<> 0SGi

Alliance

RFP 123 - JAAS Integration

Confidential, Draft

8 Pages
Abstract

This document lays out requirements to support the full usage of the Java Authentication and Authorization
Services (JAAS) inside an OSGi Framework.

0 Document Information

0.1 Table of Contents

0 Document INFOrMAtioNcoiiiciiiiiccre e mn e e e e e e e mmn e e e mmn s 1
0.1 Table Of CONENESoiiiiiii e 1
0.2 S ATUS ..ttt e et e e e bt e e e e b e e e e e e ahae e e e ettt e e e abaeeeeabaeeeeaneeaeeans 2
0.3 ACKNOWIEAGEMENT ...ttt ettt e et e e e rbeeee e 2
0.4 Terminology and Document CONVENLIONSoiiiiiiiiiiiiiiee e 2
0.5 REVISION HISTOMYeiiiiii ittt e e e e e e e e e e et e e e e e e e e senbaseeeeaeeaeannns 2

Copyright © Oracle Corporation. 2009.

This contribution is made to the OSGi Alliance as MEMBER LICENSED MATERIALS pursuant to the terms of the OSGi membership
agreement and specifically the license rights and warranty disclaimers as set forth in Sections 3.2 and 12.1, respectively.

All company, brand and product names contained within this document may be trademarks that are the sole property of the respective owners.
The above notice must be included on all copies of this document that are made.

RFP 123 — JAAS Integration Page 2 of 10

<> 0SGi
Al Confidential, Draft July 13, 2009

I 4o T LW T 4 T o 4
2 o] o1 1o 1T T 0 Lo 1 4 - 1 o PSSR 5

ST o o]] (=Y ¢ TN =XYoo 1T o PSR 5
B LT o T Y 6
4.1 Support NOrMAtiVe JAAS USAGES......cuiiiiiiieiiiiie ettt e e e 6

4.1 CONFIGURATION ..ottt et e et e e st e e e e sbaeeeeans 6

o 2 011 oY= Tor 4 =T T | = SRR 6

4.2 Obtain and/or Provision the Realm Definition using the Service Registryccccvvveee.. 7

4.3 Provision Realm Definitions from an OSGi Bundlecccooiviiiiiiiiiiiiiiiiiieee e, 7

4.4 Offer an OSGi Platform-wide, Default Configuration Adaptation.............ccccccceiiiiiiiin. 7

4.5 Obtain Configuration from an OSGi BUNAIEoiiiiiiiiiiiie e 7

4.6 Integrate to the UserAdmin service for Authentication and Authorization.......................... 7

L =0 [T =Y 4 =T o PSR 8

LS Lo T o314 0= 01 AR TE T o] Yo o PSS 9
8.1 REFEIEBNCES. ...ttt e ettt e e ettt e e e e bt e e e enbee e e e abeeeaean 9

6.2 AUTNOI'S AQAIESS ..ot et e e et e e e e e e et e e e e e e e e aans 9

6.3 Acronyms and ADDreviationNSoouiiiiiiiii e 10

L g T o] D o o0 /4= o | ORI 10

0.2 Status

This document suggests the following extension to the OSGi specification for the Open Services Gateway
Initiative, and requests discussion. Distribution of this document is unlimited within OSGi.

0.3 Acknowledgement

0.4 Terminology and Document Conventions

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”,
“RECOMMENDED”, “NOT RECOMMENDED”, “MAY” and “OPTIONAL” in this document are to be interpreted as
described in [1].

Source code is shown in this typeface.

0.5 Revision History

The last named individual in this history is currently responsible for this document.

Revision Date Comments

Initial (0.1) May 4, 2009 Jeff Trent, Oracle Corporation. jeff.trent@oracle.com

xog sIyL ulypa ebed |1y

Copyright © Oracle Corporation. 2009 All Rights Reserved

RFP 123 — JAAS Integration Page 3 of 10

<> 0SGi
Al Confidential, Draft July 13, 2009
Revision Date Comments

0.2 June 1, 2009 From comments received from gnodet@gmail.com (from Progress
Corp).
- Added notion of a Realm as a 1% class citizen within this RFP.
- Replaced references of “application” with “realm”.

0.3 July 10, 2009 From comments received during today’s review session with Davanum

M Srinivas <dims@us.ibm.com>, "Mihaylov, Dimitar"
<dimitar.mihaylov@sap.com>, "Peshev, Peter"
<peter.peshev@sap.com>, Guillaume Nodet <gnodet@progress.com>.

Discussed the role of jsr-196 and jsr-115. All agreed that these are out
of scope for this RFP.

- We are also unanimously recommending to the EEG that work should
begin on each one of these RFPs (115/Jacc & 196/AuthForContainers)
- each deserving its own RFP. Volunteers anyone?

* Make it more prominent in the document that the term 'Realm’ will be
used to replace the term 'Application' that developers may be
accustomed to using.

* Section 4:

- Add (or amend existing) sub use case for -
Dauth.login.defaultCallbackHandler

- Add (or amend existing) sub use case for the jvm's security properties
file (specifically login.config.url entries).

* Section 4.2 & 4.3:

- Remove "and LoginModules" from the description since
LoginModules are not always thread safe and are not meant to be
shared.

- Change wording to be "obtain and/or provision a realm definition"
instead of just "obtain".

- Add wording to the affect that realm definitions can be accessed
programmatically.

Concern arose over the possibilities of rogue bundles adding realm
definitions that will result in an escalation of privileges. This should be
added as a note to the RFC writers somewhere in the document to use
hooks, etc to avoid the situation.

xog sIyL ulypa ebed |1y

Copyright © Oracle Corporation. 2009

All Rights Reserved

RFP 123 — JAAS Integration Page 4 of 10

<> 0SGi
Adliszse Confidential, Draft July 13, 2009
Revision Date Comments
1.0 July 13, 2009 From comments received during today’s review session with Davanum

M Srinivas <dims@us.ibm.com>, "Peshev, Peter"
<peter.peshev@sap.com>.

- Removed use case 4.6 and requirement 12 — Coupling JAAS to
UserAdmin was found to be problematic since there are no good
choices in UserAdmin API for authentication.

- Requirement 1.b — Only support the file-based usages of “-
Djava.security.auth.login.config”.

- Requirement 2 — change wording to ‘calling bundle’ and remove the
reference to manifest file since that dictates too much of the
implementation strategy.

- Requirement 4 — Reworded.

- Requirement 5 — Remove the reference to a manifest file for similar
reasons as specified above.

- Requirements 6, 7, and 8 have been dropped (since they pertain to
login modules accessed from the service registry — as per our last
meeting this was deemed out of scope).

- Requirement 9 (now req #6 in this document) — changed ‘replaced’
with the word 'modified".

1 Introduction

The Java Authentication and Authorization Interface (JAAS) is an integral part of the Java platform that is widely
used by a variety of application programming models. While the JAAS classes already can function inside an
OSGi environment, JAAS is not suitably integrated with the OSGi architecture. In addition, the OSGi architecture
enables a number of opportunities for improvement for use cases that a developer might expect when combining

JAAS and OSGi.

xog sIyL ulypa ebed |1y

Copyright © Oracle Corporation. 2009

All Rights Reserved

RFP 123 — JAAS Integration Page 5 of 10

<> 0OSGi

Alliance Confidential, Draft July 13, 2009

2 Application Domain

JAAS is available today in both the SE and EE environments and provides an extensible framework that abstracts
the authentication and authorization mechanisms of an application or platform. Conceptually, JAAS has its roots
in Unix’s pluggable authentication module framework (PAM) established decades ago. Its extensibility means
that different security mechanisms can be applied without modifying application-level code. The actual security
mechanisms are pluggable via an SPI approach, where each plugin performs specific security logic pertaining to
a particular kind of authentication process.

An application (i.e., a consuming osgi bundle), can integrate to JAAS for authentication via LoginContext and
Configuration API's. The successful end-result of authentication is a javax.security.auth.Subject thatis
subsequently used for authorization decisions. The Subject is comprised of a set of Principals, each Principal
representing a specific security identity attribute. It also may contain public and private credentials.

The SPI provider “plugin” for authentication processes is called the LoginModule. During the process of
authentication a Subject is created (a.k.a. login) for the client by indirectly calling into one or more LoginModules.
The JDK provides some LoginModule implementations out of the box (e.g., JndiLoginModule, Krb5LoginModule,
etc.). Custom login modules can be written by a developer, and use of 3¢ party login modules are also
commonplace.

Henceforth within this document, the term “realm” will be used instead of “application” since “application” is an
overloaded term and somewhat ambiguous to OSGi. A “realm” is identified by a [string] name property, and is
related to a collection of one or more login modules [names] and flags used for those login modules (flags will be
explained later in this document).

The authorization side of JAAS is already handled within the OSGi platform. When a SecurityManager is set
permission checks are serviced by an OSGi-enabled policy provider. A bundle can provision permissions using
the PermissionAdmin and the ConditionalPermissionAdmin services.

The primary focus of this RFP will concentrate mostly on the authentication side of JAAS.

3 Problem Description

The use of JAAS proliferated through the application space before OSGi became popular. While the APl model is
fairly adequate in an OSGi environment, the SPI model seems to be less so. For instance, a popular approach in
the OSGi model for dealing with SPIs is using the whiteboard pattern in conjunction with the service registry.
Consider the following stereotypical flow for authentication / login within a JAAS-enabled application:

LoginContext lc = new LoginContext ("theContext");

lc.login () ;

xog sIyL ulypa ebed |1y

Copyright © Oracle Corporation. 2009 All Rights Reserved

RFP 123 — JAAS Integration Page 6 of 10

<> 0OSGi

Alliance Confidential, Draft July 13, 2009

Subject sub = lc.getSubject();

Internally, the implementation engages the configured LoginModules appropriate for “theContext’-scoped
LoginContext. In this example, “theContext” represents the realm name. Henceforth in this document, the term
“Realm” will be used interchangeably with “Application”.

The traditional approach is to configure the set of login modules appropriate for “theContext” realm using a text
file that is subsequently expected to be available at runtime through the client’s thread context classloader and at
the time of the call.

Clearly, the use of SPI Services from the service registry, and avoiding usages of reflection or assumptions of the
thread context classloader, would be a natural improvement when operating within the OSGi environment.

4 Use case

4.1 Support normative JAAS usages

This section applies to legacy JAAS code that is expected to work in an OSGi environment without modification.

4.1.1 Configuration

A user may wish to use traditional techniques for login, using code in their bundles resembling the following:
LoginContext lc = new LoginContext ("theContext");

lc.login () ;

Subject sub = lc.getSubject();

According to the JAAS Specification, “The LoginContext consults a Configuration to determine the
authentication services, or LoginModule(s), configured for a particular application.”

In the above example, the Configuration parameter is omitted in the constructor to the LoginContext, resulting in
the static Configuration.getConfiguration() method being called. Traditionally under the SE environment, the
Configuration would be loaded from a file using a system property:

-Djava.security.auth.login.config=conf/loginmodules

4.1.2 CallbackHandler

Continuing with the example from 4.1.1 above, you will see that the CallbackHandler parameter was also omitted
from the constructor. In this case, the JDK implementation makes use of the security property

-Dauth.login.defaultCallbackHandler=<callbackHandker>

xog sIyL ulypa ebed |1y

Copyright © Oracle Corporation. 2009 All Rights Reserved

RFP 123 — JAAS Integration Page 7 of 10

<> 0OSGi

Alliance Confidential, Draft July 13, 2009

If specified, the JDK will call Class.forName() on that property to serve as the default CallbackHandler. This will
occur from the caller’s thread context at the time of the call.

The user expects that his legacy code will continue to operate normally within the OSGi environment. This also
includes the login.config.url definitions from the security property file in the JVM lib directory.

4.2 Obtain and/or Provision the Realm Definition using the Service Registry

Traditionally in the SE environment, Realm definitions are configured via a file within a text file. For example:
ExampleRealm {
MyRdbmsLoginModule required
driver="a.path.to.the.Driver"
url="jdbc:someurl.."
}i
A company adopting OSGi within their organization would like to deploy realm definitions directly to the Service

Registry, preserving the same semantics as a file-based configuration, but using the more dynamic approach that
the Service Registry has to offer.

4.3 Provision Realm Definitions from an OSGi Bundle

A user would like to have their OSGi bundle contain one or more Realm definitions and have them automatically
provisioned to the Service Registry when the bundle is deployed. This is merely for a convenience mechanism so
that a developer does not have to write code to perform the same.

4.4 Offer an OSGi Platform-wide, Default Configuration Adaptation

The Configuration implementation is responsible for loading and associating LoginModules to named contexts.

A company adopting OSGi within their organization would like a singleton Configuration to be implicitly available
within the OSGi platform. The default Configuration would also be preconfigured with a default realm name

4.5 Obtain Configuration from an OSGi Bundle

A bundle deployer may wish to override the default, platform-wide Configuration with a bundle-specific
Configuration. The expectation would be either to replace or augment the default, platform-wide Configuration.

The user wishing to do this has a specific Configuration in mind for his application, and does not want to make
assumptions, or otherwise use, the global Configuration. Alternatively, the user may wish to apply custom login
modules in addition to the set available within the platform for some exceptional cases unique to their
applications. In this case a Configuration could be returned with another default realm name to use, or different
flags for the login modules within the realm.

4.6 Integrate to the UserAdmin service for Authentication and Authorization

A strong motivation behind the UserAdmin service from OSGi 4.1 stemmed from the inability to use JAAS at the
time of its writing due its requirements on the JDK version (see User Admin Service under Reference).

xog sIyL ulypa ebed |1y

Copyright © Oracle Corporation. 2009 All Rights Reserved

<> 0OSGi

Alliance

RFP 123 — JAAS Integration Page 8 of 10

Confidential, Draft July 13, 2009

Additionally, the UserAdmin service offered more capabilities over and above standard JAAS with respect to a
User and Group persistent repository.

Users have undoubted integrated to UserAdmin and are expecting the ability to continue to use it and not have to
migrate to a “new” facility such as JAAS with more limited functionality. The overlapping features between
UserAdmin and JAAS may be confusing to some users. Users will likely expect a clear relationship between
JAAS and the UserAdmin service instead of a duplication of services.

The user is likely to expect seamless integration to the UserAdmin service for authentication and authorization if
the UserAdmin service is available on the platform.

5 Requirements

1. Normative JAAS usages (this applies to legacy code that has not undergone any osgification):

a.

The static Configuration.setConfiguration() method MUST be injected with an appropriate
implementation to insure proper integration to the OSGi platform. This MUST occur early enough
during OSGi platform bootstrapping to guarantee that application bundles can make use of the
Configuration during their activation phase. [Note: It is recommended that JAAS be started as an
extension to the OSGi framework, but I'm not sure if saying “extension” is appropriate terminology
to use in the RFP — this seems more appropriate language for the RFC.]

Itis RECOMMENDED the framework support a Configuration passed using the standard system
property “-Djava.security.auth.login.config” to the OSGi framework when the
configuration refers to a file. Attempt to use class-based usages SHOULD result in appropriate
warning messages logged.

Any LoginContext created without a CallbackHandler parameter SHOULD be supported, and
SHOULD somehow seamlessly integrate to the OSGi platform. Similar constraints as above
apply; the default CallbackHandler should be available during application’s activation phase. This
also includes a callback handler passed using the system property “-
Dauth.login.defaultCallbackHandler”.

2. It is RECOMMENDED to have the LoginContext’s name default to a declared name from an artifact or
attribute found within the calling bundle, or the bundle symbolic name itself. This is likely to
necessitate wrapping the LoginContext by an OSGi-specific set of framework classes.

3. Itis RECOMMENDED to have the LoginContext’s CallbackHandler (if passed a null argument) default
to a CallbackHandler declared within the bundle, and defaulting to a platform-wide default
CallbackHandler if not specified by the bundle. Once again, this is likely to necessitate wrapping the
LoginContext by an OSGi-specific set of framework classes.

4. The Realm definition SHOULD represent the relationship from a LoginContext’s name to the set of
login modules w/ flags for those login modules. These relationships SHOULD be exposed
programmatically in some fashion within the OSGi platform.

xog sIyL ulypa ebed |1y

Copyright © Oracle Corporation. 2009 All Rights Reserved

o RFP 123 — JAAS Integration Page 9 of 10
<> 0SGi

Alliance Confidential, Draft July 13, 2009

5. Itis RECOMMENDED that there is a declarative way for loading a realm definition based on the
contents of the bundle (elements, attributes, artifacts, etc.).

6. The OSGi JAAS integration SHOULD support a mechanism by which the platform-wide Configuration
can be easily modified by a user’s substitute configuration/implementation. It SHOULD support a
programmatic substitution mechanism, provided that the bundle performing the replacement is
privileged to do so.

7. The OSGi JAAS integration SHOULD support a bundle-specific override Configuration or Realm
definition.

8. The OSGi JAAS integration MUST be secure when a SecurityManager is enabled. Permissions
MUST guard:

a. Configuration placed into the global context.
b. Default CallbackHandler placed into the global context.

c. Realm definitions placed into the global context [special consideration should be considered to
prevent any escalation of privileges].

6 Document Support

6.1 References

[1]Bradner, S., Key words for use in RFCs to Indicate Requirement Levels, RFC2119, March 1997.
[2] Software Requirements & Specifications. Michael Jackson. ISBN 0-201-87712-0.

[3] User Admin Service, OSGi Service Platform Release 4.1, April 2007.

[4] Benjamin Reed, Permission Admin Service, OSGi Service Core Platform 1.0, April 2001.
[5] JAAS Reference Guide, _http://java.sun.com/j2se/1.4.2/docs/quide/security/jaas/JAASRefGuide.html

6.2 Author’s Address

xog sIyL ulypa ebed |1y

Copyright © Oracle Corporation. 2009 All Rights Reserved

<> 0OSGi

Alliance

RFP 123 — JAAS Integration

Confidential, Draft

Page 10 of 10

July 13, 2009

Name Jeff Trent

Company | Oracle Corporation

Address 330 Fellowship Road, Suite 100 — Moorestown, NJ 08054

Voice (856) 359-2937

e-mail jeff.trent@oracle.com

6.3 Acronyms and Abbreviations

JAAS: Java Authentication and Authorization Service

JCP: Java Community Process

LM: Login Module

6.4 End of Document

xog sIyL ulypa ebed |1y

Copyright © Oracle Corporation. 2009

All Rights Reserved

