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Abstract—In this paper we introduce TAS (Transactional
Auto Scaler), a system that relies on a novel hybrid
analytical/machine-learning-based forecasting methodology in
order to accurately predict the performance achievable by
transactional applications executing on top of transactional
in-memory data stores, in face of changes of the scale of
the system. Applications of TAS range from on-line self-
optimization of in-production applications, to the automatic
generation of QoS/cost driven elastic scaling policies, and
support for what-if analysis on the scalability of transactional
applications.

We demonstrate the accuracy and feasibility of TAS via
an extensive experimental study based on a fully fledged
prototypal implementation integrated with one of the most pop-
ular open-source transactional data grids (JBoss Infinispant c©)
and industry-standard benchmarks generating a breadth of
heterogeneous workloads.

Keywords-Transactional data grids; Elastic Scaling; Analyt-
ical Performance model; Machine learning.

I. INTRODUCTION

Context. The advent of commercial cloud computing
platforms has led to the proliferation of a new generation
of in-memory, transactional data platforms, often referred to
as NoSQL data grids. This new breed of distributed transac-
tional platforms (that includes products such as Red Hatt c©’s
Infinispan [1], Oraclet c©’s Coherence [2] and Apache Cas-
sandra [3]) is designed from the ground up to meet the
elasticity requirements imposed by the pay-as-you-go cost
model characterizing cloud infrastructures. By relying on a
simpler data model (key-value vs relational), and employing
efficient mechanisms to achieve data durability (in-memory
replication vs disk-based logging) and to dynamically resize
the cluster on top of which they are deployed [4], [5], these
platforms allow non-expert users to provision a cluster of
any size on the cloud within minutes.

This feature gives tremendous power to the average user,
while placing a major burden on her shoulders. Previously,
the same user would have had to work with system ad-
ministrators and management personnel to get a cluster
provisioned for her needs. However, removing the system
administrator and the traditional capacity-planning process
from the loop shifts the non-trivial responsibility of deter-
mining a good cluster configuration to the non-expert user
[6].

Motivations. Unfortunately, forecasting the performance

achievable by applications deployed on transactional data
grids while varying the size of the underlying cluster is
an extremely challenging task. The performance of trans-
actional data platforms exhibit in fact strong non-linear
behaviors as the number of nodes in the system grows, which
are imputable to the simultaneous, and often inter-dependent,
effects of contention affecting both physical (computational,
memory, network) and logical (conflictings data accesses by
concurrent transactions) resources.

These effects are clearly shown in Figure 1, whose plots
report results obtained by running two popular transactional
benchmarking frameworks on top of the Infinispan data
grid platform [1]: Radargun 1 and TPC-C 2. Infinispan was
configured to replicate data fully across the nodes of the data
grid, and we selected benchmark configurations generating
heterogeneous workloads in terms of: number of (read/write)
operations executed within each transaction, percentage of
read-only transactions, number of items in the whole dataset
as well as size (in KB) of the individual objects manipulated
by each operation.

A shown in Figure 1a, the scalability trends (in terms
of the maximum throughput) of the three considered work-
loads are quite heterogeneous. The TPC-C benchmark scales
almost linearly and the plots in Figure 1b and Figure 1c
show that in this case the scalability is limited by a steady
increase of contention at both the network and on the data
level, which leads to a corresponding increase of the RTT
and transaction abort probability.

On the other hand the two Radargun workloads clearly
demonstrate how the effects of high contention levels on
logical and physical resources can lead to strongly non-linear
scalability trends, even though, as in the case of accesses to
a small dataset (“RG-Small”), the performance degradation
of the network layer (in terms of RTT) is not so relevant.

Contributions. In this paper, we present Transactional Auto
Scaler (TAS), a system that relies on a novel performance
prediction methodology based on the joint usage of analyti-
cal and machine learning (statistical) models. The analytical
models employed by TAS exploit the knowledge of the
dynamics of the concurrency control/replication algorithm
to forecast the effects of data contention using a white-box

1http://sourceforge.net/apps/trac/radargun/wiki/WikiStart
2http://www.tpc.org/tpcc
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Figure 1: Performance analysis of different data grids appli-
cations.

approach.
Statistical methods, on the other hand, are employed to

forecast, using black-box machine-learning-based methods,
the impact on performance due to shifts in the utilization
of system level resources (e.g. CPU and network) caused
by different replication schemes. This allows avoiding the
explicit modelling of the interactions with system resources.
This is not only a time-consuming and error-prone task given
the complexity of current hardware architectures. It would
also constrain the portability of our system (to a specific

infrastructural instance), as well as its practical viability in
virtualized Cloud environments where users have little or no
knowledge of the underlying infrastructure.

While the methodology employed in TAS can be applied
to a plethora of alternative replication/concurrency control
mechanisms, one of the main contributions of this paper is
the design of an innovative analytical performance model
that targets the replication/concurrency control mechanisms
used by Infinispan. One of the key innovative elements of
the analytical performance model presented in this paper
consists in the methodology introduced to characterize the
probability distribution of accesses to data items. Existing
white-box models of transactional systems [7], [8], [9],
in fact, rely on strong approximations on the data ac-
cesses distribution,and require an a-priori time-consuming
workload characterization phase to derive several param-
eters characterizing the data access distributions. In the
presented model, conversely, we capture the dynamics of
the application data access patterns via the abstraction of
Application Contention Factor (ACF). ACF is a novel metric
that exploits queuing theoretical arguments and a series of
lock-related statistics (such as lock contention probability
and average lock duration) measured (and dependant) on the
current workload/system configuration, in order to derive a
probabilistic model of the application’s data access pattern
that is independent from the current level of parallelism
(e.g. number of concurrently active threads/nodes) and con-
tention on physical resources (e.g. cpu or network).

We demonstrate the viability and high accuracy of the
proposed solution via an extensive validation study based
on industry standard benchmarks that generate a breadth of
heterogeneous workloads for what concerns contention on
both logical and physical resources. The results show that
the overhead introduced by our monitoring and gathering
of statistical information (in terms of reduction of the
maximum achievable throughput) is negligible, and that the
time required to solve the performance forecasting model is
on the order of at most a few hundreds of milliseconds on
commodity hardware.

The remainder of this paper is structured as follows. In
Section II we discuss related research. The target data grid
architecture of the TAS system is described in Section III.
Section IV presents the forecasting methodology that we
integrated in TAS, and Section V validates it via an extensive
experimental study. Finally, Section VI concludes this paper.

II. RELATED WORK

The present work is related to the literature on per-
formance modeling and prediction for transactional sys-
tems. This includes both performance models for tradi-
tional database systems and related concurrency control
mechanisms (see, e.g., [9], [10], [11]), approaches tar-
geting more recent STM architectures (see, e.g., [12]),
distributed/replicated transaction processing systems, such
as [8], or multi-tier system [13]. With respect to these
approaches, TAS presents two key differences: i) it relies on



analytical modelling only for capturing data contention dy-
namics, whereas it relies on black-block statistical methods
to model the effects of contention on data resources; ii) from
an analytical modelling perspective, in TAS we introduce a
novel abstraction (ACF) that allows to concisely characterize
and effectively reason about arbitrary transactional data
access patterns.

Our work has clearly also relationships with systems that
rely either on machine learning techniques or on analytical
models in order to perform elastic scaling (or more, in
general, performance forecasting) for other types of appli-
cation domains (i.e. non-transactional applications), such as
MapReduce [14], VM sizing [15], Grid resource brokering
[16], [17] and online gaming [18]. Other solutions [19]
rely on machine learning techniques to determine a policy
for admission control of queries (read-only transactions) in
centralized Database-as-a-Services. In addition to targeting
different domains, we are not aware of solutions performing
elastic scaling relying on the joint usage of analytical and
machine learning based models.

Control theory techniques are also at the basis of several
works in the area of self-tuning of application performance.
These solutions often assume a linear performance model,
which is possibly updated adaptively as the system moves
from one operating point to another. For example, first-
order autoregressive models are used to manage CPU allo-
cation for Web servers [20]. Linear multi-input-multi-output
(MIMO) models have been applied to manage different
kind of resources in multi-tier application [21], as well as
to allocate CPU resource for minimizing the interference
between VMs deployed on the same physical node [22].
Compared to these adaptive linear models, the continuous
non-linear models used by TAS to forecast both the logical
and physical contention can accurately capture the system’s
entire behavior and allow optimized resource allocation over
the entire operating space.

III. SYSTEM ARCHITECTURE

As already mentioned, TAS has been integrated into
Infinispan [1], which is, at the time writing, one of the
most popular open source in-memory NoSQL data grid on
the market and the reference NoSQL data platform and
clustering technology for the JBoss AS. Infinispan exposes
a key-value store data model, and stores data entirely in-
memory relying on replication as its primary mechanism
to ensure fault-tolerance and data durability. Infinispan pro-
vides support for transactions and for two main operational
modes: partial vs full data replication, depending on whether
data are replicated on a subset or on the whole set of nodes
in the data grid.

While the hybrid analytical/machine-learning based
methodology presented in this paper is sufficiently generic
to be extended also to cope with partial replication schemes,
in this paper, we focus on the full replication mode
of Infinispan. This replication mode is recommended for
small/medium scale platforms (e.g. composed of up to 10/20

nodes) [23], [24], as, in these settings, the cost of the replica-
wide synchronization phase required upon transaction com-
mit is typically largely out-weighted by the guarantee to
avoid expensive remote interactions to fetch data replicated
at different nodes during transaction execution.

As many other recent NoSQL databases, Infinispan opts
for sacrificing consistency in order to maximize perfor-
mance: specifically, it does not ensure serializability [25]
and only guarantees the Repeatable Read ANSI/ISO iso-
lation level [26]. More in detail, Infinispan implements
a lightweight, non-serializable variant of the multi-version
concurrency control algorithm, which never blocks or aborts
a transaction upon a read operation, and relies on an
encounter-time locking strategy to detect write-write con-
flicts. Locks are first acquired locally during the transac-
tion execution phase whenever a <key,value> pair is up-
dated/inserted/deleted. Then, at commit time, a classic Two
Phase Commit (2PC) protocol [25] is used to detect conflicts
arisen with transactions concurrently executing on other
replicas, as well as for guaranteeing transaction atomicity
across the whole set of replicas. If the lock acquisition phase
succeeds on all nodes, the transaction originator broadcasts
back a commit message, in order to successfully apply the
transacation’s modifications on the remote nodes, and then
it commits locally.

In presence of conflicting, concurrent transactions, how-
ever, the lock acquisition phase (taking place either during
the local transaction execution or during the prepare phase)
may fail due to the occurrence of (possibly distributed)
deadlocks. Deadlocks are detected using a simple, user-
tunable, timeout based approach. In this paper, we consider
the scenario in which the timeout on deadlock detection is
set to 0. This choice is due to the fact that, as the system
scale grows, the distributed deadlock probability grows very
quickly [27] and the default settings for the timeout value (10
seconds) impose a huge performance penalty that hampers
significantly scalability. In fact, on the basis of an extensive
manual tuning of this parameter, we could verify that, since
in these in-memory systems the transaction turnaround time
is typically on the order of a few milliseconds, throughput
is maximized by setting the timeout value to 0 (at least in
all the scenarios that we explored). This result is, indeed,
not so surprising if one considers that analogous techniques
are adopted in state of the art transactional memories [28].

As already mentioned, TAS relies on the periodic col-
lection of system wide statistics on system’s performance
(e.g. transaction throughput and round-trip network laten-
cies) and workload characterization (e.g. transactional arrival
rate and number of writes per transaction) to instantiate
its performance forecasting models. In order to maximize
portability, rather than using additional monitoring frame-
works to gather this information, we use a dedicated (i.e. not
shared with the application) key-value container hosted by
the same Infinispan instance to disseminate this data. At
the end of each monitoring period (whose default value
is set to 1 minute in our system) each replica stores the



statistic information that it locally collected into a dedicated
entry of the key-value store. This rules out the possibility
of conflicts, allowing to propagate updates outside of the
boundaries of a transaction, further minimizing monitoring
overhead. Given that the updates are extremely lightweight
and infrequent, and given that Infispan’s store used by the
application is fully replicated, we opted to fully replicate
also the key-value store used to monitor the data grid.
This favours fault-tolerance, ensuring highly availability of
monitoring information, and maximizing the flexibility of
TAS deployments by allowing virtually each node of the data
grid to instantiate, whether needed, the forecasting models
described in the following. Note however that TAS can
straightforwardly support architectures in which a dedicated
node is used to instantiate the forecasting model (by simply
including this node in the set of nodes joining the Infinispan
instance used to gather monitoring information) and to drive
the automatic elastic scaling of the system.

IV. PERFORMANCE FORECASTING MODELS

A. Analytical model
For space constraints we have to include the full descrip-

tion of the analytical model, and in particular details on the
modelling of the lock contention dynamics, in appendix to
this paper. In this section, however, we provide an overview
of its main assumptions, goals and of probably represents
one of its key innovative trait, namely the methodology
introduced to characterize arbitrary transactional data access
patterns.

Model Overview. Our analytical model uses mean-value
analysis techniques to forecast the mean probability of trans-
action commit, the mean transaction duration as well as the
maximum system throughput, supporting what-if analysis on
parameters such as the degree of parallelism (number of
nodes and possibly number of threads) in the system or shifts
of workload characteristics (e.g. changes of transaction’s
data access patterns or of the percentage of read vs write
transactions).

We treat the number of nodes in the system, and the
number of threads processing transactions at each node as
input parameters of the model. For the sake of simplicity,
we will assume these nodes to be homogeneous in terms
of computational power and available RAM (but extending
the model to keep into account nodes with heterogeneous
resources would be relatively straightforward).

We present the model assuming an open system in which
transactions enter the system at a mean arrival rate λTx;
we denote with w the percentage of update transactions,
and with Nl the number of write operations (which model,
in general, operations that entail updating the state of the
key-value store, e.g. put or remove operations) issued by a
transaction before requesting to commit. We do not model
explicitly the issuing of read operations as the concurrency
control of Infinispan ensures that these are never blocked
and can never induce an abort. We denote with TnoCont the

time to execute a transaction since its beginning till the time
in which it requests to commit, and assuming that it does not
abort earlier due to lock contention; we denote with Tprep
the mean time for the transaction coordinator to complete the
first phase of 2PC, which includes broadcasting the prepare
message, acquiring locks at all replicas, and gathering their
replies.

Note that the value of Tprep (and, in principle, also of
TnoCont) can vary significantly as the system scale changes,
as an effect of the shift of the level of contention on
physical resources (network in primis, but also CPU and
memory). As these phenomena are captured in TAS using
machine-learning techniques (described in Section IV-B), in
the analytical model we will treat Tprep and TnoCont simply
as input parameters.

Data Access Pattern Characterization. In order to compute
the response time for a transaction, we need first to obtain
the probability that it experiences a local or remote lock con-
tention (that is, whether it requires a lock currently held by
another transaction). Note that in the modelled concurrency
control algorithm, lock contention leads to an abort of the
transaction, hence the probability of lock contention, Plock,
and of transaction abort, Pa, coincide.

As in other analytical models of locking [11], [12], in
order to derive the lock contention probability we model
each data item as a server that receives locking requests
at an average rate λlock, where each lock is held for an
average time TH . We can then approximate the probabil-
ity of encountering lock contention upon issuing a write
operation on a given data item with the utilization of the
corresponding server (namely, the percentage of time the
server is busy serving a lock request), which is computable
as U = λlockTH [29] (assuming λlockTH < 1).

The key innovative element of our analytical modelling
approach is that it does not rely on any a priori knowl-
edge about the probability of a write operation to insist
on a specific datum. Existing techniques, in fact, assume
uniformly distributed accesses on one [12] (or more [9]) set
of data items of cardinality D, a-priori known, and compute
the probability of lock contention on any of the data items
simply as:

Plock =
1

D
λlockTH (1)

The availability of information on D, and the assumption
on the uniformity of the data access patterns strongly limits
the employment of these models in complex applications,
especially if these exhibit dynamic shifts in the data access
distributions. Our model however is designed to be queried
at run-time, while running already the user application
in specific configuration settings for what concerns both
workload characteristics and size of the underlying cluster.
This means that we can exploit the availability of statistics
information on Plock, λlock and TH in the current configu-
ration to introduce a powerful abstraction that allows us to
characterize the application data access pattern distribution



in a very concise, lightweight and pragmatical manner.
Given Plock, λlock and TH , in fact, we can invert Eq. 1
and obtain what we call the Application Contention Factor
(ACF) :

ACF =
Plock
λlockTH

(2)

By equation 1, it is straightforward to see that 1
ACF can

be interpreted as the size D of an “equivalent” set DB of
data items such that:

1) the transactional business logic performs Nl write
operations on disjoint data items selected uniformly
from set DB, and

2) the application would incur in the same contention
probability that it experienced in the current configu-
ration.

As we will show in Section V, despite its apparent
simplicity, the abstraction of ACF is extremely powerful
as it allows to characterize arbitrarily complex data ac-
cess patterns (e.g. with strong skew or complex analytical
representation) in terms of an easily tractable analytical
model. This result represents the foundation on top of which
we built an analytical model (reported in Appendix) of
the lock contention dynamics, which allows to determine
the contention probability that would be experienced by
that same application in presence of different scenarios of
workloads (captured by shifts of λlock), as well as of levels
of contention on physical resources (that would lead to
changes of the execution time of the various phases of the
transaction life-cycle, capturable by shifts of the TH ).

B. Machine-learning-based modelling

TAS relies on black-box, machine-learning-based mod-
elling techniques to forecast the impact on performance due
to shifts of the level of contention of physical resources
depending on workload’s fluctuations or to re-sizing of the
cluster on top of which the data grid is deployed. Developing
white-box models capable of capturing accurately the effects
on performance due to contention on hardware resources can
in fact be very complex (or even unfeasible, especially in
strongly virtualized cloud infrastructures) due the difficulty
(or even impossibility) to gain access to detailed information
on the exact dynamics of the many hardware components
(processors, memory, network card) involved in the transac-
tion processing.

In TAS we exploit the availability of a complementary
white-box model of system’s performance to formulate the
machine-learning based forecasting problem in a way that
differs significantly from traditional, pure black-box ap-
proaches to performance prediction. Conventional machine
learning based techniques, e.g. [6], try to forecast some
target performance metric p2 in an unknown system config-
uration c2, given the performance level p1 and the demand
of physical resources d1 in the current configuration c1. In
TAS, instead, the analytical model can provide the machine

learner with valuable estimates of the demand of physical
resources d2 in the target configuration c2. Specifically, we
use the analytical model to forecast what will be, in the target
configuration c2 the rate of transactions that will initiate a
2PC scheme (once reached their commit phase) as well as
the percentage of CPU time consumed by the threads in
charge of processing local transactions.

As already mentioned, contention on physical resources
can have a direct impact on the execution time of two key
phases of transactions’ execution, namely the duration of
the local transaction processing phase, denoted as TnoCont,
and the network latency incurred in by transactions while
executing the 2PC protocol, denoted as Tprep. We are here
faced with a non-linear regression problem, in which we
want to learn the value of continuous functions defined
on multi-variate domains. We have experimented with two
alternative machine learning techniques, namely decision-
tree regressors and artificial neural networks.

As decision-tree regressor, we have used Cubist c©. Analo-
gously to classic decision tree based classifiers, such as C4.5
and ID3 [30], Cubist c© builds decision trees choosing the
branching attribute such that the resulting split maximizes
the normalized information gain. However, unlike C4.5 and
ID3, which contain an element in a finite discrete domain
(i.e. the predicted class) as leaves of the decision tree,
Cubist c© places a multivariate linear model at each leaf.

For what concerns artificial neural networks, we have used
radial basis function networks (RBFN), a special category
of the feedforward neural networks architecture [31], which
are known for their excellent performance as approximators
of non-linear functions.

In order to build an initial knowledge base to train the
machine learners, TAS relies on a suite of synthetic bench-
marks to generate heterogeneous transactional workloads
in terms of mean size of the messages generated by the
replicas, memory footprint of the data grid, throughput
(number of transactions activating 2PC per second) and
execution duration of the transactional business logic. We
run a short, but intensive initial training phase, in which
we inject workload while varying the size of the cluster
and the number of threads concurrently processing local
transactions at each node. In our experiments we found that
using a simple uniform sampling strategy allowed to achieve
rather quickly (in less than an hour of automated testing) a
satisfactory coverage of the parameter space, which is the
reason why we did not decide to integrate more advance
sampling mechanisms, such as adaptive sampling [32].

Once deployed on a data grid, the statistical gathering
system of TAS periodically collects new samples of the
workload and performance of the system. This allows for
supporting periodic re-training of the machine learners and
to incorporate in their knowledge base profiling data specific
to the target user level applications.
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Figure 2: Accuracy of the machine-learning based Tprep predictions.

C. Coupling white-box and black-box modelling.

By the above discussion, the analytical and the statistical
model are tightly intertwined: the analytical model relies on
the predictions of the statistical model to obtain the values of
the Tprep and TnoCont as input; the statistical model, on the
other hand, uses as one of the input features of its model the
transaction throughput forecast by the analytical model, thus
obtaining an estimate on the level of resource contention in
the target configuration.

Thus, we exploit a recursive scheme in which we initialize
the analytical model with the currently measured values of
Tprep and TnoCont, calculate the estimated throughput in
the target configuration, and provide it as input feature to
the machine learning to obtain a new value of Tprep and
TnoCont. The process stops when the relative difference
among the throughput output in two subsequent iterations
falls beyond a given threshold. Proving the convergency of
this fixed point iterative technique is out of the scope of this
paper, but in all our experiments, this mechanism converged
always after at most 10 iterations.

V. VALIDATION

In this section we report the results of an experimental
study aimed at evaluating the accuracy and viability of TAS
when employed to forecast the performance of two well-
known benchmarks for transactional systems, namely TPC-
C and Radargun. The former is a standard benchmark for
OLTP systems (of which we ported an implementation to
execute on top of Infinispan), which portrays the activities
of a wholesale supplier and generates mixes of read-only and
update transactions with strongly skewed access patterns and
heterogeneous duration. Radargun, instead, is a benchmark-
ing framework specifically designed to test the performance
of distributed, transactional key-value stores. The workloads
generated by Radargun are much simpler and less diverse
than TPC-C’s ones, but have the advantage of being very
easily tunable, thus allowing assessing the accuracy of TAS
in a wide range of workload settings.
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Figure 3: ACF of heterogeneous benchmarks.

For TPC-C we consider three different workload sce-
narios. The first, which we denote as TPC-1, is a read
dominated workload (containing 90% read-only transac-
tions) which generates reduced contention on both physical
and data resources as the scale of the cluster grows. The
second (TPC-2) and third (TPC-3) TPC-C workload, instead,
include around 50% of update transactions and generate,
respecitvely, moderate and high contention in particular at
the data level.

Also for Radargun we consider three workloads, but
in this case we inject write-intensive traffic. This choice
is motivated by the fact that update transactions, when
compared to read-only transactions, generate a much higher
contention level both on physical and logical resources.
This makes several of the Radargun workloads much more
complex to forecast than TPC-C’s ones. The first workload
(Sk) generates transactions that issue 10 writes distributed
on a set of 100K keys and selected according to a highly
skewed distribution (as defined by the NuRand(10000,8191),
used by several TPC benchmarks). The second (La) and third
(Sm) workload use a uniform data access pattern, with the
former (La) performing a single put operation over a set of
100K data items, and Sm updating in each transactions 10
data items selected over a set of cardinality 1K.
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Figure 4: Validation based on the TPC-C benchmark.

All the results reported in this section were collected using
a private cloud of 10 servers equipped with two 2.13 GHz
Quad-Core Intel(R) Xeon(R) E5506 processors and 8 GB
of RAM, running Linux 2.6.32-33-server and interconnected
via a private Gigabit Ethernet.

We start by assessing the accuracy of the machine learners
built using the synthetic benchmarking suite described in
Section IV-B. To this end we use as test data set the whole
set of aforementioned TPC-C and Radargun workloads.
We focus on the forecasting of Tprep, since in all the

 0

 5000

 10000

 15000

 20000

 25000

 2  3  4  5  6  7  8  9  10

T
ra

n
s
a
c
ti
o
n
s
 t
h
ro

u
g
h
p
u
t

Number of nodes

Sk real 10wr
Sk pred 10wr

La real 1wr
La pred 1wr

Sm real 10wr
Sm pred 10wr

(a) Throughput (write txs only) for the Radargun benchmark.
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Figure 5: Validation based on the Radargun benchmark.

explored settings we observed negligible shifts of the value
of TnoCont in face of changes of the cluster size3. In order
to evaluate the accuracy of the machine learning model
in isolation (i.e. decoupling it from the analytical model),
in this experiment we provide the machine learners with
the correct guess of the target throughput. The scatter-
plots reported in Figure 2 show that both the decision-tree
regressor and the RBF networks attain a good prediction
accuracy, even though the performance of RBF networks
shine achieving an impressively high correlation factor (0.99
vs 0.81 for Cubist).

In Figure 3 we report the ACFs obtained when considering
a subset of the considered workloads (this is done only for
space constraints, as the ACF in the remaining scenarios
confirm the presented results), which includes two strongly
skewed workloads, namely TPC-2 and Sk, and a workload
exhibiting uniform data access patterns, namely Sm. The
plots show that, once fixed an application workload, and
even when considering very skewed workloads, the ACF
represents an invariant as the size of the underlying data
grid varies. This confirms the appropriateness of the ACF
to characterize application’s data access patterns in a way

3This is due to the fact that in the considered settings, the system
bottleneck is consistently the network rather than the CPU.



that is independent from the current degree of parallelism
in the system (unlike for instance the transaction commit
probability) and of the actual data access pattern distribution.

Let us now evaluate the accuracy of final performance
prediction of TAS, in terms of maximum throughput achiev-
able by the system as a function of the number of nodes in
the data grid. For this experiment we coupled the analytical
model with the machine learner based on RBF Artificial
Neural Networks. We report in Figure 4 the forecasts of
TAS for the considered TPC-C workloads, and in Figure
5 those for the Radargun workloads, contrasting them with
the actual performance values attained by Infinispan. The
experimental data clearly demonstrate the ability of TAS
to predict with high accuracy non linear trends for what
concerns not only transaction throughput, but also important
intermediate statistics such as commit probability. More in
detail, TAS achieves a remarkable average relative error
(defined as |real−pred|real ) on the predicted throughput of 2%,
with a maximum of 3.5%. As anticipated, the workloads of
Radargun are more challenging, but also in this case the
average relative error is on the order of 15%.

We conclude by remarking that, in all our experiments,
the performance attained with or without the monitoring
framework enabled were indistinguishable. Also, the time
required to instantiate and solve an TAS query is on the
order of a few hundreds of milliseconds, highlighting the
practical viability of the proposed solution to support on-
line what-if analysis and automatize elastic scaling.

VI. CONCLUSIONS

In this paper we introduced TAS (Transactional Auto
Scaler), a system designed to accurately predict the per-
formance achievable by applications executing on top of
transactional in-memory data grids, in face of changes of
the scale of the system. Applications of TAS range from
on-line self-optimization of in-production applications, to
the automatic generation of QoS/cost driven elastic scaling
policies, and support for what-if analysis on the scalability
of transactional applications.

TAS relies on a novel hybrid analytical/machine-learning
based forecasting methodology that operate synergically
according to a divide-and-conquer approach: availabil-
ity of precise knowledge of the concurrency control
scheme/replication procol is exploited to derive a white-box
analytical model of data contention; black-block statistical
techniques are instead used to capture the effect on con-
tention on physical resources (CPU, memory, network) while
avoiding explicit modelling of the interactions with system
resources, which is not only complex and time consuming
given the complexity of current hardware architectures, but
is also normally unviable in virtualized Cloud environments
where users have little or no knowledge of the underlying
infrastructure.

We demonstrated the viability and high accuracy of the
proposed solution via an extensive validation study based on
industry standard benchmarks.
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APPENDIX

ANALYTICAL MODEL

Before starting with the detailed description of the model,
we illustrate the main assumptions it is based on and
introduce the basic notations which be used throughout the
discussion. We denote with ν the number of nodes in the
data grid, and with θ the number of threads processing
transactions locally originated at each node (or, equivalently,
transactions that are dispatched by some load balancing
component in charge of distributing load across the data
grid); from now on, such transactions will be referred to
as ”local”, whereas the ones which are originally served by
another node will be referred to as ”remote” .

Moreover we assume that write operations are uniformly
distributed across the duration of the local execution of
a transaction. Finally, we will assume that the system is
stable: this means that all parameters are defined to be either
long-run averages or steady-state quantities and transactions
arrival rate does not exceeds service rate.

For the sake of presentation, we report in Table I the list
of the key notations used while presenting the model.

Lock Contention Modelling

Let us now describe how we exploit the notion of ACF in
the remainder of model to capture transactions’ contention
dynamics. Denoting with λllock, respectively λrlock, the lock
request rate generated by local, respectively remote transac-
tions, on a given node, we can compute them as:

λllock =
λTx · w · Ñl

ν

λrlock = Ñr · λTx · w ·
ν − 1

ν
· Pp

where we have denoted with Pp the probability for a
transaction to reach the prepare phase (i.e. not aborting
earlier), and with Ñl, respectively Ñr, the number of suc-
cessfully acquired locks on average by local, respectively
remote, transactions, independently from whether they abort
or commit (which will be computed shortly).

When a transaction executes locally, it can experience
lock contention (and therefore abort) both with other local
transactions and remote ones.We can therefore compute the

Symbol Meaning
ν Number of nodes in the system
θ Threads per node
λTx Transactions arrival rate
w Percentage of write transactions
Nl Average number data item updated by a write transaction
TnoCont Successful local execution time of a transaction
Tcomm Time necessary to process the commit of a transaction
Troll Time necessary to perform a rollback
Tprep Network round trip time
TRo Execution time of a read-only transaction

Table I: Main notations used in the analytical model.

probability of abort during local transaction execution, P la,
as follow:

P la = P llock = (λllock + λrlock) ·ACF · TH
The probability P ra for a transaction T to encounter

contention upon any lock request issued during its prepare
phase with a transaction T ′ on any node of the data grid
can be instead approximated by considering exclusively the
probability for T to contend with T ′ on the node νT ′ that
generated the latter transaction. In fact, if T were to contend
with T ′ at a node different from νT ′ , then, with very high
probability, T would also encounter lock contention with T ′

also when trying to complete its prepare phase on νT ′ . As
a consequence we can compute P ra as:

P ra = λllock ·ACF · T lH
where T lH denotes the mean lock hold time held by a
transaction on the node that originated it. Thanks to this
approximation, we can consider as independent the remote
abort probabilities for a transaction on different nodes.

By the above probabilities, we can compute the probabil-
ity that i) a transaction reaches its prepare phase (Pp), ii)
successfully completes its prepare phase on all the N − 1
remote nodes (Pcoher), and iii) commits (Pc):

Pp = (1− P la)Nl

Pcoher = (1− P ra )Nl·(ν−1)

Pc = Pp · Pcoher
We can now compute the mean number of locks success-

fully acquired by a transaction, Ñl, taking into account that
it can abort during its execution:

Ñl = Pp ·Nl +
Nl∑
i=1

P la · (1− P la)i−1 · (i− 1)

In order to compute Ñr we use a similar reasoning:

Ñr = (1− P †a )Nl ·Nl +
Nl∑
i=1

P †a · (1− P †a )i−1 · (i− 1)

with the exception that in this case we estimate the prob-
ability to incur in lock contention taking into account that
there cannot be remote contention between two transactions
originated by the same node:

P †a = (λllock + λrlock ·
(ν − 2)

(ν − 1)
) ·ACF · T †H

and T †H as:

T †H =
λllock · T lH + λrlock ·

(ν−2)
(ν−1) · T

r
H

λllock + λrlock ·
(ν−2)
(ν−1)

In order to compute the aforementioned probabilities, we
need to obtain the mean holding time for a lock. To this
end let us define as G(i) the sum of the mean lock hold



time over i consecutive lock requests (recalling that we are
assuming that the average time between two lock requests
is equal to TnoCont

Nl
):

G(i) =

Nl∑
i=1

TnoCont
Nl

· i

We can then compute the local lock hold time as the
weighted average of three different lock holding times,
referring to the case that a transaction aborts locally (H la

l ),
remotely (Hra

l ) or successfully completes (Hc
l ).

T lH = H la
l +Hra

l +Hc
l

H la
l =

Nl∑
i=2

P la · (1− P la)i−1 ·
1

i− 1
·G(i− 1)

Hra
l = Pp · (1− PCoher) ·

1

Nl
· [Tprep +G(Nl)]

Hc
l = Pp · PCoher ·

1

Nl
· [Tprep +G(Nl)]

Let us now compute remote lock hold time, T rh . We
neglect the lock holding times for transactions that abort
while acquiring a lock on a remote node, as in this case locks
are acquired consecutively (without executing any business
logic between two lock requests). On the other hand, if a
remote transaction succeeds in acquiring all its locks, then
it holds them until it receives either a commit or an abort
message from the coordinator. Therefore we compute T rh as:

T rh = (1− P †a )Nl · [Tprep + (1− P ra )Nl·(ν−2) · Tcom]

where (1 − P †a )
Nl represents the probability for a remote

transaction T executing its prepare phase at node n to
successfully acquire all the locks it requests on n, and
(1 − P ra )

Nl · (ν − 2) represents the probability for T to
successfully acquire its remote locks on the remainder ν−2
nodes.

Given that an update transaction can terminate its execu-
tion (either aborting or committing) in three different phases,
its mean residence time in the system (RW ) is the average
among these cases:

RW = Tc + T la + T ra

where

Tc = Pc · (TnoCont + Tprep + Tcomm)

T la =

Nl∑
i=1

[Troll + (
TnoCont
Nl

· i)] · P la · (1− P la)i−1

T ra = Pp · (1− Pcoher) · (TnoCont + Tprep)

Considering also read-only transaction, the average resi-
dence time of a transaction in the system is

R = w ·RW + (1− w) ·RRO

Model resolution
From the description of the analytical model, it is clear

that there is a mutual dependency between the abort prob-
abilities and other parameters, like the mean hold time.
Thus, we exploit a recursive scheme in which we first
initialize these probabilities to zero, calculate the depending
parameters and from them we obtain a new set of abort
probabilities for the next iteration; the process stops when
the relative difference among input and output probabilities
falls beyond a given threshold. In order to avoid loops, we
don’t initialize the new set of probabilities with the exact
output of the former iteration, but we perform a binary
search in the bidimensional space [0, 1] × [0, 1], deciding
the value for parameter of the i-th step depending on the
outcome of i − 1-th step. For the model evaluation, we set
the threshold to 0.001 and typically the model converges in
11 iterations.

Extension to the model
The model we presented can be easily extended to com-

pute the maximum achievable throughput - and thus the
highest sustainable load - of the system given a multipro-
gramming level of θ threads per node. Exploiting Little’s
law [cit] we give iteratively in input to the model a value of
λ = θ

R obtained from the residence time for a transaction
computed in the previous iteration. We use as starting value
λ = N ·θ

Tprep+TnoCont
, which is clearly the upper-bound for the

maximum throughput achievable by the system.
In addition it is also possible to extend the model to

capture a retry-on-abort logic: the number of restart for
a transaction can be obtained by computing the expected
values of two geometric distributions with parameters (Pp)
and Pcoher, like in [10]; the residence time R′ will be
the total amount of time needed to a transaction to be
successfully served.
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