
JSR 299: Web Beans

Web Beans Expert Group

Version: Public Review

Table of Contents
1. Architecture .. 1

1.1. Contracts ... 1
1.2. Supported environments ... 1
1.3. Relationship to other specifications ... 2

1.3.1. Relationship to EJB ... 2
1.3.2. Relationship to JSF ... 2
1.3.3. Relationship to Java Servlets ... 3
1.3.4. Relationship to Common Annotations for the Java Platform .. 3

1.4. Introductory examples .. 3
1.4.1. JSF example .. 3
1.4.2. EJB example .. 4
1.4.3. Interceptor example ... 5
1.4.4. Decorator example .. 6

2. Web Bean definition ... 8
2.1. Functionality provided by the Web Bean manager to the Web Bean .. 8
2.2. Web Bean API types .. 9
2.3. Binding types ..10

2.3.1. Default binding type ...11
2.3.2. Defining new binding types ...11
2.3.3. Declaring the binding types of a Web Bean using annotations ..11
2.3.4. Declaring the binding types of a Web Bean using XML ..12
2.3.5. Using binding annotations on injected fields ...12
2.3.6. Using binding annotations on method or constructor parameters ...12

2.4. Web Bean scopes ...13
2.4.1. Built-in scope types ..14
2.4.2. Defining new scope types ..14
2.4.3. Declaring the Web Bean scope using annotations ...14
2.4.4. Declaring the Web Bean scope using XML ...14
2.4.5. Default scope ..15

2.5. Deployment types ..15
2.5.1. Built-in deployment types ..15
2.5.2. Defining new deployment types ..15
2.5.3. Declaring the deployment type of a Web Bean using annotations ..16
2.5.4. Declaring the deployment type of a Web Bean using XML ..16
2.5.5. Default deployment type ...17
2.5.6. Enabled deployment types ...17
2.5.7. Deployment type precedence ...18

2.6. Web Bean names ..18
2.6.1. Declaring the Web Bean name using annotations ...18
2.6.2. Declaring the Web Bean name using XML ...18
2.6.3. Default Web Bean names ..18
2.6.4. Web Beans with no name ..19

2.7. Stereotypes ...19
2.7.1. Defining new stereotypes ..19

2.7.1.1. Declaring the default scope and deployment type for a stereotype19
2.7.1.2. Specifying interceptor bindings for a stereotype ..20
2.7.1.3. Specifying name defaulting for a stereotype ...20
2.7.1.4. Restricting Web Bean scopes and types using a stereotype20
2.7.1.5. Stereotypes with additional stereotypes ..21

2.7.2. Declaring the stereotypes for a Web Bean using annotations ..21
2.7.3. Declaring the stereotypes for a Web Bean using XML ..21
2.7.4. Stereotype restrictions ..22
2.7.5. Built-in stereotypes ..22

3. Web Bean implementation ...23
3.1. Restriction upon Web Bean instantiation ...23
3.2. Simple Web Beans ...23

3.2.1. Which Java classes are simple Web Beans? ..23

JSR-299 Public Review ii

3.2.2. API types of a simple Web Bean ...24
3.2.3. Declaring a simple Web Bean using annotations ..24
3.2.4. Declaring a simple Web Bean using XML ..25
3.2.5. Web Bean constructors ...25

3.2.5.1. Declaring a Web Bean constructor using annotations. ...25
3.2.5.2. Declaring a Web Bean constructor using XML. ...26
3.2.5.3. Web Bean constructor parameters ...26

3.2.6. Specializing a simple Web Bean ...27
3.2.7. Default name for a simple Web Bean ...27

3.3. Enterprise Web Beans ...27
3.3.1. Which EJBs are enterprise Web Beans? ...28
3.3.2. API types of an enterprise Web Bean ...28
3.3.3. Declaring an enterprise Web Bean using annotations ..28
3.3.4. Declaring an enterprise Web Bean using XML ..28
3.3.5. Web Bean remove methods ...29

3.3.5.1. Declaring a Web Bean remove method using annotations.29
3.3.5.2. Declaring a Web Bean remove method using XML. ...30
3.3.5.3. Remove method parameters ..30

3.3.6. Specializing an enterprise Web Bean ...30
3.3.7. Default name for an enterprise Web Bean ...31
3.3.8. Enterprise bean proxies ...31

3.4. Producer methods ...31
3.4.1. API types of a producer method ..32
3.4.2. Declaring a producer method using annotations ...32
3.4.3. Declaring a producer method using XML ...32
3.4.4. Producer method parameters ..33
3.4.5. Specializing a producer method ..33
3.4.6. Disposal methods ...34
3.4.7. Disposed parameter of a disposal method ...34
3.4.8. Declaring a disposal method using annotations ..34
3.4.9. Declaring a disposal method using XML ..34
3.4.10. Disposal method parameters ...35
3.4.11. Disposal method resolution ..35
3.4.12. Default name for a producer method ..35

3.5. Producer fields ...36
3.5.1. API types of a producer field ..36
3.5.2. Declaring a producer field using annotations ...36
3.5.3. Declaring a producer field using XML ...37
3.5.4. Default name for a producer field ..37

3.6. JMS endpoints ...37
3.6.1. API types of a JMS endpoint ..38
3.6.2. Declaring a JMS endpoint using XML ...38

3.7. Injected fields ..38
3.7.1. Declaring an injected field using annotations ...39
3.7.2. Declaring an injected field using XML ...39

3.8. Initializer methods ..39
3.8.1. Declaring an initializer method using annotations ...39
3.8.2. Declaring an initializer method using XML ..40
3.8.3. Initializer method parameters ...40

3.9. The @New binding type ..40
3.10. Support for Common Annotations ..42
3.11. The Bean object for a Web Bean ...42

4. Inheritance, specialization and realization ..44
4.1. Inheritance of type-level metadata ...44
4.2. Inheritance of member-level metadata ..45
4.3. Specialization ..46

4.3.1. Using specialization ...47
4.3.2. Direct and indirect specialization ..47
4.3.3. Inconsistent specialization ...48

4.4. Realization ..48
4.4.1. Using realization ...48

5. Lookup, dependency injection and EL resolution ..50

JSR 299: Web Beans

JSR-299 Public Review iii

5.1. Unsatisfied and ambiguous dependencies ..50
5.2. Primitive types and null values ..50
5.3. Injected reference validity ..50
5.4. Client proxies ..51

5.4.1. Unproxyable API types ...51
5.4.2. Client proxy invocation ...51

5.5. The default binding type at injection points ...52
5.6. Generic type literals ..53
5.7. Annotation type literals ...53
5.8. The Manager object ..54
5.9. Instance resolution ..55

5.9.1. Dynamic lookup ..55
5.9.2. Typesafe resolution algorithm ..56

5.9.2.1. Binding annotations with members ...57
5.9.2.2. Multiple binding annotations ...57

5.10. Injection point metadata ...57
5.11. EL name resolution ...58

5.11.1. Name resolution algorithm ...59
5.11.2. Integration with Unified EL ...59

6. Web Bean lifecycle ..60
6.1. Creation ...60
6.2. Destruction ...60
6.3. Lifecycle of simple Web Beans ...61
6.4. Lifecycle of stateful session enterprise Web beans ..61
6.5. Lifecycle of stateless session and singleton enterprise Web Beans ...62
6.6. Lifecycle of producer methods ..62
6.7. Lifecycle of producer fields ..63
6.8. Lifecycle of JMS endpoints ..65
6.9. Lifecycle of EJB beans ..65
6.10. Lifecycle of Servlets ...66

7. Interceptors and decorators ..67
7.1. Business methods ...67
7.2. Interceptors ...67

7.2.1. Business method interceptors ...67
7.2.2. Lifecycle callback interceptors ...67
7.2.3. Support for @Interceptors ...68
7.2.4. Interceptor bindings ...68

7.2.4.1. Interceptor binding types with additional interceptor bindings68
7.2.4.2. Interceptor bindings for stereotypes ..68

7.2.5. Web Beans interceptors ..69
7.2.5.1. Declaring a Web Beans interceptor using annotations ...69
7.2.5.2. Declaring a Web Beans interceptor using XML ...69

7.2.6. Binding a Web Beans interceptor to a Web Bean or EJB bean ..69
7.2.6.1. Binding a Web Beans interceptor using annotations ...70
7.2.6.2. Binding a Web Beans interceptor using XML ...70

7.2.7. Interceptor enablement and ordering ..70
7.2.8. The Interceptor object for an interceptor ...71
7.2.9. Interceptor resolution ..71

7.2.9.1. Interceptors with multiple binding types ..72
7.2.9.2. Interceptor binding types with members ...72

7.2.10. Interceptor stack creation ...73
7.2.11. Interceptor invocation ...73

7.3. Decorators ..74
7.3.1. Declaring a decorator using annotations ...74
7.3.2. Declaring a decorator using XML ...74
7.3.3. Decorator delegate attributes ..74
7.3.4. Decorated types of a decorator ...75
7.3.5. Decorator enablement and ordering ...75
7.3.6. The Decorator object for a decorator ..76
7.3.7. Decorator resolution ...76
7.3.8. Decorator stack creation ..76
7.3.9. Decorator invocation ..77

JSR 299: Web Beans

JSR-299 Public Review iv

8. Events ..78
8.1. Event types and binding types ...78
8.2. Firing an event via the Manager interface ..78
8.3. Observing events via the Observer interface ..79
8.4. Observer invocation ..79
8.5. Observer methods ..80

8.5.1. Event parameter of an observer method ..80
8.5.2. Declaring an observer method using annotations ..80
8.5.3. Declaring an observer method using XML ..80
8.5.4. Observer method parameters ..81
8.5.5. Conditional observers ...81
8.5.6. Transactional observers ...81
8.5.7. Observer object for an observer method ...82

8.6. The Event interface ...83
8.7. Observer resolution ..84

8.7.1. Event binding annotations with members ..85
8.7.2. Multiple event binding annotations ..85

9. Scopes and contexts ...86
9.1. The Contextual interface ..86
9.2. The Context interface ..86
9.3. Normal scopes and pseudo-scopes ...87
9.4. Dependent pseudo-scope ...87

9.4.1. Dependent objects ..88
9.4.1.1. Dependent objects of a simple or enterprise Web Bean ...88
9.4.1.2. Dependent objects of a producer method ..88
9.4.1.3. Dependent objects of an EJB bean or Servlet ..88

9.4.2. Dependent object destruction ...89
9.5. Passivating scopes and serialization ...89
9.6. Context management for built-in scopes ...90

9.6.1. Request context lifecycle ...90
9.6.2. Session context lifecycle ...90
9.6.3. Application context lifecycle ..91
9.6.4. Conversation context lifecycle ..91

9.7. Context management for custom scopes ..92
10. XML based metadata ...93

10.1. XML namespace for a Java package ...93
10.2. Stereotype, binding type and interceptor binding type declarations ...94

10.2.1. Child elements of a stereotype declaration ..94
10.2.2. Child elements of an interceptor binding type declaration ..95

10.3. Web Bean declarations ..95
10.3.1. Child elements of a Web Bean declaration ..96
10.3.2. Type-level metadata for a Web Bean ..96
10.3.3. Web Bean constructor declarations ..97
10.3.4. Fields of a Web Bean ..97
10.3.5. Field initial value declarations ..98
10.3.6. Methods of a Web Bean ..99

10.4. Producer method and field declarations ... 100
10.4.1. Child elements of a producer field declaration ... 100
10.4.2. Child elements of a producer method declaration ... 101
10.4.3. Return type and binding types of a producer method or field .. 101
10.4.4. Member-level metadata for a producer method or field .. 101

10.5. Interceptor and decorator declarations ... 102
10.5.1. Decorator delegate attribute ... 102

10.6. Injection point declarations ... 103
10.7. Inline Web Bean declarations .. 103
10.8. Specifying API types and binding types .. 104
10.9. Annotation members ... 106
10.10. Deployment declarations .. 107

10.10.1. The <Deploy> declaration .. 107
10.10.2. The <Interceptors> declaration .. 107
10.10.3. The <Decorators> declaration ... 107

11. Packaging and deployment ... 108

JSR 299: Web Beans

JSR-299 Public Review v

11.1. Web Bean discovery ... 108
11.2. Web Bean registration ... 109
11.3. Providing additional XML based metadata .. 109
11.4. EJB lookup .. 109
11.5. Initialization event .. 110
11.6. Java EE integration ... 111
11.7. Child managers .. 111

11.7.1. Current manager .. 112
12. Exceptions .. 113

12.1. Definition errors ... 113
12.2. Deployment problems ... 113
12.3. Execution errors ... 114

JSR 299: Web Beans

JSR-299 Public Review vi

Chapter 1. Architecture

Web Beans provides a powerful new set of services to Java EE components. This specification defines:

• The lifecycle and interactions of stateful components bound to well-defined contexts, where the set of contexts is ex-
tensible

• A sophisticated, typesafe dependency injection mechanism, including a facility for choosing between various compon-
ents that implement the same Java interface at deployment time

• Integration with the Unified Expression Language (EL), allowing any component to be used directly within a JSF or
JSP page

• Generalization of the method and component lifecycle interceptors defined by EJB 3.0 to other kinds of components,
along with an improved approach to binding interceptors to components and a new type of interceptor, called a decor-
ator

• An event notification model

• A web conversation context in addition to the three standard web contexts defined by the Java Servlet specification

• An SPI allowing third-party frameworks that execute in the Java EE environment to integrate cleanly with Web Beans

To take advantage of these facilities, the Java EE component developer provides additional component-level and applica-
tion-level metadata in the form of Java annotations and/or XML-based deployment descriptors.

A Java EE component with a lifecycle bound to a Web Beans context is called a Web Bean. Any Web Bean may be injec-
ted into other Java EE components by the Web Beans dependency injection service.

The use of Web Beans significantly simplifies the task of creating Java EE applications by integrating the Java EE web tier
with Java EE enterprise services. In particular, Web Beans allows EJB 3 components to be used as JSF managed beans,
thus integrating the the component models of EJB and JSF and significantly simplifying the programming model when
EJB and JSF are used together. In an environment that supports Web Beans, all EJB 3 session beans are Web Beans—no
Web Beans specific metadata is required.

Furthermore, Web Beans makes it easy to use most plain Java classes as Java EE components that may inject, or be injec-
ted into, other Java EE components such as EJBs or Servlets. Web Beans promotes plain Java classes to the status of man-
aged Java EE components. In particular, in an environment that supports Web Beans, all JavaBeans are Web Beans—no
Web Beans specific metadata is required.

Even when EJB, or JSF, or both, are not used, Web Beans may be used to simplify development of the business-logic layer
of an application. It is even possible for applications developed using third-party frameworks to take advantage of the ser-
vices provided by Web Beans via a framework integration SPI.

1.1. Contracts

This specification defines the responsibilities of a user who writes an application that executes inside an environment that
supports Web Beans and uses the functionality provided by Web Beans, along with responsibilities of a vendor who imple-
ments the functionality defined by this specification and provides a runtime environment in which Web Beans execute —
the Web Bean manager. Both the application that uses Web Beans and the Web Bean manager are written to comply with
Java EE contracts and may take advantage of the functionality provided by Java EE.

The Web Bean manager may be provided by a Java EE container vendor as integrated functionality of the Java EE con-
tainer or embeddable EJB Lite implementation. Alternatively, a plugin Web Bean manager may be provided by some
third-party for use with various Java EE containers and embeddable EJB Lite implementations.

1.2. Supported environments

A Web Bean application may be designed to execute in either the Java EE 6, Java EE 5 or Java SE environments. When a
Web Bean application executes in a Java SE environment, an embeddable EJB Lite implementation provides the Java EE
services.

JSR-299 Public Review 1

All plugin Web Bean managers are required to support any Java EE 6 compliant container and any embeddable EJB Lite
implementation. An integrated Web Bean manager is not required to support any environment other than that in which it is
integrated.

A compliant plugin Web Bean manager may optionally support Java EE 5. Certain functionality defined in this specifica-
tion is optional when the Web Bean manager executes in a Java EE 5 environment. This is the case only when explicitly
noted in this specification. All other functionality defined by this specification must be supported by a compliant plugin
Web Bean manager that supports Java EE 5 when it executes in the Java EE 5 environment.

A plugin Web Bean manager integrates with the Java EE container or embeddable EJB Lite implementation via standard
Java EE APIs such as JNDI, EJB interceptors and servlet filters.

1.3. Relationship to other specifications

An application developer using Web Beans creates Java EE components such as EJBs, Servlets and JavaBeans and then
provides additional Web Beans metadata that defines additional behavior in terms of the Web Beans context model. These
components may take advantage of the services defined by this specification, together with the enterprise and presentation-
al aspects defined by other Java EE platform technologies.

This specification defines the collaboration between the Web Bean manager and Java EE component technologies such as
EJB, JavaServer Faces and Java Servlets.

In addition, this specification defines an SPI that allows a Web Bean manager to be integrated with alternative, non-
platform technologies, for example, alternative web presentation technologies.

Open issue: the Web Beans annotations for dependency injection, scope and interceptor binding are currently defined in
the package javax.webbeans. To make these annotations more easily consumable by other specifications, should they in-
stead be categorized by concern into packages such as javax.dependency, javax.contexts and javax.interceptors?

1.3.1. Relationship to EJB

EJB defines a programming model for application components that access transactional resources in a multi-user environ-
ment. EJB allows concerns such as role-based security, transaction demarcation, concurrency and scalability to be spe-
cified declaratively using annotations and XML deployment descriptors and enforced by the EJB container at runtime.

EJB components may be stateful, but are not by nature contextual. References to stateful component instances must be ex-
plicitly passed between clients and stateful instances must be explicitly destroyed by the application.

Any EJB bean obtained via the Web Beans dependency injection service is a contextual object. It is bound to a context and
available to other Web Beans that execute in that context. The Web Bean manager automatically calls the EJB container to
create the EJB bean when it is needed by a client. When the context ends, the Web Bean manager automatically calls the
EJB container to destroy the bean.

For any EJB bean, even EJB beans which are not obtained via the Web Beans dependency injection service, the Web Bean
manager provides certain services, including injection of Web Bean instances and binding of Web Bean interceptors and
decorators.

In general, The EJB container provides the services defined by the EJB specification, and the Web Bean manager provides
the services defined by this specification. In particular, the Web Bean manager provides contextual lifecycle management,
delegating the actual creation and destruction of the EJB bean to the EJB container. The Web Bean manager integrates
with the EJB container via standard EJB and Java EE APIs.

1.3.2. Relationship to JSF

JavaServer Faces is a web-tier presentation framework that provides a component model for graphical user interface com-
ponents, a managed bean component model for application logic, and an event-driven interaction model that binds the two
component models. The managed bean component model is a contextual model where managed beans are bound to one of
the three web tier contexts and may hold contextual state.

Any Web Bean may fulfill the role of the managed bean in a JSF application. Thus, a JSF application may take advantage
of the more sophisticated context and dependency injection model defined by this specification. Even better, the Web Bean
may be an EJB bean, allowing direct use of EJB in any JSF page.

Architecture

JSR-299 Public Review 2

The Web Bean manager integrates with JSF via standard JSF APIs.

1.3.3. Relationship to Java Servlets

Web Beans may be called by a Servlet or JSP. The Web Bean manager integrates with the Servlet engine via standard
APIs defined by the Java Servlets specification.

Servlets are not themselves Web Beans, because they may not be injected into another object by the Web Beans depend-
ency injection mechanism. However, in the Java EE 6 environment, the Web Bean manager does provide injection of Web
Beans into Servlets and binding of Web Bean interceptors and decorators to Servlets.

Note: we have requested an additional API from the Servlet specification to make this possible!

1.3.4. Relationship to Common Annotations for the Java Platform

Certain functionality defined by Common Annotations for the Java Platform is available to any Web Bean. For Web Beans
which are not EJB beans, this functionality is provided by the Web Bean manager.

1.4. Introductory examples

The following examples demonstrate the Web Beans programming model.

1.4.1. JSF example

The following JSF page defines a login prompt for a web application:

<f:view>
<f:form>

<h:panelGrid columns="2" rendered="#{!login.loggedIn}">
<h:outputLabel for="username">Username:</h:outputLabel>
<h:inputText id="username" value="#{credentials.username}"/>
<h:outputLabel for="password">Password:</h:outputLabel>
<h:inputText id="password" value="#{credentials.password}"/>

</h:panelGrid>
<h:commandButton value="Login" action="#{login.login}" rendered="#{!login.loggedIn}"/>
<h:commandButton value="Logout" acion="#{login.logout}" rendered="#{login.loggedIn}"/>

</f:form>
</f:view>

The Unified EL expressions in this page refer to Web Beans named credentials and login.

The Credentials class is a Web Bean whose lifecycle is bound to the JSF request:

@Model
public class Credentials {

private String username;
private String password;

public String getUsername() { return username; }
public void setUsername(String username) { this.username = username; }

public String getPassword() { return password; }
public void setPassword(String password) { this.password = password; }

}

The @Model annotation is a stereotype that identifies the Credentials class as a Web Bean which acts as a model object in
an MVC architecture.

The Login class is a Web Bean whose lifecycle is bound to the HTTP session:

@SessionScoped @Model
public class Login {

@Current Credentials credentials;
@PersistenceContext EntityManager userDatabase;

private User user;

Architecture

JSR-299 Public Review 3

public void login() {

List<User> results = userDatabase.createQuery(
"select u from User u where u.username=:username and u.password=:password")
.setParameter("username", credentials.getUserName())
.setParameter("password", credentials.getPassword())
.getResultList();

if (!results.isEmpty()) {
user = results.get(0);

}

}

public void logout() {
user = null;

}

public boolean isLoggedIn() {
return user!=null;

}

@Produces @LoggedIn User getCurrentUser() {
if (user==null) {

throw new NotLoggedInException();
}
else {

return user;
}

}

}

The @SessionScoped annotation is a scope type that specifies the lifecycle of instances of Login.

The @Current annotation is a binding annotation and causes the Credentials Web Bean to be injected into an instance of
Login when it is created by the Web Bean manager.

The Common Annotations @PersistenceContext annotation causes a JPA EntityManager to be injected by the Web Bean
manager.

The @LoggedIn annotation is also a binding annotation. The method annotated @Produces is a producer method, which
will be called whenever another Web Bean in the system needs the currently logged-in user, for example, whenever the
user attribute of the DocumentEditor class is injected by the Web Bean manager:

@Model
public class DocumentEditor {

@Current Document document;
@LoggedIn User user;
@PersistenceContext EntityManager docDatabase;

public void save() {
document.setCreatedBy(currentUser);
em.persist(document);

}

}

When the login form is submitted, JSF sets the entered username and password onto an instance of the Credentials Web
Bean that is automatically instantiated and provided by the Web Bean manager. Next, JSF calls the login() method on an
instance of Login that is automatically instantiated and provided by the Web Bean manager. This instance continues to ex-
ist for and be available to other requests in the same HTTP session, and provides the User object representing the current
user to any other Web Bean that requires it (for example, DocumentEditor). If the producer method is called before the lo-

gin() method initializes the user object, it throws a NotLoggedInException.

1.4.2. EJB example

Our Login class may take advantage of the functionality defined by EJB:

@Stateful @SessionScoped @Model
public class Login {

@Current Credentials credentials;

Architecture

JSR-299 Public Review 4

@PersistenceContext EntityManager userDatabase;

private User user;

@TransactionAttribute(REQUIRES_NEW)
@RolesAllowed("guest")
public void login() {

...
}

public void logout() {
user = null;

}

public boolean isLoggedIn() {
return user!=null;

}

@RolesAllowed("user")
@Produces @LoggedIn User getCurrentUser() {

...
}

}

The @Stateful annotation specifies that this Web Bean is also an EJB stateful session bean. The @TransactionAttribute

and @RolesAllowed annotations declare the EJB transaction demarcation and security attributes.

1.4.3. Interceptor example

Web Beans interceptors allow common, cross-cutting concerns to be applied to Web Beans via custom annotations. Inter-
ceptor types may be individually enabled or disabled at deployment time.

The AuthorizationInterceptor class defines a custom authorization check:

@Secure @Interceptor public class AuthorizationInterceptor {

@LoggedIn User user;

@AroundInvoke public void authorize(InvocationContext ic) {
try {

if (!user.isBanned()) {
System.out.println("Authorized");
ic.proceed();

}
else {

System.out.println("Not authorized");
throw new NotAuthorizedException();

}
}
catch (NotAuthenticatedException nae) {

System.out.println("Not authenticated");
throw nae;

}
}

}

The Web Beans @Interceptor annotation identifies the AuthorizationInterceptor class as a Web Beans interceptor.
The @Secure annotation is a custom interceptor binding type.

@InterceptorBindingType
@Target({TYPE, METHOD})
@Retention(RUNTIME)
public @interface Secure {}

The @Secure annotation is used to apply the interceptor to a Web Beans or EJB bean:

@Model
public class DocumentEditor {

@Current Document document;
@LoggedIn User user;
@PersistenceContext EntityManager em;

@Secure
public void save() {

Architecture

JSR-299 Public Review 5

document.setCreatedBy(currentUser);
em.persist(document);

}

}

When the save() method is invoked, the authorize() method of the interceptor will be called. The invocation will pro-
ceed to the DocumentEditor class only if the authorization check is successful.

1.4.4. Decorator example

Web Beans decorators are similar to interceptors, but apply only to Web Beans of a particular Java interface. Like inter-
ceptors, decorators may be easily enabled or disabled at deployment time. Unlike interceptors, decorators are aware of the
semantics of the intercepted method.

For example, the DataAccess interface might be implemented by many Web Beans:

public interface DataAccess {

public Object load(Object id);
public Object getId();

public void save();
public void delete();

public Class getDataType();

}

The DataAccessAuthorizationDecorator class defines the authorization checks:

@Decorator public abstract class DataAccessAuthorizationDecorator
implements DataAccess {

@Decorates DataAccess delegate;

@LoggedIn User user;

public void save() {
authorize("save");
delegate.save();

}

public void delete() {
authorize("delete");
delegate.delete();

}

private void authorize(String action) {
try {

Object id = delegate.getId();
Class type = delegate.getDataType();
if (user.hasPermission(action, type, id))
{

System.out.println("Authorized for " + action);
}
else {

System.out.println("Not authorized for " + action);
throw new NotAuthorizedException(action);

}
}
catch (NotAuthenticatedException nae) {

System.out.println("Not authenticated");
throw nae;

}
}

}

The @Decorator annotation identifies the DataAccessAuthorizationDecorator class as a Web Beans decorator. The
@Decorates annotation identifies the delegate attribute, which the decorator uses to delegate method calls to the Web
Bean manager. The decorator applies to any Web Bean that implements DataAccess.

The decorator intercepts invocations just like an interceptor. However, unlike an interceptor, the decorator contains func-
tionality that is specific to the semantics of the method being called.

Architecture

JSR-299 Public Review 6

Decorators may be declared abstract, relieving the developer of the responsibility of implementing all methods of the dec-
orated interface. If a decorator does not implement a method of an API type, the decorator will simply not be called when
that method is invoked upon the decorated Web Bean.

Architecture

JSR-299 Public Review 7

Chapter 2. Web Bean definition

A Web Bean is a Java EE component that bears additional metadata defining its lifecycle and interactions with other com-
ponents according to the Web Beans context model.

Speaking more abstractly, a Web Bean is a source of contextual objects which define application state and/or logic. These
objects are called instances of the Web Bean. The Web Bean manager creates and destroys these instances and associates
them with the appropriate Web Beans context. Instances of a Web Bean may be injected into other objects (including other
Web Bean instances) that execute in the same context, and may be used in EL expressions that are evaluated in the same
context.

A Web Bean comprises the following attributes:

• A (nonempty) set of API types

• A (nonempty) set of binding annotation types

• A scope

• A deployment type

• Optionally, a Web Bean name

• A set of interceptor binding types

• A Web Bean implementation

In most cases, a Web Bean developer provides the Web Bean implementation by writing business logic in Java code. The
developer then defines the remaining attributes by providing additional Web Beans specific metadata, or by allowing them
to be defaulted by the Web Bean manager. In certain other cases, for example JMS endpoints defined in Section 3.6, “JMS
endpoints”, the developer provides only the Web Beans specific metadata and the Web Bean implementation is provided
by the Web Bean manager.

It is sometimes convenient to use XML instead of annotations to define this metadata. The web-beans.xml file format
defined in Chapter 10, XML based metadata supports XML declaration of Web Beans.

A Web Bean implementation may be a Java class, an EJB session bean class, a producer method or field or a JMS queue
or topic, as specified in Chapter 3, Web Bean implementation. The other attributes of the Web Bean are either:

• declared explicitly by annotating the implementation class,

• declared explicitly in web-beans.xml, or

• defaulted by the Web Bean manager.

The deployment type, API types and binding types of a Web Bean determine where its instances will be injected by the
Web Bean manager.

The Web Bean developer may also create Web Beans interceptors and/or decorators or reuse existing interceptors and/or
decorators. The interceptor binding types of a Web Bean determine which interceptors will be applied at runtime. The API
types and binding types of a Web Bean determine which decorators will be applied at runtime. Interceptors, decorators and
interceptor binding types are specified in Chapter 7, Interceptors and decorators.

A Web Bean implementation may produce or consume events. The Web Beans event notification facility is specified in
Chapter 8, Events.

2.1. Functionality provided by the Web Bean manager to the Web Bean

A Web Bean is provided by the Web Bean manager with the following capabilities:

• transparent creation and destruction and scoping to a particular Web Beans context, specified in Chapter 6, Web Bean
lifecycle and Chapter 9, Scopes and contexts,

JSR-299 Public Review 8

• scoped resolution by API type and binding annotation type when injected into a Java-based client, as defined by Sec-
tion 5.9, “Instance resolution”,

• scoped resolution by name when used in a Unified EL expression, as defined by Section 5.11, “EL name resolution”,

• lifecycle callbacks and automatic injection of other Web Bean instances, specified in Chapter 3, Web Bean implement-
ation,

• method interception, callback interception, and decoration, as defined in Chapter 7, Interceptors and decorators, and

• event notification, as defined in Chapter 8, Events.

2.2. Web Bean API types

A Web Bean API type defines a client-visible type of the Web Bean. A Web Bean may have multiple API types. For ex-
ample, the following Web Bean has three API types:

public class BookShop
extends Business
implements Shop<Book> {

...
}

The API types are BookShop, Business and Shop<Book>.

Meanwhile, this EJB has only the local interfaces BookShop and Auditable as API types, since the bean class is not a cli-
ent-visible type.

@Stateful
public class BookShopBean

extends Business
implements BookShop, Auditable {

...
}

The rules for determining the set of API types for a Web Bean are defined in Chapter 3, Web Bean implementation.

The API types of a Web Bean are used by the resolution algorithms defined in Chapter 5, Lookup, dependency injection
and EL resolution.

An API type may be a parameterized type with an actual type parameter. For the purposes of the typesafe resolution al-
gorithm defined in Section 5.9.2, “Typesafe resolution algorithm”, parameterized API types are considered identical by the
Web Bean manager only if both the type and the type parameters (if any) are identical.

However, API types may not declare a type variable or wildcard. If the type of an injection point is a parameterized type
with a type variable or wildcard, a DefinitionException is thrown by the Web Bean manager at initialization time.

Aside from this restriction, almost any Java type may be an API type of a Web Bean:

• An API type may be an interface, a concrete class or an abstract class, and may be declared final or have final methods.

• An API type may be an array type. Two array types are considered identical only if the element type is identical.

• An API type may be a primitive types. Primitive types are considered to be identical to their corresponding wrapper
types in java.lang.

However, certain additional restrictions are specified in Section 5.4.1, “Unproxyable API types” for Web Beans with a
normal scope type, as defined in Section 9.3, “Normal scopes and pseudo-scopes”.

All Web Beans have the API type java.lang.Object.

A client of a Web Bean may typecast its reference to any instance of the Web Bean to any API type of the Web Bean. For
example, if our simple Web Bean was injected to the following field:

@Current Shop<Book> bookShop;

Web Bean definition

JSR-299 Public Review 9

Then the following typecast is legal and will not result in an exception:

Business biz = (Business) bookShop;

Likewise, if our EJB was injected to the following field:

@Current BookShop bookShop;

Then the following typecast is legal and will not result in an exception:

Auditable aud = (Auditable) bookShop;

Open issue: currently it is impossible for the client of a stateful session bean to typecast its reference to a different local
interface. We need a new API defined by the EJB specification.

2.3. Binding types

For a given API type, there may be multiple Web Beans which implement the type. For example, an application may have
two implementations of the interface PaymentProcessor:

class SynchronousPaymentProcessor
implements PaymentProcessor {

...
}

class AsynchronousPaymentProcessor
implements PaymentProcessor {

...
}

A client that needs a PaymentProcessor that processes payments synchronously needs some way to distinguish between
the two different implementations. One approach would be for the client to explicitly specify the class that implements that
PaymentProcessor interface. However, this approach creates a hard dependence between client and implementa-
tion—exactly what use of the interface was designed to avoid!

A Web Beans binding type represents some client-visible semantic of an API implementation that is satisfied by some im-
plementations of the API (and not by others). For example, we could introduce binding types representing synchronicity
and asynchronicity. In Java code, binding types are represented by annotations.

@Synchronous
class SynchronousPaymentProcessor

implements PaymentProcessor {
...

}

@Asynchronous
class AsynchronousPaymentProcessor

implements PaymentProcessor {
...

}

Finally, binding types are applied to injection points to distinguish which implementation is required by the client. For ex-
ample, when the Web Bean manager encounters the following injected field, an instance of SynchronousPaymentPro-

cessor will be injected:

@Synchronous PaymentProcessor paymentProcessor;

But in this case, an instance of AsynchronousPaymentProcessor will be injected:

@Asynchronous PaymentProcessor paymentProcessor;

The Web Bean manager inspects the binding annotations and type of the injected attribute to determine the Web Bean in-
stance to be injected, according to the resolution algorithm defined in Chapter 5, Lookup, dependency injection and EL
resolution.

Web Bean definition

JSR-299 Public Review 10

Binding types are also used as event selectors by observers of Web Beans events, as defined in Chapter 8, Events, and to
bind decorators to Web Beans, as specified in Section 7.3, “Decorators”.

2.3.1. Default binding type

If a Web Bean does not explicitly declare a binding type, the Web Bean has exactly one binding type:
javax.webbeans.Current. This is called the default binding type.

The following declarations are equivalent:

@Current
public class Order {}

public class Order {}

The default binding type is also assumed for any injection point that does not explicitly declare a binding type. The follow-
ing declarations are equivalent:

public class Order {
public Order(@Current OrderProcessor processor) { ... }

}

public class Order {
public Order(OrderProcessor processor) { ... }

}

2.3.2. Defining new binding types

A binding type is a Java annotation defined as @Target({METHOD, FIELD, PARAMETER, TYPE}) and
@Retention(RUNTIME).

A binding type may be declared by specifying the @BindingType meta-annotation.

@BindingType
@Retention(RUNTIME)
@Target({METHOD, FIELD, PARAMETER, TYPE})
public @interface Synchronous {}

@BindingType
@Retention(RUNTIME)
@Target({METHOD, FIELD, PARAMETER, TYPE})
public @interface Asynchronous {}

Alternatively, the @BindingType meta-annotation may be omitted, and the binding type may be declared in
web-beans.xml.

<myapp:Synchronous>
<BindingType/>

</myapp:Synchronous>

A binding annotation may define annotation members.

@BindingType
@Retention(RUNTIME)
@Target({METHOD, FIELD, PARAMETER, TYPE})
public @interface PayBy {

PaymentMethod value();
}

Binding annotation member values are significant to the typesafe resolution algorithm.

2.3.3. Declaring the binding types of a Web Bean using annotations

A Web Bean's binding types are declared by annotating the implementation class or producer method or field with the
binding types.

Web Bean definition

JSR-299 Public Review 11

@LDAP
class LdapAuthenticator

implements Authenticator {
...

}

public class Shop {

@Produces @All
public List<Product> getAllProducts() { ... }

@Produces @WishList
public List<Product> getWishList() { }

@Produces @ShoppingCart
public List<Product> getShoppingCart() { }

}

Any Web Bean may declare multiple binding types.

@Synchronous @Reliable
class SynchronousReliablePaymentProcessor

implements PaymentProcessor {
...

}

2.3.4. Declaring the binding types of a Web Bean using XML

If a Web Bean is declared in web-beans.xml, binding types may be specified using the binding type names:

<myapp:SynchronousPaymentProcessor>
<myapp:Synchronous/>
<myapp:Reliable/>

</myapp:SynchronousPaymentProcessor>

2.3.5. Using binding annotations on injected fields

Binding annotations are applied to injected fields (see Section 3.7, “Injected fields”) to determine the Web Bean that is in-
jected, according to the typesafe resolution algorithm defined in Section 5.9.2, “Typesafe resolution algorithm”.

@LDAP Authenticator authenticator;

A Web Bean may only be injected to an injection point if it has all the binding types of the injection point.

@Synchronous @Reliable PaymentProcessor paymentProcessor;

@All List<Product> catalog;

@WishList List<Product> wishList;

@ShoppingCart List<Product> cart;

For a Web Bean defined in XML, the binding types of a field may be specified using XML:

<myapp:paymentProcessor>
<myapp:PaymentProcessor>

<myapp:Asynchronous/>
<myapp:Reliable/>

</myapp:PaymentProcessor>
</myapp:paymentProcessor>

When the binding types of a field are specified using XML, any binding type annotations of the field are ignored.

2.3.6. Using binding annotations on method or constructor parameters

Binding annotations may be applied to parameters of producer methods, initializer methods, disposal methods, Web Bean

Web Bean definition

JSR-299 Public Review 12

remove methods or Web Bean constructors (see Chapter 3, Web Bean implementation) to determine the Web Bean in-
stance that is passed when the method is called by the Web Bean manager. The Web Bean manager uses the typesafe res-
olution algorithm defined in Section 5.9.2, “Typesafe resolution algorithm” to determine values for these parameters.

For example, when the Web Bean manager encounters the following producer method, an instance of SynchronousPay-

mentProcessor will be passed to the first parameter and an instance of AsynchronousPaymentProcessor will be passed to
the second parameter:

@Produces
PaymentProcessor getPaymentProcessor(@Synchronous PaymentProcessor sync,

@Asynchronous PaymentProcessor async) {
return isSynchronous() ? sync : async;

}

For a Web Bean defined in XML, the binding types of a method parameter may be specified using XML:

<myapp:getPaymentProcessor>
<Produces/>
<myapp:PaymentProcessor>

<myapp:Synchronous/>
</myapp:PaymentProcessor>
<myapp:PaymentProcessor>

<myapp:Asynchronous/>
</myapp:PaymentProcessor>

</myapp:getPaymentProcessor>

When the binding types of a parameter are specified using XML, any binding type annotations of the parameter are ig-
nored.

2.4. Web Bean scopes

Unlike JSF managed beans, Java EE components such as Servlets, EJBs and JavaBeans do not have a well-defined scope.
These components are either:

• singletons, such as EJB singleton beans, whose state is shared between all clients,

• stateless objects, such as Servlets and stateless session beans, which do not contain client-visible state, or

• objects that must be explictly created and destroyed by their client, such as JavaBeans and stateful session beans,
whose state is shared by explicit reference passing between clients.

Scoped objects, by contrast, exist in a well-defined context:

• they may be automatically created when needed and then automatically destroyed when the context in which they were
created ends, and

• their state is automatically shared by clients that execute in the same context.

All Web Beans have a scope. The scope of a Web Bean determines the lifecycle of its instances, and which instances of
the Web Bean are visible to instances of other Web Beans, as defined in Chapter 9, Scopes and contexts. A scope type is
represented by an annotation type.

For example, an object that represents the current user is represented by a session scoped object:

@Produces @SessionScoped User getCurrentUser() { ... }

An object that represents an order is represented by a conversation scoped object:

@ConversationScoped
public class Order {

...
}

A list that contains the results of a search screen might be represented by a request scoped object:

@Produces @RequestScoped @Named("orders")

Web Bean definition

JSR-299 Public Review 13

List<Order> getOrderSearchResults() { ... }

The set of scope types is extensible.

2.4.1. Built-in scope types

There are several standard scope types defined by Web Beans. The @RequestScoped, @ApplicationScoped and
@SessionScoped annotations defined in Section 9.6, “Context management for built-in scopes” represent the standard
scopes defined by the Java Servlets specification. The @ConversationScoped annotation represents the Web Beans conver-
sation scope defined in Section 9.6.4, “Conversation context lifecycle”. In addition, there is the @Dependent pseudo-scope
for dependent objects, as defined in Section 9.4, “Dependent pseudo-scope”.

2.4.2. Defining new scope types

A Web Beans scope type is a Java annotation defined as @Target({TYPE, METHOD}) and @Retention(RUNTIME). All scope
types must also specify the @ScopeType meta-annotation.

For example, the following annotation declares a "business process scope":

@ScopeType
@Target({TYPE, METHOD})
@Retention(RUNTIME)
public @interface BusinessProcessScoped {}

An application or third-party framework might provide a context implementation for this custom scope (see Section 9.7,
“Context management for custom scopes”).

2.4.3. Declaring the Web Bean scope using annotations

The Web Bean's scope is defined by annotating the implementation class or producer method or field with a scope type.

A Web Bean implementation class or producer method or field may specify at most one scope type annotation. If an im-
plementation class or producer method or field specifies multiple scope type annotations, a DefinitionException is
thrown by the Web Bean manager at initialization time.

The following examples demonstrate the use of built-in scope types:

@RequestScoped
public class ProductList implements DataModel { ... }

public class Shop {

@Produces @SessionScoped @WishList
public List<Product> getWishList() { }

@Produces @ConversationScoped @ShoppingCart
public List<Product> getShoppingCart() { }

}

Likewise, a Web Bean with the custom business process scope may be declared by annotating it with the
@BusinessProcessScoped annotation:

@BusinessProcessScoped
public class Order {

...
}

Alternatively, a scope type may be specified using a stereotype annotation, as defined in Section 2.7.2, “Declaring the ste-
reotypes for a Web Bean using annotations”.

2.4.4. Declaring the Web Bean scope using XML

If the Web Bean is declared in web-beans.xml, the scope may be specified using the scope annotation type name:

Web Bean definition

JSR-299 Public Review 14

<myapp:ProductList>
<RequestScoped/>

</myapp:ProductList>

If more than one scope type is specified in XML, a DefinitionException is thrown by the Web Bean manager at initializ-
ation time.

Alternatively, a scope type may be specified using a stereotype declared in XML, as defined in Section 2.7.3, “Declaring
the stereotypes for a Web Bean using XML”.

2.4.5. Default scope

When no scope is explicitly declared by annotating the implementation class or producer method or field, or by using
XML, the scope of a Web Bean is defaulted.

The default scope for a Web Bean which does not explicitly declare a scope depends upon its declared stereotypes:

• If the Web Bean does not declare any stereotype with a declared default scope, the default scope for the Web Bean is
@Dependent.

• If all stereotypes declared by the Web Bean that have some declared default scope have the same default scope, then
that scope is the default scope for the Web Bean.

• If there are two different stereotypes declared by the Web Bean that declare different default scopes, then there is no
default scope and the Web Bean must explicitly declare a scope. If it does not explicitly declare a scope, a Defini-

tionException is thrown by the Web Bean manager at initialization time.

If a Web Bean explicitly declares a scope, any default scopes declared by stereotypes are ignored.

2.5. Deployment types

In many applications, there are various implementations of a particular API, and the implementation used at runtime varies
between different deployments of the system. Web Beans allows the developer to associate a particular implementation of
an API with a certain deployment scenario.

A Web Beans deployment type represents a deployment scenario. Web Beans may be classified by deployment type, and
thereby associated with various deployment scenarios.

Deployment types allow the Web Bean manager to identify which Web Beans should be enabled for use in a particular de-
ployment of the system. The deployment type also determines the precedence of a Web Bean, used by the resolution al-
gorithms specified in Chapter 5, Lookup, dependency injection and EL resolution.

The set of deployment types is extensible.

2.5.1. Built-in deployment types

There are two standard deployment types defined by Web Beans: @Production and @Standard.

All standard Web Beans defined by this specification, and provided by the Web Bean manager, are defined using the
@Standard deployment type. For example, the Conversation object defined in Section 9.6.4, “Conversation context life-
cycle” and the Manager object defined in Section 5.8, “The Manager object” have this deployment type. No Web Bean
may be declared with the @Standard deployment type unless explicitly required by this specification.

Application Web Beans may be defined using the @Production deployment type.

2.5.2. Defining new deployment types

A Web Beans deployment type is a Java annotation defined as @Target({TYPE, METHOD}) and @Retention(RUNTIME). All
deployment types must also specify the @DeploymentType meta-annotation.

Applications and third-party frameworks may define their own deployment types. For example, the following deployment

Web Bean definition

JSR-299 Public Review 15

type might identify Web Beans which are used only at a particular site at which the application is deployed:

@DeploymentType
@Target({TYPE, METHOD})
@Retention(RUNTIME)
public @interface Australian {}

This deployment type might be used by a third-party framework that extends Web Beans:

@DeploymentType
@Target({TYPE, METHOD})
@Retention(RUNTIME)
public @interface DaoFramework {}

This deployment type might be used to define mock objects for integration testing:

@DeploymentType
@Target({TYPE, METHOD})
@Retention(RUNTIME)
public @interface Mock {}

2.5.3. Declaring the deployment type of a Web Bean using annotations

The deployment type of the Web Bean is declared by annotating the implementation class or producer method or field.

An implementation class or producer method or field may specify at most one deployment type. If multiple deployment
type annotations are specified, a DefinitionException is thrown by the Web Bean manager at initialization time.

Open issue: is this too restrictive? We could allow multiple deployment types to be specified, and ignore all but the
highest-precedence enabled deployment type.

This Web Bean has the deployment type @Production:

@Production
public class Order {}

This Web Bean has the deployment type @Mock:

@Mock
public class MockOrder extends Order {}

By default, if no deployment type annotation is explicitly specified, a producer method or field inherits the deployment
type of the Web Bean in which it is defined.

This producer method has the deployment type @Production:

@Production
public class Login {

@Produces
public User getUser() { ... }

}

This producer method has the deployment type @Australian:

@Production
public class TaxPolicies {

@Produces @Australian
public TaxPolicy getAustralianTaxPolicy() { ... }

}

Alternatively, a deployment type may be specified using a stereotype annotation, as defined in Section 2.7.2, “Declaring
the stereotypes for a Web Bean using annotations”.

2.5.4. Declaring the deployment type of a Web Bean using XML

Web Bean definition

JSR-299 Public Review 16

When a Web Bean is declared in web-beans.xml, the deployment type may be specified using a tag with the annotation
type name:

<myapp:AustralianTaxPolicy>
<deployment:Australian/>

</myapp:AustralianTaxPolicy>

If more than one deployment type is specified in XML, a DefinitionException is thrown by the Web Bean manager at
initialization time.

Alternatively, a deployment type may be specified using a stereotype declared in XML, as defined in Section 2.7.3,
“Declaring the stereotypes for a Web Bean using XML”.

2.5.5. Default deployment type

When no deployment type is explicitly declared by annotating the implementation class or producer method or field, or by
use of XML, the deployment type is defaulted.

The default deployment type for a Web Bean which does not explicitly declare a deployment type depends upon its de-
clared stereotypes:

• If a Web Bean does not declare any stereotype with a declared default deployment type, then the default deployment
type is @Production.

• Otherwise, the default deployment type for the Web Bean is the highest-precedence default deployment type declared
by any stereotype declared by the Web Bean.

Thus, the following declarations are equivalent:

@Production
public class Order {}

public class Order {}

If a Web Bean explicitly declares a deployment type, any default deployment type declared by stereotypes are ignored.

2.5.6. Enabled deployment types

In a particular deployment, only some deployment types are enabled. Web Beans declared with a deployment type that is
not enabled are not available to the resolution algorithms defined in Chapter 5, Lookup, dependency injection and EL res-
olution.

The Web Bean manager inspects the deployment type of each Web Bean that exists in a particular deployment (see Sec-
tion 11.1, “Web Bean discovery”) to determine whether the Web Bean is enabled in this deployment. If the deployment
type is enabled, an instance of the Web Bean may be obtained by lookup, injection or EL resolution. Otherwise, the Web
Bean is never instantiated by the Web Bean manager.

By default, only the built-in deployment types are enabled. To enable a custom deployment type, a <Deploy> element must
be included in a web-beans.xml file and the deployment type must be declared using the annotation type name.

<WebBeans>
<Deploy>

<Standard/>
<Production/>
<myfwk:DaoFramework/>
<deployment:Australian/>
<myfwk:Mock/>

</Deploy>
</WebBeans>

If a <Deploy> element is specified, only the explicitly declared deployment types are enabled. The @Standard deployment
type must be declared. If the @Standard deployment type is not declared, a DeploymentException is thrown by the Web
Bean manager at initialization time.

If no <Deploy> element is specified in any web-beans.xml file, only the @Standard and @Production deployment types

Web Bean definition

JSR-299 Public Review 17

are enabled.

If the <Deploy> element is specified in more than one web-beans.xml document, a DeploymentException is thrown by the
Web Bean manager at initialization time.

2.5.7. Deployment type precedence

In a particular deployment, all enabled deployment types are strongly ordered in terms of precedence. The precedence of a
deployment type is used by the resolution algorithms defined in Chapter 5, Lookup, dependency injection and EL resolu-
tion.

If a <Deploy> element is specified, the order of the deployment type declarations determines the deployment type preced-
ence. Deployment types which appear later in this list have a higher precedence than deployment types which appear earli-
er. The @Standard deployment type must appear first and always has the lowest precedence of any deployment type.

If no <Deploy> element is specified, the @Production deployment type has a higher precedence than the @Standard de-
ployment type.

2.6. Web Bean names

A Web Bean may have a Web Bean name. A Web Bean with a name may be referred to by its Web Bean name in Unified
EL expressions. A valid Web Bean name is a period-separated list of valid EL identifiers.

There is no relationship between the Web Bean name of an EJB bean and the EJB name of the bean.

In certain circumstances, multiple Web Beans may share the same name.

Names are used by the EL name resolution algorithm defined in Section 5.9.2, “Typesafe resolution algorithm”. This al-
lows a Web Bean to be used directly in a JSP or JSF page.

For example, a Web Bean with the name products could be used like this:

<h:outputText value="#{products.total}"/>

JMS endpoints do not have names.

2.6.1. Declaring the Web Bean name using annotations

To specify the name of a Web Bean, the @Named annotation is applied to the implementation class or producer method or
field. This Web Bean is named products:

@Named("products")
public class ProductList implements DataModel { ... }

If the @Named annotation does not specify the value member, the default name is assumed.

2.6.2. Declaring the Web Bean name using XML

If the Web Bean is declared in web-beans.xml, the name may be specified using <Named>:

<myapp:ProductList>
<Named>products</Named>

</myapp:ProductList>

If the <Named> element is empty, the default name is assumed.

2.6.3. Default Web Bean names

In the following circumstances, a default name must be assigned by the Web Bean manager:

• An implementation class or producer method or field of a Web Bean defined using annotations declares a @Named an-
notation and no name is explicitly specified by the value member.

Web Bean definition

JSR-299 Public Review 18

• An empty <Named> element is specified by a Web Bean defined in XML.

• A Web Bean declares a stereotype that declares an empty @Named annotation, and the Web Bean does not explicitly
specify a name.

The default name for a Web Bean depends upon the Web Bean implementation. The rules for determining the default
name for a Web Bean are defined in Chapter 3, Web Bean implementation.

2.6.4. Web Beans with no name

If neither <Named> nor @Named is specified, by the Web Bean or its stereotypes, a Web Bean has no name.

2.7. Stereotypes

In many systems, use of architectural patterns produces a set of recurring Web Bean roles. A stereotype allows a frame-
work developer to identify such a role and declare some common metadata for Web Beans with that role in a central place.

A stereotype encapsulates any combination of:

• a default deployment type,

• a default scope type,

• a restriction upon the Web Bean scope,

• a requirement that the Web Bean implement or extend a certain type, and

• a set of interceptor binding annotations.

A stereotype may also specify that all Web Beans with the stereotype have defaulted Web Bean names.

A Web Bean may declare zero, one or multiple stereotypes.

2.7.1. Defining new stereotypes

A Web Beans stereotype is a Java annotation defined as @Target({TYPE, METHOD}), @Target(METHOD) or @Target(TYPE)
and @Retention(RUNTIME).

A stereotype may be declared by specifying the @Stereotype meta-annotation.

@Stereotype
@Target(TYPE)
@Retention(RUNTIME)
public @interface Action {}

Alternatively, the @Stereotype meta-annotation may be omitted, and the stereotype may be declared in web-beans.xml.

<myfwk:Action>
<Stereotype/>

</myfwk:Action>

A stereotype may not declare any binding type annotation. If a stereotype declares a binding type annotation, a Defini-

tionException is thrown by the Web Bean manager at initialization time.

2.7.1.1. Declaring the default scope and deployment type for a stereotype

A stereotype may declare at most one scope type. If a stereotype declares more than one scope type, a DefinitionExcep-

tion is thrown by the Web Bean manager at initialization time.

A stereotype may declare at most one deployment type. If a stereotype declares more than one deployment type, a Defini-

tionException is thrown by the Web Bean manager at initialization time.

For example, the following stereotype might be used to identify action classes in a web application:

Web Bean definition

JSR-299 Public Review 19

@RequestScoped
@Production
@Stereotype
@Target(TYPE)
@Retention(RUNTIME)
public @interface Action {}

<myfwk:Action>
<RequestScoped/>
<Production/>
<Stereotype/>

</myfwk:Action>

Then actions would have scope @RequestScoped and deployment type @Production unless the scope or deployment type
explicitly specified by the Web Bean.

2.7.1.2. Specifying interceptor bindings for a stereotype

A stereotype may declare zero, one or multiple interceptor binding types, as defined in Section 7.2.4.2, “Interceptor bind-
ings for stereotypes”.

We may specify interceptor bindings that apply to all actions:

@RequestScoped
@Secure
@Transactional
@Production
@Stereotype
@Target(TYPE)
@Retention(RUNTIME)
public @interface Action {}

<myfwk:Action>
<RequestScoped/>
<myfwk:Secure/>
<myfwk:Transactional/>
<Production/>
<Stereotype/>

</myfwk:Action>

2.7.1.3. Specifying name defaulting for a stereotype

A stereotype may declare an empty @Named annotation. If a stereotype declares a non-empty @Named annotation, a Defini-

tionException is thrown by the Web Bean manager at initialization time.

We may specify that every Web Bean with the stereotype has a defaulted name when a name is not explicitly specified by
the Web Bean:

@RequestScoped
@Secure
@Transactional
@Named
@Production
@Stereotype
@Target(TYPE)
@Retention(RUNTIME)
public @interface Action {}

<myfwk:Action>
<RequestScoped/>
<Named/>
<myfwk:Secure/>
<myfwk:Transactional/>
<Production/>
<Stereotype/>

</myfwk:Action>

2.7.1.4. Restricting Web Bean scopes and types using a stereotype

If all actions are request scoped, we can make this restriction explicit:

@RequestScoped

Web Bean definition

JSR-299 Public Review 20

@Secure
@Transactional
@Production
@Stereotype(supportedScopes=RequestScoped.class)
@Target(TYPE)
@Retention(RUNTIME)
public @interface Action {}

We may even require that all actions extend some ActionBase class:

@RequestScoped
@Secure
@Transactional
@Production
@Stereotype(requiredTypes=ActionBase.class)
@Target(TYPE)
@Retention(RUNTIME)
public @interface Action {}

Scope and type restrictions may not be specified when a stereotype is declared in XML.

2.7.1.5. Stereotypes with additional stereotypes

A stereotype may declare other stereotypes.

@Auditable
@Action
@Stereotype
@Target(TYPE)
@Retention(RUNTIME)
public @interface AuditableAction {}

<myfwk:AuditableAction>
<Stereotype/>
<myfwk:Auditable/>
<myfwk:Action/>

</myfwk:AuditableAction>

Stereotype declarations are transitive—a stereotype declared by a second stereotype is inherited by all Web Beans and oth-
er stereotypes that declare the second stereotype.

Stereotypes declared @Target(METHOD) may not be applied to stereotypes declared @Target({TYPE, METHOD}) or
@Target(TYPE).

Stereotypes declared @Target(TYPE) may not be applied to stereotypes declared @Target({TYPE, METHOD}) or
@Target(METHOD).

2.7.2. Declaring the stereotypes for a Web Bean using annotations

Stereotype annotations may be applied to a Web Bean implementation class or producer method or field.

@Action
public class LoginAction { ... }

The default deployment type and default scope declared by the stereotype may be overridden by the Web Bean:

@Mock @ApplicationScoped @Action
public class MockLoginAction extends LoginAction { ... }

Multiple stereotypes may be applied to the same Web Bean:

@Dao @Action
public class LoginAction { ... }

2.7.3. Declaring the stereotypes for a Web Bean using XML

If the Web Bean is declared in web-beans.xml, stereotypes may be declared using the stereotype annotation type name:

Web Bean definition

JSR-299 Public Review 21

<myapp:LoginAction>
<myfwk:Action/>

</myapp:LoginAction>

2.7.4. Stereotype restrictions

A stereotype may place certain restrictions upon the Web Beans that declare the stereotype.

If a stereotype declares a requiredType, and the Web Bean API types do not include the type, a DefinitionException is
thrown by the Web Bean manager at initialization time.

If a stereotype explicitly declares a set of scope types using supportedScopes, and the Web Bean scope is not in that set, a
DefinitionException is thrown by the Web Bean manager at initialization time.

If a Web Bean declares multiple stereotypes, it must satisfy every restriction declared by every declared stereotype.

2.7.5. Built-in stereotypes

Web Beans provides a built-in stereotype. The @Model stereotype is intended for use with Web Beans that define the model
layer of an MVC web application architecture such as JSF:

@Named
@RequestScoped
@Stereotype
@Target({TYPE, METHOD})
@Retention(RUNTIME)
public @interface Model {}

In addition, the special-purpose @Interceptor and @Decorator stereotypes are defined in Chapter 7, Interceptors and dec-
orators.

Web Bean definition

JSR-299 Public Review 22

Chapter 3. Web Bean implementation

A Web Bean implementation implements the API types of the Web Bean. The developer must follow certain rules when
defining a Web Bean implementation. However, the rules depend upon what kind of Web Bean it is. The Web Bean man-
ager provides built-in support for the following kinds of Web Bean:

• Simple Web Beans (Java classes)

• Enterprise Web Beans (EJB session beans)

• Producer methods and fields

• JMS endpoints (topics and queues)

An application or third-party framework may support other kinds of Web Beans by implementing the Bean interface and
registering the implementation with the Web Bean manager, as defined in Section 11.2, “Web Bean registration”.

Open issue: should the functionality that is currently defined for JMS endpoints be generalized to support other Java EE
resources such as Web Service endpoints, connectors and JDBC datasources?

3.1. Restriction upon Web Bean instantiation

Most Web Beans are implemented by an annotated Java class, possibly an EJB bean class, called the implementation class
of the Web Bean. Implementation classes are defined in Section 3.2, “Simple Web Beans” and Section 3.3, “Enterprise
Web Beans”.

This specification places very few restrictions upon the implementation class of a Web Bean. In particular, the class is a
concrete class and is not required to implement any special interface or extend any special superclass. Therefore, Web
Bean implementation classes are easy to instantiate and unit test.

However, if the application directly instantiates an implementation class of a Web Bean, instead of letting the Web Bean
manager perform instantiation, the capabilities listed in Section 2.1, “Functionality provided by the Web Bean manager to
the Web Bean” will not be available to that particular class instance. In a deployed application, it is the Web Beans imple-
mentation that is responsible for instantiating Web Beans and initializing their dependencies.

If the application requires full control over instantiation of a Web Bean, a producer method may be used. A producer
method is just an annotated method of another Web Bean that is invoked by the Web Bean manager to instantiate the Web
Bean. Producer methods are defined in Section 3.4, “Producer methods”. However, a similar restriction exists for producer
methods: if the application calls the producer method directly, instead of letting the Web Bean manager call it, the capabil-
ities listed in Section 2.1, “Functionality provided by the Web Bean manager to the Web Bean” will not be available to the
returned instance.

3.2. Simple Web Beans

A simple Web Bean is a Web Bean that is implemented by a Java class. This class is called the implementation class of the
simple Web Bean.

The implementation class of a simple Web Bean may not be a non-static inner class or a parameterized type.

The implementation class of a simple Web Bean may not be an abstract class, unless the simple Web Bean is a Web Beans
decorator.

If the implementation class of a simple Web Bean is annotated with both the @Interceptor and @Decorator stereotypes, a
DefinitionException is thrown by the Web Bean manager at initialization time.

Note that multiple simple Web Beans may share the same implementation class. This occurs when Web Beans are defined
using XML. Only one simple Web Bean per implementation class may be defined using annotations.

3.2.1. Which Java classes are simple Web Beans?

A top-level Java class is a simple Web Bean if it meets the following conditions:

JSR-299 Public Review 23

• It is not a parameterized type.

• It is not a non-static inner class.

• It is a concrete class, or is annotated @Decorator.

• It is not annotated with any of the following annotations:

• the JPA @Entity annotation,

• the EJB component-defining annotations.

• It does not implement any of the following interfaces:

• javax.servlet.Servlet

• javax.servlet.Filter

• javax.servlet.ServletContextListener

• javax.servlet.HttpSessionListener

• javax.servlet.ServletRequestListener

• javax.ejb.EnterpriseBean

• It does not extend javax.faces.component.UIComponent.

• It is not declared as an EJB bean class in ejb-jar.xml.

• It is not declared as a JPA entity in orm.xml.

• It has an appropriate constructor—either:

• the class has a constructor with no parameters, or

• the class declares a constructor annotated @Initializer.

All Java classes that meet these conditions are simple Web Beans and thus no special declaration is required to define a
simple Web Bean. Additional simple Web Beans for the class may be defined using XML, by specifying the class in web-

beans.xml.

3.2.2. API types of a simple Web Bean

The set of API types for a simple Web Bean contains the implementation class, every superclass and all interfaces it imple-
ments directly or indirectly.

Note the additional restrictions upon API types of Web Beans with normal scope types defined in Section 5.4.1,
“Unproxyable API types”.

3.2.3. Declaring a simple Web Bean using annotations

A simple Web Bean with a constructor that takes no parameters does not require any special annotations. The following
classes are Web Beans:

public class Shop { .. }

class PaymentProcessorImpl implements PaymentProcessor { ... }

An implementation class may also specify a scope type, name, deployment type, stereotypes and/or binding annotations:

@ConversationScoped @Current
public class ShoppingCart { ... }

Web Bean implementation

JSR-299 Public Review 24

A simple Web Bean may extend another simple Web Bean:

@Named("loginAction")
public class LoginAction { ... }

@Mock
@Named("loginAction")
public class MockLoginAction extends LoginAction { ... }

The second Web Bean is a "mock object" that overrides the implementation of LoginAction when running in an embedded
EJB Lite based integration testing environment.

3.2.4. Declaring a simple Web Bean using XML

Simple Web Beans may be declared in web-beans.xml using the implementation class name.

<myapp:Order>
<deployment:Staging/>
<ConversationScoped/>
...

</myapp:Order>

A simple Web Bean may even be declared at any injection point declared in XML, as defined in Section 10.7, “Inline Web
Bean declarations”, in which case no binding types are specified.

If the implementation class of a simple Web Bean defined in XML is a parameterized type or a non-static inner class, a
DefinitionException is thrown by the Web Bean manager at initialization time.

If the implementation class of a simple Web Bean defined in XML is an abstract class, and the simple Web Bean is not a
Web Beans decorator, a DefinitionException is thrown by the Web Bean manager at initialization time.

If the implementation class of a simple Web Bean defined in XML is annotated @Interceptor, then the Web Bean must
be explicitly declared as an interceptor in XML, as defined in Section 7.2.5.2, “Declaring a Web Beans interceptor using
XML”. If a simple Web Bean defined in XML has an implementation class annotated @Interceptor and is not declared as
an interceptor in XML, a DefinitionExceptionis thrown by the Web Bean manager at initialization time.

If the implementation class of a simple Web Bean defined in XML is annotated @Decorator, then the Web Bean must be
explicitly declared as a decorator in XML, as defined in Section 7.3.2, “Declaring a decorator using XML”. If a simple
Web Bean defined in XML has an implementation class annotated @Decorator and is not declared as a decorator in XML,
a DefinitionException is thrown by the Web Bean manager at initialization time.

3.2.5. Web Bean constructors

When the Web Bean manager instantiates a simple Web Bean, it calls the Web Bean constructor. The Web Bean con-
structor is a constructor of the implementation class.

The application may call Web Bean constructors directly. However, if the application directly instantiates the Web Bean,
no parameters are passed to the constructor by the Web Bean manager; the returned object is not bound to any context; no
dependencies are injected by the Web Bean manager; and the lifecycle of the new instance is not managed by the Web
Bean manager.

3.2.5.1. Declaring a Web Bean constructor using annotations.

The Web Bean constructor may be identified by annotating the constructor @Initializer.

@SessionScoped
public class ShoppingCart {

private User customer;

@Initializer
public ShoppingCart(User customer) {

this.customer = customer;
}

public ShoppingCart(ShoppingCart original) {
this.customer = original.customer;

Web Bean implementation

JSR-299 Public Review 25

}

ShoppingCart() {}

...

}

@ConversationScoped
public class Order {

private Product product;
private User customer;

@Initializer
public Order(@Selected Product product, User customer) {

this.product = product;
this.customer = customer;

}

public Order(Order original) {
this.product = original.product;
this.customer = original.customer;

}

Order() {}

...

}

If a simple Web Bean defined using annotations does not explicitly declare a constructor using @Initializer, the con-
structor that accepts no parameters is the Web Bean constructor.

If a simple Web Bean defined using annotations has more than one constructor annotated @Initializer, a DefinitionEx-

ception is thrown by the Web Bean manager at initialization time.

If a Web Bean constructor has a parameter annotated @Disposes, or @Observes, a DefinitionException is thrown by the
Web Bean manager at initialization time.

3.2.5.2. Declaring a Web Bean constructor using XML.

For a simple Web Bean defined using XML, the Web Bean constructor may be specified by listing the parameter types of
the constructer, in order, as direct children of the element that declares the Web Bean.

<myapp:ShoppingCart>
<ConversationScoped/>
<myapp:User/>

</myapp:ShoppingCart>

<myapp:Order>
<ConversationScoped/>
<myapp:Product>

<Selected/>
</myapp:Product>
<myapp:User/>

</myapp:Order>

If a simple Web Bean defined using XML does not explicitly declare constructor parameters in XML, the constructor that
accepts no parameters is the Web Bean constructor.

If a simple Web Bean declared in XML does not have a constructor with the parameter types declared in XML, a Nonex-

istentConstructorException is thrown by the Web Bean manager at initialization time.

When a Web Bean constructor is declared in XML, the Web Bean manager ignores binding annotations applied to Java
constructor parameters.

Open issue: should it default to use the constructor annotated @Initializer?

3.2.5.3. Web Bean constructor parameters

If the Web Bean constructor has parameters, the Web Bean manager calls the method Manager.getInstanceByType()

Web Bean implementation

JSR-299 Public Review 26

defined in Section 5.9, “Instance resolution” to determine a value for each parameter and calls the constructor with those
parameter values.

3.2.6. Specializing a simple Web Bean

If an implementation class of a simple Web Bean X defined using annotations is annotated @Specializes, then the imple-
mentation class of X must directly extend the implementation class of another simple Web Bean Y defined using annota-
tions. Then:

• X inherits all binding types of Y, and

• if Y has a name, X has the same name as Y.

We say that X directly specializes Y, and we can be certain that Y will never be instantiated or called by the Web Bean
manager if X is enabled.

If the implementation class of X does not directly extend the implementation class of another simple Web Bean, a Defini-

tionException is thrown by the Web Bean manager at initialization time.

For example, MockLoginAction directly specializes LoginAction:

public class LoginAction { ... }

@Mock @Specializes
public class MockLoginAction extends LoginAction { ... }

If a simple Web Bean X defined in XML declares the <Specializes> element, then the implementation class of X must be
the implementation class of another simple Web Bean Y defined using annotations. Then:

• X inherits all binding types of Y, and

• if Y has a name, X has the same name as Y.

We say that X directly specializes Y, and we can be certain that Y will never be instantiated or called by the Web Bean
manager if X is enabled.

3.2.7. Default name for a simple Web Bean

The default name for a simple Web Bean is the unqualified class name of the Web Bean implementation class, after con-
verting the first character to lower case.

For example, if the implementation class is named ProductList, the default Web Bean name is productList.

3.3. Enterprise Web Beans

An enterprise Web Bean is a Web Bean that is implemented by an EJB 3-style session bean. The bean class is called the
implementation class of the enterprise Web Bean.

An EJB stateless session bean must belong to the @Dependent pseudo-scope. An EJB singleton bean must belong to either
the @ApplicationScoped scope or to the @Dependent pseudo-scope. If an enterprise Web Bean specifies an illegal scope, a
DefinitionException is thrown by the Web Bean manager at initialization time.

Note that multiple enterprise Web Beans may share the same implementation class. This occurs when Web Beans are
defined using XML. Only one Web Bean per implementation class may be defined using annotations.

However, in any deployment, there may be at most one most specialized enabled enterprise Web Bean for any particular
EJB enterprise bean. Therefore, for each distinct EJB name in a module, there is at most one Web Bean that may be called
at runtime. If there is more than one most specialized enabled enterprise Web Bean for a particular EJB enterprise bean, a
DeploymentException is thrown by the Web Bean manager at initialization time. This restriction exists because the Web
Bean manager is not aware of the binding types of the client injection point when the Web Bean manager intercepts the li-
fecycle callbacks of the EJB bean, as defined in Section 6.9, “Lifecycle of EJB beans”.

Web Bean implementation

JSR-299 Public Review 27

If the implementation class of an enterprise Web Bean is annotated @Interceptor or @Decorator, a DefinitionException

is thrown by the Web Bean manager at initialization time.

3.3.1. Which EJBs are enterprise Web Beans?

All session beans exposing an EJB 3.x client view and declared via an EJB component defining annotation on the EJB
bean class are Web Beans, and thus no special declaration is required. Additional enterprise Web Beans for these EJBs
may be defined using XML, by specifying the bean class in web-beans.xml.

All session beans exposing an EJB 3.x client view and declared in ejb-jar.xml are also Web Beans. Additional enterprise
Web Beans for these EJBs may be defined using XML, by specifying the bean class and EJB name in web-beans.xml.

However, when a plugin Web Bean manager is used in a Java EE 5 environment, support for injection of enterprise Web
Beans that implement multiple local interfaces and have any scope other than @Dependent is not required.

3.3.2. API types of an enterprise Web Bean

The set of API types for an enterprise Web Bean contains all local interfaces of the bean that do not have wildcard type
parameters or type variables and their superinterfaces. If the EJB bean has a bean class local view and the bean class is not
a parameterized type, the set of API types contains the bean class and all superclasses. In addition, java.lang.Object is
an API type of every enterprise Web Bean.

Remote interfaces are not included in the set of API types.

3.3.3. Declaring an enterprise Web Bean using annotations

An enterprise Web Bean does not require any special annotations. The following EJBs are Web Beans:

@Singleton
class Shop { .. }

@Stateless
class PaymentProcessorImpl implements PaymentProcessor { ... }

An implementation class may also specify a scope type, name, deployment type, stereotypes and/or binding annotations:

@ConversationScoped @Stateful @Current @Model
public class ShoppingCart { ... }

An enterprise Web Bean implementation class may extend another Web Bean implementation class:

@Stateless
@Named("loginAction")
public class LoginActionImpl implements LoginAction { ... }

@Stateless
@Mock
@Named("loginAction")
public class MockLoginActionImpl extends LoginActionImpl { ... }

3.3.4. Declaring an enterprise Web Bean using XML

Enterprise Web Beans may be declared in web-beans.xml using the bean class name (for EJBs defined using a compon-
ent-defining annotation) or bean class and EJB name (for EJBs defined in ejb-jar.xml).

<myapp:OrderBean>
<deployment:Staging/>
<ConversationScoped/>
...

</myapp:OrderBean>

<myapp:OrderBean ejbName="RushOrder">
<myapp:Rush/>
<ConversationScoped/>
...

Web Bean implementation

JSR-299 Public Review 28

</myapp:OrderBean>

The ejbName attribute declares the EJB name of an EJB defined in ejb-jar.xml.

Enterprise Web Beans may not be message-driven beans. If an enterprise Web Bean declared in XML is a message-driven
bean, a DefinitionException is thrown by the Web Bean manager at initialization time.

3.3.5. Web Bean remove methods

When the Web Bean manager destroys an enterprise Web Bean instance that is an EJB stateful session bean, it calls the
Web Bean remove method. The Web Bean remove method is a remove method of the EJB stateful session bean.

If an enterprise Web Bean that is a stateful session bean does not have a Web Bean remove method, it must be scoped
@Dependent and the application must explicitly destroy every instance of the Web Bean by calling an EJB remove method
before the Web Bean manager attempts to destroy the instance as specified by Section 9.4.2, “Dependent object destruc-
tion”.

If an enterprise Web Bean that is a stateful session bean and does not have a Web Bean remove method declares any scope
other than @Dependent, a DefinitionException is thrown by the Web Bean manager at initialization time.

If an instance of an enterprise Web Bean that is a stateful session bean and does not have a Web Bean remove method is
not explicitly destroyed by the application before the Web Bean manager attempts to destroy the instance, an Unremove-

dException is thrown by the Web Bean manager, as defined in Section 6.4, “Lifecycle of stateful session enterprise Web
beans”.

If an enterprise Web Bean is a stateful session bean:

• If the scope is @Dependent, the application may call any EJB remove method of an instance of the enterprise Web
Bean, but then no parameters will be passed to the method by the Web Bean manager.

• Otherwise, the application may not directly call any EJB remove method of any instance of the enterprise Web Bean.

If the application directly calls an EJB remove method of an instance of an enterprise Web Bean that is a stateful session
bean and declares any scope other than @Dependent, an UnsupportedOperationException is thrown.

If the application directly calls an EJB remove method of an instance of an enterprise Web Bean that is a stateful session
bean and has scope @Dependent, the Web Bean manager ignores the instance when instead of destroying it, as defined in
Section 6.4, “Lifecycle of stateful session enterprise Web beans”.

Open issue: what restrictions exist upon invoking dependencies from the remove method?

3.3.5.1. Declaring a Web Bean remove method using annotations.

The Web Bean remove method may be identified by annotating an EJB remove method @Destructor.

@ConversationScoped @Stateful
public class Order {

@Destructor @Remove
public remove(Log log)
{

...
}

}

If an enterprise Web Bean defined using annotations does not explicitly declare a Web Bean remove method using
@Destructor, and exactly one remove method that accepts no parameters exists, then that remove method is the Web Bean
remove method. Otherwise, if no remove method that accepts no parameters exists, or if multiple remove methods that ac-
cept no parameters exist, the enterprise Web Bean has no Web Bean remove method.

If an enterprise Web Bean defined using annotations has more than one method annotated @Destructor, a DefinitionEx-

ception is thrown by the Web Bean manager at initialization time.

If an enterprise Web Bean defined using annotations has a method annotated @Destructor, and that method is not an EJB

Web Bean implementation

JSR-299 Public Review 29

remove method, a DefinitionException is thrown by the Web Bean manager at initialization time.

If a Web Bean remove method is annotated @Initializer or @Produces, has a parameter annotated @Disposes, or has a
parameter annotated @Observes, a DefinitionException is thrown by the Web Bean manager at initialization time.

3.3.5.2. Declaring a Web Bean remove method using XML.

For an enterprise Web Bean defined using XML, the Web Bean remove method may be specified using the name of the re-
move method, and the <Destructor> element.

<myapp:Order>
<ConversationScoped/>

<myapp:remove>
<Destructor/>
<myfwk:Log/>

</myapp:remove>

</myapp:ShoppingCart>

If an enterprise Web Bean defined using XML does not explicitly declare a Web Bean remove method using XML, and
exactly one remove method that accepts no parameters exists, then that remove method is the Web Bean remove method.
Otherwise, if no remove method that accepts no parameters exists, or if multiple remove methods that accept no paramet-
ers exist, the enterprise Web Bean has no Web Bean remove method.

If the implementation class of an enterprise Web Bean declared in XML does not have an EJB remove method with the
name and parameter types declared in XML, a NonexistentMethodException is thrown by the Web Bean manager at ini-
tialization time.

If an enterprise Web Bean defined using XML declares more than one Web Bean remove method in XML, a Defini-

tionException is thrown by the Web Bean manager at initialization time.

When a Web Bean remove method is declared in XML, the Web Bean manager ignores binding annotations applied to the
Java method parameters.

Open issue: should it default to use the remove method annotated @Destructor?

3.3.5.3. Remove method parameters

If the Web Bean remove method has parameters, the Web Bean manager calls Manager.getInstanceByType() to determ-
ine a value for each parameter and calls the method with these parameter values.

3.3.6. Specializing an enterprise Web Bean

If an implementation class of an enterprise Web Bean X defined using annotations is annotated @Specializes, then the
implementation class of X must directly extend the implementation class of another enterprise Web Bean Y defined using
annotations. Then:

• X inherits all binding types of Y, and

• if Y has a name, X has the same name as Y.

Furthermore:

• X must support all local interfaces supported by Y, and

• if Y supports a bean-class local view, X must also support a bean-class local view.

Otherwise, a DefinitionException is thrown by the Web Bean manager at initialization time.

We say that X directly specializes Y, and we can be certain that Y will never be instantiated or called by the Web Bean
manager if X is enabled.

If the implementation class of X does not directly extend the implementation class of another enterprise Web Bean, a
DefinitionException is thrown by the Web Bean manager at initialization time.

Web Bean implementation

JSR-299 Public Review 30

For example, MockLoginActionBean directly specializes LoginActionBean:

@Stateless
public class LoginActionBean implements LoginAction { ... }

@Stateless @Mock @Specializes
public class MockLoginActionBean extends LoginActionBean { ... }

If an enterprise Web Bean X defined in XML declares the <Specializes> element, then the implementation class of X
must be the implementation class of another enterprise Web Bean Y defined using annotations. Then:

• X inherits all binding types of Y, and

• if Y has a name, X has the same name as Y.

We say that X directly specializes Y, and we can be certain that Y will never be instantiated or called by the Web Bean
manager if X is enabled.

3.3.7. Default name for an enterprise Web Bean

The default name for an enterprise Web Bean is the unqualified class name of the Web Bean implementation class, after
converting the first character to lower case.

For example, if the bean class is named ProductList, the default Web Bean name is productList.

3.3.8. Enterprise bean proxies

EJB local object references do not implement all local interfaces of the EJB. A local object reference may not be typecast
to different local interface type, as required by Section 2.2, “Web Bean API types”. Therefore, the Web Bean manager
proxies the local object reference. An enterprise bean proxy implements all local interfaces of the EJB.

When the proxy object is invoked, the proxy obtains the appropriate EJB local object reference from JNDI or using intern-
al container APIs, and delegates the invocation to the local object reference. In either case, the Web Bean manager should
follow the procedure defined in Section 11.4, “EJB lookup”.

When an enterprise Web Bean is invoked via the enterprise bean proxy, the interface returned by SessionCon-

text.getInvokedBusinessInterface() will be specific to the Web Bean manager implementation. Portable applications
should not rely upon the interface returned by this method.

3.4. Producer methods

A Web Beans producer method acts as a source of objects to be injected, where:

• the objects to be injected are not required to be instances of Web Beans, or

• the concrete type of the objects to be injected may vary at runtime, or

• the objects require some custom initialization that is not performed by the Web Bean constructor.

A producer method must be a method of a simple Web Bean implementation class or enterprise Web Bean implementation
class. A producer method may be either static or non-static. If the Web Bean is an enterprise Web Bean, the producer
method must be either a business method of the EJB or a static method of the bean class.

If a producer method sometimes returns a null value, then the producer method must have scope @Dependent. If a producer
method returns a null value at runtime, and the producer method declares any other scope, an IllegalProductException

is thrown by the Web Bean manager. This restriction allows the Web Beans manager to use a client proxy, as defined in
Section 5.4, “Client proxies”.

If the producer method return type is a parameterized type, it must specify actual type parameters for each type parameter.
If a producer method return type contains a wildcard type parameter or type variable, a DefinitionException is thrown
by the Web Bean manager at initialization time.

Web Bean implementation

JSR-299 Public Review 31

The application may call producer methods directly. However, if the application calls a producer method directly, no para-
meters will be passed to the producer method by the Web Beans implementation; the returned object is not bound to any
context; and its lifecycle is not managed by the Web Bean manager.

A Web Bean may declare multiple producer methods.

3.4.1. API types of a producer method

The API types of a producer method depend upon the method return type:

• If the return type is an interface, the set of API types contains the return type, all interfaces it extends directly or indir-
ectly and java.lang.Object.

• If a return type is primitive or is a Java array type, the set of API types contains exactly two types: the method return
type and java.lang.Object.

• If the return type is a class, the set of API types contains the return type, every superclass and all interfaces it imple-
ments directly or indirectly.

Note the additional restrictions upon API types of Web Beans with normal scope types defined in Section 5.4.1,
“Unproxyable API types”.

3.4.2. Declaring a producer method using annotations

A producer method may be declared by annotating a method with the @Produces annotation.

public class Shop {

@Produces PaymentProcessor getPaymentProcessor() { ... }

@Produces List<Product> getProducts() { ... }

}

A producer method may also specify scope, name, deployment type, stereotypes and/or binding annotations.

public class Shop {

@Produces @ApplicationScoped @Catalog @Named("catalog")
List<Product> getProducts() { ... }

}

If a producer method is annotated @Initializer or @Destructor, has a parameter annotated @Disposes, or has a paramet-
er annotated @Observes, a DefinitionException is thrown by the Web Bean manager at initialization time.

3.4.3. Declaring a producer method using XML

For a Web Beans defined in XML, a producer method may be declared using the method name, the <Produces> element,
the return type, and the parameter types of the method:

<myapp:Shop>

<myapp:getProducts>
<Produces>

<ApplicationScoped/>
<util:List>

<myapp:Product/>
<myapp:Catalog/>

</util:List>
<Named>catalog</Named>

</Produces>
</myapp:getProducts>

</myapp:Shop>

When a producer method is declared in XML, the Web Bean manager ignores binding annotations applied to the Java

Web Bean implementation

JSR-299 Public Review 32

method or method parameters.

If the implementation class of a Web Bean declared in XML does not have a method with the name and parameter types
declared in XML, a NonexistentMethodException is thrown by the Web Bean manager at initialization time.

3.4.4. Producer method parameters

If the producer method has parameters, the Web Bean manager calls Manager.getInstanceByType() to determine a value
for each parameter and calls the producer method with those parameter values.

public class OrderFactory {

@Produces @ConversationScoped
public Order createCurrentOrder(@New Order order, @Selected Product product)
{

order.setProduct(product);
return order;

}

}

<myapp:OrderFactory>

<myapp:createCurrentOrder>

<Produces>
<ConversationScoped/>
<myapp:Order/>

</Produces>

<myapp:Order>
<New/>

</myapp:Order>

<myapp:Product>
<myapp:Selected/>

</myapp:Product>

</myapp:createCurrentOrder>

</myapp:OrderFactory>

3.4.5. Specializing a producer method

If a producer method X is annotated @Specializes, then it must be non-static and directly override another producer meth-
od Y. Then:

• X inherits all binding type of Y, and

• if Y has a name, X has the same name as Y.

We say that X directly specializes Y, and we can be certain that Y will never be called by the Web Bean manager if X is
enabled.

If the method is static or does not directly override another producer method, a DefinitionException is thrown by the
Web Bean manager at initialization time.

For example:

@Mock
public class MockShop extends Shop {

@Override @Specializes
@Produces
PaymentProcessor getPaymentProcessor() {

return new MockPaymentProcessor();
}

@Override @Specializes
@Produces
List<Product> getProducts() {

return PRODUCTS;
}

Web Bean implementation

JSR-299 Public Review 33

...

}

3.4.6. Disposal methods

A disposal method allows the application to perform customized cleanup of an object returned by a producer method.

A disposal method must be a method of a simple Web Bean implementation class or enterprise Web Bean implementation
class. A disposal method may be either static or non-static. If the Web Bean is an enterprise Web Bean, the disposal meth-
od must be a business method of the EJB or a static method of the bean class.

A Web Bean may declare multiple disposal methods.

3.4.7. Disposed parameter of a disposal method

Each disposal method must have exactly one disposed parameter, of the same type as the corresponding producer method
return type. When searching for disposal methods for a producer method, the Web Bean manager considers the type and
binding types of the disposed parameter. If a disposed parameter resolves to a producer method according to the typesafe
resolution algorithm, the Web Bean manager must call this method when destroying an instance returned by that producer
method.

If the disposed parameter does not resolve to any producer method according to the typesafe resolution algorithm, an Un-

satisfiedDependencyException is thrown by the Web Bean manager at initialization time.

3.4.8. Declaring a disposal method using annotations

A disposal method may be declared using annotations by annotating a parameter @Disposes. That parameter is the dis-
posed parameter.

public class UserDatabaseEntityManager {

@Produces @ConversationScoped @UserDatabase
public EntityManager create(EntityManagerFactory emf) {

return emf.createEntityManager();
}

public void close(@Disposes @UserDatabase EntityManager em) {
em.close();

}

}

If a method has more than one parameter annotated @Disposes, a DefinitionException is thrown by the Web Bean man-
ager.

If a disposal method is annotated @Produces, @Initializer or @Destructor, or has a parameter annotated @Observes, a
DefinitionException is thrown by the Web Bean manager at initialization time.

3.4.9. Declaring a disposal method using XML

For a Web Beans defined in XML, a disposal method may be declared using the method name, the <Disposes> element,
and the parameter types of the method:

<myfwk:UserDatabaseEntityManager>

<myfwk:create>
<Produces>

<ConversationScoped/>
<jpa:EntityManager>

<myapp:UserDatabase/>
</jpa:EntityManager>

</Produces>
<jpa:EntityManagerFactory/>

</myfwk:create>

<myfwk:close>

Web Bean implementation

JSR-299 Public Review 34

<Disposes>
<jpa:EntityManager>

<myapp:UserDatabase/>
</jpa:EntityManager>

</Disposes>
</myfwk:close>

</mmyfwk:UserDatabaseEntityManager>

When a disposal method is declared in XML, the Web Bean manager ignores binding annotations applied to the Java
method parameters.

If the implementation class of a Web Bean declared in XML does not have a method with the name and parameter types
declared in XML, a NonexistentMethodException is thrown by the Web Bean manager at initialization time.

3.4.10. Disposal method parameters

In addition to the disposed parameter, a disposal method may declare additional parameters, which may also specify bind-
ing types. The Web Bean manager calls Manager.getInstanceByType() to determine a value for each parameter of a dis-
posal method and calls the disposal method with those parameter values.

public void close(@Disposes @UserDatabase EntityManager em, @Logger Log log) { ... }

<myfwk:close>

<Disposes>
<jpa:EntityManager>

<myapp:UserDatabase/>
</jpa:EntityManager>

</Disposes>

<myfwk:Log>
<myfwk:Logger/>

<myfwk:Log>

</myfwk:close>

3.4.11. Disposal method resolution

When searching for disposal methods for a producer method, the Web Bean manager searches for disposal methods which
satisfy the following rules:

• The disposal method must be declared by an enabled Web Bean.

• The disposed parameter must resolve to the producer method, according to the typesafe resolution algorithm.

If there are multiple disposal methods for a producer method, a DefinitionException is thrown by the Web Bean man-
ager at initialization time.

3.4.12. Default name for a producer method

The default name for a producer method is the method name, unless the method follows the JavaBeans property getter
naming convention, in which case the default name is the JavaBeans property name.

For example, this producer method is named products:

public class Shop {

@Produces @Named
public List<Product> getProducts() { ... }

}

This producer method is named paymentProcessor:

public class Shop {

@Produces @Named

Web Bean implementation

JSR-299 Public Review 35

public PaymentProcessor paymentProcessor() { ... }

}

3.5. Producer fields

A Web Beans producer field is a slightly simpler alternative to a producer method.

A producer field must be a field of a simple Web Bean implementation class or enterprise Web Bean implementation
class. A producer field may be either static or non-static.

Open issue: how can the Web Bean manager access a field of the EJB bean class?

If a producer field sometimes contains a null value when accessed, then the producer field must have scope @Dependent. If
a producer method contains a null value at runtime, and the producer field declares any other scope, an IllegalProduc-

tException is thrown by the Web Bean manager. This restriction allows the Web Beans manager to use a client proxy, as
defined in Section 5.4, “Client proxies”.

If the producer field return type is a parameterized type, it must specify actual type parameters for each type parameter. If
a producer field return type contains a wildcard type parameter or type variable, a DefinitionException is thrown by the
Web Bean manager at initialization time.

The application may access producer fields directly. However, if the application accesses a producer field directly, the re-
turned object is not bound to any context; and its lifecycle is not managed by the Web Bean manager.

A Web Bean may declare multiple producer fields.

3.5.1. API types of a producer field

The API types of a producer field depend upon the field type:

• If the field type is an interface, the set of API types contains the field type, all interfaces it extends directly or indirectly
and java.lang.Object.

• If a field type is primitive or is a Java array type, the set of API types contains exactly two types: the field type and
java.lang.Object.

• If the field type is a class, the set of API types contains the field type, every superclass and all interfaces it implements
directly or indirectly.

Note the additional restrictions upon API types of Web Beans with normal scope types defined in Section 5.4.1,
“Unproxyable API types”.

3.5.2. Declaring a producer field using annotations

A producer field may be declared by annotating a field with the @Produces annotation.

public class Shop {

@Produces PaymentProcessor paymentProcessor =;

@Produces List<Product> products =;

}

A producer field may also specify scope, name, deployment type, stereotypes and/or binding annotations.

public class Shop {

@Produces @ApplicationScoped @Catalog @Named("catalog")
List<Product> products =;

}

Web Bean implementation

JSR-299 Public Review 36

3.5.3. Declaring a producer field using XML

For a Web Beans defined in XML, a producer field may be declared using the field name, the <Produces> element, and the
type:

<myapp:Shop>

<myapp:products>
<Produces>

<ApplicationScoped/>
<util:List>

<myapp:Product/>
<myapp:Catalog/>

</util:List>
<Named>catalog</Named>

</Produces>
</myapp:products>

</myapp:Shop>

When a producer field is declared in XML, the Web Bean manager ignores binding annotations applied to the Java field.

If the implementation class of a Web Bean declared in XML does not have a field with the name and type declared in
XML, a NonexistentMethodException is thrown by the Web Bean manager at initialization time.

3.5.4. Default name for a producer field

The default name for a producer field is the field name.

For example, this producer field is named products:

public class Shop {

@Produces @Named
public List<Product> products = ...;

}

3.6. JMS endpoints

Web Beans that send JMS messages must interact with at least two different objects defined by the JMS API:

• to send a message to a queue, the Web Bean must interact with a QueueSession and the QueueSender, or

• to send a message to a topic, the Web Bean must interact with a TopicSession and the TopicPublisher.

A Web Beans JMS endpoint is a Web Bean that represents a JMS queue or topic. JMS endpoints may be declared in web-

beans.xml, and allow direct injection of any of the following JMS objects:

• For a queue, the Queue, QueueConnection, QueueSession and/or QueueSender may be injected.

• For a topic, the Topic, TopicConnection, TopicSession and/or TopicPublisher may be injected.

The lifecycles of the injected objects are managed by the Web Beans manager, and therefore the application need not ex-
plicitly close() any injected JMS object. If the application calls close() on an instance of a JMS endpoint, an Unsup-

portedOperationException is thrown by the Web Bean manager.

For example:

@PaymentProcessor QueueSender paymentSender;
@PaymentProcessor QueueSession paymentSession;

public void sendMessage() {
MapMessage msg = paymentSession.createMapMessage();
...
paymentSender.send(msg);

}

Web Bean implementation

JSR-299 Public Review 37

@Prices TopicPublisher pricePublisher;
@Prices TopicSession priceSession;

public void sendMessage(String price) {
pricePublisher.send(priceSession.createTextMessage(price));

}

A JMS endpoint must belong to the @Dependent pseudo-scope. If a JMS endpoint specifies any other scope, a Defini-

tionException is thrown by the Web Bean manager at initialization time.

Web Beans JMS endpoints must explicitly declare at least one binding type, and must not declare the @Current binding
type.

A JMS endpoint may not declare a Web Beans name.

JMS endpoints are always declared using XML.

3.6.1. API types of a JMS endpoint

The API types of a JMS endpoint depend upon whether it represents a queue or topic.

• If the JMS endpoint represents a queue, the API types are Queue, QueueConnection, QueueSession and QueueSender.

• If the JMS endpoint represents a topic, the API types are Topic, TopicConnection, TopicSession and TopicPublish-

er.

In addition, java.lang.Object is an API type of every JMS endpoint.

3.6.2. Declaring a JMS endpoint using XML

A JMS endpoint may be declared using the <Topic> or <Queue> elements in web-beans.xml. The JNDI name of the queue
or topic must be specified using <destination> and the JNDI name of the JMS connection factory must be specified using
<connectionFactory>.

<Queue>
<destination>java:comp/env/jms/PaymentQueue</destination>
<connectionFactory>java:comp/env/jms/QueueConnectionFactory</connectionFactory>
<myapp:PaymentProcessor/>

</Queue>

<Topic>
<destination>java:comp/env/jms/Prices</destination>
<connectionFactory>java:comp/env/jms/TopicConnectionFactory</connectionFactory>
<myapp:Prices/>

</Topic>

Open issue: do we need to allow specification of transacted and acknowledgeMode for the session?

3.7. Injected fields

An injected field is a non-static, non-final field of a Web Bean implementation class, of a Servlet, or of any EJB session or
message driven bean class.

Injected fields are initialized by the Web Bean manager immediately after instantiation and before any methods of the in-
stance are invoked. The Web Bean implementation calls Manager.getInstanceByType() to determine a value for each in-
jected field.

Any EJB session or message driven bean running in the context of a Web Beans application may declare injected fields
and have those fields injected by the Web Bean manager. The EJB bean is not required to be the implementation class of a
Web Bean to take advantage of this functionality.

Open issue: are injected fields allowed to be declared transient? If so, should they be reinjected after deserialization
(activation)?

Web Bean implementation

JSR-299 Public Review 38

If a field is a producer field or a decorator delegate attribute, it is not an injected field.

3.7.1. Declaring an injected field using annotations

An injected field may be declared by annotating the field with any binding type.

@ConversationScoped
public class Order {

@Selected Product product;
@Current User customer;

}

3.7.2. Declaring an injected field using XML

For a Web Beans defined in XML, an injected field may be declared using the field name and a child element representing
the type of the field:

<myapp:Order>
<ConversationScoped/>

<myapp:product>
<myapp:Product>

<myapp:Selected/>
</myapp:Product/>

</myapp:product>

<myapp:customer>
<myapp:User/>

</myapp:customer>

</myapp:Order>

When an injected field is declared in XML, the Web Bean manager ignores binding annotations applied to the Java field.

If the type element does not declare any binding type, the default binding type @Current is assumed.

If the implementation class of a Web Bean declared in XML does not have a field with the name and type declared in
XML, a NonexistentFieldException is thrown by the Web Bean manager at initialization time.

3.8. Initializer methods

An initializer method is a non-static method of a Web Bean implementation class, of a Servlet, or of any EJB session or
message driven bean class.

Initializer methods are called by the Web Bean manager immediately after injected fields have been initialized by the Web
Bean manager and before any other methods of the instance are invoked.

If the Web Bean is an enterprise Web Bean, the initializer method is not required to be a business method of the session
bean.

Method interceptors are never called when the Web Bean manager calls an initializer method.

A Web Bean implementation class may declare multiple (or zero) initializer methods.

The application may call initializer methods directly, but then no parameters will be passed to the method by the Web
Bean manager.

Any EJB session or message driven bean running in the context of a Web Beans application may declare initializer meth-
ods and have the methods called by the Web Bean manager. The EJB bean is not required to be the implementation class
of a Web Bean to take advantage of this functionality.

3.8.1. Declaring an initializer method using annotations

An initializer method may be declared by annotating the method @Initializer.

Web Bean implementation

JSR-299 Public Review 39

@ConversationScoped
public class Order {

private Product product;
private User customer;

@Initializer
void setProduct(@Selected Product product)
{

this.product = product;
}

@Initializer
public void setCustomer(User customer)
{

this.customer = customer;
}

}

If an initializer method is annotated @Produces or @Destructor, has a parameter annotated @Disposes, or has a parameter
annotated @Observes, a DefinitionException is thrown by the Web Bean manager at initialization time.

3.8.2. Declaring an initializer method using XML

For a Web Beans defined in XML, an initializer method may be declared using the method name, the <Initializer> ele-
ment and the parameter types of the method.

<myapp:Order>
<ConversationScoped/>

<myapp:setProduct>
<Initializer/>
<myapp:Product>

<myapp:Selected/>
</myapp:Product>

</myapp:setOrder>

<myapp:setCustomer>
<Initializer/>
<myapp:User/>

</myapp:setCustomer>

</myapp:Order>

When an initializer method is declared in XML, the Web Bean manager ignores binding annotations applied to the Java
method parameters.

If the implementation class of a Web Bean declared in XML does not have a method with the name and parameter types
declared in XML, a NonexistentMethodException is thrown by the Web Bean manager at initialization time.

3.8.3. Initializer method parameters

An initializer method may have any number of parameters. If the initializer method has parameters, the Web Bean man-
ager calls Manager.getInstanceByType() to determine a value for each parameter and calls the initializer method with
those parameter values.

3.9. The @New binding type

Sometimes, the scope of a Web Bean is inconvenient for a particular usecase. One solution to this problem is to obtain an
independent instance of the Web Bean implementation and inject it as a dependent object of some other Web Bean, or
even bind it to a different context using a producer method.

When the built-in binding type @New is applied to an injection point, a Web Bean is implicitly defined with:

• scope @Dependent,

• deployment type @Standard,

Web Bean implementation

JSR-299 Public Review 40

• @New as the only binding annotation,

• no Web Bean name,

• no stereotypes, and such that

• the implementation class is the declared type of the injection point.

If the parameter type satisfies the definition of a simple Web Bean implementation class, Section 3.2.1, “Which Java
classes are simple Web Beans?”, then the Web Bean is a simple Web Bean. If the parameter type satisfies the definition of
an enterprise Web Bean implementation class, Section 3.3.1, “Which EJBs are enterprise Web Beans?”, then the Web
Bean is an enterprise Web Bean.

Furthermore, this Web Bean:

• has the same Web Bean constructor, Web Bean remove method, initializer methods and injected fields as a Web Bean
defined using annotations—that is, it has any Web Bean constructor, Web Bean remove method, initializer method or
injected field declared by annotations that appear on the implementation class,

• has no observer methods, producer methods or fields or disposal methods,

• has the same interceptors as a Web Bean defined using annotations—that is, it has all the interceptor binding types de-
clared by annotations that appear on the implementation class, and

• has no decorators.

The @New annotation or <New> element may be applied to any field of a Web Bean implementation class or to any paramet-
er of a producer method, initializer method, disposal method, Web Bean remove method or Web Bean constructor where
the type of the field or parameter is a concrete Java type which satisfies the requirements of a simple Web Bean imple-
mentation class or enterprise Web Bean implementation class.

@Produces @RequestScoped
Payment createPayment(@New Payment payment, Order order) {

payment.setOrder(order);
return payment;

}

<myapp:createPayment>

<Produces>
<RequestScoped/>
<myapp:Payment/>

</Produces>

<myapp:Payment>
<New/>

</myapp:Payment>

<myapp:Order/>

</myapp:createPayment>

In this example, the Payment is created as a dependent object of the producer method Web Bean and is bound to the re-
quest context when returned by the method. It is now the current instance of the producer method Web Bean. When the re-
quest context ends, the Payment is passed to the corresponding disposal method (if any), and then finally destroyed when
all dependent objects of the producer method are destroyed.

The @New annotation and <New> element may not appear in conjunction with any other binding type. They may not be ap-
plied to a field or method parameter of a type which does not satisfy the definition of a simple Web Bean implementation
class or enterprise Web Bean implementation class.

If the @New binding type appears in conjunction with some other binding type, or is specified for a field or parameter of a
type which does not satisfy the definition of a simple Web Bean implementation class or enterprise Web Bean implement-
ation class, a DefinitionException is thrown by the Web Bean manager at initialization time.

No Web Bean defined using annotations or XML may explicitly declare @New as a binding type.

Web Bean implementation

JSR-299 Public Review 41

3.10. Support for Common Annotations

In addition to the capabilities defined by this specification, simple Web Beans also support certain functionality defined by
the Common Annotations for the Java Platform and Enterprise JavaBeans specifications.

The following functionality is provided by the Web Bean manager when annotations are applied to the implementation
class of a simple Web Bean:

• dependency injection via @EJB, @PersistenceContext and @Resource

• JNDI lookup of resource references declared via @Resource and @Resources

• @PostConstruct and @PreDestroy callbacks

• interception, as defined in javax.interceptor

@PersistenceContext(type=EXTENDED) is not supported for simple Web Beans.

Open issue: should @PrePassivate and @PostActivate be supported for simple Web Beans?

Open issue: what restrictions exist upon invoking dependencies from @PreDestroy?

Open issue: we need an additional API in Java EE to delegate EE injection back to the Java EE container for simple Web
Beans.

Support for @EJB, @PersistenceContext, @Resource and @Resources is not required when a plugin Web Bean manager is
used in a Java EE 5 environment.

This simple Web Bean makes use of annotations defined by the Common Annotations and EJB specifications:

@SessionScoped
@Interceptors(MyTransactionInterceptor.class)
public class ShoppingCart {

private User customer;
private Order order;
private @Resource Connection connection;
private @EJB PaymentProcessor paymentProcessor;
private @PersistenceContext(type=EXTENDED) EntityManager entityManager;

@Initializer
ShoppingCart(User customer) {

this.customer = customer;
}

@PostConstruct
void retrieveOrder() {

order = entityManager.find(Order.class, customer.getId());
}

...

@PreDestroy
void updateOrder() {

entityManager.merge(order);
}

}

Of course, enterprise Web Beans may take advantage of all functionality defined by the EJB specification.

3.11. The Bean object for a Web Bean

The abstract class Bean provides everything the Web Bean manager needs to manage instances of a certain Web Bean.

public abstract class Bean<T>
implements Contextual<T> {

private final Manager manager;

protected Bean(Manager manager) {
this.manager=manager;

Web Bean implementation

JSR-299 Public Review 42

}

protected Manager getManager() {
return manager;

}

public abstract Set<Type> getTypes();
public abstract Set<Annotation> getBindingTypes();
public abstract Class<? extends Annotation> getScopeType();
public abstract Class<? extends Annotation> getDeploymentType();
public abstract String getName();

public abstract boolean isSerializable();
public abstract boolean isNullable();

}

Note that concrete subclasses of Bean must implement the operations defined by the Contextual interface defined in Sec-
tion 9.1, “The Contextual interface”.

An instance of Bean exists for every enabled Web Bean in a deployment.

An application or third party framework may add support for new kinds of Web Beans beyond those defined by the Web
Beans specification (simple Web Beans, enterprise Web Beans, producer methods and fields and JMS endpoints) by ex-
tending Bean and registering Web Beans with the Web Bean manager, using the mechanism defined in Section 11.2, “Web
Bean registration”.

Web Bean implementation

JSR-299 Public Review 43

Chapter 4. Inheritance, specialization and realization

Multiple Web Beans may share the same implementation. The implementation of one Web Bean may be shared by a
second Web Bean in two different ways:

• The implementation of the second Web Bean may extend the implementation of the first Web Bean using Java inherit-
ance

• The second Web Bean may be declared to have the same implementation using XML

In either case, there are three possible reasons for reusing the implementation of the first Web Bean. Either:

• The second Web Bean specializes the first Web Bean in a particular deployment scenario. In that deployment, the
second Web Bean completely replaces the first, fulfilling the same role in the system.

• The implementation of the first Web Bean is generic, and was designed to fulfill multiple roles in the system. The
second Web Bean realizes one of these roles. Other Web Beans may also share the implementation of the first Web
Bean, and fulfill other roles.

• The second Web Bean is simply reusing the Java implementation, and otherwise bears no relation to the first Web
Bean. The first Web Bean may not even have been designed for use as a contextual object.

The three cases are quite dissimilar.

By default, Java implementation reuse is assumed. In this case, the producer, disposal and observer methods of the first
Web Bean are not inherited by the second Web Bean.

The Web Bean developer may explicitly specify that the second Web Bean specializes or realizes the first through use of
an annotation.

In the case of specialization, the specialized Web Bean receives all invocations, including producer, disposal and observer
method invocations that would have been received by the first Web Bean. In a particular deployment, there may be only
one Web Bean that fulfills the specific role. The specialized Web Bean inherits, and may not override, the binding types
and name of the first Web Bean.

In the case of realization, the second Web Bean inherits the producer, disposal and observer methods of the generic Web
Bean, but in this case, the inherited members have a distinct identity, since the second Web Bean has its own role in the
system, distinct from all the other Web Beans that share the implementation of the generic Web Bean. The second Web
Bean must declare a distinct set of binding types and name (if any).

However, in all three cases, the inheritance of type-level metadata is controlled via use of the Java @Inherited meta-
annotation.

4.1. Inheritance of type-level metadata

Suppose a class X is extended directly or indirectly by the implementation class of a simple or enterprise Web Bean Y.

• If X is annotated with a Web Beans binding type, stereotype or interceptor binding type Z then Y inherits the annota-
tion if and only if Z declares the @Inherited meta-annotation and neither Y nor any intermediate class that is a sub-
class of X and a superclass of Y declares an annotation of type Z.

• If X is annotated with a Web Beans scope type Z then Y inherits the annotation if and only if Z declares the
@Inherited meta-annotation and neither Y nor any intermediate class that is a subclass of X and a superclass of Y de-
clares a scope type.

• If X is annotated with a Web Beans deployment type Z then Y inherits the annotation if and only if Z declares the
@Inherited meta-annotation and neither Y nor any intermediate class that is a subclass of X and a superclass of Y de-
clares a deployment type.

Scope types and deployment types explicitly declared by and inherited from the class X take precedence over default scope
types and deployment types declared by stereotypes.

JSR-299 Public Review 44

Suppose a class X is the implementation class of a simple or enterprise Web Bean Y declared using XML.

• If X is annotated with a Web Beans binding type, stereotype or interceptor binding type Z then Y inherits the annota-
tion if and only if Z declares the @Inherited meta-annotation and Y does not explicitly declare an annotation of type Z
using XML.

• If X is annotated with a Web Beans scope type Z then Y inherits the annotation if and only if Z declares the
@Inherited meta-annotation and Y does not explicitly declare a scope type using XML.

• If X is annotated with a Web Beans deployment type Z then Y inherits the annotation if and only if Z declares the
@Inherited meta-annotation and Y does not explicitly declare a deployment type using XML.

Scope types and deployment types explicitly declared by and inherited from the class X take precedence over default scope
types and deployment types declared by stereotypes.

For annotations defined by the Web Bean specification:

• all built-in scope types are declare @Inherited,

• all built-in stereotypes are declared @Inherited,

• no built-in binding type is declared @Inherited, and

• the built-in deployment type is not declared @Inherited.

For annotations defined by the application or third-party extensions, it is recommended that:

• scope types should be declared @Inherited,

• binding types should not be declared @Inherited,

• deployment types should not be declared @Inherited,

• interceptor binding types should be declared @Inherited, and

• stereotypes may be declared @Inherited, depending upon the semantics of the stereotype.

However, in special circumstances, these recommendations may be ignored.

4.2. Inheritance of member-level metadata

Suppose a class X is extended directly or indirectly by the implementation class of a simple or enterprise Web Bean Y.

• If X declares an injected field x then Y inherits x.

• If X declares an initializer method, @PostConstruct method or @PreDestroy method x() then Y inherits x() if and
only if neither Y nor any intermediate class that is a subclass of X and a superclass of Y overrides the method x().

• If X declares a non-static method x() annotated with an interceptor binding type Z then Y inherits the binding if and
only if neither Y nor any intermediate class that is a subclass of X and a superclass of Y overrides the method x().

• If X declares a non-static producer, disposal, or observer method x() then Y does not inherit this method unless Y is
explicitly declared to specialize or realize X.

• If X declares a non-static producer field x then Y does not inherit this field unless Y is explicitly declared to specialize
or realize X.

• If Y is a decorator and X declares a delegate attribute x then Y inherits x if and only if neither Y nor any intermediate
class that is a subclass of X and a superclass of Y defines a delegate attribute.

Suppose a class X is the implementation class of a simple or enterprise Web Bean Y declared using XML.

Inheritance, specialization and realization

JSR-299 Public Review 45

• If X declares an injected field x then Y inherits x, unless Y explicitly declares x using XML.

• If X declares an initializer method, @PostConstruct method or @PreDestroy method x() then Y inherits x(), unless Y
explicitly declares x() using XML.

• If X declares a non-static method x() annotated with an interceptor binding type Z then Y inherits the binding, unless
Y explicitly declares x() using XML.

• If X declares a non-static producer, disposal, or observer method x() then Y does not inherit this method, unless Y is
explicitly declared to specialize or realize X.

• If X declares a non-static producer field x then Y does not inherit this method, unless Y is explicitly declared to spe-
cialize or realize X.

• If Y is a decorator and X declares a delegate attribute x then Y inherits x, unless Y explicitly declares a delegate attrib-
ute using XML.

4.3. Specialization

If two Web Beans both support a certain API type, and share at least one binding type, then they are both eligible for injec-
tion to any injection point with that declared type and binding type. The Web Bean manager will choose the Web Bean
with the highest priority enabled deployment type.

Consider the following Web Beans:

@Current @Asynchronous
public class AsynchronousService implements Service{

...
}

@Mock @Current
public class MockAsynchronousService extends AsynchronousService {

...
}

Suppose that the deployment type @Mock is enabled:

<WebBeans>
<Deploy>

<Standard/>
<Production/>
<myfwk:Mock/>

</Deploy>
</WebBeans>

Then the following attribute will receive an instance of MockAsynchronousService:

@Current Service service;

However, if the Web Bean with the lower priority deployment type declares a binding annotation that is not declared by
the Web Bean with the higher priority deployment type, then the Web Bean with the higher priority deployment type will
not be eligible for injection to an injection point with that binding type.

Therefore, the following attribute will receive an instance of AsynchronousService even though the deployment type
@Mock is enabled:

@Current @Asynchronous Service service;

This is a useful feature in many circumstances, however, it is not always what is intended by the developer.

The only way one Web Bean can completely override a lower-priority Web Bean at all injection points is if it implements
all the API types and declares all the binding types of the lower-priority Web Bean. However, if the lower-priority Web
Bean declares a producer method, then even this is not enough to ensure that the lower-priority Web Bean is never called!

To help prevent developer error, the first Web Bean may:

Inheritance, specialization and realization

JSR-299 Public Review 46

• directly extend the implementation class of the lower-priority Web Bean, in the case of a Web Bean declared using an-
notations, or

• declare the same implementation class as the lower-priority Web Bean, in the case of a Web Bean declared using
XML, or

• directly override the lower-priority producer method, in the case of a producer method Web Bean, and then

explicitly declare that it specializes the lower-priority Web Bean.

4.3.1. Using specialization

A Web Bean declared using annotations may declare that it specializes a lower-priority Web Bean using the @Specializes

annotation. A Web Bean declared using XML may declare that it specializes a lower-priority Web Bean using the
<Specializes> element.

Then the first Web Bean will inherit the binding types and name of the lower-priority Web Bean:

• The binding types of a Web Bean X that specializes a lower-priority Web Bean Y include all binding types of Y, to-
gether with all binding types declared explicitly by X.

• If a Web Bean X specializes a lower-priority Web Bean Y with a name, the name of X is the same as the name of Y. If
X declares a name explicitly, a DefinitionException is thrown by the Web Bean manager at initialization time.

For example, the following Web Bean would have the inherited binding types @Current and @Asynchronous:

@Mock @Specializes
public class MockAsynchronousService extends AsynchronousService {

...
}

If AsynchronousService declared a name:

@Current @Asynchronous @Named("asyncService")
public class AsynchronousService implements Service{

...
}

Then the name would also automatically be inherited by MockAsynchronousService.

When an enabled Web Bean specializes a lower-priority Web Bean, we can be certain that the lower-priority Web Bean is
never instantiated or called by the Web Bean manager. Even if the lower-priority Web Bean defines a producer method,
the method will be called upon an instance of the first Web Bean.

Specialization applies only to simple Web Beans, as defined in Section 3.2.6, “Specializing a simple Web Bean”, enter-
prise Web Beans, as defined in Section 3.3.6, “Specializing an enterprise Web Bean” and producer methods, as defined in
Section 3.4.5, “Specializing a producer method”.

4.3.2. Direct and indirect specialization

The @Specializes annotation or <Specializes> XML element is used to indicate that one Web Bean directly specializes
another Web Bean.

Formally, a Web Bean X is said to specialize another Web Bean Y if either:

• X directly specializes Y, or

• a Web Bean Z exists, such that X directly specializes Z and Z specializes Y.

If X specializes Y but does not directly specialize Y, we say that X indirectly specializes Y.

If, in a particular deployment, a Web Bean with a certain API type and set of binding types is not specialized by any other
enabled Web Bean, we call it the most specialized Web Bean for that combination of type and binding types in that deploy-
ment.

Inheritance, specialization and realization

JSR-299 Public Review 47

Any non-static producer methods (see Section 3.4, “Producer methods”), producer fields (see Section 3.5, “Producer
fields”), disposal methods (see Section 3.4.6, “Disposal methods”) or observer methods (see Section 8.5, “Observer meth-
ods”) of any Web Bean are invoked upon an instance of the most specialized enabled Web Bean that specializes the Web
Bean, as defined by Section 6.6, “Lifecycle of producer methods”, Section 6.7, “Lifecycle of producer fields” and Sec-
tion 8.4, “Observer invocation”.

4.3.3. Inconsistent specialization

If, in a particular deployment, either

• some enabled Web Bean X specializes another enabled Web Bean Y and X does not have a higher precedence than Y,
or

• more than one enabled Web Bean directly specializes the same Web Bean

we say that inconsistent specialization exists, and an InconsistentSpecializationException is thrown by the Web Bean
manager at initialization time.

4.4. Realization

Third-party frameworks and libraries often define generic classes that are intended for reuse by the application.

Consider the following generic class that defines a producer method, a disposal method and an observer method:

@ApplicationScoped
public abstract class PersistenceContext {

protected abstract EntityManager createEntityManager();

@Produces @ConversationScoped EntityManager getEntityManager() {
return createEntityManager();

}

void closeEntityManager(@Disposes EntityManager em) {
em.close();

}

void beforeDirectJdbcQuery(@Observes @Before DirectJdbcQuery event, EntityManager em) {
em.flush();

}

}

This class is intended to fulfill multiple roles in the system—for every database in use by the application, there should be a
Web Bean that extends this class and provides an implementation of createEntityManager(). However, each Web Bean
that extends PersistenceContext needs to define a different set of binding types for the producer and disposal methods.
Furthermore, the observer method should be inherited by all Web Beans that extend this class.

However, it is not necessary to force all subclasses to override the producer and disposal methods just in order to override
the binding types.

Instead, any Web Bean that extends a generic class may:

• directly extend the generic class, in the case of a Web Bean declared using annotations, or

• declare that the generic class is the implementation class, in the case of a Web Bean declared using XML, and then

explicitly declare that it realizes the generic class.

4.4.1. Using realization

A Web Bean declared using annotations may declare that it realizes a generic class by annotating the implementation class
with the @Realizes annotation. A Web Bean declared using XML may declare that it realizes a generic class using the
<Realizes> element.

Inheritance, specialization and realization

JSR-299 Public Review 48

Then the first Web Bean will inherit producer, disposal and observer methods declared by the generic class:

• If a generic class Y declares a non-static producer method or field with a certain combination of scope, stereotypes,
binding types and interceptor bindings, then every Web Bean X that realizes Y also has a producer method or field
with the same scope, stereotypes and interceptor bindings. The binding types for this inherited producer method or
field consist of all binding types declared by the producer method or field of Y, excluding all binding types of Y, to-
gether with the binding types declared explicitly by X. The deployment type of the inherited producer method or field
is the deployment type of X.

• If a generic class Y declares a non-static disposal method with a disposed parameter with a certain combination of
binding types, then every Web Bean X that realizes Y also has a disposal method. The binding types of the disposed
parameter of this inherited disposal method consist of all binding types declared by the disposed parameter of the dis-
posal method of Y, excluding all binding types of Y, together with the binding types declared explicitly by X.

• If a generic class Y declares a non-static observer method with an event parameter with a certain combination of event
binding types, then every Web Bean X that realizes Y also has an observer method. The event binding types of the
event parameter of this inherited observer method consist of all event binding types declared by the event parameter of
the observer method of Y.

Open issue: do we need a way to inherit the binding types of X to the event binding types of the observer method?

For example, the following Web Bean would have a producer method with binding type @CustomerDatabase, scope type
@ConversationScoped and deployment type @Staging, a disposal method with binding type @CustomerDatabase and an
observer method with event type DirectJdbcQuery and event binding type @Before:

@Staging @CustomerDatabase @Realizes
public class CustomerDatabasePersistenceContext extends PersistenceContext {

@Override protected EntityManager createEntityManager() { ... }

}

Realization applies only to simple Web Beans and enterprise Web Beans.

Inheritance, specialization and realization

JSR-299 Public Review 49

Chapter 5. Lookup, dependency injection and EL resolution

Web Beans defines the following injection points:

• Any injected field of a Web Bean implementation class

• Any parameter of a Web Bean constructor, Web Bean remove method, initializer method, producer method or disposal
method

• Any parameter of an observer method, except for the event parameter

Web Bean instances may also be obtained by evaluating EL expressions which refer to the Web Bean by name.

In general, an API type or Web Bean name does not uniquely identify a Web Bean. When resolving a Web Bean at an in-
jection point, the Web Bean manager considers API type, binding annotations and Web Bean deployment type precedence.
When resolving a Web Bean name in EL, the Web Bean manager considers name and deployment type precedence. This
allows Web Bean developers to decouple type from implementation.

The Web Bean manager is required to ensure that any injected reference to a Web Bean instance may be cast to any API
type of the Web Bean.

5.1. Unsatisfied and ambiguous dependencies

An unsatisfied dependency exists at an injection point when no enabled Web Bean has the API type and binding types de-
clared by the injection point.

An ambiguous dependency exists at an injection point when in the set of enabled Web Beans with the API type and bind-
ing types declared by the injection point there exists no unique Web Bean with a higher precedence than all other Web
Beans in the set.

The Web Bean manager must validate all injection points of all enabled Web Beans at initialization time to ensure that
there are no unsatisfied or ambiguous dependencies. If an unsatisfied or ambiguous dependency exists, an UnsatisfiedDe-

pendencyException or AmbiguousDependencyException is thrown by the Web Bean manager at initialization time, as
defined in Section 5.9, “Instance resolution”.

5.2. Primitive types and null values

For the purposes of typesafe resolution and dependency injection, primitive types and their corresponding wrapper types in
the package java.lang are considered identical and assignable. If necessary, the Web Bean manager performs boxing or
unboxing when it injects a value to a field or parameter of primitive or wrapper type.

However, if an injection point of primitive type resolves to a Web Bean that may be null, such as a producer method with a
non-primitive return type or a producer field with a non-primitive type, a NullableDependencyException is thrown by the
Web Bean manager at initialization time.

The method Bean.isNullable() may be used to detect if a Web Bean has null values.

5.3. Injected reference validity

References to Web Bean instances are valid only for a certain period of time. The application should not invoke a method
of an invalid reference.

The validity of an injected reference depends upon whether the scope of the injected Web Bean is a normal scope or a
pseudo-scope.

• Any reference to a Web Bean with a normal scope is valid as long as the application maintains a hard reference to it.
However, it may only be invoked when the context associated with the normal scope is active. If it is invoked when the
context is inactive, a ContextNotActiveException is thrown by the Web Bean manager.

• Any reference to a Web Bean with a pseudo-scope (such as @Dependent) is valid until the Web Bean instance to which

JSR-299 Public Review 50

it refers is destroyed. It may be invoked even if the context associated with the pseudo-scope is not active. If the ap-
plication invokes a method of a reference to an instance that has already been destroyed, the behavior is undefined.

5.4. Client proxies

Clients of a Web Bean with a normal scope type, as defined in Section 9.3, “Normal scopes and pseudo-scopes”, do not
hold a direct reference to the instance of the Web Bean (the object returned by Bean.create()). Instead, their reference is
to a client proxy object. A client proxy implements/extends all API types of the Web Bean and delegates all method calls
to the current instance (as defined in Section 9.3, “Normal scopes and pseudo-scopes”) of the Web Bean.

There are a number of reasons for this indirection:

• The Web Bean manager must guarantee that when any valid injected reference to a Web Bean of normal scope is in-
voked, the invocation is always processed by the current instance of the injected Web Bean. In certain scenarios, for
example if a request scoped Web Bean is injected into a session scoped Web Bean, or into a Servlet, this rule requires
an indirect reference. (Note that the @Dependent pseudo-scope is not a normal scope.)

• The Web Bean manager may use a client proxy when creating Web Beans with circular dependencies. This is only ne-
cessary when the circular dependencies are initialized via a simple Web Bean constructor or producer method paramet-
er. (Web Beans with scope @Dependent never have circular dependencies.)

• Finally, client proxies are serializable, even when the Web Bean itself is not. Therefore the Web Bean manager must
use a client proxy whenever a Web Bean with normal scope is injected into a Web Bean with a passivating scope, as
defined in Section 9.5, “Passivating scopes and serialization”. (On the other hand, Web Beans with scope @Dependent

must be serialized along with their client.)

Client proxies are never required for a Web Bean whose scope is a pseudo-scope such as @Dependent.

All client proxies must be serializable.

Client proxies may be shared between multiple injection points. For example, a particular Web Bean manager might in-
stantiate exactly one client proxy object per Web Bean. (However, this strategy is not required by the Web Beans specific-
ation.)

5.4.1. Unproxyable API types

Certain legal API types cannot be proxied by the Web Bean manager:

• classes without a non-private constructor with no parameters,

• classes which are declared final or have final methods,

• primitive types,

• and array types.

If an injection point whose declared type cannot be proxied by the Web Bean manager resolves to a Web Bean with a nor-
mal scope type, an UnproxyableDependencyException is thrown by the Web Bean manager at initialization time.

5.4.2. Client proxy invocation

Every time a method of the Web Bean is invoked upon a client proxy, the client proxy must:

• obtain the context object by calling Manager.getContext(), passing the Web Bean scope, then

• obtain an instance of the Web Bean by calling Context.get(), passing the Bean instance representing the Web Bean
and true as the value of the create parameter, and

• invoke the method upon the Web Bean.

The behavior of all methods declared by java.lang.Object, except for toString(), is undefined for a client proxy. Port-

Lookup, dependency injection and EL resolution

JSR-299 Public Review 51

able applications should not invoke any method declared by java.lang.Object, except for toString(), on a client proxy.

5.5. The default binding type at injection points

If an injection point declares no binding type, the default binding type @Current is assumed.

The following are equivalent:

@ConversationScoped
public class Order {

private Product product;
private User customer;

@Initializer
public void init(@Selected Product product, User customer)
{

this.product = product;
this.customer = customer;

}

}

@ConversationScoped
public class Order {

private Product product;
private User customer;

@Initializer
public void init(@Selected Product product, @Current User customer)
{

this.product = product;
this.customer = customer;

}

}

As are the following:

<myapp:Order>
<ConversationScoped/>

<myapp:init>
<Initializer/>
<myapp:Product>

<myapp:Selected/>
</myapp:Product>
<myapp:User/>

</myapp:init>

</myapp:Order>

<myapp:Order>
<ConversationScoped/>

<myapp:init>
<Initializer/>
<myapp:Product>

<myapp:Selected/>
</myapp:Product>
<myapp:User>

<Current/>
</myapp:User>

</myapp:init>

</myapp:Order>

The following definitions are equivalent:

public class Payment {

public Payment(BigDecimal amount) { ... }

@Initializer Payment(Order order) {
this(order.getAmount();

}

Lookup, dependency injection and EL resolution

JSR-299 Public Review 52

}

public class Payment {

public Payment(BigDecimal amount) { ... }

@Initializer Payment(@Current Order order) {
this(order.getAmount();

}

}

As are the following:

<myapp:Payment>
<myapp:Order/>

</myapp:Payment>

<myapp:Payment>
<myapp:Order>

<Current/>
</myapp:Order>

</myapp:Payment>

5.6. Generic type literals

The Java language does not currently support a literal syntax for parameterized types. Therefore, Web Beans provides the
following helper class to allow inline instantiation of an object that represents a parameterized type.

public abstract class TypeLiteral<T> {

protected TypeLiteral() {
if (!(getClass().getSuperclass() == TypeLiteral.class)) {

throw new RuntimeException("Not a direct subclass of TypeLiteral");
}
if (!(getClass().getGenericSuperclass() instanceof ParameterizedType)) {

throw new RuntimeException("Missing type parameter in TypeLiteral");
}

}

public final Type getType() {
ParameterizedType parameterized = (ParameterizedType) getClass()

.getGenericSuperclass();
return parameterized.getActualTypeArguments()[0];

}

@SuppressWarnings("unchecked")
public final Class<T> getRawType() {

Type type = getType();
if (type instanceof Class) {

return (Class<T>) type;
} else if (type instanceof ParameterizedType) {

return (Class<T>) ((ParameterizedType) type).getRawType();
} else if (type instanceof GenericArrayType) {

return (Class<T>) Object[].class;
} else {

throw new RuntimeException("Illegal type parameter in TypeLiteral");
}

}

}

An object that represents any parameterized type may be obtained by subclassing TypeLiteral.

TypeLiteral type = new TypeLiteral<List<String>>() {};

This object may be passed to Web Beans APIs that perform typesafe resolution.

5.7. Annotation type literals

The Java language does not currently support a literal syntax for inline instantiation of annotation values. Therefore, Web
Beans provides the following helper class to allow inline instantiation of annotation type instances.

Lookup, dependency injection and EL resolution

JSR-299 Public Review 53

public abstract class AnnotationLiteral<T extends Annotation>
implements Annotation {

protected AnnotationLiteral() {
if (!(getClass().getSuperclass() == AnnotationLiteral.class)) {

throw new RuntimeException(
"Not a direct subclass of AnnotationLiteral");

}
if (!(getClass().getGenericSuperclass() instanceof ParameterizedType)) {

throw new RuntimeException(
"Missing type parameter in AnnotationLiteral");

}
}

@SuppressWarnings("unchecked")
public final Class<T> annotationType() {

ParameterizedType parameterized = (ParameterizedType) getClass()
.getGenericSuperclass();

return (Class<T>) parameterized.getActualTypeArguments()[0];
}

}

An instance of an annotation type may be obtained by subclassing AnnotationLiteral.

public abstract class PayByBinding
extends AnnotationLiteral<PayBy>
implements PayBy {}

PayBy payby = new PayByBinding() { public value() { return CHEQUE; } };

Annotation values are often passed to Web Beans APIs that perform typesafe resolution.

5.8. The Manager object

Occasionally, the application might need to obtain a Web Bean instance via programmatic API call. This is useful when
the type or binding types vary dynamically—in generic framework code, for example. Thus, the Manager interface
provides operations for resolving a Web Bean by type or name. The Web Bean manager provides an implementation of
this interface to the application.

The Web Bean manager provides a built-in Web Bean with API type javax.webbeans.Manager, scope @Dependent, de-
ployment type @Standard and binding type @Current. Thus, any Web Bean may obtain an instance of Manager by inject-
ing it:

@Current Manager manager;

Alternatively, the application may obtain the Manager object from JNDI. The Web Bean manager must register an instance
of Manager with name java:comp/Manager in JNDI at initialization time.

A contextual instance of a Web Bean may be obtained by calling Manager.getInstance(), passing the Bean object repres-
enting the Web Bean.

public interface Manager {

public <T> T getInstance(Bean<T> bean);

...

}

Manager.getInstance() returns a Web Bean instance or client proxy.

• If the given Bean instance represents a Web Bean with a normal scope, as defined in Section 9.3, “Normal scopes and
pseudo-scopes”, Manager.getInstance() must return a client proxy.

• Otherwise, if the Bean instance represents a Web Bean with a pseudo-scope, as defined in Section 9.3, “Normal scopes
and pseudo-scopes”, Manager.getInstance() must:

• obtain the context object by calling Manager.getContext(), passing the Web Bean scope, then

Lookup, dependency injection and EL resolution

JSR-299 Public Review 54

• obtain an instance of the Web Bean by calling Context.get(), passing the Bean instance representing the Web
Bean and true as the value of the create parameter, and return it.

5.9. Instance resolution

The Manager.getInstanceByType() methods obtain a contextual instance of a Web Bean:

public interface Manager {

public <T> T getInstanceByType(Class<T> type, Annotation... bindings);
public <T> T getInstanceByType(TypeLiteral<T> type, Annotation... bindings);

...

}

The first argument is a Web Bean API type, the remaining arguments are instances of binding annotation types.

For example:

PaymentProcessor pp = manager.getInstanceByType(PaymentProcessor.class,
synchronousAnnotation,
payByAnnotation);

If no binding annotations are passed to getInstanceByType(), the default binding type @Current is assumed.

If a parameterized type with a type parameter or wildcard is passed to resolveByType(), an IllegalArgumentException

is thrown.

If two instances of the same binding type are passed to getInstanceByType(), a DuplicateBindingTypeException is
thrown.

If an instance of an annotation that is not a binding type is passed to getInstanceByType(), an IllegalArgumentExcep-

tion is thrown.

The getInstanceByType() method must:

• Identify the Web Bean by calling Manager.resolveByType(), passing the type and binding annotations of the injection
point.

• If resolveByType() did not return a Web Bean, throw an UnsatisfiedDependencyException or, if resolveByType()
returned more than one Web Bean, throw an AmbiguousDependencyException.

• If the Web Bean has a normal scope type and the type cannot be proxied by the Web Bean manager, as defined in Sec-
tion 5.4.1, “Unproxyable API types”, throw an UnproxyableDependencyException.

• Otherwise, obtain an instance of the Web Bean (or a client proxy) by calling Manager.getInstance(), passing the
Bean object representing the Web Bean, and return it.

The getInstanceByType() method is called whenever the Web Bean manager injects a Web Bean instance into another
Web Bean.

5.9.1. Dynamic lookup

In certain situations, injection is not the most convenient way to obtain a reference to a Web Bean instance. For example, it
may not be used when the API type or and/binding types vary dynamically at runtime. In these situations, the application
may directly call Manager.getInstanceByType().

When the application calls getInstanceByType() to obtain a Web Bean instance dynamically, it may need to pass in-
stances of the binding annotation types.

The helper class javax.webbeans.AnnotationLiteral makes it easier to implement binding annotation types:

public class SynchronousBinding

Lookup, dependency injection and EL resolution

JSR-299 Public Review 55

extends AnnotationLiteral<Synchronous>
implements Synchronous {}

public abstract class PayByBinding
extends AnnotationLiteral<PayBy>
implements PayBy {}

Then the application may easily instantiate instances of the binding type:

PaymentProcessor pp = manager.getInstanceByType(PaymentProcessor.class,
new SynchronousBinding(),
new PayByBinding() { public PaymentMethod value() { return CHEQUE; } });

Parameterized API types may be specified by passing a subclass of TypeLiteral:

PaymentProcessor pp = manager.getInstanceByType(new TypeLiteral<List<String>>() {},
new WishListBinding());

5.9.2. Typesafe resolution algorithm

The process of matching a Web Bean to an injection point is called typesafe resolution. The Web Bean manager considers
API type, binding annotations, and Web Bean precedences when resolving a Web Bean to be injected to an injection point.

Typesafe resolution usually occurs at Web Bean manager initialization time, allowing the Web Bean manager to warn the
user if any enabled Web Beans have unsatisfied or ambiguous dependencies.

The resolveByType() method of the Manager interface returns the result of the typesafe resolution.

public interface Manager {

public <T> Set<Bean<T>> resolveByType(Class<T> apiType, Annotation... bindings);
public <T> Set<Bean<T>> resolveByType(TypeLiteral<T> apiType, Annotation... bindings);

...

}

If no binding annotations are passed to resolveByType(), the default binding annotation @Current is assumed.

If a parameterized type with a type parameter or wildcard is passed to resolveByType(), an IllegalArgumentException

is thrown.

If two instances of the same binding type are passed to resolveByType(), a DuplicateBindingTypeException is thrown.

If an instance of an annotation that is not a binding type is passed to resolveByType(), an IllegalArgumentException is
thrown.

The following algorithm must be used by the Web Bean manager when resolving a Web Bean by type:

• First, the Web Bean manager identifies the set of matching enabled Web Beans which have the given API type. For
this purpose, primitive types are considered to be identical to their corresponding wrapper types in java.lang, array
types are considered identical only if their element types are identical and parameterized types are considered identical
only if both the type and all type parameters are identical.

• Next, the Web Bean manager considers the given binding annotations. If no binding annotations were passed to re-

solveByType(), the Web Bean manager assumes the binding annotation @Current. The Web Bean manager narrows
the set of matching Web Beans to just those where for each given binding annotation, the Web Bean declares a binding
annotation with (a) the same type and (b) the same annotation member value for each member which is not annotated
@NonBinding (see Section 5.9.2.1, “Binding annotations with members”).

• Next, the Web Bean manager examines the deployment types of the matching Web Beans, as defined in Section 2.5.7,
“Deployment type precedence”, and returns the set of Web Beans with the highest precedence deployment type that
occurs in the set. If there are no matching Web Beans, an empty set is returned.

If resolveByType() is called with the API type java.lang.Object and no binding annotations, it returns the set of all en-
abled Web Beans.

Lookup, dependency injection and EL resolution

JSR-299 Public Review 56

5.9.2.1. Binding annotations with members

According to the algorithm above, binding annotations with members are supported:

@PayBy(CHEQUE)
class ChequePaymentProcessor implements PaymentProcessor { ... }

@PayBy(CREDIT_CARD)
class CreditCardPaymentProcessor implements PaymentProcessor { ... }

Then only ChequePaymentProcessor is a candidate for injection to the following attribute:

@PayBy(CHEQUE) PaymentProcessor paymentProcessor;

On the other hand, only CreditCardPaymentProcessor is a candidate for injection to this attribute:

@PayBy(CREDIT_CARD) PaymentProcessor paymentProcessor;

The Web Bean manager calls the equals() method of the annotation member value to compare values.

An annotation member may be excluded from consideration using the @NonBinding annotation.

@BindingType
@Retention(RUNTIME)
@Target({METHOD, FIELD, PARAMETER, TYPE})
public @interface PayBy {

PaymentMethod value();
@NonBinding String comment();

}

Array-valued or annotation-values members of a binding annotation must be annotated @NonBinding. If an array-valued or
annotation-valued member of a binding annotation is not annotated @NonBinding, a DefinitionException is thrown by
the Web Bean manager at initialization time.

5.9.2.2. Multiple binding annotations

According to the algorithm above, a Web Bean implementation class or producer method or field may declare multiple
binding annotations:

@Synchronous @PayBy(CHEQUE)
class ChequePaymentProcessor implements PaymentProcessor { ... }

Then ChequePaymentProcessor would be considered a candidate for injection into any of the following attributes:

@PayBy(CHEQUE) PaymentProcessor paymentProcessor;

@Synchronous PaymentProcessor paymentProcessor;

@Synchronous @PayBy(CHEQUE) PaymentProcessor paymentProcessor;

A Web Bean must declare all of the binding annotations that are specified at the injection point to be considered a candid-
ate for injection.

5.10. Injection point metadata

Occasionally, a component with scope @Dependent needs to access metadata relating to the object into which it is injected.
For example, the following producer method creates injectable Loggers. The log category of a Logger depends upon the
class of the object into which it is injected:

@Produces Logger createLogger(InjectionPoint injectionPoint) {
return Logger.getLogger(injectionPoint.getMember().getDeclaringClass().getName());

}

Lookup, dependency injection and EL resolution

JSR-299 Public Review 57

The interface InjectionPoint provides access to metadata about the injection point into which a dependent object is in-
jected.

public interface InjectionPoint {
public Type getType();
public Set<Annotation> getBindingTypes();
public Object getInstance();
public Bean<?> getBean();
public Member getMember():
public <T extends Annotation> T getAnnotation(Class<T> annotationType);
public Annotation[] getAnnotations();
public boolean isAnnotationPresent(Class<? extends Annotation> annotationType);

}

• The getInstance() method returns the Web Bean instance into which the dependent object was injected. If getIn-

stance() is invoked while the instance is being created or destroyed, an IllegalStateException is thrown.

• The getBean() method returns the Bean object representing the Web Bean that defines the injection point.

• The getType() and getBindingTypes() methods return the declared type and binding types of the injection point. If
the injection point is declared in XML, the type and binding types are determined according to Section 10.8,
“Specifying API types and binding types”.

• The getMember() method returns the Field object in the case of field injection, the Method object in the case of meth-
od parameter injection or the Constructor object in the case of constructor parameter injection.

• The getAnnotation() and getAnnotations() methods return annotations of the field in the case of field injection, or
annotations of the parameter in the case of method parameter or constructor parameter injection. getAnnotation() re-
turns a null value if no annotation of the given type exists at the injection point.

The Web Bean manager must provide a Web Bean with deployment type @Standard, scope @Dependent, API type Injec-

tionPoint and binding type @Current.

• Whenever a @Dependent scoped object is instantiated by the Web Bean manager for injection into a second Web Bean,
any injection point of type InjectionPoint and binding type @Current receives an instance of InjectionPoint that
represents the injection point of the second Web Bean.

• Otherwise, when a @Dependent scoped object is instantiated by the Web Bean manager to receive a producer method,
producer field, observer or disposal method invocation, during EL expression evaluation, or as a result of a direct call
to the Manager API, any injection point of type InjectionPoint and binding type @Current receives a null value.

Open issue: should we say that an exception is thrown by the Web Bean manager, instead of just passing a null value?

If a Web Bean that declares any scope other than @Dependent has an injection point of type InjectionPoint and binding
type @Current, a DefinitionException is thrown by the Web Bean manager at initialization time.

If an object that is not a Web Bean has an injection point of type InjectionPoint and binding type @Current, a Defini-

tionException is thrown by the Web Bean manager at initialization time.

5.11. EL name resolution

The Web Bean manager provides a Unified EL ELResolver. When this resolver is called with a null base object, it calls
the method Manager.getInstanceByName() to obtain an instance of the Web Bean named in the EL expression:

public interface Manager {

public Object getInstanceByName(String name);

...

}

For example:

Object pp = manager.getInstanceByName("paymentProcessor");

Lookup, dependency injection and EL resolution

JSR-299 Public Review 58

The getInstanceByName() method must:

• Identify the Web Bean by calling Manager.resolveByName(), passing the name.

• If resolveByName() returned an empty set, return a null value.

• Otherwise, if resolveByName() returned more than one Web Bean, throw an AmbiguousDependencyException.

• Otherwise, if exactly one Web Bean was returned, obtain an instance of the Web Bean by calling Man-

ager.getInstance(), passing the Bean instance representing the Web Bean.

For each distinct name that appears in the EL expression, getInstanceByName() must be called at most once. Even if a
name appears more than once in the same expression, the Web Bean manager may not call getInstanceByName() multiple
times with that name. This restriction ensures that there is a unique instance of each Web Bean with scope @Dependent in
any EL evaluation.

Open issue: Web Beans supports qualified names. The ELResolver implements support for qualified names in Unified EL.
How exactly does this work?

5.11.1. Name resolution algorithm

The process of matching a Web Bean to a name used in EL is called name resolution. Since there is no typing information
available in EL, the Web Bean manager may consider only Web Bean names.

The resolveByName() method of the Manager interface performs name resolution.

public interface Manager {

public Set<Bean<?>> resolveByName(String name);

...

}

The following algorithm must be used by the Web Bean manager when resolving a Web Bean by name:

• The Web Bean manager identifies the set of matching enabled Web Beans which have the given name.

• Next, the Web Bean manager examines the deployment types of the matching Web Beans, as defined in Section 2.5.7,
“Deployment type precedence”, and returns the set of Web Beans with the highest precedence deployment type that
occurs in the set. If there are no matching Web Beans, an empty set is returned.

The name resolution algorithm usually occurs at runtime.

5.11.2. Integration with Unified EL

In a Servlet or JSF application, the Web Bean manager must register the ELResolver with the web container.

In a JSF environment, the Web Bean manager calls Application.addELResolver() at initialization time (or provides a
faces-config.xml file with an <el-resolver> element).

If necessary, the Web Bean manager will register the ELResolver directly with the JSP engine by calling JspFact-

ory.getDefaultFactory(), JspFactory.getJspApplicationContext() and finally JspApplicationCon-

text.addELResolver() at initialization time.

Lookup, dependency injection and EL resolution

JSR-299 Public Review 59

Chapter 6. Web Bean lifecycle

The lifecycle of a Web Bean instance is managed by the Web Beans context object for the Web Bean's scope. The context
implementation collaborates with the Web Bean manager via the Context and Bean interfaces to create and destroy Web
Bean instances.

The actual mechanics of Web Bean creation and destruction varies according to what kind of Web Bean it is:

• To create an EJB, the Web Bean manager obtains an instance from the EJB container

• To create a producer method Web Bean instance, the Web Bean manager calls the producer method

• To create a producer field Web Bean instance, the Web Bean manager retrieves the current value of the field

• To create a simple Web Bean, the Web Bean manager calls the Web Bean constructor

• To destroy an EJB, the Web Bean manager calls the Web Bean remove method

• To destroy a producer method Web Bean instance, the Web Bean manager calls the disposal method, if any

When the Web Bean manager injects dependencies or resolves EL names, and there is no existing instance of the Web
Bean cached by the context object for the Web Bean scope, the context object automatically creates a new instance of the
Web Bean. When a Web Beans context is destroyed, the context object automatically destroys any instances associated
with that context.

6.1. Creation

The Bean.create() method is responsible for creating new instances of a Web Bean.

public abstract class Bean<T> {

public abstract T create();

...

}

The create() method performs the following tasks:

• obtains an instance of the Web Bean,

• creates the interceptor and decorator stacks and binds them to the instance,

• injects any dependencies,

• sets any initial field values defined in XML, and

• calls the @PostConstruct method, if necessary.

If any exception occurs while creating an instance, the exception is rethrown by the create() method. If the exception is a
checked exception, it is wrapped and rethrown as an (unchecked) CreationException.

6.2. Destruction

The Bean.destroy() method is responsible for destroying instances of a Web Bean.

public abstract class Bean<T> {

public abstract void destroy(T instance);

...

}

JSR-299 Public Review 60

The destroy() method performs the following tasks:

• calls the Web Bean remove method or disposal method, if necessary,

• calls the @PreDestroy method, if necessary, and

• destroys all dependent objects of the instance, as defined in Section 9.4.2, “Dependent object destruction”.

If any exception occurs while destroying an instance, the exception is caught by the destroy() method.

If the application invokes a Web Bean instance after it has been destroyed, the behavior is undefined.

6.3. Lifecycle of simple Web Beans

An instance of a simple Web Bean is completely under the control of the Web Bean manager.

When the create() method is called:

• First, the Web Bean manager calls the Web Bean constructor to obtain an instance of the Web Bean. For each con-
structor parameter, the Web Bean manager passes the object returned by Manager.getInstanceByType(). The man-
ager is permitted to return an instance of a manager-generated subclass of the Web Bean implementation class, allow-
ing interceptor and decorator bindings.

• Next, the Web Bean manager initializes the values of any attributes annotated @EJB, @PersistenceContext or
@Resource, as defined in the Common Annotations for the Java Platform and EJB 3.0 specifications.

• Next, the Web Bean manager initializes the values of all injected fields. For each injected field, the Web Bean manager
sets the value to the object returned by Manager.getInstanceByType().

• Next, the Web Bean manager initializes the values of any fields with initial values specified in XML, as defined in
Section 10.3.5, “Field initial value declarations”.

• Next, the Web Bean manager calls all initializer methods. For each initializer method parameter, the Web Bean man-
ager passes the object returned by Manager.getInstanceByType().

• Next, the Web Bean manager builds the interceptor and decorator stacks for the instance as defined in Section 7.2.10,
“Interceptor stack creation” and Section 7.3.8, “Decorator stack creation” and binds them to the instance.

• Finally, the Web Bean manager calls the @PostConstruct method, if any.

When the destroy() method is called:

• The Web Bean manager calls the @PreDestroy method, if any.

• Finally, the Web Bean manager destroys dependent objects.

6.4. Lifecycle of stateful session enterprise Web beans

The Web Bean manager and the EJB container share control of instances of enterprise Web Beans that are stateful session
beans.

When the create() method is called, the Web Bean manager creates and returns an enterprise bean proxy, as defined in
Section 3.3.8, “Enterprise bean proxies”.

When the destroy() method is called, the Web Bean manager calls the Web Bean remove method upon the proxy. For
each remove method parameter, the Web Bean manager passes the object returned by Manager.getInstanceByType(). If
the enterprise Web Bean has no Web Bean remove method, the Web Bean manager throws an UnremovedException. If the
underlying EJB was already destroyed by direct invocation of a remove method by the application, the Web Bean manager
ignores the instance, and is not required to call any remove method.

Open issue: this exception will just be caught and logged by the Web Bean manager!

Web Bean lifecycle

JSR-299 Public Review 61

Note that the Web Bean manager intercepts the @PostConstruct and @PreDestroy callbacks of any EJB and performs ad-
ditional work, as defined in Section 6.9, “Lifecycle of EJB beans”

6.5. Lifecycle of stateless session and singleton enterprise Web Beans

The EJB container always controls the lifecycle of all stateless session and singleton bean instances. However, for in-
stances of enterprise Web Beans, the Web Bean manager controls the lifecycle of the EJB local object reference.

When the create() method is called, the Web Bean manager creates and returns an enterprise bean proxy, as defined in
Section 3.3.8, “Enterprise bean proxies”.

When the destroy() method is called, the Web Bean manager simply discards the proxy and all EJB local object refer-
ences.

Note that the Web Bean manager intercepts the @PostConstruct and @PreDestroy callbacks and performs additional
work, as defined in Section 6.9, “Lifecycle of EJB beans”

6.6. Lifecycle of producer methods

Any Java object may be returned by a producer method. It is not required that the returned object be an instance of another
Web Bean. However, if the returned object is not an instance of another Web Bean, the Web Bean manager will provide
none of the following capabilities:

• injection of other Web Beans

• lifecycle callbacks

• method and lifecycle interception

In the following example, the producer method returns instances of other Web Beans:

@SessionScoped
public class PaymentStrategyProducer {

private PaymentStrategyType paymentStrategyType;

public void setPaymentStrategyType(PaymentStrategyType type) {
paymentStrategyType = type;

}

@Produces PaymentStrategy getPaymentStrategy(@CreditCard PaymentStrategy creditCard,
@Cheque PaymentStrategy cheque,
@Online PaymentStrategy online) {

switch (paymentStrategyType) {
case CREDIT_CARD: return creditCard;
case CHEQUE: return cheque;
case ONLINE: return online;
default: throw new IllegalStateException();

}
}

}

In this case, the object returned by the producer method has already had its dependencies injected, receives lifecycle call-
backs and has interception enabled.

But in this example, the returned objects are not Web Bean instances:

@SessionScoped
public class PaymentStrategyProducer {

private PaymentStrategyType paymentStrategyType;

public void setPaymentStrategyType(PaymentStrategyType type) {
paymentStrategyType = type;

}

@Produces PaymentStrategy getPaymentStrategy() {
switch (paymentStrategyType) {

case CREDIT_CARD: return new CreditCardPaymentStrategy();

Web Bean lifecycle

JSR-299 Public Review 62

case CHEQUE: return new ChequePaymentStrategy();
case ONLINE: return new OnlinePaymentStrategy();
default: throw new IllegalStateException();

}
}

}

In this case, the object returned by the producer method will not have any dependencies injected by the Web Bean man-
ager, receives no lifecycle callbacks and does not have interception enabled.

When the create() method is called, the Web Bean manager must invoke the producer method, passing the object re-
turned by Manager.getInstanceByType() to each parameter.

• If the producer method is static, the Web Bean manager must invoke the method.

• Otherwise, if the producer method is non-static, the Web Bean manager must:

• obtain the Bean object for the most specialized Web Bean that specializes the Web Bean which declares the produ-
cer method, and then

• obtain an instance of the most specialized Web Bean, by calling Manager.getInstance(), passing the Bean object
representing the Web Bean, and

• invoke the producer method upon this instance.

The return value of the producer method, after method interception completes, is the new Web Bean instance to be re-
turned by Bean.create().

If the producer method returns a null value and the producer method Web Bean has the scope @Dependent, the create()

method returns a null value.

Otherwise, if the producer method returns a null value, and the scope of the producer method is not @Dependent, the cre-

ate() method throws an IllegalProductException.

When the destroy() method is called, and if there is a disposal method for this producer method, the Web Bean manager
must invoke the disposal method, passing the instance given to destroy() to the disposed parameter, and the object re-
turned by Manager.getInstanceByType() to each of the other parameters.

• If the disposal method is static, the Web Bean manager must invoke the method.

• Otherwise, if the disposal method is non-static, the Web Bean manager must:

• obtain the Bean object for the most specialized Web Bean that specializes the Web Bean which declares the dispos-
al method, and then

• obtain an instance of the most specialized Web Bean, by calling Manager.getInstance(), passing the Bean object
representing the Web Bean, and

• invoke the disposal method upon this instance.

Finally, the Web Bean manager destroys dependent objects.

6.7. Lifecycle of producer fields

Any Java object may be the value of a producer field. It is not required that the returned object be an instance of another
Web Bean. However, if the object is not an instance of another Web Bean, the Web Bean manager will provide none of the
following capabilities:

• injection of other Web Beans

• lifecycle callbacks

Web Bean lifecycle

JSR-299 Public Review 63

• method and lifecycle interception

In the following example, the producer field contains an instance of another Web Bean:

@SessionScoped
public class PaymentStrategyProducer {

@Produces PaymentStrategy paymentStrategy;

@CreditCard PaymentStrategy creditCard;
@Cheque PaymentStrategy cheque;
@Online PaymentStrategy online;

public void setPaymentStrategyType(PaymentStrategyType type) {
switch (paymentStrategyType) {

case CREDIT_CARD: paymentStrategy = creditCard;
case CHEQUE: paymentStrategy = cheque;
case ONLINE: paymentStrategy = online;
default: throw new IllegalArgmentException();

}
}

}

In this case, the object contained by the producer field has already had its dependencies injected, received lifecycle call-
backs and has interception enabled.

But in this example, the returned objects are not Web Bean instances:

@SessionScoped
public class PaymentStrategyProducer {

@Produces PaymentStrategy paymentStrategy;

public void setPaymentStrategyType(PaymentStrategyType type) {
switch (paymentStrategyType) {

case CREDIT_CARD: paymentStrategy = new CreditCardPaymentStrategy();
case CHEQUE: paymentStrategy = new ChequePaymentStrategy();
case ONLINE: paymentStrategy = new OnlinePaymentStrategy();
default: throw new IllegalArgmentException();

}
}

}

In this case, the object contained by the producer field does not have any dependencies injected by the Web Bean manager,
receives no lifecycle callbacks and does not have interception enabled.

When the create() method is called, the Web Bean manager must access the producer field to obtain the current value of
the field.

• If the producer method is static, the Web Bean manager must access the field value.

• Otherwise, if the producer method is non-static, the Web Bean manager must:

• obtain the Bean object for the most specialized Web Bean that specializes the Web Bean which declares the produ-
cer field, and then

• obtain an instance of the most specialized Web Bean, by calling Manager.getInstance(), passing the Bean object
representing the Web Bean, and

• access the field value of this instance.

The value of the producer field is the new Web Bean instance to be returned by Bean.create().

If the producer field contains a null value and the producer field Web Bean has the scope @Dependent, the create() meth-
od returns a null value.

Otherwise, if the producer field contains a null value, and the scope of the producer method is not @Dependent, the cre-

ate() method throws an IllegalProductException.

Web Bean lifecycle

JSR-299 Public Review 64

6.8. Lifecycle of JMS endpoints

The Web Bean manager completely controls the lifecycle of any JMS endpoint instance. An instance of a JMS endpoint is
a proxy object, provided by the Web Bean manager, that implements all the API types defined in Section 3.6, “JMS end-
points”, delegating the actual implementation of these methods directly to the underlying JMS objects obtained via JNDI
lookup and JMS APIs.

A JMS endpoint proxy object is a dependent object of the object it is injected into.

JMS endpoint proxy objects are serializable.

When the create() method is called, the Web Bean manager creates and returns a special proxy object that implements all
the API types of the JMS endpoint.

The methods of this proxy object delegate to JMS objects obtained as needed via JNDI lookup and JMS APIs.

• The Destination is obtained by JNDI lookup, using the JNDI name defined in <destination>.

• The ConnectionFactory is obtained by JNDI lookup, using the JNDI name defined in <connectionFactory>.

• The Connection is obtained by calling QueueConnectionFactory.createQueueConnection() or TopicConnection-

Factory.createTopicConnection(). The Web Bean manager is permitted to share a connection between multiple
proxy objects.

• The Session object is obtained by calling QueueConnection.createQueueSession() or TopicConnec-

tion.createTopicSession().

• The MessageProducer object is obtained by calling QueueSession.createSender() or TopicSes-

sion.createPublisher().

When the destroy() method is called, the Web Bean manager must ensure that all JMS objects created by the proxy ob-
ject are destroyed by calling close() if necessary.

• The Connection is destroyed by calling Connection.close() if necessary. If the connection is being shared between
multiple proxy objects, the Web Bean manager is not required to close the connection when the proxy is destroyed.

• The Session object is destroyed by calling Session.close().

• The MessageProducer object is destroyed by calling MessageProducer.close().

The close() method of a JMS endpoint proxy object always throws an UnsupportedOperationException.

6.9. Lifecycle of EJB beans

From time to time the EJB container creates EJB bean instances. The Web Bean manager must perform dependency injec-
tion upon any EJB session or message driven bean instance that executes in the context of a Web Beans application, re-
gardless of whether it is a Web Bean instance.

When the EJB container creates a new instance of an EJB bean, the Web Bean manager intercepts the @PostConstruct

callback and performs the following steps, before the callback is allowed to proceed to the bean instance.

• First, The Web Bean manager initializes the values of all injected fields. For each injected field, the Web Bean man-
ager sets the value to the object returned by Manager.getInstanceByType().

• Next, if the EJB bean instance is an instance of a Web Bean, the Web Bean manager initializes the values of any fields
with initial values specified in XML, as defined in Section 10.3.5, “Field initial value declarations”.

• Next, the Web Bean manager calls all initializer methods. For each initializer method parameter, the Web Bean man-
ager passes the object returned by Manager.getInstanceByType().

• Finally, the Web Bean manager builds the interceptor and decorator stacks for the instance as defined in Sec-
tion 7.2.10, “Interceptor stack creation” and Section 7.3.8, “Decorator stack creation” and binds them to the instance.

Web Bean lifecycle

JSR-299 Public Review 65

Open issue: we need to make sure that the Web Bean manager has fully initialized before singleton EJB beans are instan-
tiated.

When the EJB container destroys an instance of an EJB bean, the Web Bean manager intercepts the @PreDestroy callback
and destroys all dependent objects, after the callback returns from the bean instance.

6.10. Lifecycle of Servlets

The Servlet container creates instances of Servlets. The Web Bean manager must perform dependency injection upon any
Servlet that executes in the context of a Web Beans application.

When the Servlet container creates a new instance of a Servlet, the Web Bean manager performs the following steps.

• First, the Web Bean manager initializes the values of all injected fields. For each injected field, the Web Bean manager
sets the value to the object returned by Manager.getInstanceByType().

• Next, the Web Bean manager calls all initializer methods. For each initializer method parameter, the Web Bean man-
ager passes the object returned by Manager.getInstanceByType().

When the Servlet container destroys a Servlet, the Web Bean manager destroys all dependent objects.

Open issue: currently there is no way to intercept creation or destruction of Servlets. We need a new API from the Servlet
specification.

Open issue: we need to make sure that the Web Bean manager has fully initialized before Servlets are instantiated.

In a Java EE 5 environment, the Web Bean manager is not required to support injected fields or initializer methods of Ser-
vlets.

Web Bean lifecycle

JSR-299 Public Review 66

Chapter 7. Interceptors and decorators

Web Beans support interception as defined by the package javax.interceptor. Interceptors may be bound to a simple
Web Bean, enterprise Web Bean or EJB session or message driven bean using the javax.interceptor.Interceptors an-
notation, or by using a Web Beans interceptor binding.

Interceptors are usually used to implement cross-cutting concerns, functionality that is orthogonal to the type system. In
addition, Web Beans provides support for decorators. A decorator intercepts method invocations for a specific API type.
Unlike interceptors, decorators are typesafe, and cannot be used to implement cross-cutting concerns.

Producers and JMS endpoints may not declare interceptors or decorators.

7.1. Business methods

Method interception by interceptors and decorators applies to business method invocations of a simple Web Bean, enter-
prise Web Bean or EJB bean.

For a simple Web Bean, a method invocation is considered a business method invocation if:

• the method was invoked upon an object obtained by calling Manager.getInstance(), passing the Bean object repres-
enting the simple Web Bean (this includes any instance of the Web Bean injected by the Web Bean manager), and

• the method is non-private and non-static.

Invocations of initializer methods by the Web Bean manager during Web Bean creation are not considered to be business
method invocations.

Invocations of Web Bean remove methods by the Web Bean manager during enterprise Web Bean destruction are not con-
sidered to be business method invocations.

Invocations of @PreDestroy and @PostConstruct callbacks by the Web Bean manager are not considered to be business
method invocations.

All invocations of producer methods, disposal methods and observer methods are considered to be business method invoc-
ations.

Business method invocations of an enterprise Web Bean or EJB session or message driven bean are defined by the EJB
specification.

Self-invocations of a simple Web Bean are considered to be business method invocations. However, self-invocations of an
enterprise Web Bean or EJB session or message driven bean are not considered to be business method invocations.

7.2. Interceptors

An interceptor may be a method interceptor, a lifecycle callback interceptor, or both.

7.2.1. Business method interceptors

An interceptor method for business method invocations is a method of an interceptor with return type Object and a single
parameter of type javax.interceptor.InvocationContext, annotated @AroundInvoke.

Interceptor methods for business method invocations are called when a business method is invoked.

If an interceptor has an interceptor method for business method invocations, we describe it as a business method intercept-
or.

7.2.2. Lifecycle callback interceptors

An interceptor method for a lifecycle callback is a method of a Web Beans interceptor implementation class with return
type void and a single parameter of type javax.interceptor.InvocationContext, annotated @PostConstruct,

JSR-299 Public Review 67

@PreDestroy, @PrePassivate or @PostActivate.

Interceptor methods for a lifecycle callbacks are called when the corresponding @PostConstruct, @PreDestroy,
@PrePassivate or @PostActivate callbacks is invoked.

If an interceptor has an interceptor method for a lifecycle callback, we describe it as a lifecycle callback interceptor.

7.2.3. Support for @Interceptors

Any Web Bean implementation class may declare interceptors using @Interceptors. If the Web Bean is an EJB bean, the
EJB container is responsible for calling interceptors declared using @Interceptors. Otherwise, the Web Bean manager is
responsible for calling the interceptors. In both cases, the semantics are fully defined by the EJB specification.

7.2.4. Interceptor bindings

As an extension to the functionality defined by the javax.interceptor package, Web Beans provides an alternative meth-
od of binding interceptors to simple Web Beans, enterprise Web Beans and EJB session and message driven beans. Inter-
ceptors bound using this mechanism are always called by the Web Bean manager.

Even when interceptors are bound using this mechanism, the interception semantics are defined by the EJB specification.

An interceptor binding type is a Java annotation defined as @Target({TYPE, METHOD}) or @Target(TYPE) and
@Retention(RUNTIME).

An interceptor binding type may be declared by specifying the @InterceptorBindingType meta-annotation.

@InterceptorBindingType
@Target({TYPE, METHOD})
@Retention(RUNTIME)
public @interface Transactional {}

Alternatively, the @InterceptorBindingType meta-annotation may be omitted, and the interceptor binding type may be
declared in web-beans.xml.

<myfwk:Transactional>
<InterceptorBindingType/>

</myfwk:Transactional>

Multiple interceptors may be bound to the same interceptor binding type or types.

7.2.4.1. Interceptor binding types with additional interceptor bindings

An interceptor binding type may declare other interceptor bindings.

@InterceptorBindingType
@Target({TYPE, METHOD})
@Retention(RUNTIME)
@Transactional
public @interface DataAccess {}

<myfwk:DataAccess>
<InterceptorBindingType/>
<myfwk:Transactional/>

</myfwk:DataAccess>

Interceptor bindings are transitive—an interceptor binding declared by an interceptor binding type is inherited by all Web
Beans and other interceptor binding types that declare that interceptor binding type.

Interceptor binding types declared @Target(TYPE) may not be applied to interceptor binding types declared
@Target({TYPE, METHOD}).

7.2.4.2. Interceptor bindings for stereotypes

Interceptor bindings may be applied to a stereotype by annotating the stereotype annotation:

@Transactional

Interceptors and decorators

JSR-299 Public Review 68

@Secure
@Production
@RequestScoped
@Stereotype
@Target(TYPE)
@Retention(RUNTIME)
public @interface Action {}

An interceptor binding declared by a stereotype are inherited by any Web Bean that declares that stereotype.

If a stereotype declares interceptor bindings, it must be defined as @Target(TYPE).

7.2.5. Web Beans interceptors

A Web Beans interceptor is a simple Web Bean with an implementation class that is also an interceptor class as defined by
the EJB specification. Web Beans interceptors must declare at least one interceptor binding type.

A Web Beans interceptor may be either a business method interceptor, a lifecycle callback interceptor or both.

Web Beans lifecycle callback interceptors may only declare interceptor binding types that are defined as @Target(TYPE).
If a lifecycle callback interceptor declares an interceptor binding type that is defined @Target({TYPE, METHOD}), a
DefinitionException is thrown by the Web Bean manager at initialization time.

If a Web Beans interceptor does not declare any interceptor binding type, a DefinitionException is thrown by the Web
Bean manager at initialization time.

Open issue: do we need to support defining interceptor methods in XML?

Open issue: should we support injection into interceptor methods?

7.2.5.1. Declaring a Web Beans interceptor using annotations

A Web Beans interceptor may be declared by annotating the interceptor implementation class with the @Interceptor ste-
reotype, along with at least one interceptor binding type.

@Transactional @Interceptor
public class TransactionInterceptor {

@AroundInvoke
public Object manageTransaction(InvocationContext ctx) { ... }

}

7.2.5.2. Declaring a Web Beans interceptor using XML

Additional Web Beans interceptors may be declared in web-beans.xml, using the interceptor implementation class name
and the <Interceptor> element:

<myfwk:TransactionInterceptor>
<Interceptor/>
<myfwk:Transactional/>

</myfwk:TransactionInterceptor>

When an interceptor is declared in XML, the Web Bean manager ignores any interceptor binding annotations applied to
the interceptor class.

If the interceptor implementation class is already annotated @Interceptor, two different Web Beans interceptors exist,
with different interceptor binding types.

7.2.6. Binding a Web Beans interceptor to a Web Bean or EJB bean

A Web Beans lifecycle callback interceptor may be bound to any simple Web Bean that is not an interceptor or decorator,
any enterprise Web Bean or any EJB session or message-driven bean by declaring, at the class level, the same interceptor
binding types that were declared by the interceptor.

A Web Beans business method interceptor may be bound to all non-static, non-private, non-final methods of a simple Web

Interceptors and decorators

JSR-299 Public Review 69

Bean that is not an interceptor or decorator or to all business methods of an enterprise Web Bean or EJB session or mes-
sage-driven bean by declaring the same interceptor binding types, at the class level, that were declared by the interceptor.

A Web Beans business method interceptor may be bound to a non-static, non-private, non-final method of a simple Web
Bean that is not an interceptor or decorator or to a business method of an enterprise Web Bean or EJB session or message-
driven bean by declaring the same interceptor binding types, at the method level, that were declared by the interceptor.

If a simple Web Bean implementation class that is not an interceptor or decorator is declared final, or has any non-static,
non-private, final methods, and also declares an interceptor binding type or a stereotype with interceptor bindings, a
DefinitionException is thrown by the Web Bean manager at initialization time.

If a non-static, non-private method of a simple Web Bean implementation class is declared final and also declares an inter-
ceptor binding type, an DefinitionException is thrown by the Web Bean manager at initialization time.

7.2.6.1. Binding a Web Beans interceptor using annotations

Interceptor binding types may be declared by annotating the implementation class of a simple Web Bean, enterprise Web
Bean, or by annotating the bean class of an EJB session or message-driven bean.

In the following example, the TransactionInterceptor will be applied at the class level, and therefore applies to all busi-
ness methods of the class:

@Transactional
public class ShoppingCart { ... }

In this example, the TransactionInterceptor will be applied at the method level:

public class ShoppingCart {

@Transactional
public void placeOrder() { ... }

}

Web Beans interceptors may be enabled or disabled at deployment time. Disabled interceptors are never called at runtime.

7.2.6.2. Binding a Web Beans interceptor using XML

Class-level or method-level interceptor binding types may be applied to any Web Bean declared in web-beans.xml.

In the following example, the TransactionInterceptor will be applied at the class level:

<myapp:ShoppingCart>
<myfwk:Transactional/>

</myapp:ShoppingCart>

In this example, the TransactionInterceptor will be applied at the method level:

<myapp:ShoppingCart>
<myapp:placeOrder>

<myfwk:Transactional/>
</myapp:placeOrder>

</myapp:ShoppingCart>

7.2.7. Interceptor enablement and ordering

By default, interceptors bound via interceptor binding types are not enabled. An interceptor must be explicitly enabled by
listing its implementation class under the <Interceptors> element in web-beans.xml.

<Interceptors>
<myfwk:TransactionInterceptor/>
<myfwk:LoggingInterceptor/>

</Interceptors>

The order of the interceptor declarations determines the interceptor ordering. Interceptors which occur earlier in the list are
called first.

Interceptors and decorators

JSR-299 Public Review 70

If a class listed under the <Interceptors> element is not the implementation class of at least one interceptor, a Deploy-

mentException is thrown by the Web Bean manager at initialization time.

If the implementation class of an interceptor with a disabled deployment type is listed under the <Interceptors> element,
a DeploymentException is thrown by the Web Bean manager at initialization time.

If the <Interceptors> element is specified in more than one web-beans.xml document, a DeploymentException is thrown
by the Web Bean manager at initialization time.

Interceptors declared using @Interceptors or in ejb-jar.xml are called before interceptors declared using Web Beans in-
terceptor bindings.

Interceptors are called before decorators.

Open issue: how can we guarantee this for EJBs?

7.2.8. The Interceptor object for an interceptor

The Bean object for an interceptor must extend the abstract class Interceptor.

public abstract class Interceptor extends Bean<Object> {

protected Interceptor(Manager manager) {
super(manager);

}

public abstract Set<Annotation> getInterceptorBindingTypes();

public abstract Method getMethod(InterceptionType type);

}

An InterceptionType identifies the kind of lifecycle callback or business method.

public enum InterceptionType {
AROUND_INVOKE, POST_CONSTRUCT, PRE_DESTROY, PRE_PASSIVATE, POST_ACTIVATE

}

The getMethod() method returns the interceptor method for the specified kind of lifecycle callback or business method.
The getMethod() method must return a null value if the interceptor does not intercepts callbacks or business methods of
the given type.

7.2.9. Interceptor resolution

The following method returns the ordered list of enabled interceptors for a set of interceptor binding types.

public interface Manager {

List<Interceptor> resolveInterceptors(InterceptionType type,
Annotation... interceptorBindings);

...

}

If two instances of the same interceptor binding type are passed to resolveInterceptors(), a DuplicateBindingTypeEx-

ception is thrown.

If no interceptor binding type instance is passed to resolveInterceptors(), an IllegalArgumentException is thrown.

If an instance of an annotation that is not an interceptor binding type is passed to resolveInterceptors(), an IllegalAr-

gumentException is thrown.

The following algorithm must be used by the Web Bean manager when resolving interceptors:

• First, the Web Bean manager identifies the set of matching enabled interceptors where for each declared interceptor
binding annotation, there exists an interceptor binding annotation in the set of given binding annotations or, recurs-

Interceptors and decorators

JSR-299 Public Review 71

ively, meta-annotations of those annotations, with (a) the same type and (b) the same annotation member value for
each member which is not annotated @NonBinding (see Section 7.2.9.2, “Interceptor binding types with members”).

• Next, the Web Bean manager narrows the set of matching interceptors according to whether the interceptor intercepts
the given kind of lifecycle callback or business method.

• Next, the Web Bean manager orders the matching interceptors according to the interceptor ordering specified in Sec-
tion 7.2.7, “Interceptor enablement and ordering” and returns the resulting list of interceptors. If no matching intercept-
ors exist in the set, an empty list is returned.

7.2.9.1. Interceptors with multiple binding types

An interceptor class may specify multiple interceptor binding types, in which case the interceptor will be applied only to
Web Beans and EJB beans with an implementation class that also declares all the binding types, and to methods of Web
Beans and EJB beans where all the binding types appear on either the method or implementation class.

Consider the following interceptor:

@Transactional @Secure @Interceptor
public class TransactionalSecurityInterceptor {

@AroundInvoke
public void aroundInvoke() { ... }

}

This interceptor will be bound to all methods of this Web Bean:

@Transactional @Secure
public class ShoppingCart { ... }

The interceptor will also be bound to the placeOrder() method of this Web Bean:

@Transactional
public class ShoppingCart {

@Secure
public void placeOrder() { ... }

}

However, it will not be bound to the placeOrder() method of this Web Bean, since the @Secure interceptor binding type
does not appear:

@Transactional
public class ShoppingCart {

public void placeOrder() { ... }

}

7.2.9.2. Interceptor binding types with members

According to the interceptor resolution algorithm defined above, interceptor binding types may have annotation members.

This interceptor binding type declares a member:

@InterceptorBindingType
@Target({TYPE, METHOD})
@Retention(RUNTIME)
public @interface Transactional {

boolean requiresNew() default false;
}

Any interceptor with that interceptor binding type must select a member value:

@Transactional(requiresNew=true) @Interceptor
public class RequiresNewTransactionInterceptor {

@AroundInvoke

Interceptors and decorators

JSR-299 Public Review 72

public Object manageTransaction(InvocationContext ctx) { ... }

}

The RequiresNewTransactionInterceptor applies to this Web Bean:

@Transactional(requiresNew=true)
public class ShoppingCart { ... }

But not to this Web Bean:

@Transactional
public class ShoppingCart { ... }

Annotation member values are compared using equals().

An annotation member may be excluded from consideration using the @NonBinding annotation.

@InterceptorBindingType
@Target({TYPE, METHOD})
@Retention(RUNTIME)
public @interface Transactional {

@NonBinding boolean requiresNew() default false;
}

Array-valued or annotation-valued members of an interceptor binding annotation must be annotated @NonBinding. If an ar-
ray-valued or annotation-valued member of an interceptor binding annotation is not annotated @NonBinding, a Defini-

tionException is thrown by the Web Bean manager at initialization time.

7.2.10. Interceptor stack creation

When a simple or enterprise Web Bean is created, the Web Bean manager must:

• Identify the interceptors for each lifecycle callback and business method by calling Manager.resolveInterceptors()

passing the interceptor bindings for the callback or business method, including all interceptor bindings defined at the
class level, method level and by stereotypes.

• If this is a simple Web Bean, identify the interceptors defined using the @Interceptors annotation for each lifecycle
callback and business method.

• For each unique interceptor, call Manager.getInstance(), passing the Interceptor object, to obtain an instance of the
interceptor. For a given interceptor and a given Web Bean instance, the Web Bean manager must call Man-

ager.getInstance() exactly once.

• For each lifecycle callback and business method build an ordered list of returned interceptor instances.

The resulting ordered lists of interceptor instances are called interceptor stacks.

7.2.11. Interceptor invocation

Whenever a business method or lifecycle callback is invoked on an instance of a simple Web Bean, enterprise Web Bean
or EJB session or message driven bean, the Web Bean manager intercepts the method invocation and invokes interceptors
of the callback or business method.

The Web Bean manager identifies the first interceptor in the interceptor stack for the method. If no such interceptor exists,
the Web Bean manager starts processing the decorator stack, as defined in Section 7.3.9, “Decorator invocation”. Other-
wise, the Web Bean manager builds an instance of javax.interceptor.InvocationContext and calls the appropriate in-
terceptor method of the interceptor.

When any interceptor is invoked by the Web Bean manager, it may in turn call InvocationContext.proceed(). The Web
Bean manager then identifies the first interceptor in the interceptor stack for the method such that the interceptor has not
previously been invoked during this business method or lifecycle callback invocation. If no such interceptor exists, the
Web Bean manager starts processing the decorator stack. Otherwise, the Web Bean manager calls the appropriate inter-
ceptor method.

Interceptors and decorators

JSR-299 Public Review 73

Eventually, by recursion, the interceptor stack is exhausted of uninvoked interceptors.

7.3. Decorators

A decorator implements one or more API types and intercepts business method invocations for methods defined by the
implemented API types. These API types are called decorated types.

A decorator is a simple Web Bean. The set of decorated types of a decorator includes all interfaces implemented directly
or indirectly by the implementation class, except for java.io.Serializable. The decorator implementation class and its
superclasses are not decorated types of the decorator. The decorator class may be abstract.

Alternative definition: the set of decorated types includes all interfaces implemented directly and indirectly by both the
decorator implementation class and the declared type of the delegate attribute.

Decorators may be bound to any enterprise Web Bean, any simple Web Bean that implements an interface and is not an in-
tercepor or decorator, or to any EJB bean. Decorators are called by the Web Bean manager, according to the semantics
defined in Section 7.3.9, “Decorator invocation”.

7.3.1. Declaring a decorator using annotations

A decorator is declared by annotating the implementation class with the @Decorator stereotype.

@Decorator
class TimestampLogger implements Logger { ... }

7.3.2. Declaring a decorator using XML

Additional decorators may be declared in web-beans.xml, using the decorator implementations class name and the
<Decorator> element:

<myfwk:TimestampLogger>
<Decorator/>
...

</myfwk:TimestampLogger>

If the decorator implementation class is already annotated @Decorator, two different decorators exist.

7.3.3. Decorator delegate attributes

All decorators have a delegate attribute.

A delegate attribute is a non-static, non-final field of a decorator implementation class.

The delegate attribute may be declared using the @Decorates annotation or <Decorates> element:

@Decorator
class TimestampLogger implements Logger {

@Decorates Logger logger;
...

}

<myfwk:TimestampLogger>
<Decorator/>
<myfwk:logger>

<Decorates>
<myfwk:Logger/>

</Decorates>
</myfwk:logger>

</myfwk:TimestampLogger>

In this case, the decorator is bound to any Web Bean or EJB bean that has the type of the delegate attribute as an API type.

The declared type of the delegate attribute must be a Java interface type. If the declared type of a delegate attribute is not a
Java interface type, a DefinitionException is thrown by the Web Bean manager at initialization time.

Interceptors and decorators

JSR-299 Public Review 74

The delegate may optionally declare one or more binding types:

@Decorator
class TimestampLogger implements Logger {

@Decorates @Debug Logger logger;
...

}

<myfwk:TimestampLogger>
<Decorator/>
<myfwk:logger>

<Decorates>
<myfwk:Logger>

<myfwk:Debug/>
</myfwk:Logger>

</Decorates>
</myfwk:logger>

</myfwk:TimestampLogger>

In this case, the decorator is bound to any Web Bean or EJB bean that has the type of the delegate attribute as an API type,
and declares all the binding types specified by the delegate attribute.

All delegate binding types must be explicitly declared. If no binding type is explicitly declared by the delegate attribute,
the set of binding types is empty.

A decorator must have exactly one delegate attribute. If a decorator has more than one delegate attribute, or does not have
a delegate attribute, a DefinitionException is thrown by the Web Bean manager at initialization time.

If a decorator applies to a simple Web Bean, and the Web Bean implementation class is declared final, a DefinitionEx-

ception is thrown by the Web Bean manager at initialization time.

If a decorator applies to a simple Web Bean with a non-static, non-private, final method, and the decorator also imple-
ments that method, a DefinitionException is thrown by the Web Bean manager at initialization time.

7.3.4. Decorated types of a decorator

A decorator is not required to implement all of the API types of its delegate attribute. If a decorator does not implement an
API type of the delegate attribute, that API will not be intercepted by the decorator.

A decorator may be an abstract Java class, and is not required to implement all methods of its API types. If a decorator
does not implement a method of one of its API types, that method will not be intercepted by the decorator.

The declared type of the decorator delegate attribute must implement or extend all of the decorated types of the decorator.
If a decorator delegate attribute does not implement or extend a decorated type of the decorator, a DefinitionException is
thrown by the Web Bean manager at initialization time.

7.3.5. Decorator enablement and ordering

By default, decorators are not enabled. A decorator must be explicitly enabled by listing its implementation class under the
<Decorators> element in web-beans.xml.

<Decorators>
<myfwk:TimestampLogger/>
<myfwk:IdentityLogger/>

</Decorators>

The order of the decorator declarations determines the decorator ordering. Decorators which occur earlier in the list are
called first.

If a class listed under the <Decorators> element is not the implementation class of at least one decorator, a Deploymen-

tException is thrown by the Web Bean manager at initialization time.

If the implementation class of a decorator with a disabled deployment type is listed under the <Decorators> element, a De-

ploymentException is thrown by the Web Bean manager at initialization time.

If the <Decorators> element is specified in more than one web-beans.xml document, a DeploymentException is thrown
by the Web Bean manager at initialization time.

Interceptors and decorators

JSR-299 Public Review 75

Decorators are called after interceptors.

Would it be better to unify interceptors and decorators into a single stack, so that they can be interleaved?

7.3.6. The Decorator object for a decorator

The Bean object for an interceptor must extend the abstract class Decorator.

public abstract class Decorator extends Bean<Object> {

protected Decorator(Manager manager) {
super(manager);

}

public abstract Class<?> getDelegateType();

public abstract Set<Annotation> getDelegateBindingTypes();

public abstract void setDelegate(Object instance, Object delegate);

}

7.3.7. Decorator resolution

The following method returns the ordered list of enabled decorators for a set of API types and a set of binding types.

public interface Manager {

List<Decorator> resolveDecorators(Set<Class<?>> types, Annotation... bindings);

...

}

The first argument is the set of API types of the decorated Web Bean. The annotations are binding types declared by the
decorated Web Bean.

If two instances of the same binding type are passed to resolveDecorators(), a DuplicateBindingTypeException is
thrown.

If an instance of an annotation that is not a binding type is passed to resolveDecorators(), an IllegalArgumentExcep-

tion is thrown.

If the set of API types is empty, an IllegalArgumentException is thrown.

The following algorithm must be used by the Web Bean manager when resolving decorators:

• First, the Web Bean manager identifies the set of matching enabled decorators where the declared type of the delegate
attribute is one of the given API types. For this purpose, primitive types are considered to be identical to their corres-
ponding wrapper types in java.lang, array types are considered identical only if their element types are identical and
parameterized types are considered identical only if both the type and all type parameters are identical.

• Next, the Web Bean manager considers the given binding annotations. If no binding annotations were passed to re-

solveDecorators(), the Web Bean manager assumes the binding annotation @Current. The Web Bean manager nar-
rows the set of matching decorators to just those where for each binding annotation declared by the decorator delegate
attribute, there is a given binding annotation with (a) the same type and (b) the same annotation member value for each
member which is not annotated @NonBinding (see Section 5.9.2.1, “Binding annotations with members”).

• Next, the Web Bean manager orders the matching decorators according to the decorator ordering specified in Sec-
tion 7.3.5, “Decorator enablement and ordering” and returns the resulting list of decorators. If no matching decorators
exist in the set, an empty list is returned..

7.3.8. Decorator stack creation

When a simple or enterprise Web Bean is created, the Web Bean manager must:

Interceptors and decorators

JSR-299 Public Review 76

• Identify the decorators for the Web Bean by calling Manager.resolveDecorators() passing the API types and binding
types of the Web Bean.

• For each decorator, call Manager.getInstance(), passing the Decorator object, to obtain an instance of the decorator.

• For each returned decorator instance, call Decorator.setDelegate() to inject an object that implements the declared
type of the delegate attribute to the delegate attribute of the decorator instance.

• Build an ordered list of the decorator instances.

The resulting ordered list of decorator instances is called the decorator stack.

7.3.9. Decorator invocation

Whenever a business method is invoked on an instance of a simple Web Bean, enterprise Web Bean or EJB session or
message driven bean, the Web Bean manager intercepts the business method invocation and, after processing the intercept-
or stack, as defined in Section 7.2.11, “Interceptor invocation”, invokes decorators of the Web Bean.

The Web Bean manager searches for the first decorator in the decorator stack for the instance that implements the method
that is being invoked as a business method. If no such decorator exists, the Web Bean manager invokes the business meth-
od of the Web Bean instance. Otherwise, the Web Bean manager calls the method of the decorator.

When any decorator is invoked by the Web Bean manager, it may in turn invoke a method of the delegate attribute. The
Web Bean manager intercepts the delegate invocation and searches for the first decorator in the decorator stack for the in-
stance such that:

• the decorator implements the method that is being invoked upon the delegate, and

• the decorator has not previously been invoked during this business method invocation.

If no such decorator exists, the Web Bean manager invokes the business method of the Web Bean instance. Otherwise, the
Web Bean manager calls the method of the decorator.

Eventually, by recursion, the decorator stack is exhausted of uninvoked decorators.

Interceptors and decorators

JSR-299 Public Review 77

Chapter 8. Events

Web Beans may produce and consume events. This facility allows Web Beans to interact in a completely decoupled fash-
ion, with no compile-time dependency between the two Web Beans.

An event comprises:

• A Java object (the event object)

• A (possibly empty) set of instances of binding annotation types (the event bindings)

The event object acts as a payload, to propagate state from producer to consumer. The event bindings act as topic selectors,
allowing the consumer to narrow to set of events it observes.

An event consumer observes events of a specific type, the observed event type, with a specific set of instances of event
binding types, the observed event bindings.

8.1. Event types and binding types

An event object is an instance of a concrete Java class with no type variables or wildcards. The event types of the event in-
clude all superclasses and interfaces of the class of the event object.

An event binding type is just an ordinary binding type as specified in Section 2.3.2, “Defining new binding types” with the
exception that it may be declared @Target({FIELD, PARAMETER}).

More formally, an event binding type is a Java annotation defined as @Target({FIELD, PARAMETER}) or
@Target({METHOD, FIELD, PARAMETER, TYPE}) and @Retention(RUNTIME). All event binding types must specify the
@BindingType meta-annotation.

An event consumer will be notified of an event if the observed event type it specifies is one of the event types of the event,
and if all the observed event bindings it specifies are event bindings of the event.

8.2. Firing an event via the Manager interface

The Manager interface provides a method for firing events:

public interface Manager {

public void fireEvent(Object event, Annotation... bindings);

...

}

The first argument is the event object:

public void login() {
...
manager.fireEvent(new LoggedInEvent(user));

}

If the type of the event object passed to fireEvent() contains type variables or wildcards, an IllegalArgumentException

is thrown.

The remaining arguments are the event bindings, optional instances of event binding types:

public void login() {
User user = ...;
manager.fireEvent(user, new LoggedInBinding() {});

}

where LoggedInBinding is an implementation of the event binding type LoggedIn:

JSR-299 Public Review 78

public class LoggedInBinding
extends AnnotationLiteral<LoggedIn>
implements LoggedIn {}

8.3. Observing events via the Observer interface

An observer consumes events and allows the application to react to events that occur.

Observers of Web Beans events implement the Observer interface.

public interface Observer<T> {

public void notify(T event);

}

An observer instance may be registered with the Web Bean manager by calling Manager.addObserver():

public interface Manager {

public <T> Manager addObserver(Observer<T> observer, Class<T> eventType,
Annotation... bindings);

public <T> Manager addObserver(Observer<T> observer, TypeLiteral<T> eventType,
Annotation... bindings);

...

}

The first parameter is the observer object. The second parameter is the observed event type. The remaining parameters are
optional observed event binding types. The observer is notified when an event object that is assignable to the observed
event type is raised with the observed event binding types.

An observer instance may be deregistered by calling Manager.removeObserver():

public interface Manager {

public <T> Manager removeObserver(Observer<T> observer, TypeLiteral<T> eventType,
Annotation... bindings);

public <T> Manager removeObserver(Observer<T> observer, Class<T> eventType,
Annotation... bindings);

...

}

If the observed event type passed to addObserver() or removeObserver() contains type variables or wildcards, an Illeg-

alArgumentException is thrown.

If two instances of the same binding type are passed to addObserver() or removeObserver(), a DuplicateBinding-

TypeException is thrown.

If an instance of an annotation that is not a binding type is passed to addObserver() or removeObserver(), an IllegalAr-

gumentException is thrown.

8.4. Observer invocation

When an event is fired by the application, the Web Bean manager must:

• determine the observers for that event by calling Manager.resolveObservers(), passing the event object and all event
binding type instances, then,

• for each observer, call the notify() method of the Observer interface, passing the event object.

Observers may throw exceptions. If an observer throws an exception, the exception aborts processing of the event. No oth-
er observers of that event will be called. The fireEvent() method rethrows the exception.

Events

JSR-299 Public Review 79

Any observer called before completion of a transaction may call setRollbackOnly() to force a transaction rollback. An
observer may not directly initiate, commit or rollback JTA transactions.

8.5. Observer methods

An observer method is an observer defined via annotations, instead of by explicitly implementing the Observer interface.

Unlike regular observers, observer methods are automatically discovered and registered by the Web Bean manager.

An observer method must be a method of a simple Web Bean implementation class or enterprise Web Bean implementa-
tion class. An observer method may be either static or non-static. If the Web Bean is an enterprise Web Bean, the observer
method must be a business method of the EJB or a static method of the bean class.

There may be arbitrarily many observer methods with the same event parameter type and binding types.

A Web Bean may declare multiple observer methods.

8.5.1. Event parameter of an observer method

Each observer method must have exactly one event parameter, of the same type as the event type it observes. When
searching for observer methods for an event, the Web Bean manager considers the type and binding types of the event
parameter.

If the event parameter does not explicitly declare any binding type, the observer method observes events with no binding
type.

If the type of the event parameter contains type variables or wildcards, a DefinitionException is thrown by the Web
Bean manager at initialization time.

8.5.2. Declaring an observer method using annotations

A observer method may be declared using annotations by annotating a parameter @Observes. That parameter is the event
parameter.

public void afterLogin(@Observes LoggedInEvent event) { ... }

If a method has more than one parameter annotated @Observes, a DefinitionException is thrown by the Web Bean man-
ager at initialization time.

If an observer method is annotated @Produces, @Initializer or @Destructor, or has a parameter annotated @Disposes, a
DefinitionException is thrown by the Web Bean manager at initialization time.

The event parameter may declare binding types:

public void afterLogin(@Observes @Admin LoggedInEvent event) { ... }

8.5.3. Declaring an observer method using XML

For a Web Beans defined in XML, an observer method may be declared using the method name, the <Observes> element,
and the parameter types of the method:

<myapp:afterLogin>
<Observes>

<myapp:LoggedInEvent/>
</Observes>

</myapp:afterLogin>

<myapp:afterLogin>
<Observes>

<myapp:LoggedInEvent>
<myapp:Admin/>

</myapp:LoggedInEvent>
</Observes>

</myapp:afterLogin>

Events

JSR-299 Public Review 80

When an observer method is declared in XML, the Web Bean manager ignores binding annotations applied to the Java
method parameters.

If the implementation class of a Web Bean declared in XML does not have a method with parameters that match those de-
clared in XML, a NonexistentMethodException is thrown by the Web Bean manager at initialization time.

8.5.4. Observer method parameters

In addition to the event parameter, observer methods may declare additional parameters, which may declare binding types.
The Web Bean manager calls Manager.getInstanceByType() to determine a value for each parameter of an observer
method and calls the observer method with those parameter values.

public void afterLogin(@Observes LoggedInEvent event, @Manager User user, @Logger Log log) { ... }

public void afterAdminLogin(@Observes @Admin LoggedInEvent event, @Logger Log log) { ... }

<myapp:afterLogin>

<Observes>
<myapp:LoggedInEvent/>

</Observes>

<myapp:User>
<myapp:Manager/>

</myapp:User>

<myfwk:Log>
<myfwk:Logger/>

</myfwk:Log>

</myapp:afterLogin>

<myapp:afterAdminLogin>

<Observes>
<myapp:LoggedInEvent>

<myapp:Admin/>
</myapp:LoggedInEvent>

</Observes>

<myfwk:Log>
<myfwk:Logger/>

</myfwk:Log>

</myapp:afterAdminLogin>

8.5.5. Conditional observers

Conditional observers are observer methods which are notified of an event only if an instance of the Web Bean that
defines the observer method already exists in the current context.

A conditional observers may be declared by annotating the event parameter with the @IfExists annotation.

public void refreshOnDocumentUpdate(@IfExists @Observes @Updated Document doc) { ... }

Conditional observers may be declared in XML by adding a child <IfExists> element to the <Observes> element.

<myapp:refreshOnDocumentUpdate>
<Observes>

<IfExists/>
<myapp:Document>

<myapp:Updated/>
</myapp:Document>

</Observes>
</myapp:refreshOnDocumentUpdate>

8.5.6. Transactional observers

Transactional observers are observer methods which receive event notifications during the before or after completion

Events

JSR-299 Public Review 81

phase of the transaction in which the event was fired. If no transaction is in progress when the event is fired, they are noti-
fied at the same time as other observers.

Transactional observers may be declared by annotating the event parameter of the observer method.

• The @AfterTransactionCompletion annotation specifies that an observer method should be called during the after
completion phase.

• The @AfterTransactionSuccess annotation specifies that an observer method should be called during the after com-
pletion phase, only when the transaction completes successfully.

• The @AfterTransactionFailure annotation specifies that an observer method should be called during the after com-
pletion phase, only when the transaction fails.

• The @BeforeTransactionCompletion annotation specifies that an observer method should be called during the before
completion phase.

void onDocumentUpdate(@Observes @AfterTransactionSuccess @Updated Document doc) { ... }

Transactional observers may be declared in XML by a child element of the <Observes> element.

• The <AfterTransactionCompletion> element specifies that the observer method should be called during the after
completion phase.

• The <AfterTransactionSuccess> element specifies that the observer method should be called during the after com-
pletion phase, only when the transaction completes successfully.

• The <AfterTransactionFailure> element specifies that the observer method should be called during the after com-
pletion phase, only when the transaction fails.

• The <BeforeTransactionCompletion> element specifies that the observer method should be called during the before
completion phase.

<myapp:onDocumentUpdate>
<Observes>

<AfterTransactionSuccess/>
<myapp:Document>

<myapp:Updated/>
</myapp:Document>

</Observes>
</myapp:onDocumentUpdate>

8.5.7. Observer object for an observer method

For every observer method of an enabled Web Bean, the Web Bean manager is responsible for providing and registering
an appropriate implementation of the Observer interface, that delegates event notifications to the observer method.

The notify() method of the Observer implementation for an observer method either invokes the observer method imme-
diately, or registers the observer method for later invocation during the transaction completion phase, via a JTA Synchron-

ization object.

• If the observer is a transactional observer and there is currently a JTA transaction in progress, the observer object calls
the observer method during the appropriate transaction completion phase. At the appropriate point during the comple-
tion phase of the transaction, the Web Bean manager invokes the observer method. If the observer is a method of an
EJB bean, the method is called with the same client invocation context as the call to the JTA Synchronization inter-
face.

• Otherwise, the Web Bean manager calls the observer immediately. If the observer is a method of an EJB bean, the
method is called in the client invocation context of the code that called Event.fire().

To invoke an observer method, the Web Bean manager must pass the event object to the event parameter and the object re-
turned by Manager.getInstanceByType() to each of the other parameters.

• If the observer method is static, the Web Bean manager must invoke the method.

Events

JSR-299 Public Review 82

• Otherwise, if the observer method is non-static, the Web Bean manager must:

• obtain the Bean object for the most specialized Web Bean that specializes the Web Bean which declares the observ-
er method, and then

• obtain the context object by calling Manager.getContext(), passing the Web Bean scope, then

• obtain an instance of the Web Bean by calling Context.get(), passing the Bean instance representing the Web
Bean and false if this observer method is a conditional observer or true otherwise as the value of the create para-
meter, and then

• if the get() method returned a non-null value, invoke the observer method on the returned instance

Observer methods may throw exceptions:

• If the observer is a transactional observer, any exception is caught and logged by the Web Bean manager.

• Otherwise, the exception is rethrown by the notify() method of the observer object. If the exception is a checked ex-
ception, it is wrapped and rethrown as an (unchecked) ObserverException.

The observer object is registered by calling Manager.addObserver(), passing the event parameter type as the observed
event type, and the binding types of the event parameter as the observed event binding types.

8.6. The Event interface

Alternatively, an instance of the Event interface may be injected via use of the @Observable binding annotation:

@Observable Event<LoggedInEvent> loggedInEvent;

Additional binding annotations may be specified at the injection point:

@Observable @Admin Event<LoggedInEvent> loggedInEvent;

The Event interface provides a method for firing events of a specific type, and a method for registering observers for
events of the same type:

public interface Event<T> {

public void fire(T event, Annotation... bindings);

public void observe(Observer<T> observer, Annotation... bindings);

}

The first parameter of fire() is the event object. The remaining parameters are event binding types.

The first parameter of observe() is the observer object. The remaining parameters are the observed event binding types.

If two instances of the same binding type are passed to fire() or observes(), a DuplicateBindingTypeException is
thrown.

If an instance of an annotation that is not a binding type is passed to fire() or observes(), an IllegalArgumentExcep-

tion is thrown.

The @Observable annotation or <Observable> element may be applied to any field of a Web Bean implementation class or
to any parameter of a producer method, initializer method, disposal method, Web Bean remove method or Web Bean con-
structor where the type of the field or parameter is Event, and an actual type parameter is specified.

If the type of the injection point is not of type Event, if no actual type parameter is specified, or if the type parameter con-
tains a type variable or wildcard, a DefinitionException is thrown by the Web Bean manager at initialization time.

Whenever the @Observable annotation appears at an injection point, an implicit Web Beans exists with:

• exactly the API type and binding annotations that appear at the injection point,

Events

JSR-299 Public Review 83

• deployment type @Standard,

• @Dependent scope,

• no Web Bean name, and

• an implementation provided automatically by the Web Bean manager.

The fire() method of the provided implementation of Event must call Manager.fireEvent(), passing the following para-
meters:

• the event object passed to Event.fire()

• all binding annotations declared at the injection point, except @Observable

• all binding annotation instances passed to Event.fire()

The application may fire events by calling the fire() method:

@Observable @LoggedIn Event<User> loggedInEvent;
...
if (user.isAdmin()) {

loggedInEvent.fire(user, new AdminBinding() {});
}
else {

loggedInEvent.fire(user);
}

In this example, an event of type User, with binding types @LoggedIn and, sometimes, @Admin occurs.

The observe() method of the provided implementation of Event must call Manager.addObserver(), passing the follow-
ing parameters:

• the observer object passed to Event.observe()

• all binding annotations declared at the injection point, except @Observable

• all binding annotation instances passed to Event.observe()

The application may register observers by calling the observe() method:

@Observable @LoggedIn Event<User> loggedInEvent;
...
loggedInEvent.observe(new Observer<User>() { public void notify(User user) { ... } });

8.7. Observer resolution

The method Manager.resolveObservers() resolves observers for an event:

public interface Manager {

public <T> Set<Observer<T>> resolveObservers(T event, Annotation... bindings);

...

}

The first parameter of resolveObservers() is the event object. The remaining parameters are event binding types.

If the type of the event object passed to resolveObservers() contains type variables or wildcards, an IllegalArgu-

mentException is thrown.

If two instances of the same binding type are passed to resolveObservers(), a DuplicateBindingTypeException is
thrown.

If an instance of an annotation that is not a binding type is passed to resolveObservers(), an IllegalArgumentException

Events

JSR-299 Public Review 84

is thrown.

When searching for observers for an event, the Web Bean manager searches for observers which satisfy the following
rules:

• the event object must be assignable to the observed event type, taking type parameters into consideration, and

• for each observed event binding type, (a) an instance of the binding type must have been passed to fireEvent() and
(b) any member values of the binding type must match the member values of the instance passed to fireEvent().

8.7.1. Event binding annotations with members

As usual, the binding type may have annotation members:

@EventBindingType
@Target(PARAMETER)
@Retention(RUNTIME)
public @interface Role {

String value();
}

Consider the following event:

public void login() {
final User user = ...;
manager.fireEvent(new LoggedInEvent(user),

new RoleBinding() { public String value() { return user.getRole(); });
}

Where RoleBinding is an implementation of the binding type Role:

public abstract class RoleBinding
extends AnnotationLiteral<Role>
implements Role {}

Then the following observer method will always be notified of the event:

public void afterLogin(@Observes LoggedInEvent event) { ... }

Whereas this observer method may or may not be notified, depending upon the value of user.getRole():

public void afterAdminLogin(@Observes @Role("admin") LoggedInEvent event) { ... }

As usual, the Web Bean manager uses equals() to compare event binding type member values.

8.7.2. Multiple event binding annotations

An event parameter may have multiple binding annotations:

public void afterDocumentUpdatedByAdmin(@Observes @Updated @ByAdmin Document doc) { ... }

Then this observer method will only be notified if all the event binding types are specified when the event is fired:

manager.fireEvent(document, new UpdatedBinding() {}, new ByAdminBinding() {});

Other, less specific, observers will also be notified of this event:

public void afterDocumentUpdated(@Observes @Updated Document doc) { ... }

public void afterDocumentEvent(@Observes Document doc) { ... }

Events

JSR-299 Public Review 85

Chapter 9. Scopes and contexts

Associated with every Web Beans scope type is a context object. The context object determines the lifecycle and visibility
of instances of all Web Beans with that scope. In particular, the context object defines:

• When a new instance of any Web Bean with that scope is created

• When an existing instance of any Web Bean with that scope is destroyed

• Which injected references refer to any instance of a Web Bean with that scope

Each context object is represented by an instance of the Context interface. Objects that are associated with a context are
created and destroyed by the context object via an implementation of the Contextual interface.

9.1. The Contextual interface

The Contextual interface defines operations to create and destroy contextual objects of a certain type:

public interface Contextual<T> {
public abstract T create();
public abstract void destroy(T instance);

}

Any implementation of Contextual is called a contextual type. In particular, the Bean abstract class defined in Sec-
tion 3.11, “The Bean object for a Web Bean” implements Contextual.

The Web Bean manager and third party frameworks may define implementations of the Contextual interface that do not
extend Bean, but it is not recommended that applications directly implement Contextual.

9.2. The Context interface

The Context interface provides an operation for obtaining contextual instances with a particular scope of any contextual
type.

public interface Context {

public Class<? extends Annotation> getScopeType();

public <T> T get(Contextual<T> bean, boolean create);

boolean isActive();

}

The Context SPI is called by the Web Bean manager and may be called by third party frameworks. It should not be called
directly by the application.

User instance = context.get(userBean, true);

The get() method may either:

• return an existing instance of the given contextual type, or

• if the value of the create parameter is false, return a null value, or

• if the value of the create parameter is true, create a new instance of the given contextual type by calling
Bean.create() and return the new instance.

The get() method may not return a null value unless the create parameter is false or Contextual.create() returns a
null value.

The get() method may not create a new instance of the given contextual type unless the create parameter is true.

JSR-299 Public Review 86

The Context implementation is responsible for destroying any contextual instance it creates by passing the instance to the
destroy() method of the Contextual object representing the contextual type. A destroyed instance must not subsequently
be returned by the get() method.

At a particular point in the execution of the program a scope may be inactive with respect to the current thread. When a
scope is inactive, any invocation of the get() from the current thread upon the Context object for that scope results in a
ContextNotActiveException.

Otherwise, we say that the scope is active.

The isActive() method returns false when the scope of the context object is inactive, and true when it is active.

9.3. Normal scopes and pseudo-scopes

Most scopes are normal scopes. The context object for a normal scope type is a mapping from each enabled contextual
type with that scope type to an instance of that contextual type. This mapping may be associated with a single thread or
with a set of threads. There may be no more than one mapped instance per Web Bean per thread. The mapped instance of a
contextual type associated with the current thread is called the current instance of the contextual type. The set of all cur-
rent instances with a certain scope for a certain thread is called the context for that scope associated with that thread. A
context is said to propagate when the set of current instances is preserved.

The get() operation of the Context object for an active normal scope returns the current instance of the given contextual
type.

At certain points in the execution of the program a context associated with the current thread may be destroyed. When a
context is destroyed, all current instances of contextual types with that scope type are destroyed by passing them to the
Contextual.destroy() method.

Contexts with normal scopes must obey the following rule:

Suppose Web Beans A, B and Z all have normal scopes. Suppose A has an injection point x, and B has an injection point y.
Suppose further that both x and y resolve to Web Bean Z according to the typesafe resolution algorithm. If a is the current
instance of A, and b is the current instance of B, then both a.x and b.y refer to the same instance of Z. This instance is the
current instance of Z.

Any scope that is not a normal scope is called a pseudo-scope. The concept of a current instance is not well-defined in the
case of a pseudo-scope.

All pseudo-scopes must be explicitly declared @ScopeType(normal=false), to indicate to the Web Bean manager that no
client proxy is required.

All scopes defined by the Web Beans specification, except for the @Dependent pseudo-scope, are normal scopes.

9.4. Dependent pseudo-scope

The @Dependent scope type is a pseudo-scope. Web Beans declared with scope type @Dependent behave differently to
Web Beans with other built-in scope types.

When a Web Bean is declared to have @Dependent scope:

• No injected instance of the Web Bean is ever shared between multiple injection points.

• Any injected instance of the Web Bean is bound to the lifecycle of the Web Bean, Servlet or EJB bean into which it is
injected.

• Any instance of the Web Bean that is used to evaluate a Unified EL expression exists to service that evaluation only.

• Any instance of the Web Bean that receives a producer method, producer field, disposal method or observer method
invocation exists to service that invocation only.

Every invocation of the get() operation of the Context object for the @Dependent scope with the value true for the cre-

ate parameter returns a new instance of the given Web Bean.

Scopes and contexts

JSR-299 Public Review 87

Every invocation of the get() operation of the Context object for the @Dependent scope with the value false for the cre-

ate parameter returns a null value.

The @Dependent scope is inactive except:

• when an instance of a Web Bean with scope @Dependent is created by the Web Bean manager to receive a producer
method, producer field, disposal method or observer method invocation, or

• while a Unified EL expression is evaluated, or

• while an observer method is invoked, or

• when the Web Bean manager is creating or destroying a Web Bean instance or injecting its dependencies, or

• when the Web Bean manager is injecting dependencies of an EJB bean or Servlet or when an EJB bean
@PostConstruct or @PreDestroy callback is invoked by the EJB container.

9.4.1. Dependent objects

A Web Bean may create an instance of a Web Bean with scope type @Dependent by calling Manager.getInstance() from
the Web Bean constructor, from the Web Bean remove method, from initializer methods, from producer methods, from
disposal methods, from @PostConstruct and @PreDestroy callbacks and from Web Beans interceptors or decorators for
any of these methods.

An EJB bean may create an instance of a Web Bean with scope type @Dependent by calling Manager.getInstance() from
initializer methods, from @PostConstruct and @PreDestroy callbacks and from Web Beans interceptors for these meth-
ods.

A Servlet may create an instance of a Web Bean with scope type @Dependent by calling Manager.getInstance() from ini-
tializer methods.

Alternatively, a Web Bean, EJB bean, or Servlet may obtain an instance of a Web Bean with scope type @Dependent via
dependency injection.

In any of these cases, the instance of the Web Bean with scope type @Dependent is called a dependent object.

9.4.1.1. Dependent objects of a simple or enterprise Web Bean

A @Dependent scoped contextual instance is said to be a dependent object of a simple or enterprise Web Bean instance if:

• it was injected into any field, the Web Bean constructor, the Web Bean remove method, any observer method or any
initializer method of the simple or enterprise Web Bean instance, or

• it was created by a direct call to Manager.getInstance() or Context.get() during invocation of the Web Bean con-
structor, the Web Bean remove method, any observer method, any initializer method or any @PostConstruct or
@PreDestroy callback of the simple or enterprise Web Bean instance.

9.4.1.2. Dependent objects of a producer method

A @Dependent scoped contextual instance is said to be a dependent object of a producer method Web Bean instance if:

• it was injected into the producer method or disposal method call that produced or disposed the instance, or

• it was created by a direct call to Manager.getInstance() or Context.get() during invocation of the producer method
or disposal method that produced or disposed the instance.

9.4.1.3. Dependent objects of an EJB bean or Servlet

A @Dependent scoped contextual instance is said to be a dependent object of an EJB bean or Servlet if:

• it was injected into any field or initializer method of the EJB bean or Servlet, or

Scopes and contexts

JSR-299 Public Review 88

• it was created by a direct call to Manager.getInstance() or Context.get() during invocation of any initializer meth-
od of the EJB bean or Servlet or during invocation of any @PostConstruct or @PreDestroy callback of the EJB bean.

9.4.2. Dependent object destruction

The Web Bean manager is responsible for destroying @Dependent scoped contextual instances by passing them to the Con-

textual.destroy() method.

The Web Bean manager must:

• destroy all dependent objects of a Web Bean instance when the instance is destroyed,

• destroy all dependent objects of an EJB bean or Servlet when the EJB bean or Servlet is destroyed,

• destroy all @Dependent scoped contextual instances created during an EL expression evaluation when the evaluation
completes, and

• destroy any @Dependent scoped contextual instance created to receive a producer method, producer field, disposal
method or observer method invocation when the invocation completes.

Finally, the Web Bean manager is permitted to destroy any @Dependent scoped contextual instance at any time if the in-
stance is no longer referenced by the application (excluding weak, soft and phantom references).

9.5. Passivating scopes and serialization

A passivating scope requires that instances of Web Beans with that scope be serializable, so that their state may be stored
to disk when the scope becomes inactive. The process of storing the state of Web Bean instances belonging to a scope that
is about to become inactive to disk is called context passivation. Passivating scopes must be explicitly declared
@ScopeType(passivating=true).

For example, the built-in session and conversation scopes defined in Section 9.6, “Context management for built-in
scopes” are passivating scopes.

The Web Bean manager must validate that every Web Bean declared with a passivating scope truly is serializable:

• EJB local objects are serializable. Therefore, an enterprise Web Bean may declare any passivating scope.

• Simple Web Beans are not required to be serializable. If a simple Web Bean declares a passivating scope, and the im-
plementation class is not serializable, a DefinitionException is thrown by the Web Bean manager at initialization
time.

• If a producer method or field declares a passivating scope and returns a non-serializable object at runtime, an Illegal-

ProductException is thrown by the Web Bean manager.

The built-in session and conversation scopes are passivating. No other built-in scope is passivating.

A Web Bean instance may be serialized under one of two circumstances:

• the Web Bean declares a passivating scope type, and context passivation occurs, or

• the Web Bean is an EJB stateful session bean, and it is passivated by the EJB container.

In either case, any non-transient field that holds a reference to another Web Bean must be serialized along with the Web
Bean that is being serialized. Therefore, the reference must be to a serializable type.

Web Beans client proxies are serializable. Therefore, any reference to a Web Bean which declares a normal scope type is
serializable. On the other hand, dependent objects (including interceptors and decorators with scope @Dependent) of a
stateful session bean or of a Web Bean with a passivating scope must be serialized and deserialized along with their own-
er:

• EJB local objects are serializable. Therefore, any reference to an enterprise Web Bean of scope @Dependent is serializ-

Scopes and contexts

JSR-299 Public Review 89

able.

• A simple Web Bean of scope @Dependent may or may not be serializable. If a simple Web Bean of scope @Dependent

and a non-serializable implementation class is injected into a stateful session bean, into a non-transient field, Web
Bean constructor parameter or initializer method parameter of a Web Bean which declares a passivating scope type, or
into a parameter of a producer method which declares a passivating scope type, an UnserializableDependencyExcep-

tion must be thrown by the Web Bean manager at initialization time.

• If a producer method or field of scope @Dependent returns a non-serializable object for injection into a stateful session
bean, into a non-transient field, Web Bean constructor parameter or initializer method parameter of a Web Bean which
declares a passivating scope type, or into a parameter of a producer method which declares a passivating scope type, an
IllegalProductException is thrown by the Web Bean manager.

• The Web Bean manager must guarantee that JMS endpoint proxy objects are serializable.

The method Bean.isSerializable() may be used to detect if a Web Bean is serializable.

9.6. Context management for built-in scopes

The Web Bean manager provides an implementation of the Context interface for each of the built-in scopes.

For each of the built-in normal scopes, contexts propagate across any Java method call, including invocation of EJB local
business methods. The built-in contexts do not propagate across remote method invocations or to asynchronous processes
such as JMS message listeners or EJB timer service timeouts.

An integrated Web Bean manager may, but is not required to, utilize standard Java EE APIs such as servlet filters and
listeners, JSF phase listeners and EJB interceptors to perform context management. A plugin Web Bean manager must use
only standard Java EE APIs.

9.6.1. Request context lifecycle

The Web Beans request context is provided by a built-in context object for the built-in scope type
javax.webbeans.RequestScoped.

• The request scope is active during the service() method of any Servlet in the web application. The request context is
destroyed at the end of the servlet request, after the Servlet service() method returns.

• The request scope is active during any Java EE web service invocation. The request context is destroyed after the web
service invocation completes.

• The request scope is active during any remote method invocation of any EJB bean, during any call to an EJB timeout
method and during message delivery to any EJB message driven bean. The request context is destroyed after the re-
mote method invocation, timeout or message delivery completes.

Open issue: currently it is impossible to intercept timeout methods. This needs to be fixed in EJB 3.1.

In a Java EE 5 environment, the Web Bean manager is not required to support an active request context during timeout
method invocation.

Open issue: is the request context (and application context) active during servlet filter execution?

9.6.2. Session context lifecycle

The Web Beans session context is provided by a built-in context object for the built-in passivating scope type
javax.webbeans.SessionScoped.

The session scope is active during the service() method of any servlet in the web application.

The session context is shared between all servlet requests that occur in the same HTTP servlet session. The session context
is destroyed when the HTTPSession is invalidated or times out.

Scopes and contexts

JSR-299 Public Review 90

9.6.3. Application context lifecycle

The Web Beans application context is provided by a built-in context object for the built-in scope type
javax.webbeans.ApplicationScoped.

• The application scope is active during the service() method of any servlet in the web application.

• The application scope is active during any Java EE web service invocation.

• The application scope is also active during any remote method invocation of any EJB bean, during any call to an EJB
timeout method and during message delivery to any EJB message driven bean.

The application context is shared between all servlet requests, web service invocations, EJB remote method invocations,
EJB timeouts and message deliveries to message driven beans that execute within the same application. The application
context is destroyed when the application is undeployed.

9.6.4. Conversation context lifecycle

The Web Beans conversation context is provided by a built-in context object for the built-in passivating scope type
javax.webbeans.ConversationScoped.

• For a JSF faces request, the context is active from the beginning of the apply request values phase, until the response is
complete.

• For a JSF non-faces request, the context is active during the render response phase.

The conversation context provides access to state associated with a particular conversation. Every JSF request has an asso-
ciated conversation. This association is managed automatically by the Web Bean manager according to the following
rules:

• Any JSF request has exactly one associated conversation

• The conversation associated with a JSF request is determined at the end of the restore view phase and does not change
during the request

Any conversation is in one of two states: transient or long-running.

• By default, a conversation is transient

• A transient conversation may be marked long-running by calling Conversation.begin()

• A long-running conversation may be marked transient by calling Conversation.end()

All long-running conversations have a string-valued unique identifier, which may be set by the application when the con-
versation is marked long-running, or generated by the Web Bean manager.

The Web Bean manager provides a built-in Web Bean with API type javax.webbeans.Conversation, scope
@RequestScoped, deployment type @Standard and binding type @Current, named javax.webbeans.conversation.

public interface Conversation {
public void begin();
public void begin(String id);
public void end();
public boolean isLongRunning();
public String getId();
public long getTimeout();
public void setTimeout(long milliseconds);

}

If the conversation associated with the current JSF request is in the transient state at the end of a JSF request, it is des-
troyed, and the conversation context is also destroyed.

If the conversation associated with the current JSF request is in the long-running state at the end of a JSF request, it is not
destroyed. Instead, it may be propagated to other requests according to the following rules:

Scopes and contexts

JSR-299 Public Review 91

• The long-running conversation context associated with a request that renders a JSF view is automatically propagated to
any faces request (JSF form submission) that originates from that rendered page.

• The long-running conversation context associated with a request that results in a JSF redirect (via a navigation rule) is
automatically propagated to the resulting non-faces request, and to any other subsequent request to the same URL. This
is accomplished via use of a GET request parameter named cid containing the unique identifier of the conversation.

• The long-running conversation associated with a request may be propagated to any non-faces request via use of a GET
request parameter named cid containing the unique identifier of the conversation. In this case, the application must
manage this request parameter.

When no conversation is propagated to a JSF request, the request is associated with a new transient conversation.

All long-running conversations are scoped to a particular HTTP servlet session and may not cross session boundaries.

In the following cases, a propagated long-running conversation cannot be restored and reassociated with the request:

• When the HTTP servlet session is invalidated, all long-running conversation contexts created during the current ses-
sion are destroyed.

• The Web Bean manager is permitted to arbitrarily destroy any long-running conversation that is associated with no
current JSF request, in order to conserve resources.

If the propagated conversation cannot be restored, the request is associated with a new transient conversation.

The method Conversation.setTimeout() is a hint to the Web Bean manager that a conversation should not be destroyed
if it has been active within the last given interval in milliseconds.

Open issue: allow the request to be blocked if the conversation cannot be restored.

The Web Bean manager ensures that a long-running conversation may be associated with at most one request at a time, by
blocking or rejecting concurrent requests.

Open issue: define a mechanism for "blocking" requests. For example, allow the request to be redirected.

9.7. Context management for custom scopes

A custom implementation of Context may be associated with any scope type at any point in the execution of a Web Beans
application, by calling Manager.addContext().

public interface Manager {

public Manager addContext(Context context);

...

}

For example:

manager.addContext(new MethodContext());

Every time Manager.getInstance() is called, for example, during instance or EL name resolution, the Web Bean manager
must call Manager.getContext() to retrieve an active context object associated with the Web Bean scope. The getCon-

text() method searches for an active context object for the given scope type. If no active context object exists for the giv-
en scope type, getContext() must throw a ContextNotActiveException. If more than one active context object exists for
the given scope type, getContext() must throw an IllegalStateException.

public interface Manager {

public Context getContext(Class<? extends Annotation> scopeType);

...

}

Scopes and contexts

JSR-299 Public Review 92

Chapter 10. XML based metadata

The web-beans.xml file provides an alternative to the use of Java annotations for Web Bean definition. For example, this
XML declaration defines a simple Web Bean with an injected field and an initializer method:

<myapp:MockAsynchronousCreditCardPaymentProcessor>
<myapp:Asynchronous/>
<myapp:PayBy>CREDIT_CARD</myapp:PayBy>
<SessionScoped/>
<myfwk:Mock/>
<myfwk:Service transactional="true"/>
<Named>asyncCreditCardPaymentProcessor</Named>

<myapp:synchronousProcessor>
<myapp:PaymentProcessor>

<myapp:Synchronous/>
<myapp:PayBy>CREDIT_CARD</myapp:PayBy>

</myapp:PaymentProcessor>
<myapp:synchronousProcessor>

<myapp:init>
<Initializer/>
<myfwk:SystemConfig/>

</myapp:init>

</myapp:MockAsynchronousCreditCardPaymentProcessor>

It is the equivalent to the following declaration using annotations:

@Asynchronous
@PayBy(CREDIT_CARD)
@SessionScoped
@Mock
@Service(transactional=true)
@Named("asyncCreditCardPaymentProcessor")
class MockAsynchronousCreditCardPaymentProcessor {

@Synchronous @PayBy(CREDIT_CARD) PaymentProcessor synchronousProcessor;

@Initializer void init(SystemConfig config) { ... }

...
}

XML-based Web Bean declarations define additional Web Beans—they do not redefine or disable any Web Bean that was
declared via annotations.

The file format is typesafe and extensible:

• Multiple namespaces are accommodated, each representing a Java package.

• XML elements belonging to these namespaces represent Java types, fields and methods.

• Each namespace may declare an XML schema.

10.1. XML namespace for a Java package

Every Java package has a corresponding XML namespace. The namespace URN consists of the package name, with the
prefix urn:java:. For example, the package com.mydomain.myapp has the XML namespace
urn:java:com.mydomain.myapp.

<WebBeans xmlns="urn:java:javax.webbeans"
xmlns:myapp="urn:java:com.mydomain.myapp">

...
</WebBeans>

Each namespace may, optionally, have a schema.

<WebBeans xmlns="urn:java:javax.webbeans"
xmlns:myapp="urn:java:com.mydomain.myapp"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="urn:java:javax.webbeans http://java.sun.com/jee/web-beans-1.0.xsd

JSR-299 Public Review 93

urn:java:com.mydomain.myapp http://mydomain.com/xsd/myapp-1.2.xsd">
...

</WebBeans>

An XML element belonging to a namespace represents a Java type in the corresponding Java package, or a method or field
of a type in that package. There are exactly ten exceptions to this rule: the root <WebBeans> element together with the
<Queue>, <Topic>, <destination>, <connectionFactory>, <value>, <Deploy>, <Interceptors>, <Decorators> and
<Array> elements in the namespace urn:java:javax.webbeans do not correspond to Java types or members of Java types.

A class, interface or annotation type is represented by an element with the same name as the type, in the namespace corres-
ponding to the Java package. For example, the element <List> in the namespace urn:java:java.util represents
java.util.List.

Type parameters may be specified by child elements of the element that represents the type. For example:

<util:List>
<myapp:Product/>

</util:List>

Members of a type may be specified by child elements of the element that represents the type, in the same namespace as
the element that represents the type. For example:

<myapp:ShoppingCart>
<myapp:paymentProcessor>

...
</myapp:paymentProcessor>

</myapp:ShoppingCart>

Primitive types may be represented by the XML element that represents the corresponding wrapper type in java.lang,
since primitive and wrapper types are considered identical for the purposes of typesafe resolution, and assignable for the
purposes of injection. For example, the element <Integer> in the namespace urn:java:java.lang represent both int and
java.lang.Integer.

Java array types may be represented by an <Array> element in the namespace urn:java:javax.webbeans, with a child
element representing the element type. For example:

<Array>
<myapp:Product/>

</Array>

The namespace urn:java:javax.webbeans is called the Web Beans namespace.

If a web-beans.xml file contains any XML element without a declared namespace, a DefinitionException is thrown by
the Web Bean manager at initialization time.

10.2. Stereotype, binding type and interceptor binding type declarations

An XML element that appears as a direct child of the root <WebBeans> element is interpreted as a binding type, interceptor
binding type or stereotype declaration if it has a direct child <BindingType>, <InterceptorBindingType> or
<Stereotype> element in the Web Beans namespace, as defined in Section 2.3.2, “Defining new binding types”, Sec-
tion 7.2.4, “Interceptor bindings” and Section 2.7.1, “Defining new stereotypes”.

The name of the XML element is interpreted as a Java type name in the package corresponding to the child element
namespace. If no such Java type exists in the classpath, a NonexistentTypeException is thrown by the Web Bean man-
ager at initialization time. If the type is not an annotation type, a DefinitionException is thrown by the Web Bean man-
ager at initialization time.

If the annotation type is already declared as a binding type, interceptor binding type or stereotype using annotations, the
annotations are ignored by the Web Bean manager and the XML-based declaration is used.

If a certain annotation type is declared more than once as a binding type, interceptor binding type or stereotype using
XML, a DeploymentException is thrown by the Web Bean manager at initialization time.

10.2.1. Child elements of a stereotype declaration

XML based metadata

JSR-299 Public Review 94

Every direct child element of a stereotype declaration is interpreted as a Java type name in the package corresponding to
the child element namespace. If no such Java type exists in the classpath, a NonexistentTypeException is thrown by the
Web Bean manager at initialization time. If the type is not an annotation type, a DefinitionException is thrown by the
Web Bean manager at initialization time.

• If the annotation type is a Web Beans scope type, the default scope of the stereotype was declared.

• If the annotation type is a Web Beans deployment type, the default scope of the stereotype was declared.

• If the annotation type is a Web Beans interceptor binding type, an interceptor binding type of the stereotype was de-
clared.

• If the annotation type is javax.webbeans.Named, a stereotype with name defaulting was declared.

• Otherwise, a DefinitionException is thrown by the Web Bean manager at initialization time.

10.2.2. Child elements of an interceptor binding type declaration

Every direct child element of an interceptor binding type declaration is interpreted as a Java type name in the package cor-
responding to the child element namespace. If no such Java type exists in the classpath, a NonexistentTypeException is
thrown by the Web Bean manager at initialization time. If the type is not an annotation type, a DefinitionException is
thrown by the Web Bean manager at initialization time.

• If the annotation type is a Web Beans interceptor binding type, an inherited interceptor binding type was declared, as
defined in Section 7.2.4.1, “Interceptor binding types with additional interceptor bindings”.

• Otherwise, a DefinitionException is thrown by the Web Bean manager at initialization time.

10.3. Web Bean declarations

An XML element that appears as a direct child of the root <WebBeans> element is interpreted as a Web Bean declaration if
it is not a <Deploy>, <Interceptors> or <Decorators> element in the Web Beans namespace, and does not have a direct
child <BindingType>, <InterceptorBindingType> or <Stereotype> element in the Web Beans namespace.

If the XML element is a <Queue> or <Topic> element in the Web Beans namespace, it declares a JMS endpoint, as defined
in Section 3.6.2, “Declaring a JMS endpoint using XML”.

Otherwise, the name of the XML element is interpreted as a Java type name in the package corresponding to the child ele-
ment namespace. The Web Beans manager inspects the Java type and other metadata to determine what kind of Web Bean
is being declared. If no such Java type exists in the classpath, a NonexistentTypeException is thrown by the Web Bean
manager at initialization time.

• If the type is an EJB bean class, an enterprise Web Bean was declared, as defined in Section 3.3.4, “Declaring an enter-
prise Web Bean using XML”.

• If the type is a concrete class, is not an EJB bean class, and is not a parameterized type, a simple Web Bean was de-
clared, as defined in Section 3.2.4, “Declaring a simple Web Bean using XML”.

• Otherwise, a DefinitionException is thrown by the Web Bean manager at initialization time.

For example, the following XML file declares a simple Web Bean with the implementation class
com.mydomain.myapp.PaymentProcessor:

<WebBeans xmlns="urn:java:javax.webbeans"
xmlns:myapp="urn:java:com.mydomain.myapp"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="urn:java:javax.webbeans http://java.sun.com/jee/web-beans-1.0.xsd

urn:java:com.mydomain.myapp http://mydomain.com/xsd/myapp-1.2.xsd">

<myapp:PaymentProcessor>
...

</myapp:PaymentProcessor>

</WebBeans>

XML based metadata

JSR-299 Public Review 95

In addition, inline Web Bean declarations may occur at injection points, as defined in Section 10.7, “Inline Web Bean de-
clarations”. Inline Web Bean declarations always declare simple Web Beans.

In a Java EE 5 environment, the Web Bean manager is not required to support XML-based declaration of enterprise Web
Beans.

10.3.1. Child elements of a Web Bean declaration

The Web Beans manager inspects the direct child elements of the Web Bean declaration. For each child element:

• If the name of the child element is the name of a Java annotation type in the package corresponding to the child ele-
ment namespace, the Web Bean manager interprets the child element as declaring type-level metadata.

• If the name of the child element is the name of a Java class or interface in the package corresponding to the child ele-
ment namespace, the Web Bean manager interprets the child element as declaring a parameter of the Web Bean con-
structor.

• Otherwise, if the child element namespace is the same as the namespace of the parent, the Web Bean manager inter-
prets the element as declaring a method or field of the Web Bean.

• If the name of the child element matches the name of both a method and a field of the Web Bean implementation
class, a DefinitionException is thrown by the Web Bean manager at initialization time.

• Otherwise, if the name of the child element matches the name of a method of the Web Bean implementation class,
is it interpreted to represent that method.

• Otherwise, if the name of the child element matches the name of a field of the Web Bean implementation class, is it
interpreted to represent that field.

• Otherwise, a DefinitionException is thrown by the Web Bean manager at initialization time.

10.3.2. Type-level metadata for a Web Bean

Type-level metadata is specified via direct child elements of the Web Bean declaration that represent Java annotation
types.

The name of the child element is interpreted as the name of a Java annotation type in the package corresponding to the
child element namespace.

For each child element, the Web Bean manager inspects the annotation type:

• If the annotation type is a deployment type, the deployment type of the Web Bean was declared, as defined in Sec-
tion 2.5.4, “Declaring the deployment type of a Web Bean using XML”.

• If the annotation type is a scope type, the scope of the Web Bean was declared, as defined in Section 2.4.4, “Declaring
the Web Bean scope using XML”.

• If the annotation type is a binding type, a binding type of the Web Bean was declared, as defined in Section 2.3.4,
“Declaring the binding types of a Web Bean using XML”.

• If the annotation type is an interceptor binding type, an interceptor binding type of the Web Bean was declared, as
defined in Section 7.2.6.2, “Binding a Web Beans interceptor using XML”.

• If the annotation type is a stereotype, a stereotype of the Web Bean was declared, as defined in Section 2.7.3,
“Declaring the stereotypes for a Web Bean using XML”.

• If the annotation type is javax.webbeans.Name, the name of the Web Bean was declared, as defined in Section 2.6.2,
“Declaring the Web Bean name using XML”.

• If the annotation type is javax.webbeans.Specializes, the Web Bean was declared to directly specialize the Web
Bean with the same implementation class that was defined using annotations, as specified in Section 3.2.6,
“Specializing a simple Web Bean” and Section 3.3.6, “Specializing an enterprise Web Bean”.

XML based metadata

JSR-299 Public Review 96

• If the annotation type is javax.webbeans.Interceptor, or javax.webbeans.Decorator the Web Bean is an intercept-
or or decorator, as defined in Section 10.5, “Interceptor and decorator declarations”.

• Otherwise, a DefinitionException is thrown by the Web Bean manager at initialization time.

10.3.3. Web Bean constructor declarations

The Web Bean constructor for a simple Web Bean is declared by the list of direct child elements of the Web Bean declara-
tion that represent Java class or interface types. The Web Bean manager interprets these elements as declaring parameters
of the constructor.

<myapp:Order>
<ConversationScoped/>
<myapp:PaymentProcessor>

<myapp:Asynchronous/>
</myapp:PaymentProcessor>
<myapp:User/>

</myapp:Order>

Each constructor parameter declaration is interpreted as an injection point declaration, as specified in Section 10.6,
“Injection point declarations”.

If the simple Web Bean implementation class has exactly one constructor such that:

• the constructor has the same number of parameters as the Web Bean declaration has constructor parameter declara-
tions, and

• the Java type represented by each constructor parameter declaration is assignable to the Java type of the corresponding
constructor parameter

then the element is interpreted to represent that constructor, and that constructor is the Web Bean constructor.

If more than one constructor exists which satisfies these conditions, a DefinitionException is thrown by the Web Bean
manager at initialization time.

If no constructor of the simple Web Bean implementation class satisfies these conditions, a NonexistentConstructorEx-

ception is thrown by the Web Bean manager at initialization time.

For any constructor parameter, the API type declared in XML may be a subtype of the Java parameter type. In this case,
the Web Bean manager will use the API type declared in XML when resolving the dependency.

10.3.4. Fields of a Web Bean

A field of a Web Bean is declared by a direct child element of the Web Bean declaration. The name of the field is the same
as the name of the element.

If the Web Bean implementation class has exactly one field with the same name as the child element, then the child ele-
ment is interpreted to represent that field.

Otherwise, if the Web Bean implementation class does not have exactly one field with the specified name, a Defini-

tionException is thrown by the Web Bean manager at initialization time.

If more than one child element of a Web Bean declaration represents the same field of the Web Bean implementation
class, a DefinitionException is thrown by the Web Bean manager at initialization time.

A field declaration may contain child elements. If a field declaration has more than one direct child element, and at least
one of these elements is something other than a <value> element in the Web Beans namespace, a DefinitionException is
thrown by the Web Bean manager at initialization time.

An element that represents a field may declare an injected field, a producer field or a field with an initial value.

• If the element contains a child <Produces> element in the Web Beans namespace, a producer field was declared, as
defined in Section 3.5.3, “Declaring a producer field using XML”.

XML based metadata

JSR-299 Public Review 97

• If the element contains a child <value> element in the Web Beans namespace, a field with an initial value of type Set

or List was declared, as defined in Section 10.3.5, “Field initial value declarations”.

• Otherwise, if the element has exactly one child element, an injected field was declared, as defined in Section 3.7.2,
“Declaring an injected field using XML”.

• If the element has a non-empty body, and no child elements, a field with an initial value was declared, as defined in
Section 10.3.5, “Field initial value declarations”.

• Otherwise, a DefinitionException is thrown by the Web Bean manager at initialization time.

If a field declaration represents an injected field, the child element is interpreted as an injection point declaration, as spe-
cified in Section 10.6, “Injection point declarations”. If the declared type is not assignable to the Java type of the field, a
DefinitionException is thrown by the Web Bean manager at initialization time.

The API type declared in XML may be a subtype of the Java field type. In this case, the Web Bean manager will use the
API type declared in XML when resolving the dependency.

10.3.5. Field initial value declarations

The initial value of a field of a simple Web Bean or enterprise Web Bean with any one of the following types may be spe-
cified in XML:

• any primitive type, or java.lang wrapper type

• any enumerated type

• java.lang.String

• java.util.Date, java.sql.Date, java.sql.Time or java.sql.Timestamp

• java.util.Calendar

• java.math.BigDecimal or java.math.BigInteger

• java.lang.Class

• java.util.List<java.lang.String> or java.util.Set<java.lang.String>

• java.util.List<java.lang.Class> or java.util.Set<java.lang.Class>

• java.util.List<X> or java.util.Set<X> where X is an enumerated type.

The initial value of the field is specified in the body of an XML element representing the field.

<myapp:Config>
<myapp:version>1.2.5</myapp:version>
<myapp:timeout>1000</myapp:timeout>
<myapp:administrators>

<value>juan</value>
<value>antonio</value>
<value>sonia</value>
<value>sara</value>

</myapp:administrators>
</myapp:Config>

• The initial value of a field of primitive type or java.lang wrapper type is specified using the Java literal syntax for
that type.

• The initial value of a field of type java.lang.String is specified using the string value.

• The initial value of a field of enumerated type is specified using the unqualified name of the enumeration value.

• The initial value of a field of type java.util.Date, java.sql.Date, java.sql.Time, java.sql.Timestamp or
java.util.Calendar is specified using a format that can be parsed by calling
java.text.DateFormat.getDateTimeInstance().parse().

XML based metadata

JSR-299 Public Review 98

• The initial value of a field of type java.math.BigDecimal or java.math.BigInteger is specified using a format that
can be parsed by the constructor that accepts a string.

• The initial value of a field of type java.lang.Class is specified using the fully qualified Java class name.

The initial value of a field of type java.util.List or java.util.Set is specified by a list of <value> elements. The body
of the value element is specified using the string value, fully qualified Java class name or unqualified name of the enumer-
ation value.

If a field with an initial value specified in XML is not of one of the listed types, or if the initial value is not specified in the
correct format for the type of the field, a DefinitionException is thrown by the Web Bean manager at initialization time.

If an element representing a field specifies both an initial value and a type declaration, a DefinitionException is thrown
by the Web Bean manager at initialization time.

10.3.6. Methods of a Web Bean

A method of a Web Bean is declared by a direct child element of the Web Bean declaration. The name of the declared
method is the same as the name of the child element.

A method declaration may have any number of direct child elements.

The Web Beans manager inspects the direct child elements of the method declaration. For each child element, the name of
the element is interpreted as a Java type name in the package corresponding to the element's namespace. If no such Java
type exists in the classpath, a NonexistentTypeException is thrown by the Web Bean manager at initialization time.

• If the type is javax.webbeans.Disposes, the Web Bean manager searches for a direct child element of the child ele-
ment and interprets that element as declaring a disposed parameter of the disposal method.

• If the type is javax.webbeans.Observes, the Web Bean manager searches for a direct child element of the child ele-
ment that is not an <IfExists>, <AfterTransactionCompletion>, <AfterTransactionSuccess>,
<AfterTransactionFailure> or <BeforeTransactionCompletion> element in the Web Beans namespace, and inter-
prets that element as declaring an event parameter of the observer method.

• If the type is some other Java annotation type, the Web Bean manager interprets the child element as declaring meth-
od-level metadata.

• If the type is a Java class or interface, the Web Bean manager interprets the child element as declaring a parameter of
the method.

• Otherwise, a DefinitionException is thrown by the Web Bean manager at initialization time.

If a method declaration has more than one direct child element which is an <Initializer>, <Destructor>, <Produces>,
<Disposes> or <Observes> element in the Web Beans namespace, a DefinitionException is thrown by the Web Bean
manager at initialization time.

If a <Disposes> element does not contain exactly one direct child element, a DefinitionException is thrown by the Web
Bean manager at initialization time.

If an <Observes> element does not contain exactly one direct child element that is not an <IfExists>,
<AfterTransactionCompletion>, <AfterTransactionSuccess>, <AfterTransactionFailure> or
<BeforeTransactionCompletion> element in the Web Beans namespace, a DefinitionException is thrown by the Web
Bean manager at initialization time.

Each method parameter declaration and disposed parameter declaration is interpreted as an injection point declaration, as
specified in Section 10.6, “Injection point declarations”. An event parameter declaration is interpreted as a type declara-
tion, as defined in Section 10.8, “Specifying API types and binding types”.

If the Web Bean implementation class has exactly one method such that:

• the method name is the same as the name of the element that declares the method,

• the method has the same number of parameters as the element that declares the method has child elements, and

XML based metadata

JSR-299 Public Review 99

• the Java type represented by each method parameter declaration is assignable to the Java type of the corresponding
method parameter

then the element is interpreted to represent that method.

If more than one method exists which satisfies these conditions, a DefinitionException is thrown by the Web Bean man-
ager at initialization time.

If no method of the Web Bean implementation class satisfies these conditions, a NonexistentMethodException is thrown
by the Web Bean manager at initialization time.

For any method parameter, the API type declared in XML may be a subtype of the Java parameter type. In this case, the
Web Bean manager will use the API type declared in XML when resolving the dependency.

If more than one child element of a Web Bean declaration represents the same method of the Web Bean implementation
class, a DefinitionException is thrown by the Web Bean manager at initialization time.

An element that represents a method may declare an initializer method, a Web Bean remove method, an observer method,
a producer method or a disposal method. Alternatively, or additionally, it may declare method-level interceptor binding
types.

• If the element contains a child <Initializes> element, an initializer method was declared, as defined in Section 3.8.2,
“Declaring an initializer method using XML”.

• If the element contains a child <Destructor> element, a Web Bean remove method was declared, as defined in Sec-
tion 3.3.5.2, “Declaring a Web Bean remove method using XML.”.

• If the element contains a child <Produces> element, a producer method was declared, as defined in Section 3.4.3,
“Declaring a producer method using XML”.

• If the element contains a child <Disposes> element in the Web Beans namespace, a disposal method was declared, as
defined in Section 3.4.9, “Declaring a disposal method using XML”.

• If the element contains a child <Observes> element in the Web Beans namespace, an observer method was declared, as
defined in Section 8.5.3, “Declaring an observer method using XML”.

• If the element contains a child element whose name is the name of a Web Beans interceptor binding type in the pack-
age corresponding to the child element namespace, method-level interceptor binding type was declared, as defined in
Section 7.2.6.2, “Binding a Web Beans interceptor using XML”.

10.4. Producer method and field declarations

A producer method or field declaration is formed by adding a direct child <Produces> element to an element that repres-
ents the method or field, as defined in Section 3.4.3, “Declaring a producer method using XML” and Section 3.5.3,
“Declaring a producer field using XML”.

<myapp:getPaymentProcessor>
<Produces>

<myapp:PaymentProcessor/>
</Produces>
...

</myapp:getPaymentProcessor>

<myapp:paymentProcessor>
<Produces>

<myapp:PaymentProcessor/>
</Produces>

</myapp:paymentProcessor>

10.4.1. Child elements of a producer field declaration

The Web Bean manager inspects the direct child elements of a producer field declaration.

If there is more than one direct child element, a DefinitionException is thrown by the Web Bean manager at initializa-

XML based metadata

JSR-299 Public Review 100

tion time.

Otherwise, the direct child element is a <Produces> element in the Web Beans namespace, and declares the return type,
binding types and member-level metadata of the producer field.

The Web Bean manager inspects the direct child elements of the <Produces> element. For each child element, the name of
the element is interpreted as a Java type name in the package corresponding to the child element namespace. If no such
Java type exists in the classpath, a NonexistentTypeException is thrown by the Web Bean manager at initialization time.

• If the type is a Java class or interface type, the type of the producer field was declared.

• If the type is a Java annotation type, it declares member-level metadata of the producer field.

• Otherwise, a DefinitionException is thrown by the Web Bean manager at initialization time.

If more than one child element represents a Java class or interface type, or if no child element represents a Java class or in-
terface type, a DefinitionException is thrown by the Web Bean manager at initialization time.

10.4.2. Child elements of a producer method declaration

The Web Bean manager inspects the direct child elements of a producer method declaration.

• If a child element is the <Produces> element in the Web Beans namespace, it declares the return type, binding types
and member-level metadata of the producer method.

• If the child element name is the name of a Web Beans interceptor binding type in the package corresponding to the
child element namespace, it declares a method-level interceptor binding type.

• Otherwise, the Web Bean manager interprets the child element as declaring a parameter of the producer method.

If there is more than one child <Produces> element in the Web Beans namespace, a DefinitionException is thrown by
the Web Bean manager at initialization time.

The Web Bean manager inspects the direct child elements of the <Produces> element. For each child element, the name of
the element is interpreted as a Java type name in the package corresponding to the child element namespace. If no such
Java type exists in the classpath, a NonexistentTypeException is thrown by the Web Bean manager at initialization time.

• If the type is a Java class or interface type, the return type of the producer method was declared.

• If the type is a Java annotation type, it declares member-level metadata of the producer method.

• Otherwise, a DefinitionException is thrown by the Web Bean manager at initialization time.

If more than one child element represents a Java class or interface type, or if no child element represents a Java class or in-
terface type, a DefinitionException is thrown by the Web Bean manager at initialization time.

10.4.3. Return type and binding types of a producer method or field

Every XML producer method or field declaration has a direct child <Produces> element. This element must, in turn, have
a direct child element which declares the return type of the producer method or the type of the producer field and which is
interpreted by the Web Bean manager as a type declaration, as defined in Section 10.8, “Specifying API types and binding
types”.

This type declaration specifies the return type and binding types of the producer method Web Bean, or the type and bind-
ing types of the producer field Web Bean. The type is used to calculate the set of API types. The type declared in XML
must be a supertype or subtype of the Java method or field type. If the declared type is not a supertype or subtype of the
Java method or field type, a DefinitionException is thrown by the Web Bean manager at initialization time.

10.4.4. Member-level metadata for a producer method or field

Member-level metadata for a producer method or field declaration is specified via direct child elements of the <Produces>

element that represent Java annotation types.

XML based metadata

JSR-299 Public Review 101

The name of each child element is interpreted as the name of a Java annotation type in the package corresponding to the
child element namespace. If the declared type is not a Java annotation type, a DefinitionException is thrown by the Web
Bean manager at initialization time.

The Web Bean manager inspects the annotation type:

• If the annotation type is a deployment type, the deployment type of the producer method or field was declared, as
defined in Section 2.5.4, “Declaring the deployment type of a Web Bean using XML”.

• If the annotation type is a scope type, the scope of the producer method or field was declared, as defined in Sec-
tion 2.4.4, “Declaring the Web Bean scope using XML”.

• If the annotation type is a stereotype, a stereotype of the producer method or field was declared, as defined in Sec-
tion 2.7.3, “Declaring the stereotypes for a Web Bean using XML”.

• If the annotation type is javax.webbeans.Name, the name of the producer method or field was declared, as defined in
Section 2.6.2, “Declaring the Web Bean name using XML”.

• Otherwise, a DefinitionException is thrown by the Web Bean manager at initialization time.

10.5. Interceptor and decorator declarations

A simple Web Bean declaration is interpreted as an interceptor or decorator declaration if it contains a direct child
<Interceptor> or <Decorator> element in the Web Beans namespace.

For example, the following XML file declares an interceptor of class RequiresTransactionInterceptor, an interceptor of
class RequiresNewTransactionInterceptor and a decorator of class DataAccessAuthorizationDecorator, all in the
Java package com.mydomain.myfwk:

<WebBeans xmlns="urn:java:javax.webbeans"
xmlns:myapp="urn:java:com.mydomain.myapp"
xmlns:myfwk="urn:java:com.mydomain.myfwk"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="urn:java:javax.webbeans http://java.sun.com/jee/web-beans-1.0.xsd

urn:java:com.mydomain.myfwk http://mydomain.com/xsd/myfwk-1.0.xsd
urn:java:com.mydomain.myapp http://mydomain.com/xsd/myapp-1.2.xsd">

<myfwk:RequiresTransactionInterceptor>
<Interceptor/>
<myfwk:Transactional/>

</myfwk:RequiresTransactionInterceptor>

<myfwk:RequiresNewTransactionInterceptor>
<Interceptor/>
<myfwk:Transactional requiresNew="true"/>

</myfwk:RequiresNewTransactionInterceptor>

<myfwk:DataAccessAuthorizationDecorator>
<Decorator/>
<myfwk:dataAccess>

<Decorates>
<myfwk:DataAccess/>

</Decorates>
</myfwk:dataAccess>

<myfwk:DataAccessAuthorizationDecorator>

</WebBeans>

If a Web Bean declaration that is not a simple Web Bean declaration contains a child <Interceptor> or <Decorator> ele-
ment, or if an inline Web Bean declaration contains a child <Interceptor> or <Decorator> element, a DefinitionExcep-

tion is thrown by the Web Bean manager at initialization time.

If a simple Web Bean declaration contains more than one direct child <Interceptor> or <Decorator> element in the Web
Beans namespace, a DefinitionException is thrown by the Web Bean manager at initialization time.

10.5.1. Decorator delegate attribute

Decorator declarations may declare the delegate attribute. A delegate declaration is a direct child element of the decorator
declaration. The name of the delegate attribute is the same as the name of the element.

XML based metadata

JSR-299 Public Review 102

If a direct child element of a decorator declaration:

• exists in the same namespace as its parent, and

• has direct child <Decorates> element in the Web Beans namespace

then it is interpreted as a delegate declaration.

If the Web Bean implementation class has a field with the same name as the child element, then the child element is inter-
preted to represent that field.

If the Web Bean implementation class does not have have a field with the specified name, a NonexistentFieldException

is thrown by the Web Bean manager at initialization time.

If a delegate declaration has more than one direct child element, a DefinitionException is thrown by the Web Bean man-
ager at initialization time. This child element is a <Decorates> element in the Web Beans namespace. If the <Decorates>

element does not, in turn, have exactly one direct child element, a DefinitionException is thrown by the Web Bean man-
ager at initialization time.

The direct child element of the <Decorates> element is interpreted as a type declaration as specified by Section 10.8,
“Specifying API types and binding types”. If the declared API type is not assignable to the type of the Java field, a
DefinitionException is thrown by the Web Bean manager at initialization time.

The API type declared in XML may be a subtype of the Java field type. In this case, the Web Bean manager will use the
API type declared in XML when resolving the dependency.

If simple Web Bean declaration that is not a decorator declaration contains a direct child element that in turn contains a
direct child <Decorates> element, a DefinitionException is thrown by the Web Bean manager at initialization time.

10.6. Injection point declarations

An injection point declaration is either:

• a type declaration, as defined in Section 10.8, “Specifying API types and binding types”, or

• an inline Web Bean declaration, as defined in Section 10.7, “Inline Web Bean declarations”.

When the Web Bean manager encounters an injection point declaration, it interprets the name of the element as the name
of a Java class or interface in the package corresponding to the element namespace. If no such Java type exists in the
classpath, a NonexistentTypeException is thrown by the Web Bean manager at initialization time.

• If the Java type is a parameterized type, the injection point declaration is a type declaration, and the declared type of
the injection point is the API type of the type declaration, including actual type parameters.

• Otherwise, the Web Bean manager inspects the direct child elements. If the name of any direct child element is the
name of a Web Beans binding type in the package corresponding to the child element namespace, the injection point
declaration is a type declaration, and the declared type of the injection point is the API type of the type declaration.

• Otherwise, if any direct child elements exist, the injection point declaration is an inline Web Bean declaration, and the
declared type of the injection point is the implementation class of the Web Bean.

• Otherwise, the injection point declaration is a type declaration, and the declared type of the injection point is the API
type of the type declaration.

10.7. Inline Web Bean declarations

An inline Web Bean declaration is a simple Web Bean declaration, as defined in Section 10.3, “Web Bean declarations”
that occurs as an injection point declaration, instead of as a direct child of the <WebBeans> element.

<myapp:Admin>
<ApplicationScoped/>

XML based metadata

JSR-299 Public Review 103

<myapp:username>gavin</myapp:username>

<myapp:name>
<myapp:Name>

<myapp:firstName>Gavin</myapp:firstName>
<myapp:lastName>King</myapp:lastName>

</myapp:Name>
</myapp:name>

</myapp:Admin>

The name of the element is interpreted as the name of a Java class in the package corresponding to the element namespace.
This Java class is the implementation class of the simple Web Bean.

Inline Web Bean declarations may not explicitly specify a binding type. If an inline Web Bean declaration explicitly spe-
cifies a binding type, a DefinitionException is thrown by the Web Bean manager at initialization time.

For every inline injection point, the Web Bean manager generates a unique value for an implementation-specific binding
type. (For example, a particular Web Bean manager implementation might generate the value
com.vendor.webbeans.Inline(id=12345) at some injection point.) This generated value is the binding type of the injec-
tion point, and the only binding type of the simple Web Bean. The API type of the injection point is the declared imple-
mentation class of the simple Web Bean.

Thus, an inline Web Bean declaration results in a simple Web Bean that is bound only to the injection point at which it
was declared.

10.8. Specifying API types and binding types

Every injection point, event parameter and delegate attribute defined in XML must explicitly specify an API type and
combination of binding types. XML-based producer method declarations must also explicitly specify the return type
(which is used to calculate the set of API types) and binding types. A type declaration is:

• an element that represents a Java class or interface, or <Array>,

• if the type is a parameterized type, a set of child elements that represent Java classes and/or interfaces, and are inter-
preted as the actual type parameters, or, if the type is an array type, a single child element that represents the array ele-
ment type,

• optionally, a set of child elements that represent Java annotation types, and are interpreted as binding types.

For example, the following XML fragment declares the type List<Product> with binding type @All.

<util:List>
<myapp:All/>
<myapp:Product/>

</util:List>

This XML fragment declares the type Product[] with binding type @Available.

<Array>
<myapp:Available/>
<myapp:Product/>

</Array>

When the Web Bean manager encounters a type declaration it interprets the element as a Java type:

• If the element is an <Array> element in the Web Beans namespace, an array type was declared.

• Otherwise, the name of the element is interpreted as the name of a Java class or interface in the package corresponding
to the element namespace. If no such Java type exists in the classpath, a NonexistentTypeException is thrown by the
Web Bean manager at initialization time. If the Java type is not a class or interface type, a DefinitionException is
thrown by the Web Bean manager at initialization time.

Next, the Web Bean manager inspects every direct child element of the type declaration. The name of each child element
is interpreted as the name of a Java type in the package corresponding to the child element namespace. If no such Java type

XML based metadata

JSR-299 Public Review 104

exists in the classpath, a NonexistentTypeException is thrown by the Web Bean manager at initialization time.

• If the type is a Java annotation type, a binding type was declared.

• If the type is a Java class or interface type, an actual type parameter or array element type was declared.

• Otherwise, a DefinitionException is thrown by the Web Bean manager at initialization time.

If multiple array element types are declared, a DefinitionException is thrown by the Web Bean manager at initialization
time.

If the number of declared actual type parameters is not the same as the number of parameters of the Java type, a Defini-

tionException is thrown by the Web Bean manager at initialization time.

If a type parameter of the Java type is bounded, and the corresponding declared actual type parameter does not satisfy the
upper or lower bound, a DefinitionException is thrown by the Web Bean manager at initialization time.

If a binding type declaration declares a Java annotation type that is not a Web Beans binding type, a DefinitionExcep-

tion is thrown by the Web Bean manager at initialization time.

If no binding type is declared, the default binding type @Current is assumed.

If the same binding type occurs more than once, a DuplicateBindingTypeException is thrown by the Web Bean manager
at initialization time.

For fields, type declarations are specified as direct child elements of the field declaration:

<myapp:Order>

<myapp:paymentProcessor>

<myapp:PaymentProcessor>
<myapp:PayBy>CHEQUE</myapp:PayBy>

</myapp:PaymentProcessor>

</myapp:paymentProcessor>

</myapp:Order>

<myapp:ShoppingCart>

<myapp:catalog>

<util:List>
<myapp:All/>
<myapp:Product/>

</util:List>

</myapp:catalog>

</myapp:ShoppingCart>

For methods, the method parameter declarations are type declarations:

<myapp:Order>

<myapp:setPaymentProcessor>
<Initializer/>

<myapp:PaymentProcessor>
<myapp:PayBy>CHEQUE</myapp:PayBy>

</myapp:PaymentProcessor>

<myfwk:Logger/>

</myapp:setPaymentProcessor>

</myapp:Order>

For producer methods, the return type must also be specified:

<app:Shop>

XML based metadata

JSR-299 Public Review 105

<app:getAvailableProducts>

<Produces>
<ApplicationScoped/>
<Array>

<app:Available/>
<app:Product/>

</Array>
</Produces>

<util:List>
<app:All/>
<app:Product/>

</util:List>

</app:getAvailableProducts>

</app:Shop>

For constructors, the constructor parameter declarations are type declarations:

<myapp:Order>
<ConversationScoped/>

<myapp:PaymentProcessor>
<myapp:PayBy>CHEQUE</myapp:PayBy>

</myapp:PaymentProcessor>

<myfwk:Logger/>

</myapp:Order>

10.9. Annotation members

Any binding type or interceptor binding type declaration must define the value of any annotation member without a default
value, and may additionally define the value of any annotation member with a default value. Annotation member values
are defined by attributes of the XML element which represents the Java annotation.

All attributes of any XML element which corresponds to a Java annotation are interpreted as members of the annotation.
The name of the attribute is interpreted as the name of the corresponding annotation member. The value of the attribute is
interpreted as the value of the annotation member. If there is no annotation member with the same name as the attribute, a
NonexistentMemberException is thrown by the Web Bean manager at initialization time.

<myfwk:DataAccess transactional="true"/>

Alternatively, the value of an annotation member named value may be specified in the body of the XML element which
corresponds to the Java annotation. If the XML element has a non-empty body and also specifies an attribute named
value, a DefinitionException is thrown by the Web Bean manager at initialization time. If the XML element has a non-
empty body, and there is no annotation member named value, a NonexistentMemberException is thrown by the Web
Bean manager at initialization time.

<myapp:PayBy>CHEQUE</myapp:PayBy>

• The value of a member of primitive type is specified using the Java literal syntax for that type.

• The value of a member of type java.lang.String is specified using the string value.

• The value of a member of enumerated type is specified using the unqualified name of the enumeration value.

• The value of a member of type java.lang.Class is specified using the fully qualified Java class name.

If the member value is not specified in the correct format for the type of the member, a DefinitionException is thrown
by the Web Bean manager at initialization time.

If an XML element that refers to a Java annotation with a member with no default value does not declare a value for that
member, a DefinitionException is thrown by the Web Bean manager at initialization time.

XML based metadata

JSR-299 Public Review 106

10.10. Deployment declarations

The <Deploy>, <Interceptors> and <Decorators> elements in the Web Beans namespace determine which Web Beans,
interceptors and decorators are enabled in a particular deployment.

10.10.1. The <Deploy> declaration

Each direct child element of a <Deploy> element is interpreted as the declaring an enabled deployment type, as specified in
Section 2.5.6, “Enabled deployment types”.

For each child element, the name of the child element is interpreted as the name of a Java annotation type in the package
corresponding to the child element namespace. If no such Java type exists in the classpath, a DefinitionException is
thrown by the Web Bean manager at initialization time. If the type is not a Web Beans deployment type, a DefinitionEx-

ception is thrown by the Web Bean manager at initialization time.

If the same deployment type is declared more than once, a DefinitionException is thrown by the Web Bean manager at
initialization time.

10.10.2. The <Interceptors> declaration

Each direct child element of an <Interceptors> element is interpreted as the declaring an enabled interceptor, as specified
in Section 7.2.7, “Interceptor enablement and ordering”.

For each child element, the name of the child element is interpreted as the name of a Java class in the package correspond-
ing to the child element namespace. If no such Java class exists in the classpath, a DefinitionException is thrown by the
Web Bean manager at initialization time.

If the same interceptor is declared more than once, a DefinitionException is thrown by the Web Bean manager at initial-
ization time.

10.10.3. The <Decorators> declaration

Each direct child element of a <Decorators> element is interpreted as the declaring an enabled decorator, as specified in
Section 7.3.5, “Decorator enablement and ordering”.

For each child element, the name of the child element is interpreted as the name of a Java class in the package correspond-
ing to the child element namespace. If no such Java class exists in the classpath, a DefinitionException is thrown by the
Web Bean manager at initialization time.

If the same decorator is declared more than once, a DefinitionException is thrown by the Web Bean manager at initializ-
ation time.

XML based metadata

JSR-299 Public Review 107

Chapter 11. Packaging and deployment

In EAR or WAR deployments, the Web Bean manager is automatically initialized when the EAR or WAR is deployed by
the Java EE container. In the Java SE environment, the Web Bean manager is automatically initialized when the embed-
dable EJB Lite container is initialized.

Web Bean discovery is the process of determining:

• What Web Beans, interceptors and decorators exist in the deployment archive

• Which Web Beans, interceptors and decorators are enabled for this deployment

• The precedence of the enabled Web Beans, and the ordering of enabled interceptors and decorators

The Web Bean manager automatically discovers Web Beans when the Web Bean manager initializes.

Web Bean classes must be deployed in an EAR, WAR, EJB-JAR or JAR archive or directory in the application classpath
that has a file named web-beans.xml in the metadata directory (META-INF, or WEB-INF in the case of a WAR). If a Web
Bean is deployed to a location that is not in the application classpath, or does not contain a file named web-beans.xml in
the metadata directory, it will not be discovered by the Web Bean manager.

Additional Web Beans may be registered programatically with the Web Bean manager by the application or third-party
framework after the manager initializes. Third-party frameworks may even provide the ability to register certain Web Bean
definitions with a child manager, thereby limiting their visibility to certain contexts.

11.1. Web Bean discovery

When the Web Bean manager is initialized, it considers:

• any web-beans.xml file in any metadata directory of the application classpath,

• any ejb-jar.xml file in any metadata directory of the application classpath that also contains a web-beans.xml file,
and

• any Java class in any archive or directory in the classpath that has a web-beans.xml file in the metadata directory.

First, the Web Bean manager discovers all binding types, stereotypes and interceptor binding types declared in XML, ac-
cording to the rules of Section 10.2, “Stereotype, binding type and interceptor binding type declarations”.

The Web Bean manager automatically discovers simple Web Beans (according to the rules of Section 3.2.1, “Which Java
classes are simple Web Beans?”) and enterprise Web Beans (according to the rules of Section 3.3.1, “Which EJBs are en-
terprise Web Beans?”) deployed and/or declared in these locations and searches the implementation classes for producer
methods, producer fields, disposal methods and observer methods declared using annotations.

The Web Bean manager discovers Web Beans, disposal methods and observer methods defined using XML by parsing the
web-beans.xml files according to the rules of Chapter 10, XML based metadata.

The Web Bean manager validates the Web Bean classes and metadata and aborts initialization if any definition errors ex-
ist, as defined in Section 12.1, “Definition errors”.

Next, the Web Bean manager determines which Web Beans, interceptors and decorators are enabled, according to the rules
defined in Section 2.5.6, “Enabled deployment types”, Section 7.2.7, “Interceptor enablement and ordering” and Sec-
tion 7.3.5, “Decorator enablement and ordering”, taking into account any <Deploy>, <Interceptors> and <Decorators>

declarations in the web-beans.xml files.

Finally, the Web Bean manager creates and registers Bean objects (that implement the rules of Chapter 6, Web Bean life-
cycle) and Observer objects.

• For each enabled Web Bean that is not an interceptor or decorator, the Web Bean manager creates an instance of Bean,
and registers it by calling Manager.addBean().

• For each enabled interceptor, the Web Bean manager creates an instance of Interceptor and registers it by calling

JSR-299 Public Review 108

Manager.addInterceptor().

• For each enabled decorator, the Web Bean manager creates an instance of Decorator and registers it by calling Man-

ager.addDecorator().

• For each observer method of an enabled Web Bean, the Web Bean manager creates an instance of Observer that im-
plements the rules of Section 8.5.7, “Observer object for an observer method” and registers it by calling Man-

ager.addObserver().

The Web Bean manager validates the Web Bean dependencies and specialization and aborts initialization if any deploy-
ment problems exist, as defined in Section 12.2, “Deployment problems”.

11.2. Web Bean registration

The Manager API provides methods for registering a new Web Bean with the Web Bean manager.

public interface Manager {

public Manager addBean(Bean<?> bean);

public Manager addInterceptor(Interceptor interceptor);

public Manager addDecorator(Decorator decorator);

...

}

These methods may be called at any time by the application or third-party framework.

The Manager API also provides a method for dynamically validating all constraints that are defined by this specification to
cause DeploymentExceptions:

public interface Manager {

public Manager validate();

...

}

It is recommended that any application or third-party framework calls validate() after dynamically registering Web
Beans.

11.3. Providing additional XML based metadata

The Manager API provides a method that allows the application or third-party framework to provide additional XML based
metadata specified in a file other than web-beans.xml.

public interface Manager {

public Manager parse(InputStream xmlStream);

...

}

The Web Bean manager parses the XML stream according to the rules of Chapter 10, XML based metadata.

This method may be called at any time by the application or third-party framework.

11.4. EJB lookup

When the Web Bean manager creates a new instance of an enterprise Web Bean, the Web Bean manager obtains the new
instance from the EJB container via JNDI or internal Java EE container APIs.

Packaging and deployment

JSR-299 Public Review 109

At initialization time, the Web Bean manager inspects the EJB bean class annotations to determine the EJB name. The
Web Beans manager uses the EJB name whenever it obtains a new instance of the EJB bean.

The EnterpriseBeanLookup interface provides a single method for obtaining EJB bean instances:

public interface EnterpriseBeanLookup {
public Object lookup(String ejbName);

}

At initialization time, the Web Bean manager must obtain an instance of EnterpriseBeanLookup by calling Man-

ager.getInstanceByType(), passing EnterpriseBeanLookup as the API type and @Current as the only binding type.

The Web Bean manager must call lookup() on this instance whenever it needs to to obtain a new instance of the EJB
bean.

If a null value is returned by lookup(), a CreationException is thrown by the Web Bean manager.

All Web Bean managers must provide a built-in Web Bean that implements EnterpriseBeanLookup.

• A plugin Web Bean manager must include a built-in implementation that attempts to obtain the EJB from JNDI.

• An integrated Web Bean manager must include a built-in implementation that uses container-specific APIs or default
JNDI names.

Any built-in implementation of EnterpriseBeanLookup should have deployment type @Standard and binding type
@Current.

The EnterpriseBeanLookup.lookup() method of a built-in implementation for a plugin Web Bean manager obtains EJB
beans by JNDI lookup.

• If there is an EJB link for the EJB in the web.xml file, the Web Bean manager must use the JNDI name specified by the
EJB link during all servlet requests to that web application context, and during any invocation of a remote method of
an EJB deployed in the same WAR, any EJB timeout for an EJB deployed in that WAR and any message delivery to a
message driven bean deployed in that WAR.

• If there is an EJB link for the EJB in an ejb-jar.xml file, the Web Bean manager must use the JNDI name specified
by the EJB link during any invocation of a remote method of an EJB deployed in the same EJB-JAR, any EJB timeout
for an EJB deployed in that EJB-JAR and any message delivery to a message driven bean deployed in that EJB-JAR.

• Otherwise, the Web Bean manager must use the portable global JNDI name defined by the EJB 3.1 specification.

Open issue: is it possible to compute the portable global JNDI name from within the application?

The application may override the built-in EnterpriseBeanLookup implementation by deploying a simple Web Bean that
implements EnterpriseBeanLookup and has the binding type @Current. This will usually be necessary when a plugin Web
Bean manager is used in a Java EE 5 environment. It is never necessary when an integrated Web Bean manager is used.

11.5. Initialization event

Third party frameworks and application components may require notification that the Web Bean manager has been initial-
ized. The Web Bean manager must fire an event when it has fully completed initialization and Web Bean discovery. The
event object must be the Manager object, and the event must have the following binding type:

@BindingType
@Retention(RUNTIME)
@Target({ FIELD, PARAMETER })
public @interface Initialized {}

Any Web Bean may observe this event.

public void managerInitialized(@Observes @Initialized Manager manager) { ... }

A third party framework might take advantage of this event to register Web Beans and interceptors with the Web Bean

Packaging and deployment

JSR-299 Public Review 110

manager.

The request and application contexts are active when the initialization event is fired.

11.6. Java EE integration

The Web Bean manager integrates with the Java EE container or embeddable EJB Lite implementation via standard Java
EE APIs, such as JNDI, Servlet filters and listeners, EJB interceptors, JSF phase listeners and Unified EL resolvers.

When a plugin Web Bean manager is used in a Java EE 5 environment, certain Web Bean manager specific entries may be
required in web.xml and ejb-jar.xml. These entries are never needed when an integrated Web Bean manager is used.

Open issue: currently, entries in Java EE XML deployment descriptors are required to register servlet filters, startup
listeners and EJB interceptors. We need a way for a plugin Web Bean manager to register these things programatically, or
using XML embedded in the Web Bean manager JAR.

11.7. Child managers

Web Bean definitions may be scoped to a child manager. The Web Beans specification only provides a programmatic API
for defining child managers, since this feature is intended for use with third-party orchestration frameworks that integrate
with Web Beans.

The Manager API provides a method for creating a child manager:

public interface Manager {

public Manager createChildManager();

...

}

A child manager inherits all Web Beans, interceptors, decorators, observers, and contexts defined by its direct and indirect
parent managers:

• every Web Bean belonging to a parent manager also belongs to the child manager, is eligible for injection into other
Web Beans belonging to the child manager and may be obtained by dynamic lookup via the child manager,

• every interceptor and decorator belonging to a parent manager also belongs to the child manager and may be applied to
any Web Bean belonging to the child manager,

• every observer belonging to a parent manager also belongs to the child manager and receives events fired via the child
manager, and

• every context object belonging to the parent manager also belongs to the child manager.

Web Beans and observers may be registered with a child manager by calling addBean() or addObserver() on a Manager

object that represents a child manager.

Web Beans and observers registered with a manager are visible only to that manager and its children—they are never vis-
ible to direct or indirect parent managers, or to other children of the parent managers:

• a Web Bean registered with the child manager is not available for injection into a Web Beans registered with a parent
manager,

• a Web Bean registered with a child manager is not available for injection into a Servlet or EJB bean,

• a Web Bean registered with a child manager may not be obtained by dynamic lookup via the parent manager, and

• an observer registered with the child manager does not receive events fired via a parent manager.

If a Web Bean registered with a child manager has the API type and all binding types of some injection point of some Web
Bean registered with a direct or indirect parent manager, a DeploymentException is throw by the Web Bean manager

Packaging and deployment

JSR-299 Public Review 111

when validate() is called upon the Manager object that represents the child manager.

Interceptors and decorators may not be registered with a child manager. The addInterceptor() and addDecorator()

methods throw UnsupportedOperationException which called on a Manager object that represents a child manager.

11.7.1. Current manager

A Web Bean registered with a child manager is only available to Unified EL expressions that are evaluated when that
manager or one of its children is the current manager.

There is exactly one current manager per request context.

By default, the root manager is the current manager for every new request context. Any child manager may be made the
current manager for the current request context by calling setCurrent():

public interface Manager {

public Manager setCurrent();

...

}

If the request scope is inactive when setCurrent() is called, a ContextNotActiveException is thrown.

After setCurrent() is called on a child manager, all EL evaluations (as defined Section 5.11.2, “Integration with Unified
EL”) and all calls to any injected Manager object or Manager object obtained via JNDI lookup (as defined by Section 5.8,
“The Manager object”) that occur within the same request context are processed by that child manager.

Packaging and deployment

JSR-299 Public Review 112

Chapter 12. Exceptions

Exceptions thrown by the Web Bean manager fall into three groups:

• Definition errors—occur when a single Web Bean definition violates the rules of this specification

• Deployment problems—occur when there are problems resolving dependencies, or inconsistent specialization, in a par-
ticular deployment

• Execution errors—occur at runtime

Definition errors are developer errors. They may be detected by tooling at development time, and are also detected by the
Web Bean manager at initialization time. If a definition error exists in a deployment, the deployment will be aborted by the
Web Bean manager.

Deployment problems are detected by the Web Bean manager at initialization time. If a deployment problem exists in a
deployment, the deployment will be aborted by the Web Bean manager.

Execution errors may not be detected until they actually occur at runtime.

All exceptions defined by this specification are runtime exceptions.

12.1. Definition errors

Definition errors are represented by instances of DefinitionException and its subclasses.

public class DefinitionException extends RuntimeException {

public DefinitionException(String message) { ... }

}

This specification defines the following subclasses:

• NonexistentTypeException

• NonexistentMemberException

• NonexistentFieldException

• NonexistentMethodException

• NonexistentConstructorException

Web Bean manager implementations may define their own subclasses of DefinitionException, and throw an instance of
a subclass anywhere that this specification requires a DefinitionException to be thrown.

12.2. Deployment problems

Deployment problems are represented by instances of DeploymentException and its subclasses.

public class DeploymentException extends RuntimeException {

public DeploymentException(String message) { ... }

}

This specification defines the following subclasses:

• UnsatisfiedDependencyException

• AmbiguousDependencyException

JSR-299 Public Review 113

• UnserializableDependencyException

• NullableDependencyException

• UnproxyableDependencyException

• InconsistentSpecializationException

Web Bean manager implementations may define their own subclasses of DeploymentException, and throw an instance of
a subclass anywhere that this specification requires a DeploymentException to be thrown.

12.3. Execution errors

Execution errors are represented by instances of ExecutionException and its subclasses.

public class ExecutionException extends RuntimeException {

public ExecutionException(String message) { ... }

}

This specification defines the following subclasses:

• CreationException

• UnremovedException

• IllegalProductException

• ObserverException

• DuplicateBindingTypeException

• ContextNotActiveException

Exceptions

JSR-299 Public Review 114

	JSR 299: Web Beans
	Table of Contents
	Chapter 1. Architecture
	1.1. Contracts
	1.2. Supported environments
	1.3. Relationship to other specifications
	1.3.1. Relationship to EJB
	1.3.2. Relationship to JSF
	1.3.3. Relationship to Java Servlets
	1.3.4. Relationship to Common Annotations for the Java Platform

	1.4. Introductory examples
	1.4.1. JSF example
	1.4.2. EJB example
	1.4.3. Interceptor example
	1.4.4. Decorator example

	Chapter 2. Web Bean definition
	2.1. Functionality provided by the Web Bean manager to the Web Bean
	2.2. Web Bean API types
	2.3. Binding types
	2.3.1. Default binding type
	2.3.2. Defining new binding types
	2.3.3. Declaring the binding types of a Web Bean using annotations
	2.3.4. Declaring the binding types of a Web Bean using XML
	2.3.5. Using binding annotations on injected fields
	2.3.6. Using binding annotations on method or constructor parameters

	2.4. Web Bean scopes
	2.4.1. Built-in scope types
	2.4.2. Defining new scope types
	2.4.3. Declaring the Web Bean scope using annotations
	2.4.4. Declaring the Web Bean scope using XML
	2.4.5. Default scope

	2.5. Deployment types
	2.5.1. Built-in deployment types
	2.5.2. Defining new deployment types
	2.5.3. Declaring the deployment type of a Web Bean using annotations
	2.5.4. Declaring the deployment type of a Web Bean using XML
	2.5.5. Default deployment type
	2.5.6. Enabled deployment types
	2.5.7. Deployment type precedence

	2.6. Web Bean names
	2.6.1. Declaring the Web Bean name using annotations
	2.6.2. Declaring the Web Bean name using XML
	2.6.3. Default Web Bean names
	2.6.4. Web Beans with no name

	2.7. Stereotypes
	2.7.1. Defining new stereotypes
	2.7.1.1. Declaring the default scope and deployment type for a stereotype
	2.7.1.2. Specifying interceptor bindings for a stereotype
	2.7.1.3. Specifying name defaulting for a stereotype
	2.7.1.4. Restricting Web Bean scopes and types using a stereotype
	2.7.1.5. Stereotypes with additional stereotypes

	2.7.2. Declaring the stereotypes for a Web Bean using annotations
	2.7.3. Declaring the stereotypes for a Web Bean using XML
	2.7.4. Stereotype restrictions
	2.7.5. Built-in stereotypes

	Chapter 3. Web Bean implementation
	3.1. Restriction upon Web Bean instantiation
	3.2. Simple Web Beans
	3.2.1. Which Java classes are simple Web Beans?
	3.2.2. API types of a simple Web Bean
	3.2.3. Declaring a simple Web Bean using annotations
	3.2.4. Declaring a simple Web Bean using XML
	3.2.5. Web Bean constructors
	3.2.5.1. Declaring a Web Bean constructor using annotations.
	3.2.5.2. Declaring a Web Bean constructor using XML.
	3.2.5.3. Web Bean constructor parameters

	3.2.6. Specializing a simple Web Bean
	3.2.7. Default name for a simple Web Bean

	3.3. Enterprise Web Beans
	3.3.1. Which EJBs are enterprise Web Beans?
	3.3.2. API types of an enterprise Web Bean
	3.3.3. Declaring an enterprise Web Bean using annotations
	3.3.4. Declaring an enterprise Web Bean using XML
	3.3.5. Web Bean remove methods
	3.3.5.1. Declaring a Web Bean remove method using annotations.
	3.3.5.2. Declaring a Web Bean remove method using XML.
	3.3.5.3. Remove method parameters

	3.3.6. Specializing an enterprise Web Bean
	3.3.7. Default name for an enterprise Web Bean
	3.3.8. Enterprise bean proxies

	3.4. Producer methods
	3.4.1. API types of a producer method
	3.4.2. Declaring a producer method using annotations
	3.4.3. Declaring a producer method using XML
	3.4.4. Producer method parameters
	3.4.5. Specializing a producer method
	3.4.6. Disposal methods
	3.4.7. Disposed parameter of a disposal method
	3.4.8. Declaring a disposal method using annotations
	3.4.9. Declaring a disposal method using XML
	3.4.10. Disposal method parameters
	3.4.11. Disposal method resolution
	3.4.12. Default name for a producer method

	3.5. Producer fields
	3.5.1. API types of a producer field
	3.5.2. Declaring a producer field using annotations
	3.5.3. Declaring a producer field using XML
	3.5.4. Default name for a producer field

	3.6. JMS endpoints
	3.6.1. API types of a JMS endpoint
	3.6.2. Declaring a JMS endpoint using XML

	3.7. Injected fields
	3.7.1. Declaring an injected field using annotations
	3.7.2. Declaring an injected field using XML

	3.8. Initializer methods
	3.8.1. Declaring an initializer method using annotations
	3.8.2. Declaring an initializer method using XML
	3.8.3. Initializer method parameters

	3.9. The @New binding type
	3.10. Support for Common Annotations
	3.11. The Bean object for a Web Bean

	Chapter 4. Inheritance, specialization and realization
	4.1. Inheritance of type-level metadata
	4.2. Inheritance of member-level metadata
	4.3. Specialization
	4.3.1. Using specialization
	4.3.2. Direct and indirect specialization
	4.3.3. Inconsistent specialization

	4.4. Realization
	4.4.1. Using realization

	Chapter 5. Lookup, dependency injection and EL resolution
	5.1. Unsatisfied and ambiguous dependencies
	5.2. Primitive types and null values
	5.3. Injected reference validity
	5.4. Client proxies
	5.4.1. Unproxyable API types
	5.4.2. Client proxy invocation

	5.5. The default binding type at injection points
	5.6. Generic type literals
	5.7. Annotation type literals
	5.8. The Manager object
	5.9. Instance resolution
	5.9.1. Dynamic lookup
	5.9.2. Typesafe resolution algorithm
	5.9.2.1. Binding annotations with members
	5.9.2.2. Multiple binding annotations

	5.10. Injection point metadata
	5.11. EL name resolution
	5.11.1. Name resolution algorithm
	5.11.2. Integration with Unified EL

	Chapter 6. Web Bean lifecycle
	6.1. Creation
	6.2. Destruction
	6.3. Lifecycle of simple Web Beans
	6.4. Lifecycle of stateful session enterprise Web beans
	6.5. Lifecycle of stateless session and singleton enterprise Web Beans
	6.6. Lifecycle of producer methods
	6.7. Lifecycle of producer fields
	6.8. Lifecycle of JMS endpoints
	6.9. Lifecycle of EJB beans
	6.10. Lifecycle of Servlets

	Chapter 7. Interceptors and decorators
	7.1. Business methods
	7.2. Interceptors
	7.2.1. Business method interceptors
	7.2.2. Lifecycle callback interceptors
	7.2.3. Support for @Interceptors
	7.2.4. Interceptor bindings
	7.2.4.1. Interceptor binding types with additional interceptor bindings
	7.2.4.2. Interceptor bindings for stereotypes

	7.2.5. Web Beans interceptors
	7.2.5.1. Declaring a Web Beans interceptor using annotations
	7.2.5.2. Declaring a Web Beans interceptor using XML

	7.2.6. Binding a Web Beans interceptor to a Web Bean or EJB bean
	7.2.6.1. Binding a Web Beans interceptor using annotations
	7.2.6.2. Binding a Web Beans interceptor using XML

	7.2.7. Interceptor enablement and ordering
	7.2.8. The Interceptor object for an interceptor
	7.2.9. Interceptor resolution
	7.2.9.1. Interceptors with multiple binding types
	7.2.9.2. Interceptor binding types with members

	7.2.10. Interceptor stack creation
	7.2.11. Interceptor invocation

	7.3. Decorators
	7.3.1. Declaring a decorator using annotations
	7.3.2. Declaring a decorator using XML
	7.3.3. Decorator delegate attributes
	7.3.4. Decorated types of a decorator
	7.3.5. Decorator enablement and ordering
	7.3.6. The Decorator object for a decorator
	7.3.7. Decorator resolution
	7.3.8. Decorator stack creation
	7.3.9. Decorator invocation

	Chapter 8. Events
	8.1. Event types and binding types
	8.2. Firing an event via the Manager interface
	8.3. Observing events via the Observer interface
	8.4. Observer invocation
	8.5. Observer methods
	8.5.1. Event parameter of an observer method
	8.5.2. Declaring an observer method using annotations
	8.5.3. Declaring an observer method using XML
	8.5.4. Observer method parameters
	8.5.5. Conditional observers
	8.5.6. Transactional observers
	8.5.7. Observer object for an observer method

	8.6. The Event interface
	8.7. Observer resolution
	8.7.1. Event binding annotations with members
	8.7.2. Multiple event binding annotations

	Chapter 9. Scopes and contexts
	9.1. The Contextual interface
	9.2. The Context interface
	9.3. Normal scopes and pseudo-scopes
	9.4. Dependent pseudo-scope
	9.4.1. Dependent objects
	9.4.1.1. Dependent objects of a simple or enterprise Web Bean
	9.4.1.2. Dependent objects of a producer method
	9.4.1.3. Dependent objects of an EJB bean or Servlet

	9.4.2. Dependent object destruction

	9.5. Passivating scopes and serialization
	9.6. Context management for built-in scopes
	9.6.1. Request context lifecycle
	9.6.2. Session context lifecycle
	9.6.3. Application context lifecycle
	9.6.4. Conversation context lifecycle

	9.7. Context management for custom scopes

	Chapter 10. XML based metadata
	10.1. XML namespace for a Java package
	10.2. Stereotype, binding type and interceptor binding type declarations
	10.2.1. Child elements of a stereotype declaration
	10.2.2. Child elements of an interceptor binding type declaration

	10.3. Web Bean declarations
	10.3.1. Child elements of a Web Bean declaration
	10.3.2. Type-level metadata for a Web Bean
	10.3.3. Web Bean constructor declarations
	10.3.4. Fields of a Web Bean
	10.3.5. Field initial value declarations
	10.3.6. Methods of a Web Bean

	10.4. Producer method and field declarations
	10.4.1. Child elements of a producer field declaration
	10.4.2. Child elements of a producer method declaration
	10.4.3. Return type and binding types of a producer method or field
	10.4.4. Member-level metadata for a producer method or field

	10.5. Interceptor and decorator declarations
	10.5.1. Decorator delegate attribute

	10.6. Injection point declarations
	10.7. Inline Web Bean declarations
	10.8. Specifying API types and binding types
	10.9. Annotation members
	10.10. Deployment declarations
	10.10.1. The <Deploy> declaration
	10.10.2. The <Interceptors> declaration
	10.10.3. The <Decorators> declaration

	Chapter 11. Packaging and deployment
	11.1. Web Bean discovery
	11.2. Web Bean registration
	11.3. Providing additional XML based metadata
	11.4. EJB lookup
	11.5. Initialization event
	11.6. Java EE integration
	11.7. Child managers
	11.7.1. Current manager

	Chapter 12. Exceptions
	12.1. Definition errors
	12.2. Deployment problems
	12.3. Execution errors

