
When Scalability Meets Consistency:
Genuine Multiversion Update-Serializable Partial Data Replication

Sebastiano Peluso†∗, Pedro Ruivo†, Paolo Romano†, Francesco Quaglia∗, Luı́s Rodrigues†
† INESC-ID/IST, Lisbon, Portugal
∗ Sapienza, University of Rome, Italy

Abstract—In this article we introduce GMU, a genuine
partial replication protocol for transactional systems, which
exploits an innovative, highly scalable, distributed multiver-
sioning scheme. Unlike existing multiversion-based solutions,
GMU does not rely on a global logical clock, which represents
a contention point and can limit system scalability. Also, GMU
never aborts read-only transactions and spares them from
distributed validation schemes. This makes GMU particularly
efficient in presence of read-intensive workloads, as typical of
a wide range of real-world applications.

GMU guarantees the Extended Update Serializability (EUS)
isolation level. This consistency criterion is particularly at-
tractive as it is sufficiently strong to ensure correctness even
for very demanding applications (such as TPC-C), but is also
weak enough to allow efficient and scalable implementations,
such as GMU. Further, unlike several relaxed consistency
models proposed in literature, EUS has simple and intuitive
semantics, thus being an attractive, scalable consistency model
for ordinary programmers.

We integrated the GMU protocol in a popular open source
in-memory transactional data grid, namely Infinispan. On the
basis of a large scale experimental study performed on hetero-
geneous experimental platforms and using industry standard
benchmarks (namely TPC-C and YCSB), we show that GMU
achieves linear scalability and that it introduces negligible
overheads (less than 10%), with respect to solutions ensuring
non-serializable semantics, in a wide range of workloads.

Keywords-Partial Data Replication, Multiversioning, Trans-
actional Systems, Fault Tolerance

I. INTRODUCTION

The advent of grid and cloud computing has led to the
proliferation of a new generation of in-memory, transactional
data platforms, often referred to as NoSQL data grids, such
as Cassandra, BigTable, or Infinispan. In these in-memory
transactional platforms, data replication plays a fundamental
role for both performance and fault-tolerance purposes,
since it allows enhancing the throughput by distributing the
load and ensuring data survival despite the occurrence of
failures. A common trait characterizing this new generation
of distributed data platforms is the adoption of a range of
weak consistency models, such as eventual consistency [1],
restricted transactional semantics (e.g. single object trans-
actions [2], or static transactions whose accessed dataset is
pre-declared [3]), and non-serializable isolation levels [4].

The point is that classical strongly consistent transac-
tional replication protocols, based on eager locking and two

phase commit (2PC), have well-known scalability issues, im-
putable to the rapid pace with which the distributed deadlock
rate grows as the number of nodes increases [5]. More recent
transactional replication protocols (see, e.g., [6]), rely on
total order communication primitives [7] (typically provided
by a Group Communication Toolkit, such as [8]) precisely in
order to avoid distributed deadlocks. However, most of these
protocols replicate data synchronously across all nodes, thus
leading total order to become the bottleneck as the scale of
the system grows.

Other proposals, e.g. [6], aim at higher scalability by
relying on, so called, genuine replication protocols. Gen-
uineness maximizes scalability by ensuring that, for any
transaction T , only the sites that replicate the data items
read or written by T exchange messages to decide the final
outcome (commit/abort) of T . Unfortunately, these solutions
introduce considerable overhead, as they require read-only
transactions (that are largely predominant in typical appli-
cations’ workloads [9]) to undergo expensive distributed
validation phases.

In this paper, we present GMU (Genuine Multiversion
Update serializability), the first genuine partial replication
protocol guaranteeing that read-only transactions are never
aborted or forced to undergo any additional remote valida-
tion phase.

The core of GMU is a distributed multiversion concur-
rency control algorithm, which relies on a novel vector clock
[10] based synchronization mechanism to track, in a totally
decentralized (and consequently scalable) way, both data and
causal dependency relations among transactions.

In terms of formal properties, our protocol (as its name
suggests) ensures the so called Extended Update Serializ-
ability (EUS) consistency criterion, originally introduced in
[11] and further investigated in [9] (in the form of the no-
update-conflict-misses property). EUS provides guarantees
analogous to those offered by classic 1-Copy Serializabil-
ity (1CS) for update transactions, thus ensuring consistent
evolution of the system’s state. Analogously to 1CS, with
EUS read-only transactions are also guaranteed to observe
a snapshot equivalent to some serial execution (formally,
a linear extension [10]) of the partially ordered history of
update transactions. Additionally, EUS extends the guarantee
of observing consistent snapshots also to transactions that

have to be eventually aborted. This property can be impor-
tant when the application executes in non-sandboxed envi-
ronment (such as Transactional Memory systems [12]) and
may behave erroneously upon observing non-serializable
histories.

However, unlike 1CS, EUS allows concurrent read-only
transactions to observe snapshots generated from different
linear extensions of the history of update transactions. As
a consequence, the only discrepancies in the serialization
orders observable by read-only transactions are imputable
to the re-ordering of update transactions that neither conflict
(directly or transitively) on data, nor are causally dependent.
In other words, the only discrepancies perceivable by end-
users are associated with the ordering of logically indepen-
dent concurrent events, which has typically no impact on the
correctness of a wide range of real-world applications [9].

The GMU protocol we propose is, to the best of our
knowledge, the first genuine partial replication protocol that
exploits EUS semantics in order to implement a scalable
distributed multiversioning concurrency control scheme that
does not introduce any global synchronization point (such
as logically centralized clocks [13]), and does not require
expensive remote validation phases to commit read-only
transactions [6].

We have integrated the proposed GMU protocol into
Infinispan, namely a mainstream open-source transactional
in-memory data grid developed by the Red-Hat/JBoss team.
Given that the native replication mechanism implemented in
Infinispan only supports non-serializable consistency (i.e.,
Repeatable Read), this data grid represents an ideal baseline
to evaluate the additional costs incurred in by GMU to
ensure EUS consistency. The study has been based on TPC-
C [14], an industry standard benchmark for OLTP systems,
and YCSB [15], a recent benchmark for distributed key-
value stores. The results show that our protocol achieves
linear scalability up to 40 nodes, and provides stronger
consistency than Repeatable Read at a negligible cost (less
than 10%).

The remainder of this paper is structured as follows. In
Section II we discuss related work. In Section III we present
the model of the target system. Section IV overviews the
target consistency model. The GMU protocol is introduced
in Section V. The results of the experimental study are
illustrated in Section VI. Finally, Section VII concludes the
paper.

II. RELATED WORK

Transactional systems’ replication is a well investigated
topic and a number of proposals exist in literature for dealing
with replicated transactional data. Most of these proposals
are suited for the case of full replication, where a copy
of each data item is retained at each involved site. In this
context, solutions have been proposed addressing protocol
specification [13], as well as replication architectures that

have been based on middleware level approaches [16] and/or
on extensions of the inner logic of transactional systems
[13]. Comparative studies among these approaches [17]
have demonstrated how the solutions based on total order
primitives, such as [18], exhibit the potential to improve
performance. Also, total order based protocols relying on
speculative transaction processing schemes, such as in [19],
[20], have been shown to further reduce the impact of
distributed synchronization. Consequently, some of these
approaches have been demonstrated to be viable even when
considering (very) fine-grain transactions, which are typ-
ical of workloads of in-memory transactional data layers
(e.g., transactional memory systems). On the other hand,
compared to all these proposals, in this paper we address
performance and scalability of the replicated system from
an orthogonal perspective since our focus is on architectures
making use of partial data replication.

As for solutions natively oriented to partially replicated
transactional systems, literature proposals can be grouped
depending on (i) whether they can be considered genuine,
and on (ii) the specific consistency guarantees they provide.
The proposals in [21], [22] address the case of partial
replication, but do not provide genuine approaches since the
commitment of a transaction requires interactions with all
the sites within the replicated system, and not only with
those sites keeping copies of the data read/written by the
transaction. Compared to these approaches, our proposal,
being genuine, exhibits the potential to increase scalability.

The protocol in [6] provides a genuine solution supporting
strict consistency, namely 1CS. However, differently from
the present proposal, this protocol imposes that read-only
transactions undergo a distributed validation phase. Also,
these transactions are potentially subject to rollback/retry.
Instead, our proposal only entails a local validation scheme,
and never aborts read-only transactions. Overall, compared
to the work in [6], our proposal provides a different trade-off
between consistency (since it provides EUS semantics) and
performance (since it improves the efficiency while handling
read-only transactions).

Our proposal has also relations with approaches for the
management of distributed transactions in non-replicated
systems, especially when considering the type of consistency
guarantees that we support. As for this aspect, the works
more close to our solution are those proposed in [9], [23],
where protocols for distributed transaction processing are
presented, which support (E)US semantic. In particular,
the proposal in [23] is specifically tailored to exploit this
semantic in order not to abort read-only transactions. As
hinted before, we still exploit this semantic for the same
purposes, but we do this within a partially replicated trans-
actional system, which gives rise to a protocol that addresses
orthogonal issues as compared to the one in [23].

As for the reliance on multiversioning, our proposal is also
related to the one in [24], where a multiversion concurrency

control mechanism is provided in order to cope with dis-
tributed transaction processing in the context of distributed
software transactional memories. However, differently from
our proposal, this protocol does not cope with (partially)
replicated data. Also, it guarantees Snapshot Isolation (SI),
while our target is EUS. Hence, our approach guarantees
strict serializability at least for update transactions, which is
instead not provided by the work in [24].

III. SYSTEM AND DATA MODEL

We consider a classic asynchronous distributed system
model composed of Π = {p1, . . . , pn} nodes (also called
processes). Nodes communicate through message passing
and do not have access to a shared memory nor a global
clock. Messages may experience arbitrarily long (but finite)
delays and we assume no bound on relative site speeds
or clock skews. We consider the classic crash-stop failure
model: sites may fail by crashing, but do not behave mali-
ciously. A site that never crashes is correct; otherwise it is
faulty.

Each node pi stores a partial copy of data, for which
we assume a simple key-value model. Each data item d
is a sequence of versions 〈k, val, ver〉, where k is a key
representing d’s identifier, val is its value and ver is a scalar,
monotonically increasing logical timestamp that identifies
(and totally orders) the versions of a data item d. For the
sake of brevity, we will use the notation kver to denote the
ver-th version of the value associated with key k.

We abstract over the data placement policy by assuming
that data is subdivided across m partitions, and that each
partition is replicated across r processes (in other words,
r represents the replication degree for each data item).
We denote with Γ = {g1, . . . , gm} the set of groups of
processes gj that replicate the j-th data partition. Each
group is composed of exactly r processes (to ensure the
target replication degree), of which at least one is assumed
to be correct. In order to maximize flexibility of the data
placement strategy, we do not require groups to be dis-
joint (they can have nodes in common), and assume that
a process may participate to multiple groups, as long as⋃

j=1...m gj = Π. We denote with groups(pi) the set of
groups to which pi belongs, and with proc(gj) the set
of processes that replicate data belonging to partition j.
Note that this model allows us to capture a wide range
of data distribution algorithms, such as schemes, currently
very popular in NoSQL transactional data stores, which
rely on consistent hashing [2] based distribution policies in
order to: i) minimize data transfer upon joining/leaving of
nodes (which, for ease of presentation, we do not model
explicitly in this work, although we will briefly discuss how
to cope with dynamic groups in Section V-D); ii) ensure the
achievement of predetermined replication degrees; iii) avoid
distributed lookups to retrieve the identities of the group of
processes storing the replicas of the requested data items.

We model transactions as a sequence of read and write
operations on data items, preceded by a begin, and followed
by a commit or abort operation. Transactions originate on
a process pi ∈ Π, and can read/write data belonging to any
partition. Also, we do not assume any a-priori knowledge on
the set of data items read or written by transactions. Given a
data item d, we denote as Replicas(d) the set of processes
that maintain a replica of d (namely the nodes of the group
gj that replicate the data partition containing d).

A history H over a set of transactions consists of a partial
order of events E that reflects the operations (begin, read,
write, abort, commit) of those transactions, and a version
order �, that is a total order defined for each data on its
committed versions

IV. CONSISTENCY MODEL

Our target consistency criterion is Extended Update Se-
rializability (EUS), which is a stronger variant of Update
Serializability (US). In the following we present their formal
specifications. US was originally defined by the work in [11],
in terms of view serializability, and later re-formulated by
Adya [9] in terms of conflict serializability. We report in the
following the latter specification of this consistency criterion.

US is specified in terms of topological properties on the,
so called, Direct Serialization Graph (DSG). A DSG captures
three types of dependency relations:

1) read dependencies capture write-read conflicts. Tj

directly read-depends on Ti if it reads Ti’s updates
(Ti

wr−−→ Tj);
2) write dependencies capture write-write conflicts. Tj

directly write-depends on Ti if it overwrites a data
item that Ti has modified (Ti

ww−−→ Tj);
3) anti-dependencies capture read-write conflicts. Tj di-

rectly anti-depends on Ti if it overwrites a data item
that Ti has read (Ti

rw
� Tj);

A DSG built over a history H, denoted as DSG(H),
has a node for each committed transaction in H and
a read/write/anti-dependency edge from transaction Ti to
transaction Tj if Tj directly read/write/anti-depends on Ti.
A history H guarantees update serializability (also called
PL-3U in [9]) if it avoids the following phenomena:

1) G1a: Aborted Reads. A history H exhibits phe-
nomenon G1a if it contains an aborted transaction Ti

and a committed transaction Tj such that Tj has read
some data item modified by Ti.

2) G1b: Intermediate Reads. A history H exhibits phe-
nomenon G1b if it contains a committed transaction
Tj that has read a version of data item x written by
transaction Ti that was not Ti’s final modification of
x.

3) G1c: Circular Information Flow. A history H exhibits
phenomenon G1c if DSG(H) contains a directed cycle
consisting entirely of dependency edges. Intuitively,

disallowing G1c ensures that if a transaction Tj is
affected by the execution of transaction Ti, it does
not affect in its turn Ti, i.e., there is a unidirectional
flow of information from Ti to Tj .

4) G-update: Single Anti-Dependency Cycles with Up-
date Transactions. A history H and transaction Ti

show phenomenon G-update if a DSG containing all
update transactions of H and transaction Ti contains
a cycle with 1 or more anti-dependency edges. This
property ensures that if Ti depends on Tj , it must not
miss the effects of Tj and all update transactions that
Tj depends or anti-depends on.

US is weaker than 1CS since read-only transactions are
not considered in phenomenon G-update. In US, two read-
only transactions may observe a serializable state (i.e. ob-
tained via a linear extension of the partial order of events
of the update transactions in H, denoted as Hup) but unlike
1CS, the serial ordering observed by both transactions could
be different (i.e. corresponding to different linear extensions
of Hup).

Finally, EUS extends US semantic not only to transactions
that commit, but to any executing transaction (even if it is
later on aborted due to the detection of a non-serializable
dependency). This sort of guarantees may be necessary to
ensure that the application does not behave in an unexpected
manner [25] due to the observation of non-serializable
snapshots. If this happens, with US, the transaction will
be aborted when it tries to commit. However, before the
transaction reaches its commit point, the application program
may behave in an unexpected manner, e.g., it may crash, go
into an infinite loop, or output unexpected results.

The specification of EUS can be derived from that of
US, by: i) including in the DSG used to test property G1c
(which was built only based on the committed transactions’
history) a node for each executing transaction Ti, and the set
of dependency/anti-dependency edges associated with Ti’s
reads; ii) testing whether G-update holds for Ti by adding
the dependency edges associated with Ti’s operations as
soon as it executes them, rather than at commit time.

V. THE GMU PROTOCOL

As classical multiversion concurrency control (MVCC)
algorithms, GMU stores multiple versions of a same data
item, and allows read-only transactions to observe con-
sistent (which for GMU means Update Serializable), but
possibly outdated snapshots of the available data. As in
typical (centralized [26] or fully replicated [13]) MVCC
implementations, in GMU each node arranges the locally
stored versions of each data item into a chain tagged with a
“version timestamp”. This is a scalar, monotonically increas-
ing (integer) clock, which is used to totally order the commit
events of transactions that update some locally stored data
item. In addition, GMU guarantees that the commit events
of transactions that update any data item d belonging to

Algorithm 1 Read/Write operations (node pi)
1: write(Key k, Value val) from local Transaction T
2: T.ws← T.ws ∪ 〈k, val〉
3:
4: read(Key k) from local Transaction T
5: if k ∈ T.ws then
6: return T.ws.get(k)
7: end if
8: Set rep←proc(k) . Processes that replicate k
9: if pi ∈ rep then . k is local

10: [val, V C∗, last]← getV (k, T.V C, T.hasRead)
11: else . k is remote
12: send READREQ[k, T.V C, T.hasRead] to rep
13: receive READREPLY[val, V C∗, last]
14: from any pj ∈rep
15: end if
16: if ¬ last ∧ T .isNotReadOnly() then
17: abort T
18: end if
19: ∀ r ∈ rep do T .hasRead[r]←true
20: T.V C ← max(T.V C, V C∗)
21: T.rs← T.rs ∪ 〈k, val〉
22: return val
23:
24: on receive READREQ[k, T.V C, T.hasRead] from pj
25: . wait for causally dependant transactions
26: wait until CLog.mostRecentV C[i] ≥ T.V C[i]
27: [val, V C∗, last]← getV (k, T.V C, T.hasRead)
28: send [val, V C∗, last] to pj
29:

a partition j are totally ordered among all replicas that
replicate partition j (namely, gj).

More in general, GMU ensures total order among the
commit events of update transactions that exhibit (possibly
transitive) data dependencies. This is in fact what guarantees
that the history restricted to update transactions generated by
GMU is 1CS, as demanded by US.

However, unlike existing distributed/replicated MVCC
schemes [21], [22], [27], [13], GMU does not order trans-
action commit events by relying on a centralized, or fully
replicated, global clock. Conversely, GMU relies on a novel,
highly scalable, fully distributed synchronization scheme
that exploits vector clocks to achieve the twofold objective
of:

1) determining which data item versions have to be
returned by read operations issued by transactions;

2) ensuring agreement among the nodes replicating the
data items updated by a transaction T on the scalar
clock to be used when locally applying the write-set
of T , as well as on the vector clock to associate with
the commit event of T .

Before explaining these two key mechanisms of GMU,
we will discuss the main data structures locally main-
tained at each node pi, namely CommitQueue, CLog and
LastPrepSC.
CommitQueue is an ordered queue whose entries are

Algorithm 2 Version visibility logic (node pi)
1: getV(Key k, VC xactV C, boolean[] hasRead)
2: if ¬hasRead[i] then
3: MaxV C ← max{vc : vc ∈ CLog ∧
4: ∀w (hasRead[w] ⇒ vc[w] ≤ xactV C[w])}
5: else
6: MaxV C ← xactV C
7: end if
8: int V ◦ ← max{v : kv ∈ versions(k) ∧ v ≤MaxV C[i]}
9: return [kV ◦ , MaxV C, isMostRecent(kV ◦)]

10:

tuples 〈T, V C, status〉 such that T is a transaction, V C is
its current vector clock, and status is a value in the domain
{pending, ready}. The entries stored in CommitQueue at
node pi are ordered according to the i-th entry of their vector
clocks, and possible ties are broken using deterministic
functions (e.g. hashes) on the transaction identifier T .

The status field has the following semantics. If status is
equal to pending, it means that T is currently successfully
prepared by pi and is waiting for a final commit/abort
decision from the transaction coordinator. In the following
we will refer to the V C of a pending transaction as to
its prepare V C. The ready value, instead, means that the
transaction has already received (a) the commit decision
from the transaction originator and that (b) it has already
been assigned a final vector clock. We will refer to such
a V C as to the commit V C. As it will be discussed in
the following, a ready transaction T will be committed
as soon as T becomes the top standing transaction in the
CommitQueue.

CLog is a simple list that maintains, for each committed
transaction, the tuple 〈T, V C, updatedKeys〉, such that T
is the identifier of a committed transaction, V C is its vector
clock and updatedKeys is the set of keys locally stored by
process pi that T has updated during its execution.
LastPrepSC, finally, is a simple scalar clock that, as it

will be discussed, is used by pi, during the prepare phase
of a transaction, to determine (the i-th entry of) its prepare
V C.

In the following we present the pseudocode formalizing
the GMU protocol. For space constraints we have to omit
the formal correctness proof (which can be found in our
technical report [28]). However, while presenting the proto-
col, we will provide several insights and arguments on its
correctness.

A. Transaction execution phase

GMU stores, in the transactional context of each executing
transaction T , the following information.

1) The transaction V C, namely an array of scalar (in-
teger) logical timestamps, having cardinality equal to
the number of nodes in the system, and whose i-th
entry (with i ∈ [0, . . . , n−1]) keeps track of the (data

and causal) dependencies developed by the transaction
during its execution.

2) The transaction read-set (rs in the pseudocode), which
stores the set of identifiers of the keys read by T .

3) The transaction write-set (ws in the pseudocode),
which stores, as a set of pairs 〈key, value〉, the identi-
fiers and values of the keys written by the transaction.

4) An array of boolean values, called hasRead, which
has an entry for each node in the system, and whose
j-th entry stores the flag indicating whether T has
already issued a read operation on a key stored by pj .

The pseudocode describing the behavior of a transaction
during its execution phase is reported in Algorithm 1 and
Algorithm 2.

Write operations are simply handled by storing the iden-
tifier and the key value in the transaction write-set.

If a transaction T issues a read operation on key k at a
process pi, it is first checked whether T has already written
k. In this case, the value stored in T ’s write-set is returned.
Otherwise, T determines whether the key is local or not.
If this is the case, the key’s value is retrieved from the
local data store via the getV() function. This function (see
Algorithm 2) iterates over the versions of k and returns
the most recent one having a timestamp lower than the
maximum one visible by T . This timestamp is determined
in different ways depending on whether it is the first time
that T issues a read operation on a key stored by pi.

If this is the case, the most recent local snapshot that is
visible by the transaction is determined by iterating over
CLog (which we recall stores the totally ordered list of
the update transactions that committed at this node) until
it is found the most recent transaction T ∗ whose V C,
denoted as MaxV C, ensures that T ∗’s commit event has
not happened after [10] the set of events associated with the
first read operation issued by T on any node (see lines 3-4 of
Algorithm 2). Roughly speaking, the first time that T issues
a read on a node pi, GMU serializes T after T ∗, establishing
an upper bound on the freshness of the snapshots that T
can observe during subsequent reads. Specifically, this bound
prevents T from observing versions committed, on any node,
by transactions that depend/anti-depend (either directly or
transitively) on T ∗.

Note that MaxV C stores in position i (as we are as-
suming that the read takes place on node i), the version
timestamp of the most recent transaction committed on pi
whose updates are visible by T . MaxV C can therefore be
used (see line 8 of Algorithm 2) to determine the version of
k, denoted as kV ◦ , that is visible by the transaction.

The behavior in case it is not the first time that T reads
on pi is similar, with the exception that the MaxV C used
to determine version visibility is the one already stored in
the transaction’s V C, which, as it will become clear shortly,
corresponds to the MaxV C returned upon the first read of
T on pi.

Finally, getV() returns the value of the selected version,
along with MaxV C and a boolean flag that specifies
whether the returned version of k is the most recent cur-
rently committed. This is perfectly acceptable for read-
only transactions, which can be serialized in the past as
typical of MVCC algorithms. However, it does doom update
transactions to abort, which is the reason why GMU forces
the immediate abort of the transaction (see lines 16-17 of
Algorithm 1).

It remains to address the case of remote reads (see lines
12-14 and 24-28 of Algorithm 1). In this case, a read request
is sent to all the replicas of k, and it is waited for the
first of their replies. Analogously to the local read case, the
getV() function is used to determine the version of k visible
by transaction T . However, in this case GMU ensures that,
before invoking getV(), pj has finalized the commit of all
the update transactions from which T depends, and that have
written keys replicated by pj . It is easy to show that this is
a necessary condition to ensure property G1c.

Independently of whether the read is local or remote,
before returning the value of the requested key k to the
application, k is added to T ’s read-set and the set of
processes that replicate key k is flagged as already read
by T . Finally, the vector clock of T is updated to reflect
the happened before relationship [10] between the commit
event of the transaction that wrote the version observed by
T ’s read, and the corresponding read event of T .

B. Transaction commit phase

As already anticipated, one of the key strength points of
GMU is that it allows committing read-only transactions
without requiring any kind of local or remote validation
phase.

The scheme used to commit update transactions in GMU
is specified by the pseudocode shown in Algorithms 3 and 4.
GMU uses a Two Phase Commit (2PC) protocol, involving
all and only the set rep of nodes that replicate keys read
or written by a committing transaction T . Exploiting 2PC,
GMU can use standard techniques to ensure transaction
atomicity and to verify its compatibility with the history of
committed (update) transactions. The latter goal is achieved
by acquiring read/write locks on all keys read/written by the
transaction, at all nodes in which these keys are stored, and
then performing a validation of the transaction’s read-set.

The key innovative feature of GMU’s commit algorithm,
however, consists in the scheme employed to establish
agreement among the nodes involved in the execution of
a transaction T , on the commit vector clock to assign to T .
To this end, GMU blends into the 2PC messaging pattern
a distributed consensus scheme that resembles the one used
by Skeen’s total order multicast algorithm [7].

When node pi receives a prepare message for transaction
T (and after its successful validation), it sends back with the
VOTE message the proposal of a new vector clock for T .

This proposal is built by incrementing LastPrepSC and
constructing a vector clock equal to the one of the most
recent locally committed transaction, except for its i-th entry,
which is set to the new value of LastPrepSC. The prepare
phase is concluded by storing the prepare V C in the local
CommitQueue.

The 2PC coordinator gathers the proposed prepare VCs,
and performs two operations in order to derive the commit
V C for the transaction. First, it merges the prepare V Cs
with the current VC of the transaction using the max
operator, which outputs a VC having, for each of its entries
i, the maximum of the i-th entry of the VC passed as input.
This allows to keep track in the commit V C of the causal
dependencies developed both by T during its execution as
well as by the most recently committed transactions at all
the nodes contacted by T . Next, the coordinator determines
the common value to attribute to the entries of the commit
V C related to the nodes whose keys have been updated
by the transaction (i.e. the nodes pj ∈ proc(T.ws)). This
is achieved by picking the maximum value among all the
entries in the prepare V C of each node involved in the
commit.

At this point the coordinator sends back a commit noti-
fication to all the nodes in rep. This triggers the update of
the entry associated with transaction T in CommitQueue,
whose VC is replaced with the commit V C and whose
status is set to ready.

In order to finalize the commit of T , however, it is waited
until its entry has become the first in CommitQueue (recall
that the CommitQueue at process pi is ordered based on
the i-th entry of the VCs that it contains). This scheme
guarantees that all the nodes updated by a transaction T will
assign the same commit V C to T . It also ensures that if a
node pi commits a transaction with a local scalar timestamp
(i.e., having as i-th entry in its VC the value) equal to
v, then the local scalar timestamps of the transactions that
subsequently commit at pi will be larger than v.

The two aforementioned properties guarantee that all
the replicas in Replicas(T.ws) commit T using the same
commit V C and in the same total order.

Finally, the merging of the causal histories encoded by
the transaction’s VCs and by the prepare V Cs (see line
19 of Algorithm 3) guarantees that the total order of the
commit events is propagated across chains of, possibly
transitively dependant transactions. This represents one of
key mechanisms leveraged on by GMU in order to ensure
1CS of the history of update transactions.

C. Garbage Collection

GMU integrates an efficient distributed garbage collection
protocol that relies on background dissemination (either via
gossip [29] and/or via piggybacking) of the VC of the
oldest active transaction known as active at each node.
This lightweight rumor-mongering mechanism allows each

Algorithm 3 Commit phase (node pi)
1: validate(Key k, VC xactV C) on node pi
2: return max{v : kv ∈ versions(k)} ≤ xactV C[i]
3:
4: boolean commit(Transaction T)
5: VC commitV C ← T.V C
6: int xactV N . Timestamp for data updated by T
7: if T.ws = ∅ then . Read-only transactions commit

locally
8: return true
9: end if

10: Set rep←proc({T.rs ∪ T.ws}) . rep may include pi
11: send PREPARE[T] to all pj ∈ rep
12: for all pj ∈ rep do
13: wait VOTE[votej , V Cj] from pj
14: if votej=NO then
15: send ABORT[T] to all pj ∈ rep
16: return false
17: else
18: . Ensure tracking of causal dependencies
19: commitV C ←max(commitV C, V Cj)
20: end if
21: end for
22: xactV N ←max{commitV C[w] : pw ∈ Π}
23: for all pj ∈ rep s.t. pj ∈ proc(T.ws) do
24: commitV C[j]← xactV N
25: end for
26: send COMMIT[T , commitV C] to all pj ∈ rep
27: return true
28:

node to determine a conservative estimative of the scalar
timestamp, say t∗, of the oldest locally committed transac-
tion whose versions are still visible by any currently active
transaction. This means that it is possible to garbage collect
every version having timestamp less than t∗ (provided that a
fresher version has already been committed) without risking
to remove versions that may be later requested by some
transaction.

Note that since the commit log stores the references to
the write-sets of local committed transactions, it can be
used as an index to efficiently retrieve any obsolete version
committed by transactions older than t∗.

D. Failure Handling and Dynamic Process Groups

With respect to conventional 2PC based transactional
systems, GMU does not introduce additional sources of
complexity for what concerns the handling of failures and
of dynamic process groups. If, as it is typically the case
in practice [8], the underlying group communication toolkit
provides virtual synchrony guarantees, it is straightforward,
upon a view change notification, to associate the initial
vector clock to be used during the next view v with the
nodes that transit in v.

Finally, as GMU relies on 2PC, which is well known
to be blocking upon failure of the coordinator, additional,
orthogonal solutions need to be taken in order to deal with

Algorithm 4 Prepare/Commit/Abort messages (node pi)
1: on receive PREPARE[T] from pj
2: for all k ∈ {T.rs ∪ T.ws} do
3: if k ∈ T.rs ∧ k is local then
4: Acquire read lock on k
5: if (failed lock on k ∨ ¬validate(k, T.V C) then
6: send VOTE[NO,-]
7: release any lock held by T
8: return
9: end if

10: end if
11: if k ∈ T.ws ∧ k is local then
12: Acquire write lock on k
13: if failed write lock on k then
14: send VOTE[NO,-]
15: release any lock held by T
16: return
17: end if
18: end if
19: end for
20: VC prepV C ← CLog.mostRecentV C
21: prepV C[i]←incrementAndGet(LastPrepSC)
22: CommitQueue.put(〈T, prepV C, pending〉)
23: send VOTE[YES, prepV C] to pj
24:
25: on receive COMMIT[T, commitV C] from pj
26: LastPrepSC ←max(LastPrepSC,commitV C[i])
27: CommitQueue.update(〈T, commitV C, ready〉)
28:
29: on first 〈T, vc, s〉 in CommitQueue has s = ready
30: ∀k ∈ T.ws s.t. isLocal(k) do apply(k,vc[i])
31: CLog.add(vc)
32: CommitQueue.remove(T)
33: release any lock held by T
34:
35: on receive ABORT[T] from pj
36: CommitQueue.remove(T)
37: release any lock held by T

38:

these scenarios. Possible solutions include schemes based on
the synchronous replication of the coordinator state across
a (typically small) set of processes, such as in [30], or,
pragmatic solutions that admit heuristic exceptions, trading-
off consistency for performance.

VI. EXPERIMENTAL EVALUATION

We have integrated GMU in Infinispan1, a mainstream
open source in-memory distributed data platform. Analo-
gously to many other contemporary distributed cache plat-
forms, Infinispan externalizes a simple key-value store inter-
face. In order to maximize scalability, Infinispan relies on
weak consistency models, and on a lightweight consistent
hashing scheme [31] that allows partitioning data efficiently
while ensuring good load balancing and minimum reshuf-
fling of keys in presence of joins/departures of nodes from

1An open-source implementation of GMU is available at this public
repository: https://github.com/cloudtm

 0

 10000

 20000

 30000

 40000

 50000

 6 8 10 12 14 16 18 20

Th
ro

ug
hp

ut
 (c

om
m

itt
ed

 tx
/s

ec
)

Number of Nodes

Read & Write Transaction - (YCSB)

GMU
RR

Figure 1: YCSB Benchmark (Cloud-TM).

the platform. Further, Infinispan supports partial replication,
allowing to store each key across a fixed, user-tunable
number of replicas, thus achieving fault-tolerance without
hampering scalability.

For what concerns consistency, the stronger consistency
level ensured by Infinispan is Repeatable Read [4] (RR), an
isolation level which ensures that no intermediate or aborted
values are ever observed, and that no two consecutive reads
within the same transaction can return different values. RR
is significantly weaker than (E)US, as it allows the commit
of (both read-only and update) transactions that observe non-
serializable schedules [9].

Infinispan relies on an encounter based two phase locking
scheme, which is applied only to write operations and that
does not synchronize reads. Repeatability of read operations
is instead guaranteed by storing the data items observed by
read operations, and returning them upon subsequent reads.
For what concerns the replication protocol of Infinispan, it
relies on a classic 2PC-based distributed locking algorithm
[5].

Designed to achieve high scalability and support weak
consistency models, Infinispan represents an ideal baseline
to evaluate the costs incurred in by GMU to provide stronger
consistency guarantees. We implemented also a non-genuine
multiversion-based replication scheme, which, analogously
to the one in [13], relies on a fully replicated, logically cen-
tralized, global scalar clock, used to totally order committing
update transactions. We refer to this protocol as NGM (Non-
Genuine Multiversioning) in the following.

For our experimental study we use two well-known bench-
marks, TPC-C [14] and YCSB [15]. The workload generated
by TPC-C is representative of OLTP environments and
characterized by complex and heterogeneous transactions,
with very skewed access patterns and high conflict proba-
bility. YCSB (Yahoo! Cloud Serving Benchmark) [15] is a
framework specifically aimed at benchmarking NoSQL key-
value data grids and cloud stores. The transactional profile

 0

 500

 1000

 1500

 2000

 2500

 3000

 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

Th
ro

ug
hp

ut
 (c

om
m

itt
ed

 tx
/s

ec
)

Number of Nodes

Read & Write Transactions - (TPC-C)

GMU
RR

Figure 2: TPC-C Benchmark (FutureGrid).

 0

 200

 400

 600

 800

 1000

 1200

 2 4 6 8 10 12 14 16 18 20

Th
ro

ug
hp

ut
 (c

om
m

itt
ed

 tx
/s

ec
)

Number of Nodes

Write Transactions - (TPC-C)

GMU
RR

NGM

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 2 4 6 8 10 12 14 16 18 20

Th
ro

ug
hp

ut
 (c

om
m

itt
ed

 tx
/s

ec
)

Number of Nodes

Read & Write Transactions - (TPC-C)

GMU
RR

NGM

Figure 3: TPC-C Benchmark (Cloud-TM)
.

of this benchmark is quite different from the one of TPC-C,
with simpler, shorter transactions that rarely conflict.

The results presented in the following were obtained using
two experimental platforms. The first one, FutureGrid 2, is a
public distributed test-bed for parallel and cloud computing.
This platform allows us to evaluate GMU in environments

2www.futuregrid.org

representative of public cloud infrastructures, which are typ-
ically characterized by more competitive resource sharing,
ample usage of virtualization technology, and relatively less
powerful nodes. In the FutureGrid platform we performed
experiments using up to 40 virtual machines, equipped with
7GB RAM, two 2.93GHz cores Intel Xeon CPU X5570,
running CentOS 5.5 x86 64. All the VMs were deployed in
the same physical data-center and interconnected via Gigabit
Ethernet. In all experiments performed on FutureGrid we
used a single thread per node to inject transactions (in closed
loop), which guaranteed a high utilization of the machine’s
resources without overloading.

The second experimental platform, referred to as Cloud-
TM, is a dedicated cluster of 20 homogeneous nodes, where
each machine is equipped with two 2.13 GHz Quad-Core
Intel(R) Xeon(R) E5506 processors and 16 GB of RAM,
running Linux 2.6.32-33-server and interconnected via a
private Gigabit Ethernet. This platform is representative of
small/medium private clouds or data-centers environments,
with dedicated servers and a fairly large amount of available
(computational and memory) resources per node. In order to
maintain a similar ratio between threads and available cores
with respect to the experiments performed in FutureGrid,
in all experiments performed on Cloud-TM we used four
threads per node to inject transactions (in closed loop).

Let us start by analyzing the results obtained by running
YCSB using the Cloud-TM platform. We used Workload A
[15] of the benchmark, which is an update intensive work-
load (comprising 50% of update transactions) simulating a
session store that records recent client actions. Figure 1
reports the maximum throughput (committed transactions
per second) achievable by GMU and by Infinispan’s partial
replication protocol that ensures Repeatable Read (referred
to as RR, in the following). The plot shows that the average
reduction in throughput for GMU oscillates around 8%, and
that it scales linearly at the same rate as RR, providing an
evidence of the efficiency and scalability of the proposed
solution.

Next we report, in Figure 2, the results achieved using,
on FutureGrid, the TPC-C benchmark configured with a
read-dominated profile, composed at the 90% by read-only
(Order-Status profiles) transactions and, for the remaining
10%, by update transactions (Payment and New-Order pro-
files) in equal parts. The plot confirms the efficiency and
scalability of GMU. Surprisingly, in this scenario, despite
providing consistency guarantees, GMU even outperforms
RR by up to 10%. Our profiling study has highlighted that
these gains are imputable to the fact that GMU, unlike RR,
avoids the overhead of storing previously read values to
guarantee consistency. Read-only transactions in TPC-C, in
fact, tend to perform a large number of operations, forcing
RR to perform a large number of cloning operations to store
read versions in the transactional context.

Finally, in Figure 3, we report the results achieved by

running TPC-C on the Cloud-TM platform. With 4 threads
injecting transactions per node, the degree of concurrency
is significantly higher than in the former experiment, lead-
ing to significant conflicts both at the logical (data) and
at the physical (computing/network resources) level. The
plots in this case report also the performance of the above
described non-genuine multiversion partial replication pro-
tocol (NGM). Our experimental data clearly demonstrate
the detrimental effect on system scalability due to the high
logical contention on the fully replicated global clock, which
leads to the drastic decay of the throughput (in particular of
write transactions, see plot on top of Figure 3).

By comparing the performance of GMU with that of RR it
emerges that the increase in the logical/physical contention
level characterizing this configuration has a stronger impact
on GMU. In fact, even though GMU shows an almost linear
scalability trend, our data reveal that it suffers of a higher
abort rate than RR: for 20 nodes, the abort rate is on the
order of the 15% for GMU, whereas it is around 8% for RR.
This data shows that, in high contention scenarios, strong
consistency semantics do pay a performance toll, which,
in this specific configuration, corresponds to a throughput
reduction ranging from 10% (at 4 nodes) up to 20% (at
20 nodes). On the other hand, we argue that this is an
unavoidable cost to pay in the context of applications whose
correctness can be endangered by adopting non-serializable
isolation levels. Note that TPC-C does belong to this class
of applications, as in fact several of its transactional profiles
might generate data corruptions in presence of concurrency
anomalies such as those possible using Repeatable Read (or
even Snapshot Isolation).

VII. CONCLUSIONS

In this article we presented GMU (Genuine Multiver-
sion Update serializability), an innovative partial replication
protocol for transactional systems. The core of GMU is a
distributed multiversion concurrency control scheme, which
relies on a novel vector clock based synchronization algo-
rithm to track, in a totally decentralized (and consequently
scalable) way, both data and causal dependency relations.
In order to maximize scalability, GMU adopts a genuine
partial replication mechanism that ensures that transactions
only contact replicas storing the data that they accessed.
Further, GMU never aborts read-only transactions and spares
them from expensive distributed validation schemes. This
makes GMU particularly efficient in presence of read-
intensive workloads, as typical of a wide range of real-world
applications.

We evaluated GMU by integrating it into Inifinispan,
a mainstream in-memory key-value store, and performing
a large scale experimental study based on heterogeneous
experimental platforms and industry standard benchmarks
(namely TPC-C and YCSB). Our results show that GMU
achieves linear scalability and that it introduces negligible

overheads (less than 10%) with respect to solutions ensuring
non-serializable semantics in a wide range of workloads.

Supported by these experimental results, we argue that
GMU hits a sweet spot in the trade-off between consistency
and performance. In fact, the consistency semantics guar-
anteed by GMU, namely Extended Update Serializability
(EUS), is sufficiently strong to ensure the correctness even
of complex OLTP workloads (such as TPC-C), but also weak
enough to allow for efficient and scalable implementations.
Further, unlike several relaxed consistency models proposed
in literature, EUS has simple and intuitive semantics, which
represents an essential requirement for adoption in main-
stream, complex applications.

ACKNOWLEDGMENTS

This work has been partially supported by the project
“Cloud-TM” (co-financed by the European Commission
through the contract no. 257784), the FCT project ARISTOS
(PTDC/EIA- EIA/102496/2008) and by FCT (INESC-ID
multiannual funding) through the PIDDAC Program Funds.

REFERENCES

[1] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati,
A. Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall,
and W. Vogels, “Dynamo: amazon’s highly available key-
value store,” in Proc. of Symposium on Operating Systems
Principles, ser. SOSP ’07. ACM, 2007, pp. 205–220.

[2] A. Lakshman and P. Malik, “Cassandra: a decentralized struc-
tured storage system,” SIGOPS Operating Systems Review,
vol. 44, pp. 35–40, 2010.

[3] M. K. Aguilera, A. Merchant, M. Shah, A. Veitch, and
C. Karamanolis, “Sinfonia: a new paradigm for building
scalable distributed systems,” SIGOPS Operating Systems
Review, vol. 41, pp. 159–174, 2007.

[4] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’Neil,
and P. O’Neil, “A critique of ANSI SQL isolation levels,” in
Proc. of International Conference on Management of Data,
ser. SIGMOD ’95. ACM, 1995, pp. 1–10.

[5] J. Gray, P. Helland, P. O’Neil, and D. Shasha, “The dangers
of replication and a solution,” in Proc. of International Con-
ference on Management of Data, ser. SIGMOD ’96. ACM,
1996, pp. 173–182.

[6] N. Schiper, P. Sutra, and F. Pedone, “P-Store: Genuine Partial
Replication in Wide Area Networks,” in Proc. of IEEE
Symposium on Reliable Distributed Systems, 2010, pp. 214–
224.

[7] X. Defago, A. Schiper, and P. Urban, “Total order broadcast
and multicast algorithms: Taxonomy and survey,” ACM Com-
puting Surveys, vol. 36, no. 4, pp. 372–421, 2004.

[8] H. Miranda, A. Pinto, and L. Rodrigues, “Appia: A Flexible
Protocol Kernel Supporting Multiple Coordinated Channels,”
in Proc. of International Conference on Distributed Comput-
ing Systems, ser. ICDCS ’01. IEEE Computer Society, 2001,
pp. 707–710.

[9] A. Adya, “Weak Consistency: A Generalized Theory and Op-
timistic Implementations for Distributed Transactions,” PhD
Thesis, Massachusetts Institute of Technology, Tech. Rep.,
1999.

[10] L. Lamport, “Time, clocks, and the ordering of events in a
distributed system,” Communication of the ACM, vol. 21, pp.
558–565, 1978.

[11] R. Hansdah and L. Patnaik, “Update serializability in lock-
ing,” in Proc. of International Conference on Database The-
ory, ser. Lecture Notes in Computer Science. Springer Berlin
/ Heidelberg, 1986, vol. 243, pp. 171–185.

[12] A.-R. Adl-Tabatabai, C. Kozyrakis, and B. Saha, “Unlocking
Concurrency,” ACM Queue, vol. 4, no. 10, pp. 24–33, 2007.

[13] B. Kemme and G. Alonso, “Don’t Be Lazy, Be Consistent:
Postgres-R, A New Way to Implement Database Replication,”
in Proc. of International Conference on Very Large Data
Bases. Morgan Kaufmann Publishers Inc., 2000, pp. 134–
143.

[14] TPC Council, “TPC-C Benchmark, Revision 5.11,” Feb. 2010.

[15] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and
R. Sears, “Benchmarking cloud serving systems with YCSB,”
in Proc. of ACM symposium on Cloud computing, ser. SoCC
’10. ACM, 2010, pp. 143–154.

[16] Y. Lin, B. Kemme, M. Patiño-Martı́nez, and R. Jiménez-Peris,
“Middleware based Data Replication providing Snapshot Iso-
lation,” in Proc. of International Conference on Management
of Data, ser. SIGMOD ’05. ACM, 2005, pp. 419–430.

[17] M. Wiesmann and A. Schiper, “Comparison of Database
Replication Techniques Based on Total Order Broadcast,”
IEEE Transactions on Knowledge and Data Engineering,
vol. 17, no. 4, pp. 551–566, 2005.

[18] F. Pedone, R. Guerraoui, and A. Schiper, “The Database State
Machine Approach,” Distributed and Parallel Databases,
vol. 14, no. 1, pp. 71–98, 2003.

[19] R. Palmieri, F. Quaglia, and P. Romano, “OSARE: Oppor-
tunistic Speculation in Actively REplicated Transactional Sys-
tems,” in Proc. of IEEE Symposium on Reliable Distributed
Systems, ser. SRDS ’11. IEEE Computer Society, 2011, pp.
59–64.

[20] N. Carvalho, P. Romano, and L. Rodrigues, “SCert: Specu-
lative certification in replicated software transactional mem-
ories,” in Proc. of International Conference on Systems and
Storage, ser. SYSTOR ’11. ACM, 2011, pp. 10:1–10:13.

[21] D. Serrano, M. Patiño-Martı́nez, R. Jiménez-Peris, and
B. Kemme, “Boosting Database Replication Scalability
through Partial Replication and 1-Copy-Snapshot-Isolation,”
in Proc. of Pacific Rim International Symposium on Depend-
able Computing, ser. PRDC ’07. IEEE Computer Society,
2007, pp. 290–297.

[22] J. E. Armendáriz-Iñigo, A. Mauch-Goya, J. R. G.
de Mendı́vil, and F. D. Muñoz Escoı́, “SIPRe: a partial
database replication protocol with SI replicas,” in Proc.
of ACM Symposium on Applied Computing, ser. SAC ’08.
ACM, 2008, pp. 2181–2185.

[23] A. Chan and R. Gray, “Implementing Distributed Read-Only
Transactions,” IEEE Transactions on Software Engineering,
vol. 11, no. 2, pp. 205–212, 1985.

[24] A. Bieniusa and T. Fuhrmann, “Consistency in hindsight: A
fully decentralized STM algorithm,” in Proc. of IEEE Inter-
national Symposium on Parallel and Distributed Processing,
ser. IPDPS ’10, 2010, pp. 1–12.

[25] R. Guerraoui and M. Kapalka, “On the Correctness of
Transactional Memory,” in Proc. of ACM Symposium on
Principles and Practice of Parallel Programming, ser. PPoPP
’08. ACM, 2008, pp. 175–184.

[26] P. A. Bernstein, V. Hadzilacos, and N. Goodman, Concur-
rency control and recovery in database systems. Addison-
Wesley Longman Publishing Co., Inc., 1986.

[27] S. Wu and B. Kemme, “Postgres-R(SI): Combining Replica
Control with Concurrency Control based on Snapshot Iso-
lation,” in Porc. of International Conference on Data Engi-
neering, ser. ICDE ’05. IEEE Computer Society, 2005, pp.
422–433.

[28] S. Peluso, P. Ruivo, P. Romano, F. Quaglia, and L. Rodrigues,
“When Scalability Meets Consistency: Genuine Multiver-
sion Update-Serializable Partial Data Replication,” INESC-
ID, Tech. Rep. 47, 2011.

[29] R. van Renesse, K. P. Birman, and W. Vogels, “Astrolabe: A
robust and scalable technology for distributed systems moni-
toring, management, and data mining,” ACM Transactions on
Computer Systems, vol. 21, no. 3, 2003.

[30] J. Gray and L. Lamport, “Consensus on transaction commit,”
ACM Transactions on Database Systems, vol. 31, pp. 133–
160, 2006.

[31] D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine,
and D. Lewin, “Consistent hashing and random trees: dis-
tributed caching protocols for relieving hot spots on the
world wide web,” in Proc. of ACM Symposium on Theory
of Computing. ACM, 1997, pp. 654–663.

