
BPMIntegrationGuide

The target audience for this guide are developers who wish to provide an

implementation of the API and verify its correctness through the CTS.

[hide]

1 Integrating the API

2 Integrating the CTS

3 Excluding CTS Test

4 Implementing the API

5 Partial Compliance

6 Full Compliance

7 Eclipse STP Compliance

8 Release Cycle

The API is a Maven artefact available from the JBoss Maven Repository

You can add dependency to the API like this

 <dependency>
 <groupId>org.jboss.bpm</groupId>
 <artifactId>jboss-bpm-api</artifactId>
 <version>1.0.0.Alpha1</version>
 <scope>compile</scope>
 </dependency>

The CTS is also a Maven artefact available from the JBoss Maven Repository

You can add dependency to the CTS like this

 <dependency>
 <groupId>org.jboss.bpm</groupId>
 <artifactId>jboss-bpm-testsuite</artifactId>
 <version>1.0.0.Alpha1</version>
 <scope>provided</scope>
 <type>zip</type>
 </dependency>

Before Maven can execute the CTS, it must be unpacked

BPMIntegrationGuide - jBPM http://jbpm.dyndns.org/jbpmwiki/index.php?titl...

1 of 5 08/26/2008 07:08 PM

 <plugin>
 <artifactId>maven-dependency-plugin</artifactId>
 <executions>
 <execution>
 <phase>generate-sources</phase>
 <goals>
 <goal>unpack</goal>
 </goals>
 <configuration>
 <artifactItems>
 <artifactItem>
 <groupId>org.jboss.bpm</groupId>
 <artifactId>jboss-bpm-testsuite</artifactId>
 <type>zip</type>
 </artifactItem>
 </artifactItems>
 <outputDirectory>src/test</outputDirectory>
 </configuration>
 </execution>
 </executions>
 </plugin>

Initially, you probably don't want to run the entire CTS. You can exclude CTS Test with a

Maven Surefire configuration like this

 <plugin>
 <artifactId>maven-surefire-plugin</artifactId>
 <configuration>
 <excludes>
 <exclude>org/jboss/bpm/**/*DescriptorTest.java</exclude>
 <exclude>org/jboss/bpm/**/*MarshallerTest.java</exclude>
 <exclude>org/jboss/bpm/**/*STPTest.java</exclude>
 <exclude>org/jboss/bpm/cts/activity/**</exclude>
 <exclude>org/jboss/bpm/cts/endevent/**</exclude>
 <exclude>org/jboss/bpm/cts/engine/**</exclude>
 <exclude>org/jboss/bpm/cts/executioncontext/**</exclude>
 <exclude>org/jboss/bpm/cts/gateway/**</exclude>
 <exclude>org/jboss/bpm/cts/process/**</exclude>
 <exclude>org/jboss/bpm/cts/processmanager/**</exclude>
 <exclude>org/jboss/bpm/cts/signalmanager/**</exclude>
 <exclude>org/jboss/bpm/cts/startevent/**</exclude>
 <exclude>org/jboss/bpm/cts/task/**</exclude>
 <exclude>org/jboss/bpm/pattern/control/exclusivechoice/**</exclude>
 <exclude>org/jboss/bpm/pattern/control/multichoice/**</exclude>
 <exclude>org/jboss/bpm/pattern/control/parallelsplit/**</exclude>
 <exclude>org/jboss/bpm/pattern/control/simplemerge/**</exclude>
 <exclude>org/jboss/bpm/pattern/control/synchronization/**</exclude>
 <exclude>org/jboss/bpm/pattern/data/**</exclude>
 </excludes>
 </configuration>
 </plugin>

Note, the above excludes everything except the most trivial CTS test, which is

Running org.jboss.bpm.pattern.control.sequence.SequenceTest
Tests run: 1, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 1.455 sec

Actually not all interfaces from the API must be implemented at once. To get an idea what

the CTS is actually using you can run

BPMIntegrationGuide - jBPM http://jbpm.dyndns.org/jbpmwiki/index.php?titl...

2 of 5 08/26/2008 07:08 PM

[tdiesler@tdvaio java]$ find . -name "*.java" | xargs grep -h "import org.jboss.bpm" | sort -u
import org.jboss.bpm.client.MessageManager;
import org.jboss.bpm.client.ProcessEngine;
import org.jboss.bpm.client.ProcessManager;
import org.jboss.bpm.client.SignalListener;
import org.jboss.bpm.client.SignalManager;
import org.jboss.bpm.EngineShutdownException;
import org.jboss.bpm.InvalidProcessException;
import org.jboss.bpm.model.Assignment;
import org.jboss.bpm.model.Assignment.AssignTime;
import org.jboss.bpm.model.EventBuilder;
import org.jboss.bpm.model.EventDetail;
import org.jboss.bpm.model.EventDetail.EventDetailType;
import org.jboss.bpm.model.Expression;
import org.jboss.bpm.model.Expression.ExpressionLanguage;
import org.jboss.bpm.model.Gateway;
import org.jboss.bpm.model.GatewayBuilder;
import org.jboss.bpm.model.Gateway.GatewayType;
import org.jboss.bpm.model.Message;
import org.jboss.bpm.model.MessageBuilder;
import org.jboss.bpm.model.MessageBuilderFactory;
import org.jboss.bpm.model.Process;
import org.jboss.bpm.model.ProcessBuilder;
import org.jboss.bpm.model.ProcessBuilderFactory;
import org.jboss.bpm.model.Signal;
import org.jboss.bpm.model.Signal.SignalType;
import org.jboss.bpm.model.TaskBuilder;
import org.jboss.bpm.model.Task.TaskType;
import org.jboss.bpm.runtime.BasicAttachments;
import org.jboss.bpm.runtime.BasicExecutionContext;
import org.jboss.bpm.runtime.ExecutionContext;
import org.jboss.bpm.runtime.ExecutionHandler;
import org.jboss.bpm.runtime.Token;
import org.jboss.bpm.test.DefaultEngineTestCase;

Some of the above are classes or enums and don't have to be implemented either.

It is good practice to stub out an implementation completely and throw the

NotImplementedException for methods that are not implemented yet. The

NotImplementedException conveniently takes a JIRA issue number as one of the

parameters. In that way you can easily identify what still needs to be done.

Here is a sample implementation of the EventBuilder

public class EventBuilderImpl extends ProcessBuilderImpl implements EventBuilder
{
 public EventBuilderImpl(ProcessImpl proc, FlowObjectImpl flowObject)
 {
 super(proc, flowObject);
 }

 public EventBuilder addEventDetail(EventDetailType detailType)
 {
 throw new NotImplementedException("JBPM-1705", "jBPM3 implementation of the API");
 }

 public EventBuilder addMessageRef(String msgName)
 {
 throw new NotImplementedException("JBPM-1705", "jBPM3 implementation of the API");
 }

 public EventBuilder addSignalRef(SignalType signalType, String signalMessage)
 {
 throw new NotImplementedException("JBPM-1705", "jBPM3 implementation of the API");
 }
}

An implementation would be partially compliant with a given API version if it passes all of

the CTS tests, except for the various descriptor tests

 <excludes>
 <exclude>org/jboss/bpm/**/*DescriptorTest.java</exclude>
 <exclude>org/jboss/bpm/**/*MarshallerTest.java</exclude>
 <exclude>org/jboss/bpm/**/*STPTest.java</exclude>
 </excludes>

The remaining CTS tests will always create the Process through the ProcessBuilder and

not require access to a DialectHandler implementation.

An implementation that requires more excludes than the ones above is not compliant.

BPMIntegrationGuide - jBPM http://jbpm.dyndns.org/jbpmwiki/index.php?titl...

3 of 5 08/26/2008 07:08 PM

Every CTS test comes in three variants. For example we have

SequenceTest

SequenceMarshallerTest

SequenceDescriptorTest

The SequenceTest is the super test of the other two and uses ProcessBuilder to create

the Process. Passing this test would be the first level of compliance.

The SequenceMarshallerTest uses the current dialect to marshall the Process and then

recreate the Process from the result. This tests the round trip though the DialectHandler

to make sure a given concept can actually be represented in a given dialect.

public class SequenceMarshallerTest extends SequenceTest
{
 public Process getProcess() throws IOException
 {
 // Marshall the process to a string
 Process proc = super.getProcess();
 String procXML = marshallProcess(proc);

 // Recreate the process from the marshalled process
 ProcessManager procManager = ProcessManager.locateProcessManager();
 return procManager.createProcess(procXML);
 }
}

The SequenceDescriptorTest creates the Process from a dialect descriptor.

public class SequenceDescriptorTest extends SequenceTest
{
 public Process getProcess() throws IOException
 {
 URL procURL = getResourceURL("pattern/control/sequence/pattern-control-sequence-" + getDialect() + ".xml");
 ProcessManager pm = ProcessManager.locateProcessManager();
 Process proc = pm.createProcess(procURL);
 return proc;
 }
}

When your implementation passes the MarshallerTest it is trivial to pass the

DescriptorTest as well. Simple save the marshaller result in a resource file like 'pattern-

control-sequence-foo10.xml'

And set some surefire system properties like this

 <plugin>
 <artifactId>maven-surefire-plugin</artifactId>
 <configuration>
 <systemProperties>
 <property>
 <name>jbpm.dialect</name>
 <value>foo10</value>
 </property>
 <property>
 <name>jbpm.dialect.uri</name>
 <value>urn:foo-1.0</value>
 </property>
 </systemProperties>
 </configuration>
 </plugin>

In this way the CTS can work with descriptor resources in various dialect formats.

Ideally, a user would not have to manually create descriptor files. Instead a tool should

be used. The User Guide shows images produces by the Eclipse STP BPMN Editor . This

BPMIntegrationGuide - jBPM http://jbpm.dyndns.org/jbpmwiki/index.php?titl...

4 of 5 08/26/2008 07:08 PM

editor produces a descriptor that is hardly human readable and does also not support

many of the concepts that are already tested in the CTS.

In order to still leverage the STP output, your dialect might want to support the notion of

'includes'. Conveniently enough, the API comes with a STP DialectHandler that can create

a Process from the STP output. This process could then be included in another Process

created from your dialect descriptor. The resulting Process would contain the functional

union from both.

For the simple SequenceTest above we would actually not need to augment the STP

output.

A new version of the API+CTS will be released approximately every 8 weeks. Please

monitor the API roadmap and changelog for progress.

Retrieved from "http://jbpm.dyndns.org/jbpmwiki/index.php?title=BPMIntegrationGuide "

BPMIntegrationGuide - jBPM http://jbpm.dyndns.org/jbpmwiki/index.php?titl...

5 of 5 08/26/2008 07:08 PM

