
1.
2.
3.
4.
5.

1.

2.

Selenium IDE Guide for Testers

Tester's Guide to Selenium tests (Selenium IDE driven)

Getting started
Implementing Selenium test cases

Creating a test case using Selenium IDE
Running a test case in .html using Selenium IDE
Converting .html test cases to .java using Maven
Running a test case in .java using Maven
Running a test case on multiple browsers

Analyzing test results
Improving the test case
Main Selenium Commands

All Selenium commands (supported by converter)
Do's and Don'ts
How the SeleniumTestCaseGenerator is implemented

Tree View
Selenium Day Presentation

Getting started

There are three main pre-requisites you'll need to get started :

the Selenium IDE for Firefox
This browser extension works on any Firefox-ready system and gives users the ability to create and run Selenium
tests.
Download the Selenium IDE for Firefox.

the SeleniumTestCaseGenerator and associated project structure
Check out the Selenium-SniffTests project via svn to convert and run java tests.
Latest version of the project structure.
See for more information.How the SeleniumTestCaseGenerator is implemented

the user-extension file for advanced and eXo specific commands
This javascript file extends the basic Selenium commands for our specific use.
Latest version of the file.

Optional tools :

FireBug
This browser extension helps analyze web content and eases locator definition.
Download FireBug for Firefox

Implementing Selenium test cases

The next paragraphs will help users implement Selenium test cases.

The basic steps are as follows :

Creating a test case in .html using Selenium IDE
Running a test case in .html using Selenium IDE
Converting .html test cases to .java
Running a test case in .java using Maven
Improving the test case

Creating a test case using Selenium IDE

After you install the Firefox plugin, a new option called "Selenium IDE" will be listed under the "Tools" dropdown in your browser. Click it
to launch the Selenium IDE.
Include the user-extension.js file by choosing "Options..." from the "Options" dropdown in the IDE and browsing to add the Selenium Core

http://seleniumhq.org/download/
http://anonsvn.jboss.org/repos/gatein/portal/trunk/testsuite/selenium-snifftests
http://anonsvn.jboss.org/repos/gatein/portal/trunk/testsuite/selenium-snifftests/src/suite/user-extensions.js
https://addons.mozilla.org/en-US/firefox/addon/1843

2.

3.

4.

1.

2.
3.

4.

5.

extension.
The Selenium IDE starts with the recording button pressed (click on it if it is not the case). Then, all you need to do is follow your manual
test case in a Firefox window (clicking, typing, verifying) and the IDE will record your actions.

You can add verifications by right-clicking on the wanted object. The contextual menu will give a list of the basic available
verifications.
Use Firebug to help identify locators (especially for dynamically created elements that could change at each session)
Be sure to follow these basic principles : Selenium Test Recording Best Practices

Save your new test case in the folder."...\selenium-snifftests\src\suite\org\exoplatform\...\selenium\"

For more information on Selenium please see:

Main Selenium Commands
http://seleniumhq.org/docs/03_selenium_ide.html#chapter03-reference for a complete explanation of the Selenium IDE
interface.
Selenium Study Raw Notes for the eXo study on Selenium

Running a test case in .html using Selenium IDE

Open the test case by choosing "Open" from the "File" dropdown in the IDE and browsing to your working copy of the test. Its name
should be listed in the Test Case sidebar on the right of the screen once you've loaded the test.
Enter the URL of your test instance into the "Base URL" navigation bar at the top of the screen.
You can adjust the rate at which the test runs by moving the slider bar between "Fast" and "Slow." However, all tests are (or should be)
designed to work at full speed.
Press the "Play Current Test Case" button to begin the test.

You can pause the test by pressing the "Pause/Resume" button. Selenium will finish the currently-running command before
pausing. You can resume by pressing the same button again.
Each command that completes successfully will be highlighted in green, while commands that fail will be highlighted in red. Most
failed actions cause the test to stop.
You can choose a different starting point for the test by right-clicking any command and selecting the "Set / Clear Start Point"
Double-clicking any command will run only that command on Firefox's currently-displayed page.

After the test stops, check to make sure that nothing failed. If something did fail then you can read the log at the bottom of the page for
more information regarding why.

A .html test case is considered "Done" when :

it satisfies the following rules : Selenium Test Recording Best Practices
it passes at least 5 times full speed

Converting .html test cases to .java using Maven

mvn generate-test-sources -Pselenium

Running a test case in .java using Maven

To convert and run all test cases from the target selenium folder

mvn install -Pselenium

Possible options :

to vary speed :
-Dselenium.speed=xxx
to run only a specific test :
-Dtest=Test*09.java

Running a test case on multiple browsers

http://wiki-int.exoplatform.org/display/exoTesting/Selenium+Test+Recording+Best+Practices
http://seleniumhq.org/docs/03_selenium_ide.html#chapter03-reference
http://wiki-int.exoplatform.org/display/exoTesting/Selenium+Study+Raw+Notes
http://wiki-int.exoplatform.org/display/exoTesting/Selenium+Test+Recording+Best+Practices

-Dselenium.browser = iexploreproxy
-Dselenium.browser = safariproxy
-Dselenium.browser = googlechrome
-Dselenium.browser = firefox

Some browsers need special configuration to work with Selenium RC :
Safari : change proxy settings to focus only on & port=8080http://localhost
IE : change proxy settings to focus only on & port=8080http://localhost
FF :
Chrome :

Analyzing test results

Details on each test execution can be found in
"...\testsuite\selenium-snifftests\target\surefire-reports\"

Improving the test case

See Selenium Recording Tips & Tricks

Main Selenium Commands

Action commands :

Commands Description Arguments

check (locator) Check a toggle-button
(checkbox/radio) locator - an element locator

click (locator) Clicks on a link, button, checkbox or
radio button. If the click action
causes a new page to load (like a link
usually does), call
waitForPageToLoad.

locator - an element locator

clickAt (locator,coordString) Clicks on a link, button, checkbox or
radio button. If the click action
causes a new page to load (like a link
usually does), call
waitForPageToLoad.

locator - an element locator
coordString - specifies the x,y
position (i.e. - 10,20) of the
mouse event relative to the
element returned by the locator

close () Simulates the user clicking the
"close" button in the titlebar of a
popup window or tab.

contextMenu (locator) Simulates opening the context menu
for the specified element (as might
happen if the user "right-clicked" on
the element).

locator - an element locator

ContextMenuAt(locator,coordString) Simulates opening the context menu
for the specified element (as might
happen if the user "right-clicked" on
the element).

locator - an element locator
coordString - specifies the x,y
position (i.e. - 10,20) of the
mouse event relative to the
element returned by the
locator.

http://localhost
http://localhost
http://wiki-int.exoplatform.org/pages/viewpage.action?pageId=7669309

deleteAllVisibleCookies () Calls deleteCookie with recurse=true
on all cookies visible to the current
page. As noted on the documentation
for deleteCookie, recurse=true can
be much slower than simply deleting
the cookies using a known
domain/path.

doubleClick (locator) Double clicks on a link, button,
checkbox or radio button. If the
double click action causes a new
page to load (like a link usually
does), call waitForPageToLoad.

locator - an element locator

doubleClickAt (locator,coordString) Doubleclicks on a link, button,
checkbox or radio button. If the
action causes a new page to load
(like a link usually does), call
waitForPageToLoad.

locator - an element locator
coordString - specifies the x,y
position (i.e. - 10,20) of the
mouse event relative to the
element returned by the locator

dragAndDropToObject (
locatorOfObjectToBeDragged,locatorOfDragDestinationObject
)

Drags an element and drops it on
another element locatorOfObjectToBeDragged -

an element to be dragged
locatorOfDragDestinationObject
- an element whose location
(i.e., whose center-most pixel)
will be the point where
locatorOfObjectToBeDragged
is dropped

echo (message) Prints the specified message into the
third table cell in your Selenese
tables. Useful for debugging.

message - the message to print

keyPress (locator,keySequence) Simulates a user pressing a key
(without releasing it yet). locator - an element locator

keySequence - Either be a
string("\" followed by the
numeric keycode of the key to
be pressed, normally the ASCII
value of that key), or a single
character. For example: "w",
"\119".

mouseDownRight (locator) Simulates a user pressing the right
mouse button (without releasing it
yet) on the specified element.

locator - an element locator

mouseOver (locator) Simulates a user hovering a mouse
over the specified element. locator - an element locator

open (url) Opens an URL in the test frame. This
accepts both relative and absolute
URLs. The "open" command waits for
the page to load before proceeding,
ie. the "AndWait" suffix is implicit.
Note: The URL must be on the same
domain as the runner HTML due to
security restrictions in the browser
(Same Origin Policy). If you need to
open an URL on another domain,
use the Selenium Server to start a
new browser session on that domain.

url - the URL to open; may be
relative or absoluter

pause (waitTime) Wait for the specified amount of time
(in milliseconds) waitTime - the amount of time

to sleep (in milliseconds)

refresh () Simulates the user clicking the
"Refresh" button on their browser.

select (selectLocator,optionLocator) Select an option from a drop-down
using an option locator.
Option locators provide different
ways of specifying options of an
HTML Select element (e.g. for
selecting a specific option, or for
asserting that the selected option
satisfies a specification). There are
several forms of Select Option
Locator.

label=labelPattern: matches
options based on their
labels, i.e. the visible text.
(This is the default.)
o label=regexp:^Oother
value=valuePattern:
matches options based on
their values.
o value=other
id=id: matches options
based on their ids.
o id=option1
index=index: matches an
option based on its index
(offset from zero).
o index=2
If no option locator prefix is
provided, the default
behaviour is to match on
label.

selectLocator - an element
locator identifying a drop-down
menu
optionLocator - an option
locator (a label by default)

selectFrame (locator) Selects a frame within the current
window. (You may invoke this
command multiple times to select
nested frames.) To select the parent
frame, use "relative=parent" as a
locator; to select the top frame, use
"relative=top". You can also select a
frame by its 0-based index number;
select the first frame with "index=0",
or the third frame with "index=2".
You may also use a DOM expression
to identify the frame you want
directly, like this:
dom=frames"main".frames"subframe"

locator - an element locator
identifying a frame or iframe

setSpeed (value) Set execution speed (i.e., set the
millisecond length of a delay which
will follow each selenium operation).
By default, there is no such delay,
i.e., the delay is 0 milliseconds.

value - the number of
milliseconds to pause after
operation

type (locator,value) Sets the value of an input field, as
though you typed it in.
Can also be used to set the value of
combo boxes, check boxes, etc. In
these cases, value should be the
value of the option selected, not the
visible text.

locator - an element locator
value - the value to type

typeKeys (locator,value) Simulates keystroke events on the
specified element, as though you
typed the value key-by-key.
This is a convenience method for
calling keyDown, keyUp, keyPress
for every character in the specified
string; this is useful for dynamic UI
widgets (like auto-completing combo
boxes) that require explicit key
events.
Unlike the simple "type" command,
which forces the specified value into
the page directly, this command may
or may not have any visible effect,
even in cases where typing keys
would normally have a visible effect.
For example, if you use "typeKeys"
on a form element, you may or may
not see the results of what you typed
in the field.
In some cases, you may need to use
the simple "type" command to set the
value of the field and then the
"typeKeys" command to send the
keystroke events corresponding to
what you just typed.

locator - an element locator
value - the value to type.

windowMaximize () Resize currently selected window to
take up the entire screen

componentExoContextMenu(locator) Does a right click on an object ans
calls the eXo context menu locator - an element locator

waitFor commands :

Commands Description

waitForElementPresent Waits that the specified element is somewhere on the page. Useful before all clickAt commands.

waitForText Waits that the specified text (argument 2) is at the specified location (argument 1). Useful before all clickAt
commands.

waitForTextPresent = Waits that the specified text is somewhere on the page. Useful before all clickAt commands.

waitForPageToLoad (
timeout)

Waits for a new page to load.
You can use this command instead of the "AndWait" suffixes, "clickAndWait", "selectAndWait", "typeAndWait" etc.
(which are only available in the JS API).
Selenium constantly keeps track of new pages loading, and sets a "newPageLoaded" flag when it first notices a page
load. Running any other Selenium command after turns the flag to false. Hence, if you want to wait for a page to load,
you must wait immediately after a Selenium command that caused a page-load.

Verification commands :

Commands Description

verifyElementPresent true if the pattern matches the text, false otherwise
Verifies that the specified text pattern appears somewhere on the rendered page shown to the user.

verifyText Verifies that the specified text (argument 2) is at the specified location (argument 1).

verifyTextPresent Verifies that the specified text is somewhere on the page.

All Selenium commands (supported by converter)

Not all Selenium commands have been implemented in the generator. If a command is not translated to java, a warning will appear in the
command console. Ask the Release Team for help in implementing a new command.

Here is a list of supported commands

Do's and Don'ts

Do modify the html with Selenium IDE, save to ".../testsuite/selenium-snifftests/src/suite/org/exoplatform/.../selenium", and re-run the
generator.

Do not modify the java tests manually (they will be overwritten after next test generation)

How the SeleniumTestCaseGenerator is implemented

Tree View

Here is the complete tree view for a Selenium testsuite with the main files :
(example for Portal)

The .html scripts are saved in the ".../testsuite/selenium-snifftests/src/suite/org/exoplatform/.../selenium" file.
The user-extension.js file used by the generator is found in ".../testsuite/selenium-snifftests/src/suite".

you can also use this for the Selenium Core user-extension.
Once the tests are converted ("Generated") to .java, the ".../testsuite/selenium-snifftests/target" file will be added.
Surefire reports (test execution logs) are stored in ".../testsuite/selenium-snifftests/target/surefire-reports".

Selenium Day Presentation
You need flash player installed to preview ppt and pdf files

http://www.adobe.com/go/getflashplayer

