
  1 

NETTY 3.1.0CR

Michael McGrady

  2 

INDEX

Chapter 1: Buffer
Chapter 2: Channel
Chapter 3: Bootstrap
Chapter 4: Handler
Chapter 5: Container
Chapter 6: Miscellaneous
Chapter 7: Examples

  3 

Chapter 1

BUFFER

  4 

Netty uses its own buffer API instead of NIO (java.nio.ByteBuffer) to represent a
sequence of bytes. The objective had been to cure the problems with the NIO
buffer.

1.1. Features

Features of the Netty buffer include:

• Extensibility: You can define a custom buffer type.
• Transparent Zero Copy: A transparent zero copy is achieved by a built-in

composite buffer type.
• Automatic Capacity Extension: A dynamic buffer type is provided out of

the box that has an on demand expandable capacity like
java.lang.StringBuffer.

• There is no need to call the flip method anymore.
• Better Performance: The Netty buffer is often faster than the Java buffer.

1.1.1. Extensibility

The Netty buffer (org.jboss.netty.buffer.ChannelBuffer) has a rich set
of operations optimized for rapid protocol implementation. The buffer, for
example, provides various operations for accessing unsigned values and strings
and for searching for certain byte sequence in a buffer. You can also wrap an
existing buffer type to add convenient accessors while still implementing the
ChannelBuffer type.

1.1.2. Transparent Zero Copy

To lift performance to an extreme you need to reduce the number of the memory
copy operation. You might have a set of buffers that could be sliced and
combined to compose a whole new message. Netty provides a composite buffer
that allows you to create a new buffer from an arbitrary number of existing buffers
with no memory copy.

For example, a header and a body could be produced by separate operations
and assembled when a message is sent.

If a java.nio.ByteBuffer were used, you would have to create a new big
byte buffer and copy the two parts into the new buffer. Or, you might perform a
gathering write operation in NIO, but this would restrict you to representing the
composite of buffers as an array of ByteBuffers rather than as a single buffer,
breaking the abstraction and introducing complicated state management. Also,

  5 

this would be of no use if you were not going to write from a NIO channel. The
composite type is incompatible with the component type:

ByteBuffer [] message = new ByteBuffer {} {header,body} ;
ChannelBuffer does not have such caveats because it is fully extensible and
has a built-in composite buffer type, viz. CompositeChannelBuffer. This
composite type is compatible with the component type:

ChannelBuffer message = ChannelBuffers.wrappedBuffer
(header,body);

Therefore, you can create a composite by mixing a composite with an ordinary
buffer.

ChannelBuffer messageWithFooter =
ChannelBuffers.wrappedBuffer (message,footer);

Because the composite is still a ChannelBuffer, it will behave just like a single
buffer. The unsigned integer being read in the following code is located across
body and footer:

messageWithFooter.readableBytes() –
footer.readableBytes() – 1 ;

1.1.3. Automatic Capacity Extension

Many protocols define variable length messages, which means that you cannot
determine the length until you construct the message. Netty allows this, like with
StringBuffer, with a dynamic buffer created by the following method:

org.jboss.netty.buffer.ChannelBuffers.dynamicBuffer()

1.1.4. Better Performance

The most frequently used buffer implementation of ChannelBuffer is a thin
wrapper of a byte array. Unlike ByteBuffer it has no complicated boundary
check and index compensation, so it is easier for a JVM to optimize the buffer
access. More complicated buffer implementation is used only for sliced
(SlicedChannelBuffer) or composite (CompositeChannelBuffer) buffers,
and these perform as well as ByteBuffer.

1.2. Interfaces

1.2.1. ChannelBuffer

A random and sequentially accessible sequence of zero or more bytes (octets).
This interface provides an abstract view of one or more primitive byte arrays
(byte []) and NIO buffers (ByteBuffer).

  6 

1.2.1.1. Creation of a Buffer

Creating a buffer by using the helper methods in ChannelBuffers is
recommended as opposed to calling an individual implementation’s constructor.

HeapChannelBufferFactory is used to create a HeapChannelBuffer,
which relies upon the JVM garbage collector that is highly optimized for heap
allocation. DirectChannelBufferFactory pre-allocates a large chunk of
direct buffer and returns its slice on demand. Direct buffers are reclaimed via
ReferenceQueue in most JDK implementations and are de-allocated less
efficiently than an ordinary heap buffer. OutOfMemoryError problems will
result when allocating small direct buffers more often than the GC throughput of
direct buffers, which is much lower than the GC throughput of heap buffers. This
factory avoids this problem by allocating a large chunk of pre-allocated direct
buffer and reducing the number of the garbage collected internal direct buffer
objects.

1.2.1.2. Random Access Indexing

Just like an ordinary byte array, ChannelBuffer uses an array element
http://en.wikipedia.org/wiki/Index_(information_technology). This means the first

  7 

byte is always 0 and the last byte s always capacity – 1. To iterate all the bytes
of a buffer, you can do the following, regardless of the internal implementation:

ChannelBuffer buffer = ...;

for (int i = 0; i == buffer.capacity(); i++) {
 byte b = array.getByte(i);
 System.out.println((char)b);
}

1.2.1.3. Sequential Access Indexing

ChannelBuffer provides two pointer variables to support sequential read and
write operations: (a) readerIndex for a read and (b) writerIndex for a write.
The following diagram shows how a buffer is segmented into three areas by the
two pointers.

 1.2.1.4. Readable Bytes (Actual Content)

This is the actual data. Operations whose names start with “read” or “skip” will
get or skip the data at the current readerIndex and increase it by the number
of read bytes. If the argument of the read operation is a ChannelBuffer and
no destination index is specified, the specified buffer’s readerIndex is
increased together. If there is not enough content left, an
IndexOutOfBoundsException is raised. The default value of a newly
allocated, wrapped or copied buffer’s readerIndex is 0. The following code
iterates the readable bytes of a buffer.

ChannelBuffer buffer = ...;
while(buffer.readable()) {
 System.out.println(buffer.readByte());
}

1.2.1.5. Writable Byes

This segment is an undefined space which needs to be filled. Any operation
whose name ends with “write” will write the data at the current writerIndex and
increase it by the number of written bytes. If the argument is a ChannelBuffer,
and no source index is specified, the specified buffer’s readerIndex is
increased together.

If there are not enough writable bytes left, an IndexOutOfBoundsException
is raised. The default value of a newly allocated buffer’s writerIndex is 0.

  8 

The default value of wrapped or copied buffer’s writerIndex is the capacity of
the buffer.

 1.2.1.5. Discardable Bytes

These bytes were already read by a read operation. Read bytes can be
discarded by calling discardReadBytes to reclaim unused area as depicted in
the following diagram.

 1.2.1.6. Search Operations

Netty provides various ChannelBuffer indexOf methods for searching for
the index of a value that meets certain criteria. Complicated dynamic sequential
searches can be done with ChannelBufferIndexFinder as well as static
single byte search.

 1.2.1.7. Mark and Reset

You can reposition readerIndex and writerIndex by calling a reset method.
This works similar to he mark and reset methods in InputStream except that
there is no readLimit.

 1.2.1.8. Derived Buffers

You can create a view of an existing buffer with duplicate and slice or
slice(int, int). A derived buffer will have an independent readerIndex
and writerIndex, while it shares other internal data representation, just like a
NIO buffer.

 1.2.1.9. NIO Buffers

Various toByeBuffer and toByteBuffers method convert a
ChannelBuffer into one or more NIO buffers. These methods avoid buffer
allocation and memory cop wherever possible, but there are no guarantees that
none will occur.

  9 

 1.2.1.10 Strings

Various toString methods convert a ChannelBuffer to a String. The
method toString is not a conversion method.

 1.2.1.11. Streams

Please refer to ChannelInputStream and ChannelBufferOutputStream.

  10 

Chapter 2

CHANNEL

The core channel API which is an asynchronous and event-driven
abstraction of various transports such as an NIO Channel.

A channel registry which helps a user maintain a list of open
Channels and perform bulk operations on them.

A virtual transport that enables the communication between two
parties n the same virtual machine.

Abstract TCP and UDP socket interfaces which extend the core
channel API

An HTTP based client-side SocketChannel and is corresponding
server-side Servlet implementation that make our existing server
application work in a firewalled network.

NIO based socket channel API implementation - recommended for
a large number of connections (>=1000).

Old blocking I/O based socket channel API implementation -
recommended for a small number of connections (<=1000)

An alternative channel API implementation which uses JBoss XNIO
as its I/O provider

org.jboss.netty.channel

org.jboss.netty.channel.group

org.jboss.netty.channel.local

org.jboss.netty.channel.socket

org.jboss.netty.channel.socket.http

org.jboss.netty.channel.socket.nio

org.jboss.netty.channel.socket.oio

org.jboss.netty.channel.xnio

  11 

Chapter 3

BOOTSTRAP

IoC friendly helper classes which enable an easy implementation of
typical client side and server side channel initialization.

org.jboss.netty.bootstrap

  12 

Chapter 4

HANDLER

Encoder and decoder which transform a Base64-encoded String or
ChannelBuffer into a decoded ChannelBuffer and vice versa.

A helper that wraps an encoder or decoder so that they can be
used without doing actual I/O in unit tests or higher level codecs.

Extensible decoder and its common implementations which deal
with the packet fragmentation and reassembly issue found in a
stream-based transport such as TCP/IP.

Encoder, decoder and their related message types for HTTP.

Simplistic abstract classes which help implement encoder and
decoder that transform an object into another object and vice
versa.

Encoder and decoder that transform a Google Protocol Buffers
Message into a ChannelBuffer and vice versa.

Specialized variation of FrameDecoder that enables
implementation of a non-blocking decoder in the blocking I/O
paradigm.

Encoder, decoder and their compatibility stream implementations
that transform a Serializable object into a byte buffer and vice
versa.

Encoder, decoder and their compatibility stream implementations
that transform a Serializable object into a byte buffer and vice
versa.

Encoder and decoder which transform a String into a
ChannelBuffer and vice versa.

Executor-based implementation of various thread models and
memory overload prevention mechanisms.

Logs a ChannelEvent for debugging purposes using an
InternalLogger.

SSL/TLS implementation based on SSLEngine

Writes very large data stream asynchronously neither spending a
lot of memory nor getting OutOfMemoryError.

Adds support for read and write timeout and idle connection
notification using a Timer.

org.jboss.netty.handler.codec.base64

org.jboss.netty.handler.codec.embedder

org.jboss.netty.handler.codec.frame

org.jboss.netty.handler.codec.http

org.jboss.netty.handler.codec.oneone

org.jboss.netty.handler.codec.protobuf

org.jboss.netty.handler.codec.replay

org.jboss.netty.handler.codec.serialization

org.jboss.netty.handler.codec.serialization

org.jboss.netty.handler.codec.string

org.jboss.netty.handler.execution

org.jboss.netty.handler.logging

org.jboss.netty.handler.ssl

org.jboss.netty.handler.stream

org.jboss.netty.handler.timeout

  13 

Chapter 5

CONTAINER

Google Guice integration.

JBoss Microcontainer integration

OSGi framework integration

Spring framework integration

org.jboss.netty.container.guice

org.jboss.netty.container.microcontainer

org.jboss.netty.container.osgi

org.jboss.netty.container.spring

  14 

Chapter 6

MISCELLANEOUS

Simplistic internal use only logging layer that allows a user to
decide what logging framework Netty should use.

Utility classes used across multiple packages.

org.jboss.netty.logging

org.jboss.netty.util

  15 

Chapter 7

EXAMPLES

