
JBoss architecture evaluation

January 14, 2009

Contents

1 Introduction 1

2 System context 2

3 Stakeholders 3

4 Architecture - Logical and process view 5

5 Pattern Documentation 7
5.1 JBoss Core . 9

5.1.1 Microkernel . 9
5.1.2 Interceptor . 12

5.2 JBoss Enterprise . 14
5.2.1 Dynamic Proxy . 14

5.3 JBoss Remoting . 17
5.3.1 Client - Server . 17
5.3.2 Invoking and Marshalling 19
5.3.3 Discovery . 24

6 Quality Attribute Evaluation 27
6.1 Reliability . 27
6.2 Adaptability . 28
6.3 Availability . 28
6.4 Changeability . 29
6.5 Others . 29

7 Recommendations 30
7.1 Negative Impact . 30
7.2 Conflicting Impacts . 30
7.3 QAs not addressed . 30
7.4 Subsystems with no patterns . 30

i

1 Introduction

This document is the result of the pattern-based recovery and evaluation assign-
ment of group B. For this assignment we have chosen to recover and evaluate
the architecture of the JBoss application server version 5.0.

The goal of this document is to give an overview of the most important
patterns that form together the core structure of the JBoss application server.
Further more we want to evaluate the found patterns using the Pattern Based
Architectural Review method 1 [2].

The patterns are found using various methods. First of all we looked into
the documentation that can be found on various parts of the JBoss website. We
tried to substract patterns from written text as well as from the images. We also
have looked into the source code to see if we can find the described patterns.
We tried also to reverse engineer by generating uml diagrams from the code.
The structure of the code directories however, was that complex and large that
the tools we used where not able to produce useful results. We also have some
expierence with building applications on top of JBoss and other application
servers.

The document is structered in such a way to reflect the steps of PBAR.
Chapter 2 and 3 describes the context, the stakeholders of the system and the
concerns of the stakeholders which together lead to the most important Quality
attributes that should drive the development of the system. The chapters 4 and
5 give an overview of the patterns we have discovered and how those patterns
are related to eachother. For each of the patterns we describe the problem they
solve, what the impact on the architecture is and what variant (if applicable)
is used. In chapter 6 we give an evaluation of how well the quality attributes
identified are addressed. Finally in chapter 7 we give some recomendation of
where additional assesment of the architecture might be needed.

One last remark to make here is that for the quality attributes we use the
defenitions as given in the quality model described in the ISO-9126 standard.

1We will refer to this method as PBAR in the rest of the document.

1

2 System context

Java Bean Open Source Software (JBoss) is an open source component based
framework for deploying webapplications and services in a service oriented ar-
chitecture. In april 2006 it was bought by Red Hat who is still the current
owner. Enteprises that want to deploy their distributed application using JBoss
can either become costumer of Red Hat to get support or use their own JBoss
experts.

JBoss provides middleware services for data and code integrity, centralized
configuration, security, performance, total cost of ownership and transactions.
It is an implementation of the Java 2 Enterprise Edition (J2EE) standards
using Java SE and therefore platform indepedent. JBoss connects the custom
application build on top of it with one or more databases. Figure 2 2 gives an
overview of how an J2EE platform connects with other componenents.

Figure 1: System context diagram

Using an application server enables developers to create distributed applica-
tions without having to implement basic features for these kind of application
(e.g. logging, transaction support, caching, etc.) over and over again.

2http://www.service-architecture.com/application-servers/articles/application server definition.html

2

3 Stakeholders

From the system context we derive the most prominent stakeholders of the
system. Table 1 lists these stake holders with their most significant concerns.
The stakeholders are listed in order of importance.

stakeholder concerns Priority
Red Hat
Management

- The product should integrate well with Red Hat
Linux

high

- The product should contribute to sales increase
of Red Hat products

medium

- The product should be very competitive on the
application server market

high

- It should be relatively simple to add new fea-
tures to the product

high

Red Hat
Customers

- The product should provide a stable and reliable
environment for the business applications.

high

- The product should scale to the needs of the
costumer

high

- The product should provide means for high per-
forming distributed applications

high

- The product should perform well. high
- The product should integrate well with existing
business applications

medium

Application
Developers

- The product should be well documented. medium

Using JBoss
Platform

- The product should provide means to easily in-
tegrate clustering, security, transaction support,
caching, monitoring and persistence into a cus-
tom application.

high

Red Hat
JBoss Devel-
opers

- It should be easy to test if contribution do not
break functionality or performance of the system

medium

Community
JBoss Devel-
opers

- It should be easy to get known with the internals
of the JBoss product.

low

Table 1: Stakeholders and their concerns

From the stake holders we derive the following Quality Attributes, most
important first:

1. Reliability - The application server should be an high perfoming framework
which works as expected under specified circumstances.

2. Adaptability - The application server should easily integrate in various
environments (e.g. It should easily adapt to various communication pro-
tocols and hardware platforms).

3. Availability - The application server should be able to avoid failures.

3

4. Changeability - The application server should be easy changable to adept
to the specific needs for the application which is run on top of it.

4

4 Architecture - Logical and process view

This section describes the overall architecture of the JBoss server including the
most prominent patterns.

Figure 2: Core architecture

Although figure 2 optically reminds of a Relaxed Layered system, the Microker-
nel pattern describes the architecture better. The JBoss server may be used as
part of business applications that use the layers pattern, though.

Two of the major concerns of the JBoss stakeholders are related to change-
ability and adaptability. The Microkernel pattern was used to satisfy these con-
cerns. The functional core of the architecture is the so called Microcontainer
that can be seen as a microkernel representing the central component of the
system. It implements central services like classloading, deployment and service
management. On top of the microcontainer, services are deployed as external
servers. These services include remote invoking, transaction- and cache manage-
ment. Besides the provided services, any other service can be deployed on top
of the microkernel by providing a predefined service interface. The microkernel
implementation used here is JMX (Java Management Extension), services are
implemented using so called Managed Beans (MBeans).

Some of the services that provide functionality to satisfy cross cutting con-
cerns of component base enterprise applications are wrapped in so called inter-

5

ceptors, providing means for Aspect Oriented Programming (AOP). The pat-
tern, that can be seen here is the Message Interceptor pattern. Interceptors
can be combined in a chain to provide business component behavior around
plain components. The variant chosen in the JBoss server is the Chain-of-
Responsibility variant. Each interceptor calls the next following interceptor.
An intercepting-context is passed among the invocations. Please see the Inter-
ceptor pattern in the pattern section for further details and diagrams. Intercep-
tors can be configured to be used by dynamic proxies, invokers and containers,
that provide a runtime environment for business components. The combina-
tion of the Dynamic Proxy pattern and the interceptors is prominent in the
JBoss remoting package. Clients always use business components through so
called dynamic proxies. It is dynamic, because the behavior of the proxy can be
changed at runtime. Method calls on the proxy object are delegated to a proxy
handler. The proxy handler itself is configured to invoke a chain of interceptors,
before finally the remote-invocation-interceptor is used as a Broker to forward
requests to the Application Server itself, that also invokes a chain of interceptors
before actually invoking the target method on a business component. Further
explenations and detailled diagrams can be found in the dynamic proxy pattern
explenation in the pattern section.

Subsuming the combination of patterns that is explained in figure 2 is Mi-
crokernel, Message Interceptor, Dynamic Proxy and implicitly Broker. Other
patterns, that were identified, but that are less prominent in the architecture
are explained in the following sections.

6

5 Pattern Documentation

This section describes how the possible patterns (and their variants) used to
design the architecture of the JBoss system. Each pattern is represented by
a table whose structure is inspired by [3]. The tables provide details on the
reasons for choosing the corresponding patterns with respect to the system
requirements.

Since the amount of JBoss documentation is enormous, we started with the
overviews presented in figures 3 3 and 4 4.

Figure 3: JBOSS Deployment Architecture

3http://www.jboss.com/products/jbossas/architecture
4http://www.jboss.org/projects/

7

Figure 4: JBOSS Projects Overview

8

Figure 5: The JBoss microkernel

5.1 JBoss Core

5.1.1 Microkernel

Pattern Section Comments
Name Microkernel
Problem Two basic forces were taken into consideration when designing the

Jboss server.
1. The Application Server platform must cope with continuous

software evolution. The services provided by the Jboss are
among others specified in the Java Community Process and
new versions emerge rapidly (2 years).

2. The application platform should be portable, extensible and
adaptable to allow easy integration of emerging technolo-
gies. The Jboss server should be configurable for extremely
lightweight application type setups like junit testcase or
Mobile Applications, as well as for full feature application
servers.

Category Adaptable Systems
Context Development of several applications that user similar program-

ming interfaces that build on the same core functionality.
Variants The variant chosen to satisfy the forces is documented in POSA1.

There it is the base variant of the Microkernel pattern. In this
variant Client and Server (Service Provider) communicate directly.
Messages are not passed through the microkernel on every request.

9

Solution The Jboss developers decided to encapsulate the fundamental ser-
vices needed by a full featured JEE Application Server as de-
scribed in the JEE specification in a so called Microcontainer.
The internal servers (services) provided by the microcontainer are
the following:

1. Class loading

2. Deployments

3. State management

4. Lifecycle and Dependency management

5. Configuration

6. Service management

Other services provided by the application server are implemented
as external servers. For every external server, a Service Proxy is
created. The instance of the service proxy is bound to the client.
Some well known external servers in the Jboss download versions
are:

1. AOP

2. Security and Identity Management

3. Remoting

4. EJB3

5. Transactions

6. Web-Services

This is just a small excerpt from existing external servers.
Rationale The JBoss Application Server uses the microcontainer to inte-

grate enterprise services in order to provide a standard Java EE
environment. If additional services are neeed, then they can sim-
ply be deployed on top of the container to provide the needed
functionality. Likewise any services that are not needed can be
removed simply by changing the configuration. Since JBoss Mi-
crocontainer is very lightweight and deals with POJOs (Plain Old
Java Object) it can also be used to deploy services into a Java ME
runtime environment. This opens up new possibilities for mobile
applications that can now take advantage of enterprise services
without requiring a full JEE application server.

10

Consequences

1. External servers do not need to be ported to a new software
environment. Only the microcontainer has to be ported,
which improves adaptability.

2. The microcontainer based architecture is very flexible and
extensible. Extending the system with additional capabili-
ties only requires the addition or extension of servers.

3. The microcontainer based architecture is complex in design
and implementation. It is a non-trivial task to analyze and
predict the basic mechanisms that must be provided by the
microcontainer. As a result it is likely, that services were
forgotten and need to be implemented bypassing the micro-
container. The effort for refactoring might be higher than
in a layer based system for example.

Related patterns Layers, Interceptor

11

Figure 6: Interceptors and Invokers

5.1.2 Interceptor

Pattern Section Comments
Name Interceptor
Problem The JBoss started as a server, providing a runtime environment

for Enterprise Java Beans (EJB). The main challenge here was
to wrap the specified EJB services like transaction, security, log-
ging, profiling, caching and others, around a client’s call of an
EJB method. The developers needed to create a flexible and, for
the user, easy-to-change implementation, as the EJB services are
optional services the users must be able to choose among.

Category Aspect Oriented Programming
Context Separation of cross-cutting concerns in enterprise java applica-

tions.
Variants The variant of the interceptor pattern used in the JBoss server,

see figure 6, is the Message Interceptor pattern as documented
in [4]. A chain of interceptors is applied in an indirection layer.
Some interceptors can be configured to be invoked before the in-
vocation of the target component, others may be configured to be
invoked afterwards. The pattern is used to implement the con-
cept of container based deployment as specified in the EJB core
specification. A container can be seen as runtime environment for
EJB components. In the JBoss server, containers are specified as
a chain of interceptors that are applied before a method on a bean
component is invoked.

12

Solution The interceptors are invoked for the indirection layer invocation
events before and after a method invocation. It is done using
the dynamic proxy pattern. The handler of the dynamic proxy
gets to know the chain of interceptors that need to be processed
before and after a method on the target object, hidden by the
proxy is invoked. The interceptors themselves are typically used
to invoke services, registered as external servers in the microkernel
architecture.

Rationale The JBoss Application Server uses interceptors to wrap enterprise
services around method invocations on deployed components. If
additional services have to be invoked, then they can simply be
plugged in as interceptors in the interceptor chain. Likewise any
services that are not needed can be removed simply by changing
the configuration.

Consequences
1. Services needed for deployed components can be configured

very flexible and extensible.

2. Interceptors may introduce single points of failures. If one
interceptor crashes the whole chain of interceptors is inter-
rupted.

3. An architecture that makes excessive use of interceptors is
complex in behaviour. The behaviour of the system is hard
to predict, as interceptors are dynamic components invoked
at runtime.

4. The concept of AOP, that is followed using interceptors is
also currently not accurately supported by IDEs.

Related patterns Microkernel, Dynamic Proxy

13

5.2 JBoss Enterprise

5.2.1 Dynamic Proxy

Figure 7: EJB Invocation using Dynamic Proxy

Pattern Section Comments
Name DYNAMIC PROXY

14

Problem For any developer who builds an application on
JBoss, the mechanism for invocation of a remote ser-
vice should be similar to a local function call. This
capabilty would allow developers to construct dis-
tributed systems with ease. The abilty of the JBoss
environment to provide remote service transparency
is an essential need.

Category Distributed Communication
Context Client applications should be able to make remote

invocations in a transparent manner.
Variants The stated problem can be solved using a variant

of the DYNAMIC PROXY pattern. The presence
of JAVA invocation handlers provides the function-
ality for the given variant (instead of the standard
PROXY pattern).

Solution The proxy element of the DYNAMIC PROXY pat-
tern serves as a substitute for a target POJO on the
remote server. The proxy is an object that can imple-
ment a list of specified interfaces at run time when
it is created using java reflection. The first step is
to construct a POJO which implements one or more
interfaces that are to be exposed for remote method
invocation. A transporter server is then wrapped
around the POJO to expose it remotely. On the
client side, in order to be able to call on the target
POJO remotely, a client transporter is used. The
client transporter takes in the locator to find the tar-
get pojo (same as one used when creating the trans-
porter server) and the interface for the target POJO,
on which the remote method invocations are to be
made. The return from this create call is a dynamic
proxy which can be cast to the same interface type
supplied. This is a result of the target POJO being
serialized and sent to the remote client across net-
work. At that point, any method can be invoked on
the returned object, which will then make the remote
invocations using JBoss Remoting. This mechanism
is also used by JBoss to provide EJB functional-
ity. In the EJB specification, EJBHome implements
the bean home interface and EJBObject implements
bean remote interface. EJBObject interface presents
a client’s view of EJB and it is the responsibility
of container provider to generate the EJBHome and
EJBObject. In the design of JBoss EJB container,
there is NO EJBHome and EJBObject object imple-
mentation at all. It is the proxy element that takes
on the role of EJBHome and EJBObject.

15

Rationale By simply providing the locator url of the remote
service and the given interface a client application
can obtain a proxy object, which can be called on
directly. This provides location transparency imply-
ing ease in development.

Consequences
1. It is possible to create multiple target POJOs

using the transporter server in clustered mode,
implying scalability.

2. Clustering also allows for automatic, seamless
failover of remote method invocations improv-
ing availability.

3. Since the application developer can call on
proxy objects directly, usability improves.

4. Changes in the target POJO can done without
any impact implying changeability.

5. Since JAVA reflection is used extensively in
generating the proxy, reliability can decrease.

Example uses An example of the proxy pattern is a reference count-
ing pointer object. In situations where multiple
copies of a complex object must exist, the proxy pat-
tern can be adapted to incorporate the Flyweight
Pattern in order to reduce the application’s mem-
ory footprint. Typically one instance of the complex
object is created, and multiple proxy objects are cre-
ated, all of which contain a reference to the single
original complex object. Any operations performed
on the proxies are forwarded to the original object.
Once all instances of the proxy are out of scope, the
complex object’s memory may be deallocated.

16

¡¡¡¡¡¡¡ .mine ======= ¿¿¿¿¿¿¿ .r265

5.3 JBoss Remoting

The purpose of JBoss Remoting5 is to provide a single API for most network
based invocations and related service that uses pluggable transports and data
marshallers. The JBossRemoting API provides the ability for making syn-
chronous and asynchronous remote calls, push and pull callbacks, and automatic
discovery of remoting servers. The intention is to allow for the use of different
transports to fit different needs, yet still maintain the same API for making the
remote invocations and only requiring configuration changes, not code changes.

5.3.1 Client - Server

Figure 8: Client - Server Decoupling

Pattern Section Comments
Name CLIENT-SERVER
Problem Since JBoss is in itself an application server, a sys-

tem based on clients connecting to the server is an
inherent feature of JBoss and is an essential need for
all concerned stakeholders.

Category Remote Invocation
Context Clients can connect to application servers and per-

form remote invocations on services provided by the
server.

Variants The variant used here is the basic variant of Client-
Server pattern as described in [1]

5http://www.jboss.org/jbossremoting/docs/guide/

17

Solution The J2EE platform acts as a server capable of han-
dling web, ejb and basic remoting requests. The
Client Tier can be one or more applications or
browsers. There can be additional sub-tiers on the
server side including the Enterprise Information Sys-
tem (EIS) tier which links to existing applications,
files, and databases. As seen in fig.8, the client ap-
plication calls the remoting client api to make an
invocation request to a service on a remote server.
The request is directed to the appropriate invoca-
tion handler on the remote server, which handles the
request and generates a response, which is sent back
to the client.

Rationale An application server framework needs a distinction
between client applications and server processes, to
benefit from the advantages of a distributed system.
This allows distinction between application written
on the client side and server invocations, implying
better management of functionalities.

Consequences
1. Decoupling of the functionalities into client and

server elements allows for better changeabil-
ity of either component without affecting the
other.

2. The single point of interaction also improves
integrability of the client - server components.

3. Since the remote server can provide services for
multiple clients, reusability improves.

4. Due to heavy dependence on the remote server,
reliability and availability can be adversly af-
fected.

Example uses JBoss Remoting can be used to implement content
management systems where multiple clients perform
remote invocation calls to obtain specific content
from a data mangement application hosted on a cen-
tral server.

18

5.3.2 Invoking and Marshalling

Figure 9: Invoking/Marshalling using the Broker Pattern

Pattern Section Comments
Name BROKER
Problem One important feature of any application server is

its ability to handle different methods of client-server
communication across networks. For the benefit of
all users of JBoss it is necessary to hide the commu-
nication details, so that they can focus on develop-
ing applications that efficiently tackle their domain
specific problems. This aspect has been given con-
siderable importance in the development of JBoss.

Category Remote Invocation
Context Server identification should be performed in a man-

ner which allows for remoting servers to be easily
identified and called upon.
Communication details regarding transport proto-
cols, data (un)marshalling and serialization should
be hidden from the user.

Variants The stated problem can be solved using a variant
of the BROKER [1] pattern. In this variant the
requestor (Client) hides the communication details
by calling on the the appropriate invoker which in
sequence calls on the marshaller / unmarshaller to
handle the request / response.

19

Solution Server identification can be done (via an Invoker-
Locator object) using a simple string with a URL
based format (e.g., socket://myhost:5400). This is
all that is required to either create a remoting server
or to make a call on a remoting server. As seen
in fig.9, the broker element, on both client and
server, consists of an invoker which handles trans-
port details and a component that performs mar-
shalling/unmarshalling of data. When a user calls
on the Client to make an invocation, it will pass this
invocation request to the appropriate client invoker,
based on the transport specified by the locator url.
The client invoker will then use the marshaller to
convert the invocation request object to the proper
data format to send over the network. On the server
side, an unmarshaller will receive this data from the
network and convert it back into a standard invo-
cation request object and send it on to the server
invoker. The server invoker will then pass this in-
vocation request on to the users implementation of
the invocation handler. The response from the in-
vocation handler will pass back through the server
invoker and on to the marshaller, which will then
convert the invocation response object to the proper
data format and send back to the client. The un-
marshaller on the client will convert the invocation
response from wire data format into standard invo-
cation response object, which will be passed back up
through the client invoker and Client to the original
caller

Rationale The client can easily identify the server as well as
specify the transport protocol by providing a sim-
ple locator url. The same locator url is also used
to create and initialize a remote server. The broker
element takes the information embedded within the
locator url and constructs the underlying remoting
components needed to build the full stack required
for either making or receiving remote invocations.
By restricting the transport layer specifications to
the locator url, the broker element ensures that user
applications on the client and invocation handling
applications on the server are not impacted by the
underlying details relating to communication.

20

Consequences
1. Solution to hide communication details im-

proves integrability between the clients and
servers as the broker element provides a sin-
gle point of contact between the two.

2. Changeability of communication functionality
improves as the broker element can be adapted
without affecting the client / server application
layers.

3. Since the broker element provides a simple in-
terface to the client applicaton usability im-
proves.

4. Adaptability, reliability and availability of the
system can be affected, since the broker ele-
ment presents itself as a single point of failure.

Example uses If a user decides to change the transport protocol
from sockets to http, the only change required will
be the locator url (e.g. from ‘socket://myhost:5400’
to ‘http://myhost:80’).

21

Figure 10: Invoking/Marshalling using the Factory Pattern

Pattern Section Comments
Name FACTORY
Problem The feature that make an application server interest-

ing to use, is its ability to handle different flavours
of transport protocols, data formats for wire transfer
and serialization implementations. Consequently, it
is required that JBoss consider them as essential.

Category Remote Invocation
Context Different protocols that transport the same remoting

API should be pluggable. Provided protocols should
include Socket, RMI, HTTP(S), Multiplex, Servlet
and BiSocket.
Different implementations of (un)marshalling and se-
rialization for data streams should be easily inte-
grated.

Variants The stated problem is solved using a variant of the
FACTORY pattern. The transportation level is split
into client and server factories, each of which provide
separate functionalities, whereas the (un)marshalling
level consists of a single factory.

Solution The transport implementations within JBoss remot-
ing, called invokers, are responsible for handling
the wire protocol to be used by remoting clients
and servers. As seen in fig.10 the JBoss remot-
ing loads client and server invoker implementations
(within the InvokerRegistry) using factories (Trans-
portClientFactory / TransportServerFactory). The
invokers are generated based on the locator url pro-
vided by the client API which in turn call the Mar-
shallFactory, where the marshaller/unmarshaller is
generated based on the data type information in the
locator url.

22

Rationale The factory design allows the implementation of dif-
ferent invoking and marshalling methods.

Consequences
1. The FACTORY pattern improves change-

ability with respect to the invokers and
(un)marshallers, as the transport details can be
changed / adapted without affecting the other
components.

2. As the factory provides a standard interface,
integrability becomes easier as all implementa-
tion details are hidden behind the interface.

Example uses In the case of remote invocation on the server ‘my-
host’ on port 5400 using sockets and marshalling
data type as serializable, the locator url would be
‘socket://myhost:5400/?datatype=serializable’. To
perform the remote call, the client begins by passing
the locator url to the InvokerRegistry which returns
a ServerInvoker instance, to handle the transport of
data. The ServerInvoker, in turn, obtains a Serial-
izableMarshaller instance from the MarshalFactory
to convert the data into the required wire format for
the remote invocation call.

23

5.3.3 Discovery

Figure 11: Discovery using the Active Repository Pattern

Pattern Section Comments
Name ACTIVE REPOSITORY (EXPLICIT / IMPLICIT

INVOCATION)
Problem To ensure availability of services deployed on remote

servers, the JBoss architecture should ideally include
a mechanism which allows clients to discover when
particular services are not available and seamlessly
switch over to the ones that are.

Category Remote Invocation
Context Client applications should be able to automatically

detect remoting servers as they come on and off line.
Variants The stated problem can be solved using a vari-

ant of the ACTIVE REPOSITORY [1] pattern.
JBoss remoting provides notification functionalities
via the EXPLICIT INVOCATION [1] (multicast
broadcast) pattern or IMPLICIT INVOCATION [1]
(JNDI server binding), in which case the PUBLISH-
SUBSCRIBE [1] pattern is used.

24

Solution To add automatic detection, a remoting Detector will
need to be added on both the client and the server
side as well as a NetworkRegistry to the client side.
With respect to fig.11, when a Detector on the server
side is created and started, it will periodically pull
from the InvokerRegistry all the server invokers that
it has created. The detector will then use the infor-
mation to publish a detection message containing the
locator and subsystems supported by each server in-
voker. The publishing of this detection message will
be either via a multicast broadcast or a binding into
a JNDI server. On the client side, the Detector will
either receive the multicast broadcast message or poll
the JNDI server for detection messages. If the Detec-
tor determines a detection message is for a remoting
server that just came online it will register it in the
NetworkRegistry. The NetworkRegistry houses the
detection information for all the discovered remot-
ing servers. The NetworkRegistry will also emit a
notification upon any change to this registry of re-
moting servers. The change to the NetworkRegistry
can also be for when a Detector has discovered that
a remoting server is no longer available and removes
it from the registry.

Rationale In this variant the Detector object on the server side
acts as the central repository to all the client Detec-
tor objects that subscribe to it. Both the multicast
broadcast and/or the JNDI server binding done by
the server detector provides, to all connected clients,
timely information regarding available services. The
client application is then made aware of the changes
and an appropriate reaction can be implemented.

Consequences
1. Since the information concerning services is

consumed by all subscribed clients, reusability
is improved.

2. Loose coupling of server and client detectors
implies better changeability.

3. Clients running on different platforms can sub-
scribe to the server detector, implying en-
hanced intergrability.

4. Since it is possible for a single client to connect
to many services and vice versa, adaptability,
reliability and availability of the system is im-
proved.

25

Example uses

26

6 Quality Attribute Evaluation

The earlier section provided details on the patterns extracted from the JBoss ar-
chitecture and their related consequences with respect to the quality attributes.
This section gives an overview of how well the quality attributes are addressed
by the patterns identified, along with corresponding recommendations. This
corresponds to step five of the PBAR method

Figure 12: JBoss Patterns Vs Quality Attributes Matrix

The matrix in fig.12 gives a brief summary of the impact (positive/negative)
that the patterns have on the quality attributes. The quality attributes given
in the matrix correspond to the stakeholder concerns and are presented in the
matrix in order of ascending importance. These attributes include,

6.1 Reliability

Most of the patterns extracted from the architecture affecting reliability intro-
duce singular entities on the communication path. The entities include (but are
not restricted to) the remote server in the CLIENT-SERVER pattern, the broker
element in the BROKER PATTERN, the repository component in the ACTIVE
REPOSITORY pattern and the proxy object in the DYNAMIC PROXY pat-
tern. These entities become bottlenecks in the case of overload and can therefore
affect the performance ofthe system. Data throughput and timing issues may
occur in that case. Another major reason for decreased reliability is the number
of potential indirections that are present in the current system.
The reliability of the system seems to be negatively impacted by the chosen com-
bination of patterns. One of the main reasons that reliability fails is due to the
fact that client invocations target a single service on the remote server. If that
target service is unavailable, the remote invocation fails. However, clustering
of remote services is already provided by the JBoss architecture. So, clustering
combined with discovery of services (provided by the ACTIVE REPOSITORY
pattern) and network transparency (provided by the BROKER pattern), makes
the system more fault tolerant and hence much more reliable.

27

6.2 Adaptability

The current JBoss archictecture is highly adaptable in a number of system com-
ponents. These include communication protocols and service discovery mech-
anisms. This is mainly achieved by the BROKER, FACTORY and ACTIVE
REPOSITORY patterns.
It appears that the combination of chosen patterns gives a highly adaptable
system. Since the system is highly configurable, it can have a major impact on
other quality attributes. For example, smart configuration of interceptors, com-
munication and discovery can lead to a more reliable system, since it becomes
more easy to do failure recovery.

6.3 Availability

Interceptors, remote servers and broker elements are essentially single points of
failure. This implies that the patterns that bring these elements into the archi-
tecture have an adverse effect on the availability of the system. On the other
hand, discovery of services by the ACTIVE REPOSITORY and clustering of
services made possible by the DYNAMIC PROXY helps in reducing downtime.
Availability of the system is partially addressed by the chosen patterns. One of
the areas of improvement could be the implementation of interceptors.

Figure 13: Interceptor Stack

As seen in fig.13, in the JBoss archictecture, interceptors are stateless compo-
nents arranged in a stack, wherein every call proceeds through the stack from
first to last. The stack is embedded in a specific container (e.g. MicroCon-
tainer or EJB Container). Each interceptor is responsible for invoking the next
interceptor in the stack, as seen in the following code snippet,

import org.jboss.aop.advice.Interceptor;
import org.jboss.aop.joinpoint.Invocation;

28

public class HelloAOPInterceptor implements Interceptor {

public Object invoke(Invocation invocation) throws Throwable {
// PERFORM the INBOUND Tasks and when done go to the next
// If the call has to be ended throw the appropriate exception

System.out.print("Hello, ");

// Call next Interceptor in the stack
// PERFORM the OUTBOUND Tasks and when done return method
// If the call shouldn’t be complete throw and exception

return invocation.invokeNext();
}

}

This method of implementation allows for the entire stack to crash when the
invokeNext method is not reached. This failure could occur in either of the
inbound or the outbound tasks. This problem can be solved by implementing
an iterator in the container itself. The iterator is responsible for invoking the
interceptors in the right order and managing any failures if they occur. In this
way, it is assured that the entire stack is executed or the failures (if any) are
handled properly.

6.4 Changeability

One of the major advantages of the JBoss architecture is that it can be easily
modified. A large number of components can be changed both at compile time
as well as at run time. In fact all the patterns identified seem to have a positive
impact on changeability.
It seems that the quality attribute of changeability is addressed very well by the
chosen patterns. The decision to make the JBoss architecture highly change-
able does negatively affect reliability (to some extent). However it remains a
good design decision which should not be changed without good reason, be-
cause it fufills an essential need of an application server, which is to be highly
configurable.

6.5 Others

Most of the patterns support the integration of individual components and their
reusability. However, due to the complexity of the JBoss architecture, usability
from the developers point of view has a negative impact with respect to the
core components. However the architecture also provides elements that hide
unnecessary details implying ease in application development.

29

7 Recommendations

This section corresponds to the sixth step of the PBAR method. We provide
recommendations of where additional, more detailed assessment should be made.

7.1 Negative Impact

Out of all the quality attributes addressed, reliability seems to be the worst
affected. As already mentioned this problem can be partially solved by specific
configurations of the system. However, more research needs to be done to mine
applied patterns which have not been included our findings. The results of this
research could eventually bring out patterns which have a positive impact on
reliability and help in the analysis to resolve the problem of reliability.
Availability is also negatively impacted by some of the patterns, but we have
managed to find patterns which partially solve the problem. Furthur research
into the variants of the patterns could yield better results.

7.2 Conflicting Impacts

The CLIENT-SERVER and BROKER patterns both have a negative impact on
reliability and availability, but they are retained in the architecture because of
the benefits they bring to other quality attributes. Variants of these patterns
(e.g RELIABLE BROKER) could be used to reduce the negative impacts.

7.3 QAs not addressed

Efficiency is an important requirement in any application server, but this re-
quirement has not been addresed by our research. The reason for this being that
more time and resources are required to test specific parts of the system with
respect to time behaviour and resource utilisation in a real time setup. Com-
pliance to efficiency standards is another area which has not been investigated
by our research.

7.4 Subsystems with no patterns

As JBoss is a huge architecture framework, it is difficult to document every
pattern implemented by it. This document presents the components and related
patterns that represent the core architecture. Other subsystems not addressed
in this document include JBoss RichFaces/Ajax4jsf, JBoss Cache, Hibernate
etc. 6

6http://www.jboss.org/docs/

30

References

[1] P. Avgeriou and U. Zdun. Architectural patterns revisited - a pattern lan-
guage. In Proceedings of the 10th European Conference on Pattern Languages
of Programs (EuroPLoP 2005), July 2005.

[2] Neil B. Harrison and Paris Avgeriou. Assessing quality requirements through
pattern-based architecture reviews. ?, ?(?):?, ?

[3] Neil B. Harrison, Paris Avgeriou, and Uwe Zdun. Using patterns to capture
architectural decisions. IEEE Softw., 24(4):38–45, 2007.

[4] Uwe Zdun. Pattern language for the design of aspect languages and aspect
composition frameworks. In IEE Proceedings Software, 2004.

31

