }
+         BoundedConcurrentHashMap.this.remove(lastReturned.key);
+         lastReturned = null;
+      }
+   }
 
-        public void remove() {
-            if (lastReturned == null) {
-               throw new IllegalStateException();
-            }
-            BoundedConcurrentHashMap.this.remove(lastReturned.key);
-            lastReturned = null;
-        }
-    }
+   final class KeyIterator extends HashIterator implements Iterator<K>, Enumeration<K> {
+      @Override
+      public K next() {
+         return super.nextEntry().key;
+      }
 
-    final class KeyIterator
-        extends HashIterator
-        implements Iterator<K>, Enumeration<K>
-    {
-        public K next()        { return super.nextEntry().key; }
-        public K nextElement() { return super.nextEntry().key; }
-    }
+      @Override
+      public K nextElement() {
+         return super.nextEntry().key;
+      }
+   }
 
-    final class ValueIterator
-        extends HashIterator
-        implements Iterator<V>, Enumeration<V>
-    {
-        public V next()        { return super.nextEntry().value; }
-        public V nextElement() { return super.nextEntry().value; }
-    }
+   final class ValueIterator extends HashIterator implements Iterator<V>, Enumeration<V> {
+      @Override
+      public V next() {
+         return super.nextEntry().value;
+      }
 
-    /**
-     * Custom Entry class used by EntryIterator.next(), that relays
-     * setValue changes to the underlying map.
-     */
-    final class WriteThroughEntry
-        extends AbstractMap.SimpleEntry<K,V>
-    {
-        WriteThroughEntry(K k, V v) {
-            super(k,v);
-        }
+      @Override
+      public V nextElement() {
+         return super.nextEntry().value;
+      }
+   }
 
-        /**
-         * Set our entry's value and write through to the map. The
-         * value to return is somewhat arbitrary here. Since a
-         * WriteThroughEntry does not necessarily track asynchronous
-         * changes, the most recent "previous" value could be
-         * different from what we return (or could even have been
-         * removed in which case the put will re-establish). We do not
-         * and cannot guarantee more.
-         */
-        @Override
+   /**
+    * Custom Entry class used by EntryIterator.next(), that relays
+    * setValue changes to the underlying map.
+    */
+   final class WriteThroughEntry extends AbstractMap.SimpleEntry<K, V> {
+
+      private static final long serialVersionUID = -7041346694785573824L;
+
+      WriteThroughEntry(K k, V v) {
+         super(k, v);
+      }
+
+      /**
+       * Set our entry's value and write through to the map. The
+       * value to return is somewhat arbitrary here. Since a
+       * WriteThroughEntry does not necessarily track asynchronous
+       * changes, the most recent "previous" value could be
+       * different from what we return (or could even have been
+       * removed in which case the put will re-establish). We do not
+       * and cannot guarantee more.
+       */
+      @Override
       public V setValue(V value) {
-            if (value == null) {
-               throw new NullPointerException();
-            }
-            V v = super.setValue(value);
-            BoundedConcurrentHashMap.this.put(getKey(), value);
-            return v;
-        }
-    }
+         if (value == null) {
+            throw new NullPointerException();
+         }
+         V v = super.setValue(value);
+         BoundedConcurrentHashMap.this.put(getKey(), value);
+         return v;
+      }
+   }
 
-    final class EntryIterator
-        extends HashIterator
-        implements Iterator<Entry<K,V>>
-    {
-        public Map.Entry<K,V> next() {
-            HashEntry<K,V> e = super.nextEntry();
-            return new WriteThroughEntry(e.key, e.value);
-        }
-    }
+   final class EntryIterator extends HashIterator implements Iterator<Entry<K, V>> {
+      @Override
+      public Map.Entry<K, V> next() {
+         HashEntry<K, V> e = super.nextEntry();
+         return new WriteThroughEntry(e.key, e.value);
+      }
+   }
 
-    final class KeySet extends AbstractSet<K> {
-        @Override
+   final class KeySet extends AbstractSet<K> {
+      @Override
       public Iterator<K> iterator() {
-            return new KeyIterator();
-        }
-        @Override
+         return new KeyIterator();
+      }
+
+      @Override
       public int size() {
-            return BoundedConcurrentHashMap.this.size();
-        }
-        @Override
+         return BoundedConcurrentHashMap.this.size();
+      }
+
+      @Override
       public boolean isEmpty() {
-            return BoundedConcurrentHashMap.this.isEmpty();
-        }
-        @Override
+         return BoundedConcurrentHashMap.this.isEmpty();
+      }
+
+      @Override
       public boolean contains(Object o) {
-            return BoundedConcurrentHashMap.this.containsKey(o);
-        }
-        @Override
+         return BoundedConcurrentHashMap.this.containsKey(o);
+      }
+
+      @Override
       public boolean remove(Object o) {
-            return BoundedConcurrentHashMap.this.remove(o) != null;
-        }
-        @Override
+         return BoundedConcurrentHashMap.this.remove(o) != null;
+      }
+
+      @Override
       public void clear() {
-            BoundedConcurrentHashMap.this.clear();
-        }
-    }
+         BoundedConcurrentHashMap.this.clear();
+      }
+   }
 
-    final class Values extends AbstractCollection<V> {
-        @Override
+   final class Values extends AbstractCollection<V> {
+      @Override
       public Iterator<V> iterator() {
-            return new ValueIterator();
-        }
-        @Override
+         return new ValueIterator();
+      }
+
+      @Override
       public int size() {
-            return BoundedConcurrentHashMap.this.size();
-        }
-        @Override
+         return BoundedConcurrentHashMap.this.size();
+      }
+
+      @Override
       public boolean isEmpty() {
-            return BoundedConcurrentHashMap.this.isEmpty();
-        }
-        @Override
+         return BoundedConcurrentHashMap.this.isEmpty();
+      }
+
+      @Override
       public boolean contains(Object o) {
-            return BoundedConcurrentHashMap.this.containsValue(o);
-        }
-        @Override
+         return BoundedConcurrentHashMap.this.containsValue(o);
+      }
+
+      @Override
       public void clear() {
-            BoundedConcurrentHashMap.this.clear();
-        }
-    }
+         BoundedConcurrentHashMap.this.clear();
+      }
+   }
 
-    final class EntrySet extends AbstractSet<Map.Entry<K,V>> {
-        @Override
-      public Iterator<Map.Entry<K,V>> iterator() {
-            return new EntryIterator();
-        }
-        @Override
+   final class EntrySet extends AbstractSet<Map.Entry<K, V>> {
+      @Override
+      public Iterator<Map.Entry<K, V>> iterator() {
+         return new EntryIterator();
+      }
+
+      @Override
       public boolean contains(Object o) {
-            if (!(o instanceof Map.Entry)) {
-               return false;
-            }
-            Map.Entry<?,?> e = (Map.Entry<?,?>)o;
-            V v = BoundedConcurrentHashMap.this.get(e.getKey());
-            return v != null && v.equals(e.getValue());
-        }
-        @Override
+         if (!(o instanceof Map.Entry)) {
+            return false;
+         }
+         Map.Entry<?, ?> e = (Map.Entry<?, ?>) o;
+         V v = BoundedConcurrentHashMap.this.get(e.getKey());
+         return v != null && v.equals(e.getValue());
+      }
+
+      @Override
       public boolean remove(Object o) {
-            if (!(o instanceof Map.Entry)) {
-               return false;
-            }
-            Map.Entry<?,?> e = (Map.Entry<?,?>)o;
-            return BoundedConcurrentHashMap.this.remove(e.getKey(), e.getValue());
-        }
-        @Override
+         if (!(o instanceof Map.Entry)) {
+            return false;
+         }
+         Map.Entry<?, ?> e = (Map.Entry<?, ?>) o;
+         return BoundedConcurrentHashMap.this.remove(e.getKey(), e.getValue());
+      }
+
+      @Override
       public int size() {
-            return BoundedConcurrentHashMap.this.size();
-        }
-        @Override
+         return BoundedConcurrentHashMap.this.size();
+      }
+
+      @Override
       public boolean isEmpty() {
-            return BoundedConcurrentHashMap.this.isEmpty();
-        }
-        @Override
+         return BoundedConcurrentHashMap.this.isEmpty();
+      }
+
+      @Override
       public void clear() {
-            BoundedConcurrentHashMap.this.clear();
-        }
-    }
+         BoundedConcurrentHashMap.this.clear();
+      }
+   }
 
-    /* ---------------- Serialization Support -------------- */
+   /* ---------------- Serialization Support -------------- */
 
-    /**
-     * Save the state of the <tt>ConcurrentHashMap</tt> instance to a
-     * stream (i.e., serialize it).
-     * @param s the stream
-     * @serialData
-     * the key (Object) and value (Object)
-     * for each key-value mapping, followed by a null pair.
-     * The key-value mappings are emitted in no particular order.
-     */
-    private void writeObject(java.io.ObjectOutputStream s) throws IOException  {
-        s.defaultWriteObject();
+   /**
+    * Save the state of the <tt>ConcurrentHashMap</tt> instance to a
+    * stream (i.e., serialize it).
+    * @param s the stream
+    * @serialData
+    * the key (Object) and value (Object)
+    * for each key-value mapping, followed by a null pair.
+    * The key-value mappings are emitted in no particular order.
+    */
+   private void writeObject(java.io.ObjectOutputStream s) throws IOException {
+      s.defaultWriteObject();
 
-        for (int k = 0; k < segments.length; ++k) {
-            Segment<K,V> seg = segments[k];
-            seg.lock();
-            try {
-                HashEntry<K,V>[] tab = seg.table;
-                for (int i = 0; i < tab.length; ++i) {
-                    for (HashEntry<K,V> e = tab[i]; e != null; e = e.next) {
-                        s.writeObject(e.key);
-                        s.writeObject(e.value);
-                    }
-                }
-            } finally {
-                seg.unlock();
+      for (int k = 0; k < segments.length; ++ k) {
+         Segment<K, V> seg = segments[k];
+         seg.lock();
+         try {
+            HashEntry<K, V>[] tab = seg.table;
+            for (int i = 0; i < tab.length; ++ i) {
+               for (HashEntry<K, V> e = tab[i]; e != null; e = e.next) {
+                  s.writeObject(e.key);
+                  s.writeObject(e.value);
+               }
             }
-        }
-        s.writeObject(null);
-        s.writeObject(null);
-    }
+         } finally {
+            seg.unlock();
+         }
+      }
+      s.writeObject(null);
+      s.writeObject(null);
+   }
 
-    /**
-     * Reconstitute the <tt>ConcurrentHashMap</tt> instance from a
-     * stream (i.e., deserialize it).
-     * @param s the stream
-     */
-    private void readObject(java.io.ObjectInputStream s)
-        throws IOException, ClassNotFoundException  {
-        s.defaultReadObject();
+   /**
+    * Reconstitute the <tt>ConcurrentHashMap</tt> instance from a
+    * stream (i.e., deserialize it).
+    * @param s the stream
+    */
+   @SuppressWarnings("unchecked")
+   private void readObject(java.io.ObjectInputStream s) throws IOException,
+         ClassNotFoundException {
+      s.defaultReadObject();
 
-        // Initialize each segment to be minimally sized, and let grow.
-        for (int i = 0; i < segments.length; ++i) {
-            segments[i].setTable(new HashEntry[1]);
-        }
+      // Initialize each segment to be minimally sized, and let grow.
+      for (int i = 0; i < segments.length; ++ i) {
+         segments[i].setTable(new HashEntry[1]);
+      }
 
-        // Read the keys and values, and put the mappings in the table
-        for (;;) {
-            K key = (K) s.readObject();
-            V value = (V) s.readObject();
-            if (key == null) {
-               break;
-            }
-            put(key, value);
-        }
-    }
+      // Read the keys and values, and put the mappings in the table
+      for (;;) {
+         K key = (K) s.readObject();
+         V value = (V) s.readObject();
+         if (key == null) {
+            break;
+         }
+         put(key, value);
+      }
+   }
 }
\ No newline at end of file

Modified: trunk/core/src/main/java/org/infinispan/util/concurrent/BoundedConcurrentHashMap.java
===================================================================
--- trunk/core/src/main/java/org/infinispan/util/concurrent/BoundedConcurrentHashMap.java	2010-10-20 10:03:11 UTC (rev 2522)
+++ trunk/core/src/main/java/org/infinispan/util/concurrent/BoundedConcurrentHashMap.java	2010-10-20 10:34:58 UTC (rev 2523)
@@ -1,4 +1,26 @@
 /*
+ * JBoss, Home of Professional Open Source
+ *
+ * Copyright ${year}, Red Hat, Inc. and individual contributors
+ * by the @authors tag. See the copyright.txt in the distribution
+ * for a full listing of individual contributors.
+ *
+ * This is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU Lesser General Public License as
+ * published by the Free Software Foundation; either version 2.1 of
+ * the License, or (at your option) any later version.
+ *
+ * This software is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with this software; if not, write to the Free
+ * Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
+ * 02110-1301 USA, or see the FSF site: http://www.fsf.org.
+ */
+/*
  * Written by Doug Lea with assistance from members of JCP JSR-166
  * Expert Group and released to the public domain, as explained at
  * http://creativecommons.org/licenses/publicdomain
@@ -92,208 +114,207 @@
  */
 public class BoundedConcurrentHashMap<K, V> extends AbstractMap<K, V>
         implements ConcurrentMap<K, V>, Serializable {
-    private static final long serialVersionUID = 7249069246763182397L;
+   private static final long serialVersionUID = 7249069246763182397L;
 
-    /*
-     * The basic strategy is to subdivide the table among Segments,
-     * each of which itself is a concurrently readable hash table.
-     */
+   /*
+    * The basic strategy is to subdivide the table among Segments,
+    * each of which itself is a concurrently readable hash table.
+    */
 
-    /* ---------------- Constants -------------- */
+   /* ---------------- Constants -------------- */
 
-    /**
-     * The default initial capacity for this table,
-     * used when not otherwise specified in a constructor.
-     */
-    static final int DEFAULT_MAXIMUM_CAPACITY = 512;
+   /**
+    * The default initial capacity for this table,
+    * used when not otherwise specified in a constructor.
+    */
+   static final int DEFAULT_MAXIMUM_CAPACITY = 512;
 
-    /**
-     * The default load factor for this table, used when not
-     * otherwise specified in a constructor.
-     */
-    static final float DEFAULT_LOAD_FACTOR = 0.75f;
+   /**
+    * The default load factor for this table, used when not
+    * otherwise specified in a constructor.
+    */
+   static final float DEFAULT_LOAD_FACTOR = 0.75f;
 
-    /**
-     * The default concurrency level for this table, used when not
-     * otherwise specified in a constructor.
-     */
-    static final int DEFAULT_CONCURRENCY_LEVEL = 16;
+   /**
+    * The default concurrency level for this table, used when not
+    * otherwise specified in a constructor.
+    */
+   static final int DEFAULT_CONCURRENCY_LEVEL = 16;
 
-    /**
-     * The maximum capacity, used if a higher value is implicitly
-     * specified by either of the constructors with arguments.  MUST
-     * be a power of two <= 1<<30 to ensure that entries are indexable
-     * using ints.
-     */
-    static final int MAXIMUM_CAPACITY = 1 << 30;
+   /**
+    * The maximum capacity, used if a higher value is implicitly
+    * specified by either of the constructors with arguments.  MUST
+    * be a power of two <= 1<<30 to ensure that entries are indexable
+    * using ints.
+    */
+   static final int MAXIMUM_CAPACITY = 1 << 30;
 
-    /**
-     * The maximum number of segments to allow; used to bound
-     * constructor arguments.
-     */
-    static final int MAX_SEGMENTS = 1 << 16; // slightly conservative
+   /**
+    * The maximum number of segments to allow; used to bound
+    * constructor arguments.
+    */
+   static final int MAX_SEGMENTS = 1 << 16; // slightly conservative
 
-    /**
-     * Number of unsynchronized retries in size and containsValue
-     * methods before resorting to locking. This is used to avoid
-     * unbounded retries if tables undergo continuous modification
-     * which would make it impossible to obtain an accurate result.
-     */
-    static final int RETRIES_BEFORE_LOCK = 2;
+   /**
+    * Number of unsynchronized retries in size and containsValue
+    * methods before resorting to locking. This is used to avoid
+    * unbounded retries if tables undergo continuous modification
+    * which would make it impossible to obtain an accurate result.
+    */
+   static final int RETRIES_BEFORE_LOCK = 2;
 
-    /* ---------------- Fields -------------- */
+   /* ---------------- Fields -------------- */
 
-    /**
-     * Mask value for indexing into segments. The upper bits of a
-     * key's hash code are used to choose the segment.
-     */
-    final int segmentMask;
+   /**
+    * Mask value for indexing into segments. The upper bits of a
+    * key's hash code are used to choose the segment.
+    */
+   final int segmentMask;
 
-    /**
-     * Shift value for indexing within segments.
-     */
-    final int segmentShift;
+   /**
+    * Shift value for indexing within segments.
+    */
+   final int segmentShift;
 
-    /**
-     * The segments, each of which is a specialized hash table
-     */
-    final Segment<K,V>[] segments;
+   /**
+    * The segments, each of which is a specialized hash table
+    */
+   final Segment<K,V>[] segments;
 
-    transient Set<K> keySet;
-    transient Set<Map.Entry<K,V>> entrySet;
-    transient Collection<V> values;
+   transient Set<K> keySet;
+   transient Set<Map.Entry<K,V>> entrySet;
+   transient Collection<V> values;
 
-    /* ---------------- Small Utilities -------------- */
+   /* ---------------- Small Utilities -------------- */
 
-    /**
-     * Applies a supplemental hash function to a given hashCode, which
-     * defends against poor quality hash functions.  This is critical
-     * because ConcurrentHashMap uses power-of-two length hash tables,
-     * that otherwise encounter collisions for hashCodes that do not
-     * differ in lower or upper bits.
-     */
-    private static int hash(int h) {
-        // Spread bits to regularize both segment and index locations,
-        // using variant of single-word Wang/Jenkins hash.
-        h += h <<  15 ^ 0xffffcd7d;
-        h ^= h >>> 10;
-        h += h <<   3;
-        h ^= h >>>  6;
-        h += (h <<   2) + (h << 14);
-        return h ^ h >>> 16;
-    }
+   /**
+    * Applies a supplemental hash function to a given hashCode, which
+    * defends against poor quality hash functions.  This is critical
+    * because ConcurrentHashMap uses power-of-two length hash tables,
+    * that otherwise encounter collisions for hashCodes that do not
+    * differ in lower or upper bits.
+    */
+   private static int hash(int h) {
+      // Spread bits to regularize both segment and index locations,
+      // using variant of single-word Wang/Jenkins hash.
+      h += h <<  15 ^ 0xffffcd7d;
+      h ^= h >>> 10;
+      h += h <<   3;
+      h ^= h >>>  6;
+      h += (h <<   2) + (h << 14);
+      return h ^ h >>> 16;
+   }
 
-    /**
-     * Returns the segment that should be used for key with given hash
-     * @param hash the hash code for the key
-     * @return the segment
-     */
-    final Segment<K,V> segmentFor(int hash) {
-        return segments[hash >>> segmentShift & segmentMask];
-    }
+   /**
+    * Returns the segment that should be used for key with given hash
+    * @param hash the hash code for the key
+    * @return the segment
+    */
+   final Segment<K,V> segmentFor(int hash) {
+      return segments[hash >>> segmentShift & segmentMask];
+   }
 
-    /* ---------------- Inner Classes -------------- */
+   /* ---------------- Inner Classes -------------- */
 
-    /**
-     * ConcurrentHashMap list entry. Note that this is never exported
-     * out as a user-visible Map.Entry.
-     *
-     * Because the value field is volatile, not final, it is legal wrt
-     * the Java Memory Model for an unsynchronized reader to see null
-     * instead of initial value when read via a data race.  Although a
-     * reordering leading to this is not likely to ever actually
-     * occur, the Segment.readValueUnderLock method is used as a
-     * backup in case a null (pre-initialized) value is ever seen in
-     * an unsynchronized access method.
-     */
-    static final class HashEntry<K, V> {
-       final K key;
-       final int hash;
-       volatile V value;
-       final HashEntry<K, V> next;
-       volatile Recency state;
+   /**
+    * ConcurrentHashMap list entry. Note that this is never exported
+    * out as a user-visible Map.Entry.
+    *
+    * Because the value field is volatile, not final, it is legal wrt
+    * the Java Memory Model for an unsynchronized reader to see null
+    * instead of initial value when read via a data race.  Although a
+    * reordering leading to this is not likely to ever actually
+    * occur, the Segment.readValueUnderLock method is used as a
+    * backup in case a null (pre-initialized) value is ever seen in
+    * an unsynchronized access method.
+    */
+   static final class HashEntry<K, V> {
+      final K key;
+      final int hash;
+      volatile V value;
+      final HashEntry<K, V> next;
+      volatile Recency state;
 
-       HashEntry(K key, int hash, HashEntry<K, V> next, V value) {
-           this.key = key;
-           this.hash = hash;
-           this.next = next;
-           this.value = value;
-           this.state = Recency.HIR_RESIDENT;
-       }
+      HashEntry(K key, int hash, HashEntry<K, V> next, V value) {
+         this.key = key;
+         this.hash = hash;
+         this.next = next;
+         this.value = value;
+         this.state = Recency.HIR_RESIDENT;
+      }
 
-       @Override
+      @Override
       public int hashCode() {
-           int result = 17;
-           result = result * 31 + hash;
-           result = result * 31 + key.hashCode();
-           return result;
-       }
+         int result = 17;
+         result = result * 31 + hash;
+         result = result * 31 + key.hashCode();
+         return result;
+      }
 
-       @Override
+      @Override
       public boolean equals(Object o) {
-           // HashEntry is internal class, never leaks out of CHM, hence slight optimization
-           if (this == o) {
+         // HashEntry is internal class, never leaks out of CHM, hence slight optimization
+         if (this == o) {
             return true;
          }
-           if (o == null) {
+         if (o == null) {
             return false;
          }
-           HashEntry<?, ?> other = (HashEntry<?, ?>) o;
-           return hash == other.hash && key.equals(other.key);
-       }
+         HashEntry<?, ?> other = (HashEntry<?, ?>) o;
+         return hash == other.hash && key.equals(other.key);
+      }
 
-       public void transitionToLIRResident() {
-           state = Recency.LIR_RESIDENT;
-       }
+      public void transitionToLIRResident() {
+         state = Recency.LIR_RESIDENT;
+      }
 
-       public void transitionHIRResidentToHIRNonResident() {
-           state = Recency.HIR_NONRESIDENT;
-       }
+      public void transitionHIRResidentToHIRNonResident() {
+         state = Recency.HIR_NONRESIDENT;
+      }
 
-       public void transitionLIRResidentToHIRResident() {
-           state = Recency.HIR_RESIDENT;
-       }
+      public void transitionLIRResidentToHIRResident() {
+         state = Recency.HIR_RESIDENT;
+      }
 
-       public Recency recency() {
-           return state;
-       }
+      public Recency recency() {
+         return state;
+      }
 
-       @SuppressWarnings("unchecked")
-       static <K, V> HashEntry<K, V>[] newArray(int i) {
-           return new HashEntry[i];
-       }
+      @SuppressWarnings("unchecked")
+      static <K, V> HashEntry<K, V>[] newArray(int i) {
+         return new HashEntry[i];
+      }
    }
 
-    private enum Recency {
-       HIR_RESIDENT, LIR_RESIDENT, HIR_NONRESIDENT
+   private enum Recency {
+      HIR_RESIDENT, LIR_RESIDENT, HIR_NONRESIDENT
    }
 
    public enum Eviction {
-       NONE {
-           @Override
-           public <K, V> EvictionPolicy<K, V> make(Segment<K, V> s, int capacity, float lf) {
-               return new NullEvictionPolicy<K, V>();
-           }
-       },
-       LRU {
+      NONE {
+         @Override
+         public <K, V> EvictionPolicy<K, V> make(Segment<K, V> s, int capacity, float lf) {
+            return new NullEvictionPolicy<K, V>();
+         }
+      },
+      LRU {
+         @Override
+         public <K, V> EvictionPolicy<K, V> make(Segment<K, V> s, int capacity, float lf) {
+            return new LRU<K, V>(s,capacity,lf,capacity*10,lf);
+         }
+      },
+      LIRS {
+         @Override
+         public <K, V> EvictionPolicy<K, V> make(Segment<K, V> s, int capacity, float lf) {
+            return new LIRS<K,V>(s,capacity,capacity*10,lf);
+         }
+      };
 
-           @Override
-           public <K, V> EvictionPolicy<K, V> make(Segment<K, V> s, int capacity, float lf) {
-               return new LRU<K, V>(s,capacity,lf,capacity*10,lf);
-           }
-       },
-       LIRS {
-           @Override
-           public <K, V> EvictionPolicy<K, V> make(Segment<K, V> s, int capacity, float lf) {
-               return new LIRS<K,V>(s,capacity,lf,capacity*10,lf);
-           }
-       };
-
-       abstract <K, V> EvictionPolicy<K, V> make(Segment<K, V> s, int capacity, float lf);
+      abstract <K, V> EvictionPolicy<K, V> make(Segment<K, V> s, int capacity, float lf);
    }
 
    public interface EvictionListener<K, V> {
-       void onEntryEviction(K key, V value);
+      void onEntryEviction(K key, V value);
    }
 
    static class NullEvictionListener<K, V> implements EvictionListener<K, V> {
@@ -305,1676 +326,1707 @@
 
    public interface EvictionPolicy<K, V> {
 
-       public final static int MAX_BATCH_SIZE = 64;
+      public final static int MAX_BATCH_SIZE = 64;
 
-       /**
-        * Invokes eviction policy algorithm and returns set of evicted entries.
-        *
-        * <p>
-        * Set cannot be null but could possibly be an empty set.
-        *
-        * @return set of evicted entries.
-        */
-       Set<HashEntry<K, V>> execute();
+      /**
+       * Invokes eviction policy algorithm and returns set of evicted entries.
+       *
+       * <p>
+       * Set cannot be null but could possibly be an empty set.
+       *
+       * @return set of evicted entries.
+       */
+      Set<HashEntry<K, V>> execute();
 
-       /**
-        * Invoked to notify EvictionPolicy implementation that there has been an attempt to access
-        * an entry in Segment, however that entry was not present in Segment.
-        *
-        * @param e
-        *            accessed entry in Segment
-        *
-        * @return non null set of evicted entries.
-        */
-       Set<HashEntry<K, V>> onEntryMiss(HashEntry<K, V> e);
+      /**
+       * Invoked to notify EvictionPolicy implementation that there has been an attempt to access
+       * an entry in Segment, however that entry was not present in Segment.
+       *
+       * @param e
+       *            accessed entry in Segment
+       *
+       * @return non null set of evicted entries.
+       */
+      Set<HashEntry<K, V>> onEntryMiss(HashEntry<K, V> e);
 
-       /**
-        * Invoked to notify EvictionPolicy implementation that an entry in Segment has been
-        * accessed. Returns true if batching threshold has been reached, false otherwise.
-        * <p>
-        * Note that this method is potentially invoked without holding a lock on Segment.
-        *
-        * @return true if batching threshold has been reached, false otherwise.
-        *
-        * @param e
-        *            accessed entry in Segment
-        */
-       boolean onEntryHit(HashEntry<K, V> e);
+      /**
+       * Invoked to notify EvictionPolicy implementation that an entry in Segment has been
+       * accessed. Returns true if batching threshold has been reached, false otherwise.
+       * <p>
+       * Note that this method is potentially invoked without holding a lock on Segment.
+       *
+       * @return true if batching threshold has been reached, false otherwise.
+       *
+       * @param e
+       *            accessed entry in Segment
+       */
+      boolean onEntryHit(HashEntry<K, V> e);
 
-       /**
-        * Invoked to notify EvictionPolicy implementation that an entry e has been removed from
-        * Segment.
-        *
-        * @param e
-        *            removed entry in Segment
-        */
-       void onEntryRemove(HashEntry<K, V> e);
+      /**
+       * Invoked to notify EvictionPolicy implementation that an entry e has been removed from
+       * Segment.
+       *
+       * @param e
+       *            removed entry in Segment
+       */
+      void onEntryRemove(HashEntry<K, V> e);
 
-       /**
-        * Invoked to notify EvictionPolicy implementation that all Segment entries have been
-        * cleared.
-        *
-        */
-       void clear();
+      /**
+       * Invoked to notify EvictionPolicy implementation that all Segment entries have been
+       * cleared.
+       *
+       */
+      void clear();
 
-       /**
-        * Returns type of eviction algorithm (strategy).
-        *
-        * @return type of eviction algorithm
-        */
-       Eviction strategy();
+      /**
+       * Returns type of eviction algorithm (strategy).
+       *
+       * @return type of eviction algorithm
+       */
+      Eviction strategy();
 
-       /**
-        * Returns true if batching threshold has expired, false otherwise.
-        * <p>
-        * Note that this method is potentially invoked without holding a lock on Segment.
-        *
-        * @return true if batching threshold has expired, false otherwise.
-        */
-       boolean thresholdExpired();
+      /**
+       * Returns true if batching threshold has expired, false otherwise.
+       * <p>
+       * Note that this method is potentially invoked without holding a lock on Segment.
+       *
+       * @return true if batching threshold has expired, false otherwise.
+       */
+      boolean thresholdExpired();
    }
 
    static class NullEvictionPolicy<K, V> implements EvictionPolicy<K, V> {
 
-       @Override
-       public void clear() {
-       }
+      @Override
+      public void clear() {
+         // Do nothing.
+      }
 
-       @Override
-       public Set<HashEntry<K, V>> execute() {
-           return Collections.emptySet();
-       }
+      @Override
+      public Set<HashEntry<K, V>> execute() {
+         return Collections.emptySet();
+      }
 
-       @Override
-       public boolean onEntryHit(HashEntry<K, V> e) {
-           return false;
-       }
+      @Override
+      public boolean onEntryHit(HashEntry<K, V> e) {
+         return false;
+      }
 
-       @Override
-       public Set<HashEntry<K, V>> onEntryMiss(HashEntry<K, V> e) {
-          return Collections.emptySet();
-       }
+      @Override
+      public Set<HashEntry<K, V>> onEntryMiss(HashEntry<K, V> e) {
+         return Collections.emptySet();
+      }
 
-       @Override
-       public void onEntryRemove(HashEntry<K, V> e) {
-       }
+      @Override
+      public void onEntryRemove(HashEntry<K, V> e) {
+         // Do nothing.
+      }
 
-       @Override
-       public boolean thresholdExpired() {
-           return false;
-       }
+      @Override
+      public boolean thresholdExpired() {
+         return false;
+      }
 
-       @Override
-       public Eviction strategy() {
-           return Eviction.NONE;
-       }
+      @Override
+      public Eviction strategy() {
+         return Eviction.NONE;
+      }
    }
 
    static final class LRU<K, V> implements EvictionPolicy<K, V> {
-       private final ConcurrentLinkedQueue<HashEntry<K, V>> accessQueue;
-       private final Segment<K,V> segment;
-       private final LinkedList<HashEntry<K, V>> lruQueue;
-       private final int maxBatchQueueSize;
-       private final int trimDownSize;
-       private final float batchThresholdFactor;
+      private final ConcurrentLinkedQueue<HashEntry<K, V>> accessQueue;
+      private final Segment<K,V> segment;
+      private final LinkedList<HashEntry<K, V>> lruQueue;
+      private final int maxBatchQueueSize;
+      private final int trimDownSize;
+      private final float batchThresholdFactor;
 
-       public LRU(Segment<K,V> s, int capacity, float lf, int maxBatchSize, float batchThresholdFactor) {
-           this.segment = s;
-           this.trimDownSize = (int) (capacity * lf);
-           this.maxBatchQueueSize = maxBatchSize > MAX_BATCH_SIZE ? MAX_BATCH_SIZE : maxBatchSize;
-           this.batchThresholdFactor = batchThresholdFactor;
-           this.accessQueue = new ConcurrentLinkedQueue<HashEntry<K, V>>();
-           this.lruQueue = new LinkedList<HashEntry<K, V>>();
-       }
+      public LRU(Segment<K,V> s, int capacity, float lf, int maxBatchSize, float batchThresholdFactor) {
+         this.segment = s;
+         this.trimDownSize = (int) (capacity * lf);
+         this.maxBatchQueueSize = maxBatchSize > MAX_BATCH_SIZE ? MAX_BATCH_SIZE : maxBatchSize;
+         this.batchThresholdFactor = batchThresholdFactor;
+         this.accessQueue = new ConcurrentLinkedQueue<HashEntry<K, V>>();
+         this.lruQueue = new LinkedList<HashEntry<K, V>>();
+      }
 
-       @Override
-       public Set<HashEntry<K, V>> execute() {
-           Set<HashEntry<K, V>> evicted = Collections.emptySet();
-           if (isOverflow()) {
-               evicted = new HashSet<HashEntry<K, V>>();
-           }
-           try {
-               for (HashEntry<K, V> e : accessQueue) {
-                   if (lruQueue.remove(e)) {
-                       lruQueue.addFirst(e);
-                   }
+      @Override
+      public Set<HashEntry<K, V>> execute() {
+         Set<HashEntry<K, V>> evicted = Collections.emptySet();
+         if (isOverflow()) {
+            evicted = new HashSet<HashEntry<K, V>>();
+         }
+         try {
+            for (HashEntry<K, V> e : accessQueue) {
+               if (lruQueue.remove(e)) {
+                  lruQueue.addFirst(e);
                }
-               while (isOverflow()) {
-                   HashEntry<K, V> first = lruQueue.getLast();
-                   segment.remove(first.key, first.hash, null);
-                   evicted.add(first);
-               }
-           } finally {
-               accessQueue.clear();
-           }
-           return evicted;
-       }
+            }
+            while (isOverflow()) {
+               HashEntry<K, V> first = lruQueue.getLast();
+               segment.remove(first.key, first.hash, null);
+               evicted.add(first);
+            }
+         } finally {
+            accessQueue.clear();
+         }
+         return evicted;
+      }
 
-       private boolean isOverflow() {
-           return lruQueue.size() > trimDownSize;
-       }
+      private boolean isOverflow() {
+         return lruQueue.size() > trimDownSize;
+      }
 
-       @Override
-       public Set<HashEntry<K, V>> onEntryMiss(HashEntry<K, V> e) {
-           lruQueue.addFirst(e);
-           return Collections.emptySet();
-       }
+      @Override
+      public Set<HashEntry<K, V>> onEntryMiss(HashEntry<K, V> e) {
+         lruQueue.addFirst(e);
+         return Collections.emptySet();
+      }
 
-       /*
-        * Invoked without holding a lock on Segment
-        */
-       @Override
-       public boolean onEntryHit(HashEntry<K, V> e) {
-           accessQueue.add(e);
-           return accessQueue.size() >= maxBatchQueueSize * batchThresholdFactor;
-       }
+      /*
+       * Invoked without holding a lock on Segment
+       */
+      @Override
+      public boolean onEntryHit(HashEntry<K, V> e) {
+         accessQueue.add(e);
+         return accessQueue.size() >= maxBatchQueueSize * batchThresholdFactor;
+      }
 
-       /*
-        * Invoked without holding a lock on Segment
-        */
-       @Override
-       public boolean thresholdExpired() {
-           return accessQueue.size() >= maxBatchQueueSize;
-       }
+      /*
+       * Invoked without holding a lock on Segment
+       */
+      @Override
+      public boolean thresholdExpired() {
+         return accessQueue.size() >= maxBatchQueueSize;
+      }
 
-       @Override
-       public void onEntryRemove(HashEntry<K, V> e) {
-           lruQueue.remove(e);
-           // we could have multiple instances of e in accessQueue; remove them all
-           while (accessQueue.remove(e)) {
+      @Override
+      public void onEntryRemove(HashEntry<K, V> e) {
+         lruQueue.remove(e);
+         // we could have multiple instances of e in accessQueue; remove them all
+         while (accessQueue.remove(e)) {
             continue;
-           }
-       }
+         }
+      }
 
-       @Override
-       public void clear() {
-           lruQueue.clear();
-           accessQueue.clear();
-       }
+      @Override
+      public void clear() {
+         lruQueue.clear();
+         accessQueue.clear();
+      }
 
-       @Override
-       public Eviction strategy() {
-           return Eviction.LRU;
-       }
+      @Override
+      public Eviction strategy() {
+         return Eviction.LRU;
+      }
    }
 
    static final class LIRS<K, V> implements EvictionPolicy<K, V> {
-       private final static int MIN_HIR_SIZE = 2;
-       private final Segment<K,V> segment;
-       private final ConcurrentLinkedQueue<HashEntry<K, V>> accessQueue;
-       private final LinkedHashMap<K, HashEntry<K, V>> stack;
-       private final LinkedList<HashEntry<K, V>> queue;
-       private final int maxBatchQueueSize;
-       private final int lirSizeLimit;
-       private final int hirSizeLimit;
-       private int currentLIRSize;
-       private final float batchThresholdFactor;
+      private final static int MIN_HIR_SIZE = 2;
+      private final Segment<K,V> segment;
+      private final ConcurrentLinkedQueue<HashEntry<K, V>> accessQueue;
+      private final LinkedHashMap<K, HashEntry<K, V>> stack;
+      private final LinkedList<HashEntry<K, V>> queue;
+      private final int maxBatchQueueSize;
+      private final int lirSizeLimit;
+      private final int hirSizeLimit;
+      private int currentLIRSize;
+      private final float batchThresholdFactor;
 
-       public LIRS(Segment<K,V> s, int capacity, float lf, int maxBatchSize, float batchThresholdFactor) {
-           this.segment = s;
-           int tmpLirSize = (int) (capacity * 0.9);
-           int tmpHirSizeLimit = capacity - tmpLirSize;
-           if (tmpHirSizeLimit < MIN_HIR_SIZE) {
-               hirSizeLimit = MIN_HIR_SIZE;
-               lirSizeLimit = capacity - hirSizeLimit;
-           } else {
-               hirSizeLimit = tmpHirSizeLimit;
-               lirSizeLimit = tmpLirSize;
-           }
-           this.maxBatchQueueSize = maxBatchSize > MAX_BATCH_SIZE ? MAX_BATCH_SIZE : maxBatchSize;
-           this.batchThresholdFactor = batchThresholdFactor;
-           this.accessQueue = new ConcurrentLinkedQueue<HashEntry<K, V>>();
-           this.stack = new LinkedHashMap<K, HashEntry<K, V>>();
-           this.queue = new LinkedList<HashEntry<K, V>>();
-       }
+      public LIRS(Segment<K,V> s, int capacity, int maxBatchSize, float batchThresholdFactor) {
+         this.segment = s;
+         int tmpLirSize = (int) (capacity * 0.9);
+         int tmpHirSizeLimit = capacity - tmpLirSize;
+         if (tmpHirSizeLimit < MIN_HIR_SIZE) {
+            hirSizeLimit = MIN_HIR_SIZE;
+            lirSizeLimit = capacity - hirSizeLimit;
+         } else {
+            hirSizeLimit = tmpHirSizeLimit;
+            lirSizeLimit = tmpLirSize;
+         }
+         this.maxBatchQueueSize = maxBatchSize > MAX_BATCH_SIZE ? MAX_BATCH_SIZE : maxBatchSize;
+         this.batchThresholdFactor = batchThresholdFactor;
+         this.accessQueue = new ConcurrentLinkedQueue<HashEntry<K, V>>();
+         this.stack = new LinkedHashMap<K, HashEntry<K, V>>();
+         this.queue = new LinkedList<HashEntry<K, V>>();
+      }
 
-       @Override
-       public Set<HashEntry<K, V>> execute() {
-           Set<HashEntry<K, V>> evicted = new HashSet<HashEntry<K, V>>();
-           try {
-               for (HashEntry<K, V> e : accessQueue) {
-                   if (present(e)) {
-                       if (e.recency() == Recency.LIR_RESIDENT) {
-                           handleLIRHit(e, evicted);
-                       } else if (e.recency() == Recency.HIR_RESIDENT) {
-                           handleHIRHit(e, evicted);
-                       }
-                   }
+      @Override
+      public Set<HashEntry<K, V>> execute() {
+         Set<HashEntry<K, V>> evicted = new HashSet<HashEntry<K, V>>();
+         try {
+            for (HashEntry<K, V> e : accessQueue) {
+               if (present(e)) {
+                  if (e.recency() == Recency.LIR_RESIDENT) {
+                     handleLIRHit(e, evicted);
+                  } else if (e.recency() == Recency.HIR_RESIDENT) {
+                     handleHIRHit(e, evicted);
+                  }
                }
-               removeFromSegment(evicted);
-           } finally {
-               accessQueue.clear();
-           }
-           return evicted;
-       }
+            }
+            removeFromSegment(evicted);
+         } finally {
+            accessQueue.clear();
+         }
+         return evicted;
+      }
 
-       private void handleHIRHit(HashEntry<K, V> e, Set<HashEntry<K, V>> evicted) {
-           boolean inStack = stack.containsKey(e.key);
-           if (inStack) {
+      private void handleHIRHit(HashEntry<K, V> e, Set<HashEntry<K, V>> evicted) {
+         boolean inStack = stack.containsKey(e.key);
+         if (inStack) {
             stack.remove(e.key);
          }
 
-           // first put on top of the stack
-           stack.put(e.key, e);
+         // first put on top of the stack
+         stack.put(e.key, e);
 
-           if (inStack) {
-               queue.remove(e);
-               e.transitionToLIRResident();
-               switchBottomostLIRtoHIRAndPrune(evicted);
-           } else {
-               queue.remove(e);
-               queue.addLast(e);
-           }
-       }
+         if (inStack) {
+            queue.remove(e);
+            e.transitionToLIRResident();
+            switchBottomostLIRtoHIRAndPrune(evicted);
+         } else {
+            queue.remove(e);
+            queue.addLast(e);
+         }
+      }
 
-       private void handleLIRHit(HashEntry<K, V> e, Set<HashEntry<K, V>> evicted) {
-           stack.remove(e.key);
-           stack.put(e.key, e);
-           for (Iterator<HashEntry<K, V>> i = stack.values().iterator(); i.hasNext();) {
-               HashEntry<K, V> next = i.next();
-               if (next.recency() == Recency.LIR_RESIDENT) {
-                   break;
-               } else {
-                   i.remove();
-                   evicted.add(next);
-               }
-           }
-       }
+      private void handleLIRHit(HashEntry<K, V> e, Set<HashEntry<K, V>> evicted) {
+         stack.remove(e.key);
+         stack.put(e.key, e);
+         for (Iterator<HashEntry<K, V>> i = stack.values().iterator(); i.hasNext();) {
+            HashEntry<K, V> next = i.next();
+            if (next.recency() == Recency.LIR_RESIDENT) {
+               break;
+            } else {
+               i.remove();
+               evicted.add(next);
+            }
+         }
+      }
 
-       private boolean present(HashEntry<K, V> e) {
-           return stack.containsKey(e.key) || queue.contains(e);
-       }
+      private boolean present(HashEntry<K, V> e) {
+         return stack.containsKey(e.key) || queue.contains(e);
+      }
 
-       @Override
-       public Set<HashEntry<K, V>> onEntryMiss(HashEntry<K, V> e) {
-           // initialization
-          Set<HashEntry<K, V>> evicted = Collections.emptySet();
-           if (currentLIRSize + 1 < lirSizeLimit) {
-               currentLIRSize++;
-               e.transitionToLIRResident();
+      @Override
+      public Set<HashEntry<K, V>> onEntryMiss(HashEntry<K, V> e) {
+         // initialization
+         Set<HashEntry<K, V>> evicted = Collections.emptySet();
+         if (currentLIRSize + 1 < lirSizeLimit) {
+            currentLIRSize++;
+            e.transitionToLIRResident();
+            stack.put(e.key, e);
+         } else {
+            if (queue.size() < hirSizeLimit) {
+               queue.addLast(e);
+            } else {
+               boolean inStack = stack.containsKey(e.key);
+               HashEntry<K, V> first = queue.removeFirst();
+               first.transitionHIRResidentToHIRNonResident();
+
                stack.put(e.key, e);
-           } else {
-               if (queue.size() < hirSizeLimit) {
-                   queue.addLast(e);
+
+               evicted = new HashSet<HashEntry<K, V>>();
+               if (inStack) {
+                  e.transitionToLIRResident();
+                  switchBottomostLIRtoHIRAndPrune(evicted);
                } else {
-                   boolean inStack = stack.containsKey(e.key);
-                   HashEntry<K, V> first = queue.removeFirst();
-                   first.transitionHIRResidentToHIRNonResident();
-
-                   stack.put(e.key, e);
-
-                   evicted = new HashSet<HashEntry<K, V>>();
-                   if (inStack) {
-                       e.transitionToLIRResident();
-                       switchBottomostLIRtoHIRAndPrune(evicted);
-                   } else {
-                       queue.addLast(e);
-                       evicted.add(first);
-                   }
-                   // evict from segment
-                   removeFromSegment(evicted);
+                  queue.addLast(e);
+                  evicted.add(first);
                }
-           }
-           return evicted;
-       }
+               // evict from segment
+               removeFromSegment(evicted);
+            }
+         }
+         return evicted;
+      }
 
-       private void removeFromSegment(Set<HashEntry<K, V>> evicted) {
-           for (HashEntry<K, V> e : evicted) {
-               segment.remove(e.key, e.hash, null);
-           }
-       }
+      private void removeFromSegment(Set<HashEntry<K, V>> evicted) {
+         for (HashEntry<K, V> e : evicted) {
+            segment.remove(e.key, e.hash, null);
+         }
+      }
 
-       private void switchBottomostLIRtoHIRAndPrune(Set<HashEntry<K, V>> evicted) {
-           boolean seenFirstLIR = false;
-           for (Iterator<HashEntry<K, V>> i = stack.values().iterator(); i.hasNext();) {
-               HashEntry<K, V> next = i.next();
-               if (next.recency() == Recency.LIR_RESIDENT) {
-                   if (!seenFirstLIR) {
-                       seenFirstLIR = true;
-                       i.remove();
-                       next.transitionLIRResidentToHIRResident();
-                       queue.addLast(next);
-                   } else {
-                       break;
-                   }
+      private void switchBottomostLIRtoHIRAndPrune(Set<HashEntry<K, V>> evicted) {
+         boolean seenFirstLIR = false;
+         for (Iterator<HashEntry<K, V>> i = stack.values().iterator(); i.hasNext();) {
+            HashEntry<K, V> next = i.next();
+            if (next.recency() == Recency.LIR_RESIDENT) {
+               if (!seenFirstLIR) {
+                  seenFirstLIR = true;
+                  i.remove();
+                  next.transitionLIRResidentToHIRResident();
+                  queue.addLast(next);
                } else {
-                   i.remove();
-                   evicted.add(next);
+                  break;
                }
-           }
-       }
+            } else {
+               i.remove();
+               evicted.add(next);
+            }
+         }
+      }
 
-       /*
-        * Invoked without holding a lock on Segment
-        */
-       @Override
-       public boolean onEntryHit(HashEntry<K, V> e) {
-           accessQueue.add(e);
-           return accessQueue.size() >= maxBatchQueueSize * batchThresholdFactor;
-       }
+      /*
+       * Invoked without holding a lock on Segment
+       */
+      @Override
+      public boolean onEntryHit(HashEntry<K, V> e) {
+         accessQueue.add(e);
+         return accessQueue.size() >= maxBatchQueueSize * batchThresholdFactor;
+      }
 
-       /*
-        * Invoked without holding a lock on Segment
-        */
-       @Override
-       public boolean thresholdExpired() {
-           return accessQueue.size() >= maxBatchQueueSize;
-       }
+      /*
+       * Invoked without holding a lock on Segment
+       */
+      @Override
+      public boolean thresholdExpired() {
+         return accessQueue.size() >= maxBatchQueueSize;
+      }
 
-       @Override
-       public void onEntryRemove(HashEntry<K, V> e) {
-           HashEntry<K, V> removed = stack.remove(e.key);
-           if (removed != null && removed.recency() == Recency.LIR_RESIDENT) {
-               currentLIRSize--;
-           }
-           queue.remove(e);
-           // we could have multiple instances of e in accessQueue; remove them all
-           while (accessQueue.remove(e)) {
-              continue;
-           }
-       }
+      @Override
+      public void onEntryRemove(HashEntry<K, V> e) {
+         HashEntry<K, V> removed = stack.remove(e.key);
+         if (removed != null && removed.recency() == Recency.LIR_RESIDENT) {
+            currentLIRSize--;
+         }
+         queue.remove(e);
+         // we could have multiple instances of e in accessQueue; remove them all
+         while (accessQueue.remove(e)) {
+            continue;
+         }
+      }
 
-       @Override
-       public void clear() {
-           stack.clear();
-           accessQueue.clear();
-       }
+      @Override
+      public void clear() {
+         stack.clear();
+         accessQueue.clear();
+      }
 
-       @Override
-       public Eviction strategy() {
-           return Eviction.LIRS;
-       }
+      @Override
+      public Eviction strategy() {
+         return Eviction.LIRS;
+      }
    }
 
-    /**
-     * Segments are specialized versions of hash tables.  This
-     * subclasses from ReentrantLock opportunistically, just to
-     * simplify some locking and avoid separate construction.
-     */
-    static final class Segment<K,V> extends ReentrantLock implements Serializable {
-        /*
-         * Segments maintain a table of entry lists that are ALWAYS
-         * kept in a consistent state, so can be read without locking.
-         * Next fields of nodes are immutable (final).  All list
-         * additions are performed at the front of each bin. This
-         * makes it easy to check changes, and also fast to traverse.
-         * When nodes would otherwise be changed, new nodes are
-         * created to replace them. This works well for hash tables
-         * since the bin lists tend to be short. (The average length
-         * is less than two for the default load factor threshold.)
-         *
-         * Read operations can thus proceed without locking, but rely
-         * on selected uses of volatiles to ensure that completed
-         * write operations performed by other threads are
-         * noticed. For most purposes, the "count" field, tracking the
-         * number of elements, serves as that volatile variable
-         * ensuring visibility.  This is convenient because this field
-         * needs to be read in many read operations anyway:
-         *
-         *   - All (unsynchronized) read operations must first read the
-         *     "count" field, and should not look at table entries if
-         *     it is 0.
-         *
-         *   - All (synchronized) write operations should write to
-         *     the "count" field after structurally changing any bin.
-         *     The operations must not take any action that could even
-         *     momentarily cause a concurrent read operation to see
-         *     inconsistent data. This is made easier by the nature of
-         *     the read operations in Map. For example, no operation
-         *     can reveal that the table has grown but the threshold
-         *     has not yet been updated, so there are no atomicity
-         *     requirements for this with respect to reads.
-         *
-         * As a guide, all critical volatile reads and writes to the
-         * count field are marked in code comments.
-         */
+   /**
+    * Segments are specialized versions of hash tables.  This
+    * subclasses from ReentrantLock opportunistically, just to
+    * simplify some locking and avoid separate construction.
+    */
+   static final class Segment<K,V> extends ReentrantLock {
+      /*
+       * Segments maintain a table of entry lists that are ALWAYS
+       * kept in a consistent state, so can be read without locking.
+       * Next fields of nodes are immutable (final).  All list
+       * additions are performed at the front of each bin. This
+       * makes it easy to check changes, and also fast to traverse.
+       * When nodes would otherwise be changed, new nodes are
+       * created to replace them. This works well for hash tables
+       * since the bin lists tend to be short. (The average length
+       * is less than two for the default load factor threshold.)
+       *
+       * Read operations can thus proceed without locking, but rely
+       * on selected uses of volatiles to ensure that completed
+       * write operations performed by other threads are
+       * noticed. For most purposes, the "count" field, tracking the
+       * number of elements, serves as that volatile variable
+       * ensuring visibility.  This is convenient because this field
+       * needs to be read in many read operations anyway:
+       *
+       *   - All (unsynchronized) read operations must first read the
+       *     "count" field, and should not look at table entries if
+       *     it is 0.
+       *
+       *   - All (synchronized) write operations should write to
+       *     the "count" field after structurally changing any bin.
+       *     The operations must not take any action that could even
+       *     momentarily cause a concurrent read operation to see
+       *     inconsistent data. This is made easier by the nature of
+       *     the read operations in Map. For example, no operation
+       *     can reveal that the table has grown but the threshold
+       *     has not yet been updated, so there are no atomicity
+       *     requirements for this with respect to reads.
+       *
+       * As a guide, all critical volatile reads and writes to the
+       * count field are marked in code comments.
+       */
 
-        private static final long serialVersionUID = 2249069246763182397L;
+      private static final long serialVersionUID = 2249069246763182397L;
 
-        /**
-         * The number of elements in this segment's region.
-         */
-        transient volatile int count;
+      /**
+       * The number of elements in this segment's region.
+       */
+      transient volatile int count;
 
-        /**
-         * Number of updates that alter the size of the table. This is
-         * used during bulk-read methods to make sure they see a
-         * consistent snapshot: If modCounts change during a traversal
-         * of segments computing size or checking containsValue, then
-         * we might have an inconsistent view of state so (usually)
-         * must retry.
-         */
-        transient int modCount;
+      /**
+       * Number of updates that alter the size of the table. This is
+       * used during bulk-read methods to make sure they see a
+       * consistent snapshot: If modCounts change during a traversal
+       * of segments computing size or checking containsValue, then
+       * we might have an inconsistent view of state so (usually)
+       * must retry.
+       */
+      transient int modCount;
 
-        /**
-         * The table is rehashed when its size exceeds this threshold.
-         * (The value of this field is always <tt>(int)(capacity *
-         * loadFactor)</tt>.)
-         */
-        transient int threshold;
+      /**
+       * The table is rehashed when its size exceeds this threshold.
+       * (The value of this field is always <tt>(int)(capacity *
+       * loadFactor)</tt>.)
+       */
+      transient int threshold;
 
-        /**
-         * The per-segment table.
-         */
-        transient volatile HashEntry<K,V>[] table;
+      /**
+       * The per-segment table.
+       */
+      transient volatile HashEntry<K,V>[] table;
 
-        /**
-         * The load factor for the hash table.  Even though this value
-         * is same for all segments, it is replicated to avoid needing
-         * links to outer object.
-         * @serial
-         */
-        final float loadFactor;
+      /**
+       * The load factor for the hash table.  Even though this value
+       * is same for all segments, it is replicated to avoid needing
+       * links to outer object.
+       * @serial
+       */
+      final float loadFactor;
 
-        transient final EvictionPolicy<K, V> eviction;
+      transient final EvictionPolicy<K, V> eviction;
 
-        transient final EvictionListener<K, V> evictionListener;
+      transient final EvictionListener<K, V> evictionListener;
 
-        Segment(int cap, float lf, Eviction es, EvictionListener<K, V> listener) {
-           loadFactor = lf;
-           eviction = es.make(this, cap, lf);
-           evictionListener = listener;
-           setTable(HashEntry.<K, V> newArray(cap));
-       }
+      Segment(int cap, float lf, Eviction es, EvictionListener<K, V> listener) {
+         loadFactor = lf;
+         eviction = es.make(this, cap, lf);
+         evictionListener = listener;
+         setTable(HashEntry.<K, V> newArray(cap));
+      }
 
-        @SuppressWarnings("unchecked")
-        static final <K,V> Segment<K,V>[] newArray(int i) {
-            return new Segment[i];
-        }
+      @SuppressWarnings("unchecked")
+      static final <K,V> Segment<K,V>[] newArray(int i) {
+         return new Segment[i];
+      }
 
-        EvictionListener<K, V> getEvictionListener() {
-           return evictionListener;
-        }
+      EvictionListener<K, V> getEvictionListener() {
+         return evictionListener;
+      }
 
-        /**
-         * Sets table to new HashEntry array.
-         * Call only while holding lock or in constructor.
-         */
-        void setTable(HashEntry<K,V>[] newTable) {
-            threshold = (int)(newTable.length * loadFactor);
-            table = newTable;
-        }
+      /**
+       * Sets table to new HashEntry array.
+       * Call only while holding lock or in constructor.
+       */
+      void setTable(HashEntry<K,V>[] newTable) {
+         threshold = (int)(newTable.length * loadFactor);
+         table = newTable;
+      }
 
-        /**
-         * Returns properly casted first entry of bin for given hash.
-         */
-        HashEntry<K,V> getFirst(int hash) {
-            HashEntry<K,V>[] tab = table;
-            return tab[hash & tab.length - 1];
-        }
+      /**
+       * Returns properly casted first entry of bin for given hash.
+       */
+      HashEntry<K,V> getFirst(int hash) {
+         HashEntry<K,V>[] tab = table;
+         return tab[hash & tab.length - 1];
+      }
 
-        /**
-         * Reads value field of an entry under lock. Called if value
-         * field ever appears to be null. This is possible only if a
-         * compiler happens to reorder a HashEntry initialization with
-         * its table assignment, which is legal under memory model
-         * but is not known to ever occur.
-         */
-        V readValueUnderLock(HashEntry<K,V> e) {
+      /**
+       * Reads value field of an entry under lock. Called if value
+       * field ever appears to be null. This is possible only if a
+       * compiler happens to reorder a HashEntry initialization with
+       * its table assignment, which is legal under memory model
+       * but is not known to ever occur.
+       */
+      V readValueUnderLock(HashEntry<K,V> e) {
+         lock();
+         try {
+            return e.value;
+         } finally {
+            unlock();
+         }
+      }
+
+      /* Specialized implementations of map methods */
+
+      V get(Object key, int hash) {
+         int c = count;
+         if (c != 0) { // read-volatile
+            V result = null;
+            HashEntry<K, V> e = getFirst(hash);
+            loop: while (e != null) {
+               if (e.hash == hash && key.equals(e.key)) {
+                  V v = e.value;
+                  if (v != null) {
+                     result = v;
+                     break loop;
+                  } else {
+                     result = readValueUnderLock(e); // recheck
+                     break loop;
+                  }
+               }
+               e = e.next;
+            }
+            // a hit
+            if (result != null) {
+               if (eviction.onEntryHit(e)) {
+                  Set<HashEntry<K, V>> evicted = attemptEviction(false);
+                  // piggyback listener invocation on callers thread outside lock
+                  if (evicted != null) {
+                     for (HashEntry<K, V> he : evicted) {
+                        evictionListener.onEntryEviction(he.key, he.value);
+                     }
+                  }
+               }
+            }
+            return result;
+         }
+         return null;
+      }
+
+      private Set<HashEntry<K, V>> attemptEviction(boolean lockedAlready) {
+         Set<HashEntry<K, V>> evicted = null;
+         boolean obtainedLock = !lockedAlready ? tryLock() : true;
+         if (!obtainedLock && eviction.thresholdExpired()) {
             lock();
+            obtainedLock = true;
+         }
+         if (obtainedLock) {
             try {
-                return e.value;
+               evicted = eviction.execute();
             } finally {
-                unlock();
+               if (!lockedAlready) {
+                  unlock();
+               }
             }
-        }
+         }
+         return evicted;
+      }
 
-        /* Specialized implementations of map methods */
-
-        V get(Object key, int hash) {
-           int c = count;
-           if (c != 0) { // read-volatile
-               V result = null;
-               HashEntry<K, V> e = getFirst(hash);
-               loop: while (e != null) {
-                   if (e.hash == hash && key.equals(e.key)) {
-                       V v = e.value;
-                       if (v != null) {
-                           result = v;
-                           break loop;
-                       } else {
-                           result = readValueUnderLock(e); // recheck
-                           break loop;
-                       }
-                   }
-                   e = e.next;
+      boolean containsKey(Object key, int hash) {
+         if (count != 0) { // read-volatile
+            HashEntry<K,V> e = getFirst(hash);
+            while (e != null) {
+               if (e.hash == hash && key.equals(e.key)) {
+                  return true;
                }
-               // a hit
-               if (result != null) {
-                   if (eviction.onEntryHit(e)) {
-                       Set<HashEntry<K, V>> evicted = attemptEviction(false);
-                       // piggyback listener invocation on callers thread outside lock
-                       if (evicted != null) {
-                           for (HashEntry<K, V> he : evicted) {
-                               evictionListener.onEntryEviction(he.key, he.value);
-                           }
-                       }
-                   }
-               }
-               return result;
-           }
-           return null;
-       }
+               e = e.next;
+            }
+         }
+         return false;
+      }
 
-       private Set<HashEntry<K, V>> attemptEviction(boolean lockedAlready) {
-           Set<HashEntry<K, V>> evicted = null;
-           boolean obtainedLock = !lockedAlready ? tryLock() : true;
-           if (!obtainedLock && eviction.thresholdExpired()) {
-               lock();
-               obtainedLock = true;
-           }
-           if (obtainedLock) {
-               try {
-                   evicted = eviction.execute();
-               } finally {
-                   if (!lockedAlready) {
-                     unlock();
+      boolean containsValue(Object value) {
+         if (count != 0) { // read-volatile
+            HashEntry<K,V>[] tab = table;
+            int len = tab.length;
+            for (int i = 0 ; i < len; i++) {
+               for (HashEntry<K,V> e = tab[i]; e != null; e = e.next) {
+                  V v = e.value;
+                  if (v == null) {
+                     v = readValueUnderLock(e);
                   }
-               }
-           }
-           return evicted;
-       }
-
-        boolean containsKey(Object key, int hash) {
-            if (count != 0) { // read-volatile
-                HashEntry<K,V> e = getFirst(hash);
-                while (e != null) {
-                    if (e.hash == hash && key.equals(e.key)) {
+                  if (value.equals(v)) {
                      return true;
                   }
-                    e = e.next;
-                }
+               }
             }
-            return false;
-        }
+         }
+         return false;
+      }
 
-        boolean containsValue(Object value) {
-            if (count != 0) { // read-volatile
-                HashEntry<K,V>[] tab = table;
-                int len = tab.length;
-                for (int i = 0 ; i < len; i++) {
-                    for (HashEntry<K,V> e = tab[i]; e != null; e = e.next) {
-                        V v = e.value;
-                        if (v == null) {
-                           v = readValueUnderLock(e);
-                        }
-                        if (value.equals(v)) {
-                           return true;
-                        }
-                    }
-                }
+      boolean replace(K key, int hash, V oldValue, V newValue) {
+         lock();
+         Set<HashEntry<K, V>> evicted = null;
+         try {
+            HashEntry<K, V> e = getFirst(hash);
+            while (e != null && (e.hash != hash || !key.equals(e.key))) {
+               e = e.next;
             }
-            return false;
-        }
 
-        boolean replace(K key, int hash, V oldValue, V newValue) {
-           lock();
-           Set<HashEntry<K, V>> evicted = null;
-           try {
-               HashEntry<K, V> e = getFirst(hash);
-               while (e != null && (e.hash != hash || !key.equals(e.key))) {
-                  e = e.next;
+            boolean replaced = false;
+            if (e != null && oldValue.equals(e.value)) {
+               replaced = true;
+               e.value = newValue;
+               if (eviction.onEntryHit(e)) {
+                  evicted = attemptEviction(true);
                }
-
-               boolean replaced = false;
-               if (e != null && oldValue.equals(e.value)) {
-                   replaced = true;
-                   e.value = newValue;
-                   if (eviction.onEntryHit(e)) {
-                       evicted = attemptEviction(true);
-                   }
+            }
+            return replaced;
+         } finally {
+            unlock();
+            // piggyback listener invocation on callers thread outside lock
+            if (evicted != null) {
+               for (HashEntry<K, V> he : evicted) {
+                  evictionListener.onEntryEviction(he.key, he.value);
                }
-               return replaced;
-           } finally {
-               unlock();
-               // piggyback listener invocation on callers thread outside lock
-               if (evicted != null) {
-                   for (HashEntry<K, V> he : evicted) {
-                       evictionListener.onEntryEviction(he.key, he.value);
-                   }
-               }
-           }
-       }
+            }
+         }
+      }
 
-       V replace(K key, int hash, V newValue) {
-           lock();
-           Set<HashEntry<K, V>> evicted = null;
-           try {
-               HashEntry<K, V> e = getFirst(hash);
-               while (e != null && (e.hash != hash || !key.equals(e.key))) {
-                  e = e.next;
-               }
+      V replace(K key, int hash, V newValue) {
+         lock();
+         Set<HashEntry<K, V>> evicted = null;
+         try {
+            HashEntry<K, V> e = getFirst(hash);
+            while (e != null && (e.hash != hash || !key.equals(e.key))) {
+               e = e.next;
+            }
 
-               V oldValue = null;
-               if (e != null) {
-                   oldValue = e.value;
-                   e.value = newValue;
-                   if (eviction.onEntryHit(e)) {
-                       evicted = attemptEviction(true);
-                   }
+            V oldValue = null;
+            if (e != null) {
+               oldValue = e.value;
+               e.value = newValue;
+               if (eviction.onEntryHit(e)) {
+                  evicted = attemptEviction(true);
                }
-               return oldValue;
-           } finally {
-               unlock();
-               // piggyback listener invocation on callers thread outside lock
-               if(evicted != null) {
-                   for (HashEntry<K, V> he : evicted) {
-                       evictionListener.onEntryEviction(he.key, he.value);
-                   }
+            }
+            return oldValue;
+         } finally {
+            unlock();
+            // piggyback listener invocation on callers thread outside lock
+            if(evicted != null) {
+               for (HashEntry<K, V> he : evicted) {
+                  evictionListener.onEntryEviction(he.key, he.value);
                }
-           }
-       }
+            }
+         }
+      }
 
-
-       V put(K key, int hash, V value, boolean onlyIfAbsent) {
-          lock();
-          Set<HashEntry<K, V>> evicted = null;
-          try {
-              int c = count;
-              if (c++ > threshold && eviction.strategy() == Eviction.NONE) {
+      V put(K key, int hash, V value, boolean onlyIfAbsent) {
+         lock();
+         Set<HashEntry<K, V>> evicted = null;
+         try {
+            int c = count;
+            if (c++ > threshold && eviction.strategy() == Eviction.NONE) {
                rehash();
             }
-              HashEntry<K, V>[] tab = table;
-              int index = hash & tab.length - 1;
-              HashEntry<K, V> first = tab[index];
-              HashEntry<K, V> e = first;
-              while (e != null && (e.hash != hash || !key.equals(e.key))) {
+            HashEntry<K, V>[] tab = table;
+            int index = hash & tab.length - 1;
+            HashEntry<K, V> first = tab[index];
+            HashEntry<K, V> e = first;
+            while (e != null && (e.hash != hash || !key.equals(e.key))) {
                e = e.next;
             }
 
-              V oldValue;
-              if (e != null) {
-                  oldValue = e.value;
-                  if (!onlyIfAbsent) {
-                      e.value = value;
-                      eviction.onEntryHit(e);
+            V oldValue;
+            if (e != null) {
+               oldValue = e.value;
+               if (!onlyIfAbsent) {
+                  e.value = value;
+                  eviction.onEntryHit(e);
+               }
+            } else {
+               oldValue = null;
+               ++modCount;
+               count = c; // write-volatile
+               if (eviction.strategy() != Eviction.NONE) {
+                  if (c > tab.length) {
+                     // remove entries;lower count
+                     evicted = eviction.execute();
+                     // re-read first
+                     first = tab[index];
                   }
-              } else {
-                  oldValue = null;
-                  ++modCount;
-                  count = c; // write-volatile
-                  if (eviction.strategy() != Eviction.NONE) {
-                      if (c > tab.length) {
-                          // remove entries;lower count
-                          evicted = eviction.execute();
-                          // re-read first
-                          first = tab[index];
-                      }
-                      // add a new entry
-                      tab[index] = new HashEntry<K, V>(key, hash, first, value);
-                      // notify a miss
-                      Set<HashEntry<K, V>> newlyEvicted = eviction.onEntryMiss(tab[index]);
-                      if (!newlyEvicted.isEmpty()) {
-                         if (evicted != null) {
-                           evicted.addAll(newlyEvicted);
-                        } else {
-                           evicted = newlyEvicted;
-                        }
-                      }
-                  } else {
-                      tab[index] = new HashEntry<K, V>(key, hash, first, value);
+                  // add a new entry
+                  tab[index] = new HashEntry<K, V>(key, hash, first, value);
+                  // notify a miss
+                  Set<HashEntry<K, V>> newlyEvicted = eviction.onEntryMiss(tab[index]);
+                  if (!newlyEvicted.isEmpty()) {
+                     if (evicted != null) {
+                        evicted.addAll(newlyEvicted);
+                     } else {
+                        evicted = newlyEvicted;
+                     }
                   }
-              }
-              return oldValue;
-          } finally {
-              unlock();
-              // piggyback listener invocation on callers thread outside lock
-              if(evicted != null) {
-                  for (HashEntry<K, V> he : evicted) {
-                      evictionListener.onEntryEviction(he.key, he.value);
-                  }
-              }
-          }
+               } else {
+                  tab[index] = new HashEntry<K, V>(key, hash, first, value);
+               }
+            }
+            return oldValue;
+         } finally {
+            unlock();
+            // piggyback listener invocation on callers thread outside lock
+            if(evicted != null) {
+               for (HashEntry<K, V> he : evicted) {
+                  evictionListener.onEntryEviction(he.key, he.value);
+               }
+            }
+         }
       }
 
+      void rehash() {
+         HashEntry<K,V>[] oldTable = table;
+         int oldCapacity = oldTable.length;
+         if (oldCapacity >= MAXIMUM_CAPACITY) {
+            return;
+         }
 
-        void rehash() {
-            HashEntry<K,V>[] oldTable = table;
-            int oldCapacity = oldTable.length;
-            if (oldCapacity >= MAXIMUM_CAPACITY) {
-               return;
-            }
+         /*
+          * Reclassify nodes in each list to new Map.  Because we are
+          * using power-of-two expansion, the elements from each bin
+          * must either stay at same index, or move with a power of two
+          * offset. We eliminate unnecessary node creation by catching
+          * cases where old nodes can be reused because their next
+          * fields won't change. Statistically, at the default
+          * threshold, only about one-sixth of them need cloning when
+          * a table doubles. The nodes they replace will be garbage
+          * collectable as soon as they are no longer referenced by any
+          * reader thread that may be in the midst of traversing table
+          * right now.
+          */
 
-            /*
-             * Reclassify nodes in each list to new Map.  Because we are
-             * using power-of-two expansion, the elements from each bin
-             * must either stay at same index, or move with a power of two
-             * offset. We eliminate unnecessary node creation by catching
-             * cases where old nodes can be reused because their next
-             * fields won't change. Statistically, at the default
-             * threshold, only about one-sixth of them need cloning when
-             * a table doubles. The nodes they replace will be garbage
-             * collectable as soon as they are no longer referenced by any
-             * reader thread that may be in the midst of traversing table
-             * right now.
-             */
+         HashEntry<K,V>[] newTable = HashEntry.newArray(oldCapacity<<1);
+         threshold = (int)(newTable.length * loadFactor);
+         int sizeMask = newTable.length - 1;
+         for (int i = 0; i < oldCapacity ; i++) {
+            // We need to guarantee that any existing reads of old Map can
+            //  proceed. So we cannot yet null out each bin.
+            HashEntry<K,V> e = oldTable[i];
 
-            HashEntry<K,V>[] newTable = HashEntry.newArray(oldCapacity<<1);
-            threshold = (int)(newTable.length * loadFactor);
-            int sizeMask = newTable.length - 1;
-            for (int i = 0; i < oldCapacity ; i++) {
-                // We need to guarantee that any existing reads of old Map can
-                //  proceed. So we cannot yet null out each bin.
-                HashEntry<K,V> e = oldTable[i];
+            if (e != null) {
+               HashEntry<K,V> next = e.next;
+               int idx = e.hash & sizeMask;
 
-                if (e != null) {
-                    HashEntry<K,V> next = e.next;
-                    int idx = e.hash & sizeMask;
+               //  Single node on list
+               if (next == null) {
+                  newTable[idx] = e;
+               } else {
+                  // Reuse trailing consecutive sequence at same slot
+                  HashEntry<K,V> lastRun = e;
+                  int lastIdx = idx;
+                  for (HashEntry<K,V> last = next;
+                  last != null;
+                  last = last.next) {
+                     int k = last.hash & sizeMask;
+                     if (k != lastIdx) {
+                        lastIdx = k;
+                        lastRun = last;
+                     }
+                  }
+                  newTable[lastIdx] = lastRun;
 
-                    //  Single node on list
-                    if (next == null) {
-                     newTable[idx] = e;
-                  } else {
-                        // Reuse trailing consecutive sequence at same slot
-                        HashEntry<K,V> lastRun = e;
-                        int lastIdx = idx;
-                        for (HashEntry<K,V> last = next;
-                             last != null;
-                             last = last.next) {
-                            int k = last.hash & sizeMask;
-                            if (k != lastIdx) {
-                                lastIdx = k;
-                                lastRun = last;
-                            }
-                        }
-                        newTable[lastIdx] = lastRun;
+                  // Clone all remaining nodes
+                  for (HashEntry<K,V> p = e; p != lastRun; p = p.next) {
+                     int k = p.hash & sizeMask;
+                     HashEntry<K,V> n = newTable[k];
+                     newTable[k] = new HashEntry<K,V>(p.key, p.hash,
+                           n, p.value);
+                  }
+               }
+            }
+         }
+         table = newTable;
+      }
 
-                        // Clone all remaining nodes
-                        for (HashEntry<K,V> p = e; p != lastRun; p = p.next) {
-                            int k = p.hash & sizeMask;
-                            HashEntry<K,V> n = newTable[k];
-                            newTable[k] = new HashEntry<K,V>(p.key, p.hash,
-                                                             n, p.value);
-                        }
-                    }
-                }
+      /**
+       * Remove; match on key only if value null, else match both.
+       */
+      V remove(Object key, int hash, Object value) {
+         lock();
+         try {
+            int c = count - 1;
+            HashEntry<K, V>[] tab = table;
+            int index = hash & tab.length - 1;
+            HashEntry<K, V> first = tab[index];
+            HashEntry<K, V> e = first;
+            while (e != null && (e.hash != hash || !key.equals(e.key))) {
+               e = e.next;
             }
-            table = newTable;
-        }
 
-        /**
-         * Remove; match on key only if value null, else match both.
-         */
-        V remove(Object key, int hash, Object value) {
-           lock();
-           try {
-               int c = count - 1;
-               HashEntry<K, V>[] tab = table;
-               int index = hash & tab.length - 1;
-               HashEntry<K, V> first = tab[index];
-               HashEntry<K, V> e = first;
-               while (e != null && (e.hash != hash || !key.equals(e.key))) {
-                  e = e.next;
-               }
+            V oldValue = null;
+            if (e != null) {
+               V v = e.value;
+               if (value == null || value.equals(v)) {
+                  oldValue = v;
+                  // All entries following removed node can stay
+                  // in list, but all preceding ones need to be
+                  // cloned.
+                  ++modCount;
 
-               V oldValue = null;
-               if (e != null) {
-                   V v = e.value;
-                   if (value == null || value.equals(v)) {
-                       oldValue = v;
-                       // All entries following removed node can stay
-                       // in list, but all preceding ones need to be
-                       // cloned.
-                       ++modCount;
+                  // e was removed
+                  eviction.onEntryRemove(e);
 
-                       // e was removed
-                       eviction.onEntryRemove(e);
+                  HashEntry<K, V> newFirst = e.next;
+                  for (HashEntry<K, V> p = first; p != e; p = p.next) {
+                     // allow p to be GC-ed
+                     eviction.onEntryRemove(p);
+                     newFirst = new HashEntry<K, V>(p.key, p.hash, newFirst, p.value);
+                     // and notify eviction algorithm about new hash entries
+                     eviction.onEntryMiss(newFirst);
+                  }
 
-                       HashEntry<K, V> newFirst = e.next;
-                       for (HashEntry<K, V> p = first; p != e; p = p.next) {
-                           // allow p to be GC-ed
-                           eviction.onEntryRemove(p);
-                           newFirst = new HashEntry<K, V>(p.key, p.hash, newFirst, p.value);
-                           // and notify eviction algorithm about new hash entries
-                           eviction.onEntryMiss(newFirst);
-                       }
+                  tab[index] = newFirst;
+                  count = c; // write-volatile
+               }
+            }
+            return oldValue;
+         } finally {
+            unlock();
+         }
+      }
 
-                       tab[index] = newFirst;
-                       count = c; // write-volatile
-                   }
+      void clear() {
+         if (count != 0) {
+            lock();
+            try {
+               HashEntry<K, V>[] tab = table;
+               for (int i = 0; i < tab.length; i++) {
+                  tab[i] = null;
                }
-               return oldValue;
-           } finally {
+               ++modCount;
+               eviction.clear();
+               count = 0; // write-volatile
+            } finally {
                unlock();
-           }
-       }
+            }
+         }
+      }
+   }
 
-        void clear() {
-           if (count != 0) {
-               lock();
-               try {
-                   HashEntry<K, V>[] tab = table;
-                   for (int i = 0; i < tab.length; i++) {
-                     tab[i] = null;
-                  }
-                   ++modCount;
-                   eviction.clear();
-                   count = 0; // write-volatile
-               } finally {
-                   unlock();
-               }
-           }
-       }
-    }
 
+   /* ---------------- Public operations -------------- */
 
 
-    /* ---------------- Public operations -------------- */
-
-
-    /**
-     * Creates a new, empty map with the specified maximum capacity, load factor and concurrency
-     * level.
-     *
-     * @param capacity
-     *            is the upper bound capacity for the number of elements in this map
-     *
-     * @param concurrencyLevel
-     *            the estimated number of concurrently updating threads. The implementation performs
-     *            internal sizing to try to accommodate this many threads.
-     *
-     * @param evictionStrategy
-     *            the algorithm used to evict elements from this map
-     *
-     * @param evictionListener
-     *            the evicton listener callback to be notified about evicted elements
-     *
-     * @throws IllegalArgumentException
-     *             if the initial capacity is negative or the load factor or concurrencyLevel are
-     *             nonpositive.
-     */
-    public BoundedConcurrentHashMap(int capacity, int concurrencyLevel,
-                    Eviction evictionStrategy, EvictionListener<K, V> evictionListener) {
-        if (capacity < 0 || concurrencyLevel <= 0) {
+   /**
+    * Creates a new, empty map with the specified maximum capacity, load factor and concurrency
+    * level.
+    *
+    * @param capacity
+    *            is the upper bound capacity for the number of elements in this map
+    *
+    * @param concurrencyLevel
+    *            the estimated number of concurrently updating threads. The implementation performs
+    *            internal sizing to try to accommodate this many threads.
+    *
+    * @param evictionStrategy
+    *            the algorithm used to evict elements from this map
+    *
+    * @param evictionListener
+    *            the evicton listener callback to be notified about evicted elements
+    *
+    * @throws IllegalArgumentException
+    *             if the initial capacity is negative or the load factor or concurrencyLevel are
+    *             nonpositive.
+    */
+   public BoundedConcurrentHashMap(int capacity, int concurrencyLevel,
+         Eviction evictionStrategy, EvictionListener<K, V> evictionListener) {
+      if (capacity < 0 || concurrencyLevel <= 0) {
          throw new IllegalArgumentException();
       }
 
-        concurrencyLevel = Math.min(capacity / 2, concurrencyLevel); // concurrencyLevel cannot be > capacity/2
-        concurrencyLevel = Math.max(concurrencyLevel, 1); // concurrencyLevel cannot be less than 1
+      concurrencyLevel = Math.min(capacity / 2, concurrencyLevel); // concurrencyLevel cannot be > capacity/2
+      concurrencyLevel = Math.max(concurrencyLevel, 1); // concurrencyLevel cannot be less than 1
 
-        // minimum two elements per segment
-        if (capacity < concurrencyLevel * 2 && capacity != 1) {
+      // minimum two elements per segment
+      if (capacity < concurrencyLevel * 2 && capacity != 1) {
          throw new IllegalArgumentException("Maximum capacity has to be at least twice the concurrencyLevel");
       }
 
-        if (evictionStrategy == null || evictionListener == null) {
+      if (evictionStrategy == null || evictionListener == null) {
          throw new IllegalArgumentException();
       }
 
-        if (concurrencyLevel > MAX_SEGMENTS) {
+      if (concurrencyLevel > MAX_SEGMENTS) {
          concurrencyLevel = MAX_SEGMENTS;
       }
 
-        // Find power-of-two sizes best matching arguments
-        int sshift = 0;
-        int ssize = 1;
-        while (ssize < concurrencyLevel) {
-            ++sshift;
-            ssize <<= 1;
-        }
-        segmentShift = 32 - sshift;
-        segmentMask = ssize - 1;
-        this.segments = Segment.newArray(ssize);
+      // Find power-of-two sizes best matching arguments
+      int sshift = 0;
+      int ssize = 1;
+      while (ssize < concurrencyLevel) {
+         ++sshift;
+         ssize <<= 1;
+      }
+      segmentShift = 32 - sshift;
+      segmentMask = ssize - 1;
+      this.segments = Segment.newArray(ssize);
 
-        if (capacity > MAXIMUM_CAPACITY) {
+      if (capacity > MAXIMUM_CAPACITY) {
          capacity = MAXIMUM_CAPACITY;
       }
-        int c = capacity / ssize;
-        if (c * ssize < capacity) {
+      int c = capacity / ssize;
+      if (c * ssize < capacity) {
          ++c;
       }
-        int cap = 1;
-        while (cap < c) {
+      int cap = 1;
+      while (cap < c) {
          cap <<= 1;
       }
 
-        for (int i = 0; i < this.segments.length; ++i) {
-         this.segments[i] = new Segment<K, V>(cap, DEFAULT_LOAD_FACTOR, evictionStrategy,
-                         evictionListener);
+      for (int i = 0; i < this.segments.length; ++i) {
+         this.segments[i] = new Segment<K, V>(cap, DEFAULT_LOAD_FACTOR, evictionStrategy, evictionListener);
       }
-    }
+   }
 
-    /**
-     * Creates a new, empty map with the specified maximum capacity, load factor, concurrency
-     * level and LRU eviction policy.
-     *
-     * @param capacity
-     *            is the upper bound capacity for the number of elements in this map
-     *
-     * @param concurrencyLevel
-     *            the estimated number of concurrently updating threads. The implementation performs
-     *            internal sizing to try to accommodate this many threads.
-     *
-     * @throws IllegalArgumentException
-     *             if the initial capacity is negative or the load factor or concurrencyLevel are
-     *             nonpositive.
-     */
-    public BoundedConcurrentHashMap(int capacity, int concurrencyLevel) {
-        this(capacity, concurrencyLevel, Eviction.LRU);
-    }
+   /**
+    * Creates a new, empty map with the specified maximum capacity, load factor, concurrency
+    * level and LRU eviction policy.
+    *
+    * @param capacity
+    *            is the upper bound capacity for the number of elements in this map
+    *
+    * @param concurrencyLevel
+    *            the estimated number of concurrently updating threads. The implementation performs
+    *            internal sizing to try to accommodate this many threads.
+    *
+    * @throws IllegalArgumentException
+    *             if the initial capacity is negative or the load factor or concurrencyLevel are
+    *             nonpositive.
+    */
+   public BoundedConcurrentHashMap(int capacity, int concurrencyLevel) {
+      this(capacity, concurrencyLevel, Eviction.LRU);
+   }
 
-    /**
-     * Creates a new, empty map with the specified maximum capacity, load factor, concurrency
-     * level and eviction strategy.
-     *
-     * @param capacity
-     *            is the upper bound capacity for the number of elements in this map
-     *
-     * @param concurrencyLevel
-     *            the estimated number of concurrently updating threads. The implementation performs
-     *            internal sizing to try to accommodate this many threads.
-     *
-     * @param evictionStrategy
-     *            the algorithm used to evict elements from this map
-     *
-     * @throws IllegalArgumentException
-     *             if the initial capacity is negative or the load factor or concurrencyLevel are
-     *             nonpositive.
-     */
-    public BoundedConcurrentHashMap(int capacity, int concurrencyLevel, Eviction evictionStrategy) {
-        this(capacity, concurrencyLevel, evictionStrategy, new NullEvictionListener<K, V>());
-    }
+   /**
+    * Creates a new, empty map with the specified maximum capacity, load factor, concurrency
+    * level and eviction strategy.
+    *
+    * @param capacity
+    *            is the upper bound capacity for the number of elements in this map
+    *
+    * @param concurrencyLevel
+    *            the estimated number of concurrently updating threads. The implementation performs
+    *            internal sizing to try to accommodate this many threads.
+    *
+    * @param evictionStrategy
+    *            the algorithm used to evict elements from this map
+    *
+    * @throws IllegalArgumentException
+    *             if the initial capacity is negative or the load factor or concurrencyLevel are
+    *             nonpositive.
+    */
+   public BoundedConcurrentHashMap(int capacity, int concurrencyLevel, Eviction evictionStrategy) {
+      this(capacity, concurrencyLevel, evictionStrategy, new NullEvictionListener<K, V>());
+   }
 
-    /**
-     * Creates a new, empty map with the specified maximum capacity, default concurrency
-     * level and LRU eviction policy.
-     *
-     *  @param capacity
-     *            is the upper bound capacity for the number of elements in this map
-     *
-     *
-     * @throws IllegalArgumentException if the initial capacity of
-     * elements is negative or the load factor is nonpositive
-     *
-     * @since 1.6
-     */
-    public BoundedConcurrentHashMap(int capacity) {
-        this(capacity, DEFAULT_CONCURRENCY_LEVEL);
-    }
+   /**
+    * Creates a new, empty map with the specified maximum capacity, default concurrency
+    * level and LRU eviction policy.
+    *
+    *  @param capacity
+    *            is the upper bound capacity for the number of elements in this map
+    *
+    *
+    * @throws IllegalArgumentException if the initial capacity of
+    * elements is negative or the load factor is nonpositive
+    *
+    * @since 1.6
+    */
+   public BoundedConcurrentHashMap(int capacity) {
+      this(capacity, DEFAULT_CONCURRENCY_LEVEL);
+   }
 
-    /**
-     * Creates a new, empty map with the default maximum capacity
-     */
-    public BoundedConcurrentHashMap() {
-        this(DEFAULT_MAXIMUM_CAPACITY, DEFAULT_CONCURRENCY_LEVEL);
-    }
+   /**
+    * Creates a new, empty map with the default maximum capacity
+    */
+   public BoundedConcurrentHashMap() {
+      this(DEFAULT_MAXIMUM_CAPACITY, DEFAULT_CONCURRENCY_LEVEL);
+   }
 
-    /**
-     * Returns <tt>true</tt> if this map contains no key-value mappings.
-     *
-     * @return <tt>true</tt> if this map contains no key-value mappings
-     */
-    @Override
+   /**
+    * Returns <tt>true</tt> if this map contains no key-value mappings.
+    *
+    * @return <tt>true</tt> if this map contains no key-value mappings
+    */
+   @Override
    public boolean isEmpty() {
-        final Segment<K,V>[] segments = this.segments;
-        /*
-         * We keep track of per-segment modCounts to avoid ABA
-         * problems in which an element in one segment was added and
-         * in another removed during traversal, in which case the
-         * table was never actually empty at any point. Note the
-         * similar use of modCounts in the size() and containsValue()
-         * methods, which are the only other methods also susceptible
-         * to ABA problems.
-         */
-        int[] mc = new int[segments.length];
-        int mcsum = 0;
-        for (int i = 0; i < segments.length; ++i) {
-            if (segments[i].count != 0) {
+      final Segment<K,V>[] segments = this.segments;
+      /*
+       * We keep track of per-segment modCounts to avoid ABA
+       * problems in which an element in one segment was added and
+       * in another removed during traversal, in which case the
+       * table was never actually empty at any point. Note the
+       * similar use of modCounts in the size() and containsValue()
+       * methods, which are the only other methods also susceptible
+       * to ABA problems.
+       */
+      int[] mc = new int[segments.length];
+      int mcsum = 0;
+      for (int i = 0; i < segments.length; ++i) {
+         if (segments[i].count != 0) {
+            return false;
+         } else {
+            mcsum += mc[i] = segments[i].modCount;
+         }
+      }
+      // If mcsum happens to be zero, then we know we got a snapshot
+      // before any modifications at all were made.  This is
+      // probably common enough to bother tracking.
+      if (mcsum != 0) {
+         for (int i = 0; i < segments.length; ++i) {
+            if (segments[i].count != 0 || mc[i] != segments[i].modCount) {
                return false;
-            } else {
-               mcsum += mc[i] = segments[i].modCount;
             }
-        }
-        // If mcsum happens to be zero, then we know we got a snapshot
-        // before any modifications at all were made.  This is
-        // probably common enough to bother tracking.
-        if (mcsum != 0) {
-            for (int i = 0; i < segments.length; ++i) {
-                if (segments[i].count != 0 ||
-                    mc[i] != segments[i].modCount) {
-                  return false;
-               }
-            }
-        }
-        return true;
-    }
+         }
+      }
+      return true;
+   }
 
-    /**
-     * Returns the number of key-value mappings in this map.  If the
-     * map contains more than <tt>Integer.MAX_VALUE</tt> elements, returns
-     * <tt>Integer.MAX_VALUE</tt>.
-     *
-     * @return the number of key-value mappings in this map
-     */
-    @Override
+   /**
+    * Returns the number of key-value mappings in this map.  If the
+    * map contains more than <tt>Integer.MAX_VALUE</tt> elements, returns
+    * <tt>Integer.MAX_VALUE</tt>.
+    *
+    * @return the number of key-value mappings in this map
+    */
+   @Override
    public int size() {
-        final Segment<K,V>[] segments = this.segments;
-        long sum = 0;
-        long check = 0;
-        int[] mc = new int[segments.length];
-        // Try a few times to get accurate count. On failure due to
-        // continuous async changes in table, resort to locking.
-        for (int k = 0; k < RETRIES_BEFORE_LOCK; ++k) {
-            check = 0;
-            sum = 0;
-            int mcsum = 0;
-            for (int i = 0; i < segments.length; ++i) {
-                sum += segments[i].count;
-                mcsum += mc[i] = segments[i].modCount;
+      final Segment<K,V>[] segments = this.segments;
+      long sum = 0;
+      long check = 0;
+      int[] mc = new int[segments.length];
+      // Try a few times to get accurate count. On failure due to
+      // continuous async changes in table, resort to locking.
+      for (int k = 0; k < RETRIES_BEFORE_LOCK; ++ k) {
+         check = 0;
+         sum = 0;
+         int mcsum = 0;
+         for (int i = 0; i < segments.length; ++ i) {
+            sum += segments[i].count;
+            mcsum += mc[i] = segments[i].modCount;
+         }
+         if (mcsum != 0) {
+            for (int i = 0; i < segments.length; ++ i) {
+               check += segments[i].count;
+               if (mc[i] != segments[i].modCount) {
+                  check = -1; // force retry
+                  break;
+               }
             }
-            if (mcsum != 0) {
-                for (int i = 0; i < segments.length; ++i) {
-                    check += segments[i].count;
-                    if (mc[i] != segments[i].modCount) {
-                        check = -1; // force retry
-                        break;
-                    }
-                }
-            }
-            if (check == sum) {
-               break;
-            }
-        }
-        if (check != sum) { // Resort to locking all segments
-            sum = 0;
-            for (int i = 0; i < segments.length; ++i) {
-               segments[i].lock();
-            }
-            for (int i = 0; i < segments.length; ++i) {
-               sum += segments[i].count;
-            }
-            for (int i = 0; i < segments.length; ++i) {
-               segments[i].unlock();
-            }
-        }
-        if (sum > Integer.MAX_VALUE) {
+         }
+         if (check == sum) {
+            break;
+         }
+      }
+      if (check != sum) { // Resort to locking all segments
+         sum = 0;
+         for (int i = 0; i < segments.length; ++ i) {
+            segments[i].lock();
+         }
+         for (int i = 0; i < segments.length; ++ i) {
+            sum += segments[i].count;
+         }
+         for (int i = 0; i < segments.length; ++ i) {
+            segments[i].unlock();
+         }
+      }
+      if (sum > Integer.MAX_VALUE) {
          return Integer.MAX_VALUE;
       } else {
-         return (int)sum;
+         return (int) sum;
       }
-    }
+   }
 
-    /**
-     * Returns the value to which the specified key is mapped,
-     * or {@code null} if this map contains no mapping for the key.
-     *
-     * <p>More formally, if this map contains a mapping from a key
-     * {@code k} to a value {@code v} such that {@code key.equals(k)},
-     * then this method returns {@code v}; otherwise it returns
-     * {@code null}.  (There can be at most one such mapping.)
-     *
-     * @throws NullPointerException if the specified key is null
-     */
-    @Override
+   /**
+    * Returns the value to which the specified key is mapped,
+    * or {@code null} if this map contains no mapping for the key.
+    *
+    * <p>More formally, if this map contains a mapping from a key
+    * {@code k} to a value {@code v} such that {@code key.equals(k)},
+    * then this method returns {@code v}; otherwise it returns
+    * {@code null}.  (There can be at most one such mapping.)
+    *
+    * @throws NullPointerException if the specified key is null
+    */
+   @Override
    public V get(Object key) {
-        int hash = hash(key.hashCode());
-        return segmentFor(hash).get(key, hash);
-    }
+      int hash = hash(key.hashCode());
+      return segmentFor(hash).get(key, hash);
+   }
 
-    /**
-     * Tests if the specified object is a key in this table.
-     *
-     * @param  key   possible key
-     * @return <tt>true</tt> if and only if the specified object
-     *         is a key in this table, as determined by the
-     *         <tt>equals</tt> method; <tt>false</tt> otherwise.
-     * @throws NullPointerException if the specified key is null
-     */
-    @Override
+   /**
+    * Tests if the specified object is a key in this table.
+    *
+    * @param  key   possible key
+    * @return <tt>true</tt> if and only if the specified object
+    *         is a key in this table, as determined by the
+    *         <tt>equals</tt> method; <tt>false</tt> otherwise.
+    * @throws NullPointerException if the specified key is null
+    */
+   @Override
    public boolean containsKey(Object key) {
-        int hash = hash(key.hashCode());
-        return segmentFor(hash).containsKey(key, hash);
-    }
+      int hash = hash(key.hashCode());
+      return segmentFor(hash).containsKey(key, hash);
+   }
 
-    /**
-     * Returns <tt>true</tt> if this map maps one or more keys to the
-     * specified value. Note: This method requires a full internal
-     * traversal of the hash table, and so is much slower than
-     * method <tt>containsKey</tt>.
-     *
-     * @param value value whose presence in this map is to be tested
-     * @return <tt>true</tt> if this map maps one or more keys to the
-     *         specified value
-     * @throws NullPointerException if the specified value is null
-     */
-    @Override
+   /**
+    * Returns <tt>true</tt> if this map maps one or more keys to the
+    * specified value. Note: This method requires a full internal
+    * traversal of the hash table, and so is much slower than
+    * method <tt>containsKey</tt>.
+    *
+    * @param value value whose presence in this map is to be tested
+    * @return <tt>true</tt> if this map maps one or more keys to the
+    *         specified value
+    * @throws NullPointerException if the specified value is null
+    */
+   @Override
    public boolean containsValue(Object value) {
-        if (value == null) {
+      if (value == null) {
          throw new NullPointerException();
       }
 
-        // See explanation of modCount use above
+      // See explanation of modCount use above
 
-        final Segment<K,V>[] segments = this.segments;
-        int[] mc = new int[segments.length];
+      final Segment<K, V>[] segments = this.segments;
+      int[] mc = new int[segments.length];
 
-        // Try a few times without locking
-        for (int k = 0; k < RETRIES_BEFORE_LOCK; ++k) {
-            int sum = 0;
-            int mcsum = 0;
-            for (int i = 0; i < segments.length; ++i) {
-                int c = segments[i].count;
-                mcsum += mc[i] = segments[i].modCount;
-                if (segments[i].containsValue(value)) {
-                  return true;
+      // Try a few times without locking
+      for (int k = 0; k < RETRIES_BEFORE_LOCK; ++ k) {
+         int sum = 0;
+         int mcsum = 0;
+         for (int i = 0; i < segments.length; ++ i) {
+            int c = segments[i].count;
+            mcsum += mc[i] = segments[i].modCount;
+            if (segments[i].containsValue(value)) {
+               return true;
+            }
+         }
+         boolean cleanSweep = true;
+         if (mcsum != 0) {
+            for (int i = 0; i < segments.length; ++ i) {
+               int c = segments[i].count;
+               if (mc[i] != segments[i].modCount) {
+                  cleanSweep = false;
+                  break;
                }
             }
-            boolean cleanSweep = true;
-            if (mcsum != 0) {
-                for (int i = 0; i < segments.length; ++i) {
-                    int c = segments[i].count;
-                    if (mc[i] != segments[i].modCount) {
-                        cleanSweep = false;
-                        break;
-                    }
-                }
-            }
-            if (cleanSweep) {
-               return false;
-            }
-        }
-        // Resort to locking all segments
-        for (int i = 0; i < segments.length; ++i) {
+         }
+         if (cleanSweep) {
+            return false;
+         }
+      }
+      // Resort to locking all segments
+      for (int i = 0; i < segments.length; ++ i) {
          segments[i].lock();
       }
-        boolean found = false;
-        try {
-            for (int i = 0; i < segments.length; ++i) {
-                if (segments[i].containsValue(value)) {
-                    found = true;
-                    break;
-                }
+      boolean found = false;
+      try {
+         for (int i = 0; i < segments.length; ++ i) {
+            if (segments[i].containsValue(value)) {
+               found = true;
+               break;
             }
-        } finally {
-            for (int i = 0; i < segments.length; ++i) {
-               segments[i].unlock();
-            }
-        }
-        return found;
-    }
+         }
+      } finally {
+         for (int i = 0; i < segments.length; ++ i) {
+            segments[i].unlock();
+         }
+      }
+      return found;
+   }
 
-    /**
-     * Legacy method testing if some key maps into the specified value
-     * in this table.  This method is identical in functionality to
-     * {@link #containsValue}, and exists solely to ensure
-     * full compatibility with class {@link java.util.Hashtable},
-     * which supported this method prior to introduction of the
-     * Java Collections framework.
+   /**
+    * Legacy method testing if some key maps into the specified value
+    * in this table.  This method is identical in functionality to
+    * {@link #containsValue}, and exists solely to ensure
+    * full compatibility with class {@link java.util.Hashtable},
+    * which supported this method prior to introduction of the
+    * Java Collections framework.
 
-     * @param  value a value to search for
-     * @return <tt>true</tt> if and only if some key maps to the
-     *         <tt>value</tt> argument in this table as
-     *         determined by the <tt>equals</tt> method;
-     *         <tt>false</tt> otherwise
-     * @throws NullPointerException if the specified value is null
-     */
-    public boolean contains(Object value) {
-        return containsValue(value);
-    }
+    * @param  value a value to search for
+    * @return <tt>true</tt> if and only if some key maps to the
+    *         <tt>value</tt> argument in this table as
+    *         determined by the <tt>equals</tt> method;
+    *         <tt>false</tt> otherwise
+    * @throws NullPointerException if the specified value is null
+    */
+   public boolean contains(Object value) {
+      return containsValue(value);
+   }
 
-    /**
-     * Maps the specified key to the specified value in this table.
-     * Neither the key nor the value can be null.
-     *
-     * <p> The value can be retrieved by calling the <tt>get</tt> method
-     * with a key that is equal to the original key.
-     *
-     * @param key key with which the specified value is to be associated
-     * @param value value to be associated with the specified key
-     * @return the previous value associated with <tt>key</tt>, or
-     *         <tt>null</tt> if there was no mapping for <tt>key</tt>
-     * @throws NullPointerException if the specified key or value is null
-     */
-    @Override
+   /**
+    * Maps the specified key to the specified value in this table.
+    * Neither the key nor the value can be null.
+    *
+    * <p> The value can be retrieved by calling the <tt>get</tt> method
+    * with a key that is equal to the original key.
+    *
+    * @param key key with which the specified value is to be associated
+    * @param value value to be associated with the specified key
+    * @return the previous value associated with <tt>key</tt>, or
+    *         <tt>null</tt> if there was no mapping for <tt>key</tt>
+    * @throws NullPointerException if the specified key or value is null
+    */
+   @Override
    public V put(K key, V value) {
-        if (value == null) {
+      if (value == null) {
          throw new NullPointerException();
       }
-        int hash = hash(key.hashCode());
-        return segmentFor(hash).put(key, hash, value, false);
-    }
+      int hash = hash(key.hashCode());
+      return segmentFor(hash).put(key, hash, value, false);
+   }
 
-    /**
-     * {@inheritDoc}
-     *
-     * @return the previous value associated with the specified key,
-     *         or <tt>null</tt> if there was no mapping for the key
-     * @throws NullPointerException if the specified key or value is null
-     */
-    public V putIfAbsent(K key, V value) {
-        if (value == null) {
+   /**
+    * {@inheritDoc}
+    *
+    * @return the previous value associated with the specified key,
+    *         or <tt>null</tt> if there was no mapping for the key
+    * @throws NullPointerException if the specified key or value is null
+    */
+   @Override
+   public V putIfAbsent(K key, V value) {
+      if (value == null) {
          throw new NullPointerException();
       }
-        int hash = hash(key.hashCode());
-        return segmentFor(hash).put(key, hash, value, true);
-    }
+      int hash = hash(key.hashCode());
+      return segmentFor(hash).put(key, hash, value, true);
+   }
 
-    /**
-     * Copies all of the mappings from the specified map to this one.
-     * These mappings replace any mappings that this map had for any of the
-     * keys currently in the specified map.
-     *
-     * @param m mappings to be stored in this map
-     */
-    @Override
+   /**
+    * Copies all of the mappings from the specified map to this one.
+    * These mappings replace any mappings that this map had for any of the
+    * keys currently in the specified map.
+    *
+    * @param m mappings to be stored in this map
+    */
+   @Override
    public void putAll(Map<? extends K, ? extends V> m) {
-        for (Map.Entry<? extends K, ? extends V> e : m.entrySet()) {
+      for (Map.Entry<? extends K, ? extends V> e: m.entrySet()) {
          put(e.getKey(), e.getValue());
       }
-    }
+   }
 
-    /**
-     * Removes the key (and its corresponding value) from this map.
-     * This method does nothing if the key is not in the map.
-     *
-     * @param  key the key that needs to be removed
-     * @return the previous value associated with <tt>key</tt>, or
-     *         <tt>null</tt> if there was no mapping for <tt>key</tt>
-     * @throws NullPointerException if the specified key is null
-     */
-    @Override
+   /**
+    * Removes the key (and its corresponding value) from this map.
+    * This method does nothing if the key is not in the map.
+    *
+    * @param  key the key that needs to be removed
+    * @return the previous value associated with <tt>key</tt>, or
+    *         <tt>null</tt> if there was no mapping for <tt>key</tt>
+    * @throws NullPointerException if the specified key is null
+    */
+   @Override
    public V remove(Object key) {
-        int hash = hash(key.hashCode());
-        return segmentFor(hash).remove(key, hash, null);
-    }
+      int hash = hash(key.hashCode());
+      return segmentFor(hash).remove(key, hash, null);
+   }
 
-    /**
-     * {@inheritDoc}
-     *
-     * @throws NullPointerException if the specified key is null
-     */
-    public boolean remove(Object key, Object value) {
-        int hash = hash(key.hashCode());
-        if (value == null) {
+   /**
+    * {@inheritDoc}
+    *
+    * @throws NullPointerException if the specified key is null
+    */
+   @Override
+   public boolean remove(Object key, Object value) {
+      int hash = hash(key.hashCode());
+      if (value == null) {
          return false;
       }
-        return segmentFor(hash).remove(key, hash, value) != null;
-    }
+      return segmentFor(hash).remove(key, hash, value) != null;
+   }
 
-    /**
-     * {@inheritDoc}
-     *
-     * @throws NullPointerException if any of the arguments are null
-     */
-    public boolean replace(K key, V oldValue, V newValue) {
-        if (oldValue == null || newValue == null) {
+   /**
+    * {@inheritDoc}
+    *
+    * @throws NullPointerException if any of the arguments are null
+    */
+   @Override
+   public boolean replace(K key, V oldValue, V newValue) {
+      if (oldValue == null || newValue == null) {
          throw new NullPointerException();
       }
-        int hash = hash(key.hashCode());
-        return segmentFor(hash).replace(key, hash, oldValue, newValue);
-    }
+      int hash = hash(key.hashCode());
+      return segmentFor(hash).replace(key, hash, oldValue, newValue);
+   }
 
-    /**
-     * {@inheritDoc}
-     *
-     * @return the previous value associated with the specified key,
-     *         or <tt>null</tt> if there was no mapping for the key
-     * @throws NullPointerException if the specified key or value is null
-     */
-    public V replace(K key, V value) {
-        if (value == null) {
+   /**
+    * {@inheritDoc}
+    *
+    * @return the previous value associated with the specified key,
+    *         or <tt>null</tt> if there was no mapping for the key
+    * @throws NullPointerException if the specified key or value is null
+    */
+   @Override
+   public V replace(K key, V value) {
+      if (value == null) {
          throw new NullPointerException();
       }
-        int hash = hash(key.hashCode());
-        return segmentFor(hash).replace(key, hash, value);
-    }
+      int hash = hash(key.hashCode());
+      return segmentFor(hash).replace(key, hash, value);
+   }
 
-    /**
-     * Removes all of the mappings from this map.
-     */
-    @Override
+   /**
+    * Removes all of the mappings from this map.
+    */
+   @Override
    public void clear() {
-        for (int i = 0; i < segments.length; ++i) {
+      for (int i = 0; i < segments.length; ++ i) {
          segments[i].clear();
       }
-    }
+   }
 
-    /**
-     * Returns a {@link Set} view of the keys contained in this map.
-     * The set is backed by the map, so changes to the map are
-     * reflected in the set, and vice-versa.  The set supports element
-     * removal, which removes the corresponding mapping from this map,
-     * via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
-     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
-     * operations.  It does not support the <tt>add</tt> or
-     * <tt>addAll</tt> operations.
-     *
-     * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
-     * that will never throw {@link ConcurrentModificationException},
-     * and guarantees to traverse elements as they existed upon
-     * construction of the iterator, and may (but is not guaranteed to)
-     * reflect any modifications subsequent to construction.
-     */
-    @Override
+   /**
+    * Returns a {@link Set} view of the keys contained in this map.
+    * The set is backed by the map, so changes to the map are
+    * reflected in the set, and vice-versa.  The set supports element
+    * removal, which removes the corresponding mapping from this map,
+    * via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
+    * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
+    * operations.  It does not support the <tt>add</tt> or
+    * <tt>addAll</tt> operations.
+    *
+    * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
+    * that will never throw {@link ConcurrentModificationException},
+    * and guarantees to traverse elements as they existed upon
+    * construction of the iterator, and may (but is not guaranteed to)
+    * reflect any modifications subsequent to construction.
+    */
+   @Override
    public Set<K> keySet() {
-        Set<K> ks = keySet;
-        return ks != null ? ks : (keySet = new KeySet());
-    }
+      Set<K> ks = keySet;
+      return ks != null? ks : (keySet = new KeySet());
+   }
 
-    /**
-     * Returns a {@link Collection} view of the values contained in this map.
-     * The collection is backed by the map, so changes to the map are
-     * reflected in the collection, and vice-versa.  The collection
-     * supports element removal, which removes the corresponding
-     * mapping from this map, via the <tt>Iterator.remove</tt>,
-     * <tt>Collection.remove</tt>, <tt>removeAll</tt>,
-     * <tt>retainAll</tt>, and <tt>clear</tt> operations.  It does not
-     * support the <tt>add</tt> or <tt>addAll</tt> operations.
-     *
-     * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
-     * that will never throw {@link ConcurrentModificationException},
-     * and guarantees to traverse elements as they existed upon
-     * construction of the iterator, and may (but is not guaranteed to)
-     * reflect any modifications subsequent to construction.
-     */
-    @Override
+   /**
+    * Returns a {@link Collection} view of the values contained in this map.
+    * The collection is backed by the map, so changes to the map are
+    * reflected in the collection, and vice-versa.  The collection
+    * supports element removal, which removes the corresponding
+    * mapping from this map, via the <tt>Iterator.remove</tt>,
+    * <tt>Collection.remove</tt>, <tt>removeAll</tt>,
+    * <tt>retainAll</tt>, and <tt>clear</tt> operations.  It does not
+    * support the <tt>add</tt> or <tt>addAll</tt> operations.
+    *
+    * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
+    * that will never throw {@link ConcurrentModificationException},
+    * and guarantees to traverse elements as they existed upon
+    * construction of the iterator, and may (but is not guaranteed to)
+    * reflect any modifications subsequent to construction.
+    */
+   @Override
    public Collection<V> values() {
-        Collection<V> vs = values;
-        return vs != null ? vs : (values = new Values());
-    }
+      Collection<V> vs = values;
+      return vs != null? vs : (values = new Values());
+   }
 
-    /**
-     * Returns a {@link Set} view of the mappings contained in this map.
-     * The set is backed by the map, so changes to the map are
-     * reflected in the set, and vice-versa.  The set supports element
-     * removal, which removes the corresponding mapping from the map,
-     * via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
-     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
-     * operations.  It does not support the <tt>add</tt> or
-     * <tt>addAll</tt> operations.
-     *
-     * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
-     * that will never throw {@link ConcurrentModificationException},
-     * and guarantees to traverse elements as they existed upon
-     * construction of the iterator, and may (but is not guaranteed to)
-     * reflect any modifications subsequent to construction.
-     */
-    @Override
-   public Set<Map.Entry<K,V>> entrySet() {
-        Set<Map.Entry<K,V>> es = entrySet;
-        return es != null ? es : (entrySet = new EntrySet());
-    }
+   /**
+    * Returns a {@link Set} view of the mappings contained in this map.
+    * The set is backed by the map, so changes to the map are
+    * reflected in the set, and vice-versa.  The set supports element
+    * removal, which removes the corresponding mapping from the map,
+    * via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
+    * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
+    * operations.  It does not support the <tt>add</tt> or
+    * <tt>addAll</tt> operations.
+    *
+    * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
+    * that will never throw {@link ConcurrentModificationException},
+    * and guarantees to traverse elements as they existed upon
+    * construction of the iterator, and may (but is not guaranteed to)
+    * reflect any modifications subsequent to construction.
+    */
+   @Override
+   public Set<Map.Entry<K, V>> entrySet() {
+      Set<Map.Entry<K, V>> es = entrySet;
+      return es != null? es : (entrySet = new EntrySet());
+   }
 
-    /**
-     * Returns an enumeration of the keys in this table.
-     *
-     * @return an enumeration of the keys in this table
-     * @see #keySet()
-     */
-    public Enumeration<K> keys() {
-        return new KeyIterator();
-    }
+   /**
+    * Returns an enumeration of the keys in this table.
+    *
+    * @return an enumeration of the keys in this table
+    * @see #keySet()
+    */
+   public Enumeration<K> keys() {
+      return new KeyIterator();
+   }
 
-    /**
-     * Returns an enumeration of the values in this table.
-     *
-     * @return an enumeration of the values in this table
-     * @see #values()
-     */
-    public Enumeration<V> elements() {
-        return new ValueIterator();
-    }
+   /**
+    * Returns an enumeration of the values in this table.
+    *
+    * @return an enumeration of the values in this table
+    * @see #values()
+    */
+   public Enumeration<V> elements() {
+      return new ValueIterator();
+   }
 
-    /* ---------------- Iterator Support -------------- */
+   /* ---------------- Iterator Support -------------- */
 
-    abstract class HashIterator {
-        int nextSegmentIndex;
-        int nextTableIndex;
-        HashEntry<K,V>[] currentTable;
-        HashEntry<K, V> nextEntry;
-        HashEntry<K, V> lastReturned;
+   abstract class HashIterator {
+      int nextSegmentIndex;
 
-        HashIterator() {
-            nextSegmentIndex = segments.length - 1;
-            nextTableIndex = -1;
-            advance();
-        }
+      int nextTableIndex;
 
-        public boolean hasMoreElements() { return hasNext(); }
+      HashEntry<K, V>[] currentTable;
 
-        final void advance() {
-            if (nextEntry != null && (nextEntry = nextEntry.next) != null) {
+      HashEntry<K, V> nextEntry;
+
+      HashEntry<K, V> lastReturned;
+
+      HashIterator() {
+         nextSegmentIndex = segments.length - 1;
+         nextTableIndex = -1;
+         advance();
+      }
+
+      public boolean hasMoreElements() {
+         return hasNext();
+      }
+
+      final void advance() {
+         if (nextEntry != null && (nextEntry = nextEntry.next) != null) {
+            return;
+         }
+
+         while (nextTableIndex >= 0) {
+            if ((nextEntry = currentTable[nextTableIndex --]) != null) {
                return;
             }
+         }
 
-            while (nextTableIndex >= 0) {
-                if ( (nextEntry = currentTable[nextTableIndex--]) != null) {
-                  return;
+         while (nextSegmentIndex >= 0) {
+            Segment<K, V> seg = segments[nextSegmentIndex --];
+            if (seg.count != 0) {
+               currentTable = seg.table;
+               for (int j = currentTable.length - 1; j >= 0; -- j) {
+                  if ((nextEntry = currentTable[j]) != null) {
+                     nextTableIndex = j - 1;
+                     return;
+                  }
                }
             }
+         }
+      }
 
-            while (nextSegmentIndex >= 0) {
-                Segment<K,V> seg = segments[nextSegmentIndex--];
-                if (seg.count != 0) {
-                    currentTable = seg.table;
-                    for (int j = currentTable.length - 1; j >= 0; --j) {
-                        if ( (nextEntry = currentTable[j]) != null) {
-                            nextTableIndex = j - 1;
-                            return;
-                        }
-                    }
-                }
-            }
-        }
+      public boolean hasNext() {
+         return nextEntry != null;
+      }
 
-        public boolean hasNext() { return nextEntry != null; }
+      HashEntry<K, V> nextEntry() {
+         if (nextEntry == null) {
+            throw new NoSuchElementException();
+         }
+         lastReturned = nextEntry;
+         advance();
+         return lastReturned;
+      }
 
-        HashEntry<K,V> nextEntry() {
-            if (nextEntry == null) {
-               throw new NoSuchElementException();
-            }
-            lastReturned = nextEntry;
-            advance();
-            return lastReturned;
-        }
+      public void remove() {
+         if (lastReturned == null) {
+            throw new IllegalStateException();
+         }
+         BoundedConcurrentHashMap.this.remove(lastReturned.key);
+         lastReturned = null;
+      }
+   }
 
-        public void remove() {
-            if (lastReturned == null) {
-               throw new IllegalStateException();
-            }
-            BoundedConcurrentHashMap.this.remove(lastReturned.key);
-            lastReturned = null;
-        }
-    }
+   final class KeyIterator extends HashIterator implements Iterator<K>, Enumeration<K> {
+      @Override
+      public K next() {
+         return super.nextEntry().key;
+      }
 
-    final class KeyIterator
-        extends HashIterator
-        implements Iterator<K>, Enumeration<K>
-    {
-        public K next()        { return super.nextEntry().key; }
-        public K nextElement() { return super.nextEntry().key; }
-    }
+      @Override
+      public K nextElement() {
+         return super.nextEntry().key;
+      }
+   }
 
-    final class ValueIterator
-        extends HashIterator
-        implements Iterator<V>, Enumeration<V>
-    {
-        public V next()        { return super.nextEntry().value; }
-        public V nextElement() { return super.nextEntry().value; }
-    }
+   final class ValueIterator extends HashIterator implements Iterator<V>, Enumeration<V> {
+      @Override
+      public V next() {
+         return super.nextEntry().value;
+      }
 
-    /**
-     * Custom Entry class used by EntryIterator.next(), that relays
-     * setValue changes to the underlying map.
-     */
-    final class WriteThroughEntry
-        extends AbstractMap.SimpleEntry<K,V>
-    {
-        WriteThroughEntry(K k, V v) {
-            super(k,v);
-        }
+      @Override
+      public V nextElement() {
+         return super.nextEntry().value;
+      }
+   }
 
-        /**
-         * Set our entry's value and write through to the map. The
-         * value to return is somewhat arbitrary here. Since a
-         * WriteThroughEntry does not necessarily track asynchronous
-         * changes, the most recent "previous" value could be
-         * different from what we return (or could even have been
-         * removed in which case the put will re-establish). We do not
-         * and cannot guarantee more.
-         */
-        @Override
+   /**
+    * Custom Entry class used by EntryIterator.next(), that relays
+    * setValue changes to the underlying map.
+    */
+   final class WriteThroughEntry extends AbstractMap.SimpleEntry<K, V> {
+
+      private static final long serialVersionUID = -7041346694785573824L;
+
+      WriteThroughEntry(K k, V v) {
+         super(k, v);
+      }
+
+      /**
+       * Set our entry's value and write through to the map. The
+       * value to return is somewhat arbitrary here. Since a
+       * WriteThroughEntry does not necessarily track asynchronous
+       * changes, the most recent "previous" value could be
+       * different from what we return (or could even have been
+       * removed in which case the put will re-establish). We do not
+       * and cannot guarantee more.
+       */
+      @Override
       public V setValue(V value) {
-            if (value == null) {
-               throw new NullPointerException();
-            }
-            V v = super.setValue(value);
-            BoundedConcurrentHashMap.this.put(getKey(), value);
-            return v;
-        }
-    }
+         if (value == null) {
+            throw new NullPointerException();
+         }
+         V v = super.setValue(value);
+         BoundedConcurrentHashMap.this.put(getKey(), value);
+         return v;
+      }
+   }
 
-    final class EntryIterator
-        extends HashIterator
-        implements Iterator<Entry<K,V>>
-    {
-        public Map.Entry<K,V> next() {
-            HashEntry<K,V> e = super.nextEntry();
-            return new WriteThroughEntry(e.key, e.value);
-        }
-    }
+   final class EntryIterator extends HashIterator implements Iterator<Entry<K, V>> {
+      @Override
+      public Map.Entry<K, V> next() {
+         HashEntry<K, V> e = super.nextEntry();
+         return new WriteThroughEntry(e.key, e.value);
+      }
+   }
 
-    final class KeySet extends AbstractSet<K> {
-        @Override
+   final class KeySet extends AbstractSet<K> {
+      @Override
       public Iterator<K> iterator() {
-            return new KeyIterator();
-        }
-        @Override
+         return new KeyIterator();
+      }
+
+      @Override
       public int size() {
-            return BoundedConcurrentHashMap.this.size();
-        }
-        @Override
+         return BoundedConcurrentHashMap.this.size();
+      }
+
+      @Override
       public boolean isEmpty() {
-            return BoundedConcurrentHashMap.this.isEmpty();
-        }
-        @Override
+         return BoundedConcurrentHashMap.this.isEmpty();
+      }
+
+      @Override
       public boolean contains(Object o) {
-            return BoundedConcurrentHashMap.this.containsKey(o);
-        }
-        @Override
+         return BoundedConcurrentHashMap.this.containsKey(o);
+      }
+
+      @Override
       public boolean remove(Object o) {
-            return BoundedConcurrentHashMap.this.remove(o) != null;
-        }
-        @Override
+         return BoundedConcurrentHashMap.this.remove(o) != null;
+      }
+
+      @Override
       public void clear() {
-            BoundedConcurrentHashMap.this.clear();
-        }
-    }
+         BoundedConcurrentHashMap.this.clear();
+      }
+   }
 
-    final class Values extends AbstractCollection<V> {
-        @Override
+   final class Values extends AbstractCollection<V> {
+      @Override
       public Iterator<V> iterator() {
-            return new ValueIterator();
-        }
-        @Override
+         return new ValueIterator();
+      }
+
+      @Override
       public int size() {
-            return BoundedConcurrentHashMap.this.size();
-        }
-        @Override
+         return BoundedConcurrentHashMap.this.size();
+      }
+
+      @Override
       public boolean isEmpty() {
-            return BoundedConcurrentHashMap.this.isEmpty();
-        }
-        @Override
+         return BoundedConcurrentHashMap.this.isEmpty();
+      }
+
+      @Override
       public boolean contains(Object o) {
-            return BoundedConcurrentHashMap.this.containsValue(o);
-        }
-        @Override
+         return BoundedConcurrentHashMap.this.containsValue(o);
+      }
+
+      @Override
       public void clear() {
-            BoundedConcurrentHashMap.this.clear();
-        }
-    }
+         BoundedConcurrentHashMap.this.clear();
+      }
+   }
 
-    final class EntrySet extends AbstractSet<Map.Entry<K,V>> {
-        @Override
-      public Iterator<Map.Entry<K,V>> iterator() {
-            return new EntryIterator();
-        }
-        @Override
+   final class EntrySet extends AbstractSet<Map.Entry<K, V>> {
+      @Override
+      public Iterator<Map.Entry<K, V>> iterator() {
+         return new EntryIterator();
+      }
+
+      @Override
       public boolean contains(Object o) {
-            if (!(o instanceof Map.Entry)) {
-               return false;
-            }
-            Map.Entry<?,?> e = (Map.Entry<?,?>)o;
-            V v = BoundedConcurrentHashMap.this.get(e.getKey());
-            return v != null && v.equals(e.getValue());
-        }
-        @Override
+         if (!(o instanceof Map.Entry)) {
+            return false;
+         }
+         Map.Entry<?, ?> e = (Map.Entry<?, ?>) o;
+         V v = BoundedConcurrentHashMap.this.get(e.getKey());
+         return v != null && v.equals(e.getValue());
+      }
+
+      @Override
       public boolean remove(Object o) {
-            if (!(o instanceof Map.Entry)) {
-               return false;
-            }
-            Map.Entry<?,?> e = (Map.Entry<?,?>)o;
-            return BoundedConcurrentHashMap.this.remove(e.getKey(), e.getValue());
-        }
-        @Override
+         if (!(o instanceof Map.Entry)) {
+            return false;
+         }
+         Map.Entry<?, ?> e = (Map.Entry<?, ?>) o;
+         return BoundedConcurrentHashMap.this.remove(e.getKey(), e.getValue());
+      }
+
+      @Override
       public int size() {
-            return BoundedConcurrentHashMap.this.size();
-        }
-        @Override
+         return BoundedConcurrentHashMap.this.size();
+      }
+
+      @Override
       public boolean isEmpty() {
-            return BoundedConcurrentHashMap.this.isEmpty();
-        }
-        @Override
+         return BoundedConcurrentHashMap.this.isEmpty();
+      }
+
+      @Override
       public void clear() {
-            BoundedConcurrentHashMap.this.clear();
-        }
-    }
+         BoundedConcurrentHashMap.this.clear();
+      }
+   }
 
-    /* ---------------- Serialization Support -------------- */
+   /* ---------------- Serialization Support -------------- */
 
-    /**
-     * Save the state of the <tt>ConcurrentHashMap</tt> instance to a
-     * stream (i.e., serialize it).
-     * @param s the stream
-     * @serialData
-     * the key (Object) and value (Object)
-     * for each key-value mapping, followed by a null pair.
-     * The key-value mappings are emitted in no particular order.
-     */
-    private void writeObject(java.io.ObjectOutputStream s) throws IOException  {
-        s.defaultWriteObject();
+   /**
+    * Save the state of the <tt>ConcurrentHashMap</tt> instance to a
+    * stream (i.e., serialize it).
+    * @param s the stream
+    * @serialData
+    * the key (Object) and value (Object)
+    * for each key-value mapping, followed by a null pair.
+    * The key-value mappings are emitted in no particular order.
+    */
+   private void writeObject(java.io.ObjectOutputStream s) throws IOException {
+      s.defaultWriteObject();
 
-        for (int k = 0; k < segments.length; ++k) {
-            Segment<K,V> seg = segments[k];
-            seg.lock();
-            try {
-                HashEntry<K,V>[] tab = seg.table;
-                for (int i = 0; i < tab.length; ++i) {
-                    for (HashEntry<K,V> e = tab[i]; e != null; e = e.next) {
-                        s.writeObject(e.key);
-                        s.writeObject(e.value);
-                    }
-                }
-            } finally {
-                seg.unlock();
+      for (int k = 0; k < segments.length; ++ k) {
+         Segment<K, V> seg = segments[k];
+         seg.lock();
+         try {
+            HashEntry<K, V>[] tab = seg.table;
+            for (int i = 0; i < tab.length; ++ i) {
+               for (HashEntry<K, V> e = tab[i]; e != null; e = e.next) {
+                  s.writeObject(e.key);
+                  s.writeObject(e.value);
+               }
             }
-        }
-        s.writeObject(null);
-        s.writeObject(null);
-    }
+         } finally {
+            seg.unlock();
+         }
+      }
+      s.writeObject(null);
+      s.writeObject(null);
+   }
 
-    /**
-     * Reconstitute the <tt>ConcurrentHashMap</tt> instance from a
-     * stream (i.e., deserialize it).
-     * @param s the stream
-     */
-    private void readObject(java.io.ObjectInputStream s)
-        throws IOException, ClassNotFoundException  {
-        s.defaultReadObject();
+   /**
+    * Reconstitute the <tt>ConcurrentHashMap</tt> instance from a
+    * stream (i.e., deserialize it).
+    * @param s the stream
+    */
+   @SuppressWarnings("unchecked")
+   private void readObject(java.io.ObjectInputStream s) throws IOException,
+         ClassNotFoundException {
+      s.defaultReadObject();
 
-        // Initialize each segment to be minimally sized, and let grow.
-        for (int i = 0; i < segments.length; ++i) {
-            segments[i].setTable(new HashEntry[1]);
-        }
+      // Initialize each segment to be minimally sized, and let grow.
+      for (int i = 0; i < segments.length; ++ i) {
+         segments[i].setTable(new HashEntry[1]);
+      }
 
-        // Read the keys and values, and put the mappings in the table
-        for (;;) {
-            K key = (K) s.readObject();
-            V value = (V) s.readObject();
-            if (key == null) {
-               break;
-            }
-            put(key, value);
-        }
-    }
+      // Read the keys and values, and put the mappings in the table
+      for (;;) {
+         K key = (K) s.readObject();
+         V value = (V) s.readObject();
+         if (key == null) {
+            break;
+         }
+         put(key, value);
+      }
+   }
 }
\ No newline at end of file



More information about the infinispan-commits mailing list