
Java Communications Faster than C++

by Guillermo L. Taboada, Ph.D.

1

3

Introducing myself

+10 years R&D in Java Communications for High Performance Computing

Now CEO/Co-founder of TORUS, the high-performance comms company

Multiple solutions in key sectors:

Finance / Trading Telco / IT
(Big Data)

Energy Defense / Space

4

Torus 2013: Strong Debut

5

 Torus technology is being used at the NASA Langley Research Center, 16x speedup

 The amount of in-memory data handled surpasses 8TB, running on 8192 cores

 Paper reference: http://dx.doi.org/10.1016/j.jcp.2012.02.010

Torus software is being used by the European Space Agency, 12x speedup

 The developed software, MPJ-Cache, handles up to 100TB

 Paper reference: http://dx.doi.org/10.1117/12.898217

Torus Big Data Projects

http://dx.doi.org/10.1016/j.jcp.2012.02.010
http://dx.doi.org/10.1117/12.898217

6

The Context

Software is not able to take
advantage of high

performance hardware

High Performance
Communications

Bridge the gap between
network capacity and

applications performance

High Performance
Computing

7

The Typical (expected?) Scenario

ZeroMQ Ping-Pong Latencies (in microseconds) over TCP loopback

8

The Typical Reasons

• Java is slow, everybody knows this

• Java communications are even slower

• The best approach is to wrap Java on top of C++ via JNI

• Lots of JNI improves performance

• You are trading off performance for portability

• Bypassing TCP/IP breaks portability

• No one uses TCP for localhost,

 ZeroMQ has inproc/IPC support:

9

Some Arguably Reasons

• No reason for Java being slower than natively compiled code.

Even dynamic recompiling (JITC) makes code run faster.

• TCP/IP slows down Java communications

 (shy attempts for alternatives like SDP).

• Excessive wrapping is not the best option, JITC not possible,

loses portability, memory conflicts, “bipolar” behaviour…

10

The Approach

• Fully transparent TCP/IP-bypass, fully portable

• Use fast communication protocols for performance and TCP/IP for

portability

• 1 JVM per server wastes resources and presents higher GC

penalties, the best approach is multiple JVMs per server

• TCP loopback is quite popular, think in distributed applications

over multicore servers, or multiple JVMs per server

• Low-latency networks and low-latency JVMs are key for scalability

11

Java Fast Sockets

Shared memory / high-speed network

High performance driver

Sockets

TCP/IP Emulation

Applications

Java Fast

Sockets

• JFS skips the TCP/IP processing overhead for shared memory and high-speed networks

• JFS is just plug&play, user and application transparent, without source code changes

• Further information and demo downloads at http://www.torusware.com

http://www.javafastsockets.com/

12

Accelerating JVM sockets (bypassing TCP/IP)

ZeroMQ Ping-Pong Latencies (in microseconds) over TCP loopback

13

Universal Fast Sockets (UFS)

Shared memory / high-speed network

High performance driver

Sockets

TCP/IP Emulation

Applications

Universal

Fast Sockets

• UFS skips the TCP/IP processing overhead for shared memory and high-speed networks

• UFS is just plug&play, user and application transparent, without source code changes

• Further information and demo downloads at http://www.torusware.com

http://www.javafastsockets.com/

14

Accelerating C++ and JVM sockets (bypassing TCP/IP)

ZeroMQ Ping-Pong Latencies (in microseconds) over TCP loopback

15

Now on a Low-latency Network

ZeroMQ Ping-Pong Latencies (in microseconds) over Mellanox cards

16

char *driver_buffer

NATIVE SOCKETS

IMPLEMENTATION

byte buf[]
HEAP / “GARBAGE COLLECTABLE” AREA

Data to

send

char *JVM_buffer

LEGEND:

char *driver_buffer

 NATIVE SOCKETS

IMPLEMENTATION

HEAP / “GARBAGE COLLECTABLE” AREA

Data to

receive

char *JVM_buffer

NET

{DE}SERIALIZATION COPY

JAVA VIRTUAL MACHINE JAVA VIRTUAL MACHINE

Default scenario in JVM sockets communication

byte data[] byte buf[]

byte data[]

JFS: The Secret Recipe

17

23/01/2014

char *driver_buffer

NATIVE SOCKETS

IMPLEMENTATION

HEAP / “GARBAGE COLLECTABLE” AREA

Data to

send

char *JVM_buffer

LEGEND:

char *driver_buffer

NATIVE SOCKETS

IMPLEMENTATION

HEAP / “GARBAGE COLLECTABLE” AREA

Data to

receive

char *JVM_buffer

NET

{DE}SERIALIZATION COPY

JAVA VIRTUAL MACHINE JAVA VIRTUAL MACHINE

direct ByteBuffer direct ByteBuffer

byte buf[]

byte data[] byte buf[]

byte data[]

JFS: The Secret Recipe

Attempt to improve the situation in Java NIO

18

23/01/2014

char *driver_buffer

NATIVE SOCKETS

IMPLEMENTATION

HEAP / “GARBAGE COLLECTABLE” AREA

Data to

send

LEGEND:

char *driver_buffer

NATIVE SOCKETS

IMPLEMENTATION

HEAP / “GARBAGE COLLECTABLE” AREA

Data to

receive

NET

{DE}SERIALIZATION COPY

JAVA VIRTUAL MACHINE JAVA VIRTUAL MACHINE

direct ByteBuffer direct ByteBuffer

JFS: The Secret Recipe

JFS Zero-copy protocol

19

Java Fast Sockets

23/01/2014

write(byte array[]) /* This is the only write method supported in Java */

write(int array[])

write(long array[])

write(double array[])

write(float array[])

write(short array[])

write((direct) ByteBuffer bb, int position, int size)

write((array) Object oarray, int position, (direct) ByteBuffer, int init, int size)

Java Fast Sockets: Key points

• GetPrimitiveArrayCritical avoids buffering

• Combination of polling and waiting, depending on
frequency of communication

• Optimization of NIO select (NIO calls epoll and writes a
“slow” pipe for notifying waiting threads)

• Extended API for reducing serialization overhead:

21

MPI Java

22

FastMPJ

• FastMPJ is the fastest Java message-passing library

• FastMPJ supports efficiently shared memory and high-speed networks (RDMA IB)

• Scales performance up to thousands of cores and outperforms Hadoop for Big Data

• FastMPJ is fully portable, as Java

• Further information and demo downloads at http://www.torusware.com

http://www.fastmpj.com/

23

Testbed

Configuration:

•Dell PowerEdge™ R620x8 – Sandy Bridge E5-2643 4C (3.30GHz) 32 Gb DDR3-1600MHz

• Mellanox ConnectX-3 RoCE (40 Gbps) and InfiniBand (56 Gbps) JFS, on a PCIe Gen3

• Solarflare SFN6122F, on a PCIe Gen3

• Red Hat Linux 6.2, kernel 2.6.32-220, OpenJDK 1.6

• Sockets benchmarked with ping pong NetPIPE (both Java and natively compiled tests)

• FastMPJ benchmarked with pingpong of Java version of Intel MPI Benchmarks

• Testing methodology:

 100,000 iterations warm-up & 100,000 iterations per message size

 Shared memory communication within a single processor

 No stopped Linux services, normal operational conditions

24

Performance Results

List of performance graphs:

1. JFS & FastMPJ performance on shared memory

2. JFS & FastMPJ vs VMA performance on InfiniBand

3. Comparison of JFS/FastMPJ vs ZeroMQ (shmem and IB)

4. Applications of JFS: optimizing JGroups

5. Applications of JFS: optimizing NIO - Netty

6. JFS & FastMPJ jitter analysis

25

 Localhost Performance

NOTE: In latency (left-hand side) the lower the better. In bandwidth (right-hand side) the higher the better

Source: Torus lab tests
TORUS_PUBLIC_High_Performance_

Communications

http://www.javafastsockets.com/
http://www.fastmpj.com/

26

 Jitter (shared memory)

only 80 nanoseconds!

http://www.javafastsockets.com/

27

 Network Performance

Source: Torus lab tests

NOTE: In latency (left-hand side) the lower the better. In bandwidth (right-hand side) the higher the better

TORUS_PUBLIC_High_Performance_
Communications

http://www.javafastsockets.com/
http://www.fastmpj.com/

28

 optimizing NIO - Netty (shmem)

NOTE: In latency (left-hand side) the lower the better.

TORUS_PUBLIC_High_Performance_
Communications

http://www.javafastsockets.com/

29

 optimizing NIO - Netty (IB)

NOTE: In latency (left-hand side) the lower the better.

TORUS_PUBLIC_High_Performance_
Communications

http://www.javafastsockets.com/

30

 vs JZeroMQ (SHM)

http://www.javafastsockets.com/
http://www.fastmpj.com/

31

 vs JZeroMQ (IB)

http://www.javafastsockets.com/
http://www.fastmpj.com/

32

 JGroups (Message rates SHM)

http://www.javafastsockets.com/

33

 JGroups (Message rates IB)

http://www.javafastsockets.com/

34

+400% performance!

+150% performance!

Send/Receive

Pub/Sub

 optimizing JMS (ActiveMQ) on Shared Memory

http://www.javafastsockets.com/

35

 optimizing Java<->Qpid C++ in capital markets

• Latency (microseconds) in shared memory

http://www.javafastsockets.com/

36

 optimizing Oracle Coherence

Oracle Coherence Exabus TCP SocketBus (Exalogic) boost (MessageBusTest bench)

http://www.javafastsockets.com/

37

 optimizing Hazelcast in capital markets

• Hazelcast + JFS: 0.417 secs

Results from “Raj Subramani (Quant School) “Comparing NoSQL Data Stores“

plus our execution of the benchmark with Hazelcast+JFS. NB: Better HW+JFS

http://www.javafastsockets.com/
http://www.quantschool.com/home/programming-2/comparing_inmemory_data_stores
http://www.quantschool.com/home/programming-2/comparing_inmemory_data_stores
http://www.quantschool.com/home/programming-2/comparing_inmemory_data_stores
http://www.quantschool.com/home/programming-2/comparing_inmemory_data_stores

38

 optimizing Hazelcast in capital markets

• Hazelcast + JFS: 8.058 secs

http://www.javafastsockets.com/

39

 optimizing Hazelcast in capital markets

• Hazelcast + JFS: 0.346 secs

http://www.javafastsockets.com/

40

 optimizing Hazelcast in capital markets

• Hazelcast + JFS: 2.139 secs

http://www.javafastsockets.com/

41

 optimizing Hazelcast in capital markets

• Hazelcast + JFS: 1.211 secs

http://www.javafastsockets.com/

42

 optimizing QuickFIX/J over Mina (Shmem)

http://www.javafastsockets.com/

43

 optimizing Hbase (preliminary results)

44

 optimizing Cassandra (Work-in-progress)

• The main bottleneck looks like the Thrift-based driver

• YCSB (A) performance results:

• Throughput Cassandra: 5846 ops Cassandra+JFS: 8097 ops

• Read Latency Cassandra: 166 us Cassandra+JFS: 120 us

• Write Latency Cassandra: 158 us Cassandra+JFS: 108 us

• Working on a pure Java client (promising first results)

45

 optimizing MongoDB

• YCSB (A) performance results:

• Throughput Mongo: 5558 ops Mongo+TORUS: 12222 ops

• Read Latency Mongo: 122 us Mongo+TORUS: 42 us

• Write Latency Mongo: 176 us Mongo+TORUS: 78 us

• Update Latency Mongo: 146 us Mongo+TORUS: 59 us

47

For more information on our solutions, please contact us:

guillermo.lopez@torusware.com
WWW: http://www.torusware.com

