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Abstract. In this paper we investigate the issue of automatically identi-
fying the “natural” degree of parallelism of an application using software
transactional memory (STM), i.e., the workload-specific multiprogram-
ming level that maximizes application’s performance. We discuss the im-
portance of adapting the concurrency level to the workload in two widely
different scenarios, a shared-memory and a distributed STM infrastruc-
ture. We propose and evaluate two alternative self-tuning methodologies,
explicitly tailored for the considered scenarios. In shared-memory STM,
we show that lightweight, black-box approaches relying solely on on-line
exploration can be extremely effective. For distributed STM settings, we
introduce a novel hybrid approach that combines model-driven perfor-
mance forecasting techniques and on-line exploration in order to take the
best of the two techniques, namely enhancing robustness despite model’s
inaccuracies, and maximizing convergence speed towards optimum solu-
tions.

1 Introduction

The pervasive adoption of multi-core architectures (from HPC clusters to embed-
ded systems) has raised the urge to identify paradigms capable of simplifying
the development of parallel applications. Transactional memory (TM) [2] has
garnered a lot of interest of late precisely because, thanks to its simplicity and
scalability, it appears to be a promising alternative to classic lock-based syn-
chronization. Over the last years, a wide body of literature has been published
on TM, and several variants have been developed, including hardware-based
(HTM), software-based (STM), and distributed (DTM) [3]. One of the key re-
sults highlighted by existing research is that, independently of the nature of the
synchronization scheme adopted by a TM platform, its actual performance is
strongly workload dependent and affected by a number of complex, often inter-
twined factors (e.g., duration of transactions, level of data contention, ratio of
update vs read-only transactions).

Among these numerous factors, an often neglected one is the concurrency
level used by the application. However, as we will also quantitatively show in
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this paper, the identification of the “right” level of concurrency represents a crit-
ical factor that can have a strong impact on performance of TM applications.
Unfortunately, this decision is far from being trivial, as the off-line tuning of this
parameter is a costly and error-prone process. Further, any static configuration
can lead to suboptimal performance in presence of dynamic workloads. Hence,
we argue that work done by the TM programmers to develop parallel applica-
tions risks to be wasted, unless effective mechanisms are available to tune the
concurrency level of TM applications, and let them take full advantage of the
underlying parallel architecture.

In this paper, we address the problem of self-tuning the concurrency level ac-
cording to the application workload (which we call “elastic scaling”) in various
application settings. Related problems have been addressed previously but lim-
ited attention has been devoted to dynamically identifying the optimal degree of
parallelism for a (D)TM platform, namely the degree of local (i.e., number of ac-
tive threads) and possibly global (i.e., number of nodes in a DTM) concurrency
that maximizes the throughput of complex (D)TM applications.

We present experimental results obtained considering two extreme scenar-
ios: on shared-memory systems with a low-level STM library written in C, and
in distributed systems with a high-level DSTM infrastructure written in Java.
We first show that realistic benchmarks exhibit widely different performance de-
pending on the degree of parallelism, and that adapting the number of threads
at runtime can improve performance of some applications over any execution
with a fixed number of threads. By applying small modifications to the bench-
marks and the underlying STM runtime in a shared-memory system, one can
straightforwardly optimize the concurrency level using exploration-based on-line
optimization techniques, e.g., using hill climbing or gradient descent algorithms.

In distributed settings, however, the cost of testing configurations with a
different number of threads (i.e., nodes) is prohibitive, as it requires transfer-
ring state, generates additional traffic, and takes orders of magnitude more time
than in centralized settings. Therefore, in such settings, one should instead rely
on modeling techniques to predict the expected gains from adding or remov-
ing nodes for adapting the concurrency level. However, performance modeling
techniques are unavoidably subject to approximation errors, which can lead
to the identification of suboptimal configurations. We show how this problem
can be tackled by introducing a novel self-tuning methodology that combines
exploration-based and model-driven approaches: models help predicting the evo-
lution of performance at a large scale, while local, inexpensive exploration can
be used to gather feedback on the model’s accuracy and allow its progressive
enhancement. To this end, we show how machine learning techniques can be
exploited to learn corrective factors aimed at “patching” the output of perfor-
mance models and correcting biases/approximation errors that may otherwise
impair their accuracy.

The rest of this paper is organized as follows. We first give a brief overview
of related work in Section 2. We present, in Section 3, our on-line exploration-
based approach for shared-memory STM systems. In Section 4, we focus on



distributed STM systems, and present a hybrid self-tuning approach combining
on-line exploration and model-driven optimization techniques. We finally con-
clude in Section 5.

2 Related Work

Adapting the concurrency level to system workload (elastic scaling) in order to
improve performance and/or resource usage is an issue that has already been
addressed in previous research. Different approaches to the problems exist, es-
pecially depending on the area where the adaptation is performed.

Part of the research targets concurrent execution on a single machine. Reimer
et al. [4] propose to adapt the concurrency level of parallelizable portions of a
scientific application. This approach does not allow changing the concurrency
level during the execution of the code portion, whereas with our exploration-
based approach workload changes within such portions can be tracked and con-
currency levels can be adapted. Heiss and Wagner [5] study the tuning of the
concurrency level (number of concurrently running transactions) within a trans-
actional processing system (e.g., database server) running on a single machine.
They propose two algorithms, one of which is a hill climbing approach similar
to ours. Schroeder et al. [6] use a feedback control loop that is initialized with a
close-to-optimal value thanks to the use of queueing theoretic models. This ini-
tialization allows the approach to converge fast under abrupt workload changes.
Abouzour et al. [7] propose a hybrid approach merging these two studies. Our
work differs since we adapt the concurrency level of threads within an arbitrary
application, while other approaches tune the concurrency level of transactions
only in the restricted context of a transactional processing system.

Few studies exist for the adaptation of the concurrency level for TM-based
applications (using non-replicated TM). Yoo and Lee [8] propose rescheduling
threads in order to reduce contention due to data conflicts. Such a technique has
the effect of adapting the concurrency level of the application, because resched-
uled threads are removed from the execution for a while. Ansari et al. [9] aim
to improve application efficiency by reducing resource usage without sacrificing
performance. To achieve this objective, they maintain the transaction abort rate
under a predefined threshold. Our approach differs from this work as (i) we do
not use any fixed thresholds, and (ii) we focus on optimizing transaction through-
put, allowing us to improve application performance (especially under changing
workloads) compared to an execution with any fixed concurrency level.

Elastic scaling in distributed settings corresponds to automatically adapting,
in face of varying workloads, the number of nodes the platform is deployed
onto. In the area of replicated relational databases, several mechanisms have
been proposed [10, 11] to tackle this problem. Our work proposes a solution
specialized for (D)TM platforms. A distinguishing aspect of our work is that it
identifies the level of concurrency that maximizes the throughput of complex
(D)TM applications by considering scaling at two levels: (i) number of nodes of
the platform, and (ii) number of active threads running on a node.



In the area of performance modelling of STM, existing literature can be sub-
divided in solutions based either on analytical techniques [12, 13], or on statistical
methods [14, 15]. Solutions based on analytical models have a good extrapolation
power, namely they typically exhibit good accuracy even in workload/scale sce-
narios not previously explored. However, their accuracy can degrade significantly
with scenarios that challenge the set of assumptions they rely on to ensure math-
ematical treatability. Statistical methods, due to their black box nature, suffer
of limited extrapolation, but can achieve typically very accurate predictions in
regions of the state space close to those already observed during the learning
phase. The solution proposed in Section 4 aims at combining the advantages of
both approaches. On the one hand, it relies on analytical performance models
to achieve high extrapolation. On the other hand, it exploits feedback collected
from deployed DTM system to learn, using machine learning techniques, a cor-
rective function aimed at fixing possible inaccuracies of the analytical model.

3 Shared-memory STM

Ideally, it is desired to run applications at their natural degree of parallelism,
i.e., a point where each thread does “sufficient” useful work without inducing
“too much” contention. The exact definition of both quantities varies depend-
ing on the context and it is generally not obvious to find this natural degree of
parallelism for a given application. For workloads where contention due to data
synchronization does not change throughout the application execution, the best
level of parallelism can be found offline by repeatedly restarting the application
with different sets of parameters. However, the contention a workload generates
may vary during the lifetime of the application, i.e., the natural degree of par-
allelism represented by the workload varies as the application executes. Hence,
a general solution to this problem would need to track the workload generated
by the application on-line. In this section, we first motivate why adaptivity is
important. We then describe our expiration-based mechanisms for adjusting the
degree of parallelism. Finally, we show how these mechanisms can help optimize
throughput according to the dynamic properties of the workload

3.1 The Need for Adaptivity

Before dwelling on the actual exploration algorithm, let us briefly consider the
benefits of such adaptive techniques on the application intruder, part of the
widely used STAMP benchmark suite [16]. This application emulates a signature-
based network intrusion detection system and exhibits a workload that evolves
over time.

Figure 1 indicates the performance of the benchmark when executed with
varying number of threads (dashed line), or when dynamically changing the
number of threads (plain straight line corresponding to a constant value). One
can observe that performance is significantly better when dynamically adapting
concurrency than with any fixed number of threads. Note that the experiment
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Fig. 1: Speedup of the intruder benchmark as compared to sequential (non-
STM) version, using static and dynamically evolving numbers of threads.

was run on a 48-core machine, i.e., the number of physical cores was not the
limiting factor.

3.2 An Exploration-based Approach

Our exploration-based approach performs on-line monitoring of key performance
metrics. It allows us to find the natural degree of parallelism of an application
by running it with an iterative algorithm controlling its concurrency level. The
algorithm terminates when all the work to be performed by the application is
accomplished. Each iteration of the algorithm has three phases, as illustrated in
Figure 2:

– Measurement phase: In this phase, the application runs with a fixed num-
ber of threads. Key performance metrics (numbers of commits and aborts)
are measured during a certain time period. The commit rate gives an indica-
tion of raw transaction throughput, while the abort rate is a good measure
of contention.

– Decision phase: In this phase the algorithm decides between two actions:
increasing or decreasing the number of threads. If the last measurement
phase shows improvements in terms of commit rate, the action performed
in the previous iteration is repeated (addition or removal of threads); oth-
erwise, it is reversed. The decision taken in this phase corresponds to a hill
climbing technique maximizing transaction throughput, i.e., commit rate.
The technique explores configurations in the vicinity of the current one by
dynamically adding or removing threads, until a (local) maximum is reached.
Even when reaching such a point, the configuration is tested for adapting to
possible variations in the workload that would shift the optimal configura-
tion(s).3

3 One should note at this point that none of the benchmarks we experimented with
(STAMP applications and various micro-benchmarks) exhibits multiple maxima
when observing throughput as a function of the number of threads, up to the hard-
ware limit of our 48-core test machine.



– Transition phase: An external controller thread adds or removes threads
to/from the application according to outcome of the decision phase.

Controller thread Application

Application
threads

Measurement

TransitionDecision

Fig. 2: The principle of the exploration-based algorithm is akin a feedback control
loop. The three phases are shown in rectangles with solid lines.

For faster adaptation to the workload, we tune the duration of the measure-
ment phase such that we have sufficiently many samples (i.e., commits) to take
sound decisions but without wasting too much time. In this way, the algorithm
reacts fast by quickly collecting measurements with applications composed by
short transactions while it will take more time to adapt, but will still take correct
decisions, for applications with long transactions.

Inserting the application inside the iterative algorithm required us to in-
troduce (i) code observing performance, for the measurement phase, and (ii) a
controller thread that performs decision and transition phases to modify the
parameters of the application based on the measured performance. This extra
thread controls the main execution loop of the application and can add or remove
as many transactional threads as required during run time.

3.3 Performance in Centralized Systems

We give a brief overview of the performance of our exploration-based approach
on a 48 core machine with four AMD Opteron 6172 processors with one STAMP
application. A large collection of other experimental results can be found in a
companion research report [17].

Figure 3 (left) shows the behavior of the exploration-based algorithm with
the intruder application. As one can observe, the number of threads (values
averaged over 2-second periods for clarity) increases in the first half of the exe-
cution to reach 13, then drops sharply to account for changes in the workload.
The last part of the execution uses only few threads, which reduces the commit
throughput but limits contention and avoids most aborts.

To better understand what triggers such changes in the workload, we show
in Figure 3 (right) the variations in transaction lengths, as reported by the
size of the read and write sets, during the execution of intruder. Values are
averaged over groups of 10,000 transactions and sizes are shown on a logarithmic
scale. The application repeatedly executes a sequence of 3 transactions. Two of
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Fig. 3: Evolution of the number of threads (left) and transaction read- and write-
set size (right) with the intruder benchmark using exploration-based scaling.

them, denoted as T2 and T3 in the graph, do not vary much over time. The
third one, T1, exhibits an interesting trend that explains why our approach is so
effective: transactions read more and more data, with a sharp spike in the end,
while their number of writes first decreases before stabilizing and increasing
steeply in the end. Therefore, the last transactions to execute are very long
and, hence, are expected to encounter much contention. Limiting concurrency
increases the likelihood of commit and, in turn, improves overall performance.
This example clearly shows the benefits of using a adaptive strategy for best
tuning the concurrency degree to the varying workload properties encountered
in real applications.

Note that we modified and experimented with other applications of the
STAMP benchmark suite. We found out that, while intruder benefits most
from dynamic adaptation of the concurrency level because of the wide varia-
tions in its workload, our exploration-based algorithm is also effective with other
applications and can quickly find the optimal number of threads [17].

4 Distributed STM

When considering DTM systems [18], the degree of concurrency of the platform,
which we call also global multiprogramming level, is determined not only by
the number of threads deployed on each node, but also by the number of nodes
composing the platform. We note that in distributed settings, purely exploration-
based techniques, like the one described in Section 3, are much less effective for
two main reasons. First, due to the quadratic growth of the solution’s space,
the number of exploration steps required to identify the optimal solution is
expected to grow significantly. Second, unlike in shared memory TM systems,
in DTM scenarios exploratory steps requiring altering the number of nodes in
the platform require triggering state-transfer phases that can induce significant
additional load [19, 20] and lead to severe performance degradation [10].

We argue, therefore, that in DTM settings approaches relying on perfor-
mance models to forecast the optimal degree of concurrency of the platform are
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Fig. 4: Accuracy of TAS’ predictions.

preferable to strategies based on pure exploration. Model-driven elastic scaling
techniques are also attractive as they represent a fundamental building block
for QoS-oriented provisioning schemes, in which the amount of computational
resources (and their type, e.g., medium vs large instances in a IaaS platform)
needs to be elastically adjusted to ensure given SLAs in face of variable loads [21–
23]. On the other hand, model-based performance forecasting techniques, due to
their approximate nature, rely on simplifying assumptions which can degrade
significantly their accuracy in presence of challenging workloads. Further, most
of these modelling techniques rely on analytical methods (e.g., queuing theory),
which are rigid, in the sense that they cannot be “bent” to learn from the feed-
back gathered by the actual system and accordingly correct to enhance their
accuracy. In the following we report the result of an experimental study that
highlights the above mentioned issues of model-driven approaches by assess-
ing the accuracy of a state-of-the-art performance forecasting model for DTM,
namely Transactional Auto Scaler (TAS) [22].

The plot in Figure 4a shows the accuracy of TAS in predicting the throughput
of a DTM application when deployed over different scales. The DTM platform
used in this study is Infinispan [24], a popular in-memory distributed transac-
tional key-value store [25]. The application running over it is a porting of the
TPC-C benchmark [26], and we used, as experimental testbed, a cluster of 10
servers, each equipped with 8 cores and interconnected via a private Gigabit Eth-
ernet. The plot highlights the ability of TAS to correctly forecast the throughput
of the application when deployed over different scales, as long as the global multi-
programming level (and correspondingly the abort rate) does not grow too high.
This loss of accuracy of TAS is imputable to the very high contention probability
that the application exhibits in those scenarios, as reported in Figure 4b. In fact,
TAS, like other analytical models of transactional systems [27, 21], relies on a set
of simplifying assumptions on the modelling of transactions’ conflict patterns,
which can lead to significant errors in very high contention scenarios.

In the remainder of this Section we introduce a novel, hybrid approach that
combines model-driven and exploration-based techniques in order to achieve the
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benefits of both approaches, namely high robustness and high speed of con-
vergence to the optimal solution. Finally, we evaluate its effectiveness via a
trace-driven simulation study.

4.1 Combining model-driven and exploration-based techniques

The key idea at the basis of the proposed solution consists in progressively en-
hancing the accuracy of an analytical-based performance model (such as TAS),
by exploiting the feedback on the actual performance achieved by the platform
when using alternative multiprogramming levels. In order to minimize explo-
ration costs, the additional multiprogramming configurations explored by the
self-tuning mechanism are obtained by fixing the current number of nodes in the
platform (hence avoiding state transfers) and altering exclusively the number
of active threads per node. Figure 5a illustrates the architecture of the system,
which is composed of a set of DTM nodes and a controller process. The controller
process is a logical component, which can be physically deployed either on one
of the computing nodes or on a dedicated one. The controller is responsible for
adjusting the scale of the DTM platform, i.e., the number of nodes and threads

per node, which we note as
−→
S . Its logic is implemented via a closed control loop

that is analogous to the one show in Figure 2, with two noteworthy exceptions:
(i) in this case the controller is fed with data from multiple nodes, which need
to be aggregated and averaged by the collection module, and (ii) in addition to
the current throughput of the DTM, noted Tcur, the controller gathers also a

set of statistics characterizing the workload, referred to as
−→
W , which are used

as input parameters of its performance prediction methodology. The workload is
characterized by means of the following set of key features (which represent also
the main input parameters of the analytical performance model integrated in
the decision module): duration, and relative frequency, of read-only and update
transactions, abort rate, average number of write operations per transaction.

The key component of the controller is the decision module, whose internal
structure is illustrated in Figure 5b. The decision module is composed of three
main sub-components: the Self Correcting Transactional Auto Scaler (SCTAS),



the Exploration Manager and the Scale Optimizer. Below, we describe these
components in detail.

SCTAS. Like classic performance forecasting models, SCTAS allows predicting

the throughput achievable by the DTM platform when faced with a workload
−→
W

and configured to use a global multiprogramming level
−→
S . To this end, we assume

that SCTAS exposes the primitive query, which takes as input parameters
−→
W

and
−→
S , and returns the forecast throughput, denoted as TSCTAS . Additionally,

SCTAS allows incorporating feedback on the actual throughput (Tcur) achieved
by the DTM platform in a given operational condition via the primitive update,

which takes as input parameters
−→
W ,
−→
S and Tcur.

As shown in Figure 5b, SCTAS is actually composed of two main modules:
the TAS model, and a, so called, Patcher. The role of the Patcher is to learn a cor-

recting function, denoted as Φ and defined over
−→
W ×

−→
S , which, when “applied”

to the output of TAS, denoted as TTAS , allows minimizing its prediction error.

In principle, several approaches may be used to derive the value of Φ(
−→
W,
−→
S ),

given Tcur and the corresponding TTAS for a given (
−→
W ,
−→
S ) pair. In this paper,

however, we take a pragmatical approach and use a relatively simple solution
which, as we will show in the following, was experimentally proved to work quite
effectively. Namely, we define:

Φ(
−→
W,
−→
S ) =

TTAS(
−→
W,
−→
S )

Tcur(
−→
W,
−→
S )

(1)

In order to learn how the corrective factor Φ varies with
−→
W and

−→
S , SCTAS

uses a decision-tree based machine learning regressor, namely Cubist [28]. Analo-
gously to classic decision tree based classifiers, such as C4.5 and ID3 [29], Cubist
builds decision trees choosing the branching attribute such that the resulting
split maximizes the normalized information gain. However, unlike C4.5 and ID3,
which contain elements in a finite discrete domain (i.e., the predicted class) as
leaves of the decision tree, Cubist places a multivariate linear model at each leaf.

As we will see shortly, the knowledge base of the machine learner embedded in
the Patcher is progressively built by exploring alternative multiprogramming lev-

els (
−→
S ) in presence of a workload

−→
W . For each couple (

−→
W ,
−→
S ) corresponding to an

explored scenario, the machine learner is fed with the triple <
−→
S ,
−→
W ,Φ(

−→
W ,
−→
S )>.

Based on its knowledge base, the machine learner builds a function Φ′, which is
used by the Patcher to estimate the corrective factor for a future (unexplored)

configuration (
−→
W ′,
−→
S′). The throughput forecast by SCTAS, TSCTAS , can then

be obtained (inverting Eq. 1) as:

TSCTAS(
−→
W,
−→
S ) = Φ′(

−→
W,
−→
S ) · TTAS(

−→
W,
−→
S ) (2)

Exploration Manager. This module is in charge of determining which con-
figurations of the multiprogramming level should be tested in order to gather
feedback on the accuracy of the SCTAS performance model, and, ultimately,



Algorithm 1: Pseudocode of the controller for the DTM platform.
seenWorkloads ← ∅
function Optimize()

while TRUE do

(
−→
W , Tcur) ← Collect()

if
−→
W /∈ seenWorkloads then

CorrectViaLocalExploration(
−→
W ,
−→
S , Tcur)

seenWorkloads ← seenWorkloads ∪ −→W
−→
S∗ ← argmax

−→s
(SCTAS.Query(

−→
W,−→s ))

if
−→
S∗ 6=−→S then

Deploy (
−→
S∗)

function CorrectViaLocalExploration(
−→
W ,
−→
S , Tcur)

numExploration ← 0
while numExploration ≤M do

SCTAS.Update(
−→
W ,
−→
S , Tcur)

numExplorations ← numExplorations + 1
if numExplorations ≥ µ ∧ SCTAS.GetCurErr() ≤ ε then

break

−→
S ← ExporationManager.Explore(Tcur,

−→
S )

Deploy (
−→
S )

(
−→
W , Tcur) ← Collect()

allow its correction. We abstract over the implementation of the exploration al-
gorithm via the Explore () primitive that takes as input parameters the pair

(
−→
S ,
−→
T ). This abstraction allows to encapsulate arbitrary exploration logics, but,

in this paper, we propose and evaluate a specific heuristic, described as follows.

At each invocation of the Explore () primitive, the heuristic alters the
multiprogramming level (i.e., the number of active threads per node) leaving
however unchanged the total number of nodes in the platform, in order to avoid
triggering expensive state transfers. The heuristic operates in two phases. In the
first phase, it executes according to a hill climbing technique analogous to the
one described in the Sec. 3, and aims to identify the optimal multiprogramming
level t∗, using the current number of nodes. In case the Explore () primitive
is invoked after having identified such value, the heuristic enters a second phase
during which it suggests to test configurations according to a zig-zag policy that
explores (untested) values around t∗, by picking alternatively between values
larger and smaller than t∗ at increasing distance from t∗. The rationale under-
lying the design of this heuristic is to prioritize the exploration of configurations
that maximize the throughput of the system, and, if necessary, to allow the
testing of additional, suboptimal configurations which may be beneficial to the
enhancement of the knowledge base of the Patcher module of SCTAS.

Scale Optimizer. This module is responsible for choosing the scale of the DTM,
by exploiting in synergy the performance forecasting capabilities of SCTAS and
the local exploration-based policy of the Exploration Manager. Its purpose is
to drive SCTAS through its learning phase, by inducing local explorative steps,



aimed at assessing and improving SCTAS’ accuracy. The pseudocode describing
its logic is in reported Algorithm 1. The method Optimize() illustrates the in-
teractions between the Scale Optimizer and the other modules composing the
architecture of the Controller. It implements a simple control loop, which starts
by gathering, via the Collect() method, information concerning the current

throughput Tcur and workload
−→
W . Once collected this information, the correction

process of SCTAS is triggered by invoking the method CorrectViaLocalEx-
ploration(). This method, whose detailed description will be provided shortly,
explores a number of alternative configurations of the multiprogramming level,
in order to gather feedback from the DTM system and extending the knowledge
base of the Patcher module of SCTAS. As this method terminates, SCTAS is
queried to determine the optimal global multiprogramming level. Finally, if the
optimal scale predicted by SCTAS differs from the current one, the DTM is
accordingly reconfigured via the Deploy() primitive. The loop cycles back, in
order to continue monitoring for possible changes of the workload. Note that the

correction process for a workload
−→
W is triggered only if SCTAS has not been

already corrected against
−→
W , which ensures the system stability in presence of

stable inputs (i.e., workloads).
Let us now analyze the logic of the CorrectViaLocalExploration()

method, which consists of a loop that performs two main operations. First, SC-
TAS is provided with a feedback about the throughput of the application in the
current configuration. Next, the Exploration Manager is queried to determine
the multiprogramming level to be tested in the next iteration, and the DTM
is accordingly reconfigured via the Deploy() primitive. The loop terminates
when either one of the following two conditions is met: (i) a minimum number
of explorations, µ, has already been performed, and the accuracy of the SCTAS
predictions on the set of configurations tested so far has achieved a configurable
threshold, denoted as ε in the pseudocode; (ii) a maximum number of explo-
rations, M , has already been performed.

The latter condition ensures the eventual termination of the local exploration
phase after a bounded number of attempts. The former allows to control the
duration of the local exploration phase via two parameters: ε allows to bound the
error of SCTAS on the configurations explored so far, for which it has therefore
already collected measurements from the DTM platform; µ, on the other hand,
allows to control directly the minimum duration of each local exploration phase,
and, indirectly, to determine the amplitude of the knowledge phase of the Patcher
module and its ultimate effectiveness.

4.2 Evaluation

In this section we assess the validity of the proposed hybrid approach. We com-
pare it with a purely model-driven one and evaluate it in terms of final accuracy
of the corrected model, capability of identifying the optimal scale for a DTM
application and convergence speed towards it. To this end, we built a simulator
which implements the logic of the Controller. Data consumed by the simulator



Model Normalized Throughput wrt Max #Local Expl #Global Expl Global Avg Rel Err

TAS 0.70 0 0 1.03
SCTAS(µ = 3) 1 9 1 0.7
SCTAS(µ = 5) 1 15 1 0.6
SCTAS(µ = 7) 1 28 2 0.05

Table 1: Comparison between TAS and SCTAS with different values of µ.

are relevant to real traces, collected deploying the TPC-C application over a
DTM of different scales, varying the number of nodes from 2 to 10, and the
number of threads per node from 1 to 12. The testbed is the same as the one
described at the beginning of Section 4.

We ran four simulations. Each run starts with the application deployed over
a DTM composed by two nodes and one thread per node, and simulates the
elastic scaling policy described in Section 4.1 by feeding it with measurements
gathered (off-line) from the DTM system, till a stable state is reached. In the
first simulation, the controller’s decision module only relies on TAS’ performance
forecasting model to determine the optimal scale for the DTM; in the others,
it implements the Decision() method of the pseudocode in Algorithm 1. For
these three runs we fix M = 10 and ε = 10% and vary only the value of µ, which,
we recall, determines the minimum duration of SCTAS learning phase through
local exploration.

The results in Table 1 clearly demonstrate the advantages (in terms of in-
creased accuracy) of the proposed hybrid approach when compared a purely
model-driven one. Using only TAS’ performance forecasting model, the controller
selects a scale for which the DTM delivers a throughput that is 30% lower than
the maximum achievable. On the other hand, the SCTAS-based controller is able
to converge to the optimal scale, regardless of the value of µ. The sensibility of
the hybrid approach to this parameter is clear when analyzing the last columns
in Table 1. Results demonstrate that the value of µ represents a trade-off be-
tween convergence speed towards the optimal solution and the accuracy of the
SCTAS’ performance forecasting model. In Figure 6 we show how the accuracy
of SCTAS increases with the numbers of explored configurations, by plotting the
average prediction error of SCTAS’ model. The prediction error is computed over
the set of all possible scales for the DTM (in the considered range), including
the unexplored ones, for which the actual throughput value has been collected
offline. The discontinuity points of the curves are in correspondence of the de-
ployment of the DTM on a different number of nodes, which yields to a major
update of the corrective function learnt by the Patcher component. The plot
shows that the highest accuracy is reached for µ=7; for this configuration we
also show, in Figure 7, the predictions produced by SCTAS after the controller
has reached its final state (contrasting them with the ones produced by the
pure model-driven approach of TAS). The plot demonstrates the self-correcting
capabilities of SCTAS, which, when fed with a sufficient number of feedbacks
concerning the prediction’s errors of TAS, can significantly improve its accuracy
both in explored and unexplored scenarios, lowering the average relative abso-
lute error across all scenarios from 103% to 5%. These results highlight that the
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self-correcting capabilities of SCTAS can be beneficial not only to optimize the
multiprogramming level of DTM applications, but also in applications (such as
QoS/cost driven elastic scaling policies and what-if analysis of the scalability of
DTM applications) requiring to speculate on the performance of the platform in
different scale settings.

5 Conclusion

In this paper, we proposed and evaluated algorithms aimed to self-tune the
multi-programming level in two radically different types of TM systems: a shared
memory STM and distributed STM. We showed that for shared memory STM
a simple exploration-based hill-climbing algorithm can be extremely effective,
even when faced with challenging workloads. However, in the distributed TM
case, pure exploration-based approaches are no longer a viable option, as testing
configurations with a different number of nodes requires triggering costly state
transfer phases. We tackled this problem by introducing a novel, hybrid approach
that combines performance models and local exploration, in order to achieve the
best of the two methodologies: quick convergence towards the global optimum
and robustness to possible inaccuracies of the performance models.
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