
OSGi Service Platform Release 4, Version 4.2 Page 401

JPA Service Specification Version 1.0 Introduction

127 JPA Service Specification
Version 1.0

127.1 Introduction
The Java Persistence API (JPA) is a specification that sets a standard for persistently storing objects in
enterprise and non-enterprise Java based environments. JPA provides an Object Relational Mapping
(ORM) model that is configured through persistence descriptors. This Java Persistence Service specifi-
cation defines how persistence units can be published in an OSGi service platform, how client bun-
dles can find these persistence units, how database drivers are found with the OSGi JDBC
Specification, as well as how JPA providers can be made available within an OSGi framework.

Applications can be managed or they can be unmanaged. Managed applications run inside a Java EE
Container and unmanaged applications run in a Java SE environment. The managed case requires a
provider interface that can be used by the container, while in the unmanaged case the JPA provider is
responsible for supporting the client directly. This specification is about the unmanaged model of
JPA except in the areas where the managed model is explicitly mentioned. Additionally, multiple
concurrent providers for the unmanaged case are not supported.

This JPA Specification supports both [2] JPA 1.0 and [3] JPA 2.0.

127.1.1 Essentials
� Dependencies � There must be a way for persistence clients, if they so require, to manage their

dependencies on a compatible persistence unit.
� Compatibility � The Persistence Unit service must be able to function in non-managed mode

according to existing standards and interfaces outlined in the JPA specification.
� Modularity � Persistent classes and their accompanying configuration can exist in a separate

bundle from the client that is operating on them using the Persistence Unit service.
� JDBC � Leverage the OSGi JDBC Specification for access to the database.

127.1.2 Entities
� JPA � The Java Persistence API, [2] JPA 1.0 and [3] JPA 2.0.
� JPA Provider � An implementation of JPA, providing the Persistence Provider and JPA Services to

Java EE Containers and Client Bundles.
� Interface Bundle � A bundle containing the interfaces and classes in the javax.pers istence

namespace (and its sub-namespaces) that are defined by the JPA specification.
� Persistence Bundle � A bundle that includes, a Meta-Persistence header, one or more Persistence

Descriptor resources, and the entity classes specified by the Persistence Units in those resources.
� Client Bundle � The bundle that uses the Persistence Bundle to retrieve and store objects.
� Persistence Descriptor � A resource describing one or more Persistence Units.
� Persistence Unit � A named configuration for the object-relational mappings and database access as

defined in a Persistence Descriptor.
� Entity Manager � The interface that provides the control point of retrieving and persisting objects

in a relational database based on a single Persistence Unit for a single session.
� Entity Manager Factory � A service that can create Entity Managers based on a Persistence Unit for

different sessions.
� Entity Manager Factory Builder � A service that can build an Entity Manager Factory for a specific

Persistence Unit with extra configuration parameters.
� Managed Client � A Client Bundle that is managed by a Container

Introduction JPA Service Specification Version 1.0

Page 402 OSGi Service Platform Release 4, Version 4.2

� Static Client � A Client that uses the static factory methods in the Persistence class instead of ser-
vices.

� Static Persistence � The actor that enables the use of the Persistence class static factory methods to
obtain an Entity Manager Factory.

� JDBC Provider � The bundle providing a Data Source Factory service.

Figure 127.1 JPA Service overview

127.1.3 Dependencies
This specification is based on JPA 1.0 and JPA 2.0. JPA 2.0 is backward compatible with JPA 1.0. For
this reason, the versions of the packages follow the OSGi recommended version policy with the addi-
tion of a special JPA marker that annotates the specification version for JPA. All JPA Packages must
also have an attribute called jpa that specifies the JPA version. The purpose of this attribute is to
make it clear what JPA version belongs to this package.

For example, JPA should have an export declaration like:

Export-Package: javax.persistence; version=1.1; jpa=2.0, ...

JPA Provider Impl

Client Impl

in
je

ct
s

Container Impl

Entity Classes
Impl

Persistence

Entity

Persistence
Descriptor

Managed
Client Impl

Provider

Manager
Factory

unit
name

*

*

1

Static Persistence
Impl

Persistence

Static Client Impl

Data Source Factory

Entity
Manager
Factory

osgi.unit.name=...
osgi.unit.version=...
osgi.unit.provider=...

Builder

Table 127.1 Dependency versions

JPA Packages Export Version Client Import Range Provider Imp. Range

JPA 1.0 javax.persistence 1.0 [1.0,2.0) [1.0,1.1)
javax.persistence.spi 1 .0 [1.0,2.0) [1.0,1.1)

JPA 2.0 javax.pers istence 1.1 [1.1 ,2.0) [1.1,1.2)
javax.pers istence.spi 1 .1 [1.1 ,2.0) [1.1,1.2)

OSGi Service Platform Release 4, Version 4.2 Page 403

JPA Service Specification Version 1.0 JPA Overview

127.1.4 Synopsis
A JPA Provider tracks Persistence Bundles; a Persistence Bundle contains a Meta-Persistence manifest
header. This manifest header enumerates the Persistence Descriptor resources in the Persistence Bun-
dle. Each resource�s XML schema is defined by the JPA 1.0 or JPA 2.0 specification. The JPA Provider
reads the resource accordingly and extracts the information for one or more Persistence Units. For
each found Persistence Unit, the JPA Provider registers an Entity Manager Factory Builder service. If
the database is defined in the Persistence Unit, then the JPA Provider registers an Entity Manager Fac-
tory service during the availability of the corresponding Data Source Factory.

The identification of these services is handled through a number of service properties. The Entity
Manager Factory service is named by the standard JPA interface, the Builder version is OSGi specific;
it is used when the Client Bundle needs to create an Entity Manager Factory based on configuration
properties.

A Client Bundle that wants to persist or retrieve its entity classes depends on an Entity Manager Fac-
tory (Builder) service that corresponds to a Persistence Unit that lists the entity classes. If such a ser-
vice is available, the client can use this service to get an Entity Manager, allowing the client to
retrieve and persist objects as long as the originating Entity Manager Factory (Builder) service is regis-
tered.

In a non-OSGi environment, it is customary to get an Entity Manager Factory through the
Pers istence class. This Persistence class provides a number of static methods that give access to any
locally available JPA providers. This approach is not recommended in an OSGi environment due to
class loading and start ordering issues. However, OSGi environments can support access through this
static factory with a Static Persistence bundle.

127.2 JPA Overview
Java Persistence API (JPA) is a specification that is part of [4] Java EE 5. This OSGi Specification is
based on [2] JPA 1.0 and [3] JPA 2.0. This section provides an overview of JPA as specified in the JCP.
The purpose of this section is to introduce the concepts behind JPA and define the terminology that
will be used in the remainder of the chapter.

The purpose of JPA is to simplify access to relational databases for applications on the object-oriented
Java platform. JPA provides support for storing and retrieving objects in a relational database. The
JPA specification defines in detail how objects are mapped to tables and columns under the full con-
trol of the application. The core classes involved are depicted in Figure 127.2.

Figure 127.2 JPA Client View

Client CodeEntity Class
Entity Class

Entity Manager
Factory

Entity Manager Connection

Data SourcePersistence
Descriptor

persists
with

created by

mapped by

db

db

mappings for
Mapping
Descriptor

db

from

JPA Overview JPA Service Specification Version 1.0

Page 404 OSGi Service Platform Release 4, Version 4.2

The JPA specifications define a number of concepts that are defined in this section for the purpose of
this OSGi specification. However, the full syntax and semantics are defined in the JPA specifications.

127.2.1 Persistence
Classes that are stored and retrieved through JPA are called the entity classes. In this specification, the
concept of entity classes includes the embeddable classes, which are classes that do not have any per-
sistent identity, and mapped superclasses that allow mappings, but are not themselves persistent.
Entity classes are not required to implement any interface or extend a specific superclass, they are
Plain Old Java Objects (POJOs). It is the responsibility of the JPA Provider to connect to a database and
map the store and retrieve operations of the entity classes to their tables and columns. For perfor-
mance reasons, the entity classes are sometimes enhanced. This enhancement can take place during
build time, deploy time, or during class loading time. Some enhancements use byte code weaving,
some enhancements are based on sub-classing.

The JPA Provider cannot automatically perform its persistence tasks; it requires configuration infor-
mation. This configuration information is stored in the Persistence Descriptor. A Persistence Descriptor
is an XML file according of one of the two following namespaces:

http://java.sun.com/xml/ns/persistence/persistence_1_0.xsd

http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd

The JPA standard Persistence Descriptor must be stored in META-INF/persistence.xml . It is usually in
the same class path entry (like a JAR or directory) as the entity classes.

The JPA Provider parses the Persistence Descriptor and extracts one or more Persistence Units. A Persis-
tence Unit includes the following aspects:

� Name � Every Persistence Unit must have a name to identify it to clients. For example:
Accounting .

� Provider Selection � Restriction to a specific JPA Provider, usually because there are dependencies in
the application code on provider specific functionality.

� JDBC Driver Selection � Selects the JDBC driver, the principal and the credentials for selecting and
accessing a relational database. See 127.2.4 JDBC Access in JPA.

� Properties � Standard and JPA Provider specific properties.

The object-relational mappings are stored in special mapping resources or are specified in annota-
tions.

A Persistence Unit can be complete or incomplete. A complete Persistence Unit identifies the database
driver that is needed for the Persistence Unit, though it does not have to contain the credentials. An
incomplete Persistence Unit lacks this information.

The relations between the class path, its entries, the entity classes, the Persistence Descriptor and the
Persistence Unit is depicted in Figure 127.3 on page 404.

Figure 127.3 JPA Configuration

Class path entry
(JAR/directory)

Entity Classes

Persistence
Descriptor
persistence.xml

Persistence Unit

JDBC Driver

lists
1 * 1 0,1 1 *

contains contains

depends on
*

0,1

Class Path

persisted by
* *

*

OSGi Service Platform Release 4, Version 4.2 Page 405

JPA Service Specification Version 1.0 JPA Overview

JPA recognizes the concept of a persistence root. The persistence root is the root of the JAR (or direc-
tory) on the class path that contains the META-INF/persistence.xml resource.

127.2.2 JPA Provider
The JPA specifications provide support for multiple JPA Providers in the same application. An Appli-
cation selects a JPA Provider through the Persistence class, using static factory methods. One of these
methods accepts a map with configuration properties. Configuration properties can override informa-
tion specified in a Persistence Unit or these properties add new information to the Persistence Unit.

The default implementation of the Persistence class discovers providers through the Java EE services
model, this model requires a text resource in the class path entry called:

META-INF/services/ javax.persistence.PersistenceProvider

This text resource contains the name of the JPA Provider implementation class.

The Pers istence class createEntityManagerFactory method provides the JPA Provider with the name
of a Persistence Unit. The JPA Provider must then scan the class path for any META-INF/
pers istence.xml entries, these are the available Persistence Descriptors. It then extracts the Persis-
tence Units to find the requested Persistence Unit. If no such Persistence Unit can be found, or the JPA
Provider is restricted from servicing this Persistence Unit, then nul l is returned. The Persistence class
will then continue to try the next found or registered JPA Provider.

A Persistence Unit can restrict JPA Providers by specifying a JPA Provider class, this introduces a pro-
vider dependency. The specified JPA Provider class must implement the PersistenceProvider interface.
This implementation class name must be available from the JPA Provider�s documentation. JPA Provid-
ers that do not own the specified JPA Provider class must ignore such a Persistence Unit.

Otherwise, if the Persistence Unit is not restricted, the JPA Provider is assigned to this Persistence
Unit; it must be ready to provide an EntityManagerFactory object when the application requests one.

The JPA Provider uses the Persistence Unit, together with any additional configuration properties, to
construct an Entity Manager Factory. The application then uses this Entity Manager Factory to con-
struct an Entity Manager, optionally providing additional configuration properties. The Entity Man-
ager then provides the operations for the application to store and retrieve entity classes from the
database.

The additional configuration properties provided with the creation of the Entity Manager Factory or
the Entity Manager are often used to specify the database driver and the credentials. This allows the
Persistence Unit to be specified without committing to a specific database, leaving the choice to the
application at runtime.

The relations between the application, Entity Manager, Entity Manager Factory and the JPA Provider
are depicted in Figure 127.4 on page 406.

Bundles with Persistence JPA Service Specification Version 1.0

Page 406 OSGi Service Platform Release 4, Version 4.2

Figure 127.4 JPA Dynamic Model

127.2.3 Managed and Unmanaged
The JPA specifications make a distinction between a managed and an unmanaged mode. In the man-
aged mode the presence of a Java EE Container is assumed. Such a container provides many services
for its contained applications like transaction handling, dependency injection, etc. One of these
aspects can be the interface to the relational database. The JPA specifications therefore have defined a
special method for Java EE Containers to manage the persistence aspects of their Managed Clients.
This method is the createContainerEntityManagerFactory method on the PersistenceProvider inter-
face. This method is purely intended for Java EE Containers and should not be used in other environ-
ments.

The other method on the PersistenceProvider interface is intended to be used by the Persistence
class static factory methods. The Persistence class searches for an appropriate JPA Provider by asking
all available JPA Providers to create an Entity Manager Factory based on configuration properties.
The first JPA Provider that is capable of providing an Entity Manager Factory wins. The use of these
static factory methods is called the unmanaged mode. It requires a JPA Provider to scan the class path
to find the assigned Persistence Units.

127.2.4 JDBC Access in JPA
A Persistence Unit is configured to work with a relational database. JPA Providers communicate with
a relational database through compliant JDBC database drivers. The database and driver parameters
are specified in the Persistence Unit or configured during Entity Manager Factory or Entity Manager
creation with the configuration properties. The configuration properties for selecting a database in
non-managed mode were proprietary in JPA 1.0 but have been standardized in version 2.0 of JPA:

� javax.persistence. jdbc.dr iver � Fully-qualified name of the driver class
� javax.pers istence. jdbc.ur l � Driver-specific URL to indicate database information
� javax.persistence. jdbc.user � User name to use when obtaining connections
� javax.pers istence. jdbc.password � Password to use when obtaining connections

127.3 Bundles with Persistence
The primary goal of this specification is to simplify the programming model for bundles that need
persistence. In this specification there are two application roles:

� Persistence Bundle � A Persistence Bundle contains the entity classes and one or more Persistence
Descriptors, each providing one or more Persistence Units.

Entity Manager Entity Manager
Factory

JPA Provider

Persistence Unit

uses
1 * * 1 * 1

implementedApplication

Data Source
Factory

by
created

by

provides db
connections

*

1 1

1
discovers

Persistence
Descriptor

1

*

0,1 *
specified

by

1

*

OSGi Service Platform Release 4, Version 4.2 Page 407

JPA Service Specification Version 1.0 Bundles with Persistence

� Client Bundle �A Client Bundle contains the code that manipulates the entity classes and uses an
Entity Manager to store and retrieve these entity classes with a relational database. The Client
Bundle obtains the required Entity Manager(s) via a service based model.

These roles can be combined in a single bundle.

127.3.1 Services
A JPA Provider uses Persistence Units to provide Client Bundles with a configured Entity Manager Fac-
tory service and/or an Entity Manager Factory Builder service for each assigned Persistence Unit:

� Entity Manager Factory service � Provides an EntityManagerFactory object that depends on a com-
plete Persistence Unit. That is, it is associated with a registered Data Source Factory service.

� Entity Manager Factory Builder service � The Entity Manager Factory Builder service provides the
capability of creating an EntityManagerFactory object with additional configuration properties.

These services are collectively called the JPA Services. Entity Managers obtained from such JPA Ser-
vices can only be used to operate on entity classes associated with their corresponding Persistence
Unit.

127.3.2 Persistence Bundle
A Persistence Bundle is a bundle that specifies the Meta-Persistence header, see Meta Persistence Header
on page 409. This header refers to one or more Persistence Descriptors in the Persistence Bundle.
Commonly, this is the META-INF/persistence.xml resource. This location is the standard for non-
OSGi environments, however an OSGi bundle can also use other locations as well as multiple
resources.

For example, the contents of a simple Persistence Bundle with a single Person entity class could look
like:

META-INF/

META-INF/MANIFEST.MF

OSGI-INF/address.xml

com/acme/Person.class

The corresponding manifest would then look like:

Manifest-Version: 1.0

Bundle-ManifestVersion: 2

Meta-Persistence: OSGI-INF/address.xml

Bundle-SymbolicName: com.acme.simple.persistence

Bundle-Version: 3.2.4.200912231004

A Persistence Bundle is a normal bundle; it must follow all the rules of OSGi and can use all OSGi con-
structs like Bundle-Classpath, fragment bundles, import packages, export packages, etc. However,
there is one limitation: any entity classes must originate in the bundle�s JAR, it cannot come from a
fragment. This requirement is necessary to simplify enhancing entity classes.

127.3.3 Client Bundles
A Client Bundle uses the entity classes from a Persistence Bundle to provide its required functional-
ity. To store and retrieve these entity classes a Client Bundle requires an Entity Manager that is con-
figured for the corresponding Persistence Unit.

An Entity Manager is intended to be used by a single session, it is not thread safe. Therefore, a client
needs an Entity Manager Factory to create an Entity Manager. In an OSGi environment, there are
multiple routes to obtain an Entity Manager Factory.

Bundles with Persistence JPA Service Specification Version 1.0

Page 408 OSGi Service Platform Release 4, Version 4.2

A JPA Provider must register an Entity Manager Factory service for each assigned Persistence Unit
that is complete. Complete means that it is a configured Persistence Unit, including the reference to
the relational database. The Entity Manager Factory service is therefore bound to a Data Source Fac-
tory service and Client Bundles should not attempt to rebind the Data Source Factory with the config-
uration properties of the createEntityManager(Map) method. See Rebinding on page 413 for the
consequences. If the Data Source Factory must be bound by the Client Bundle then the Client Bundle
should use the Custom Configured Entity Manager on page 408.

The Entity Manager Factory service must be registered with the service properties as defined in Ser-
vice Registrations on page 411. These are:

� osgi .unit .name � (Str ing) The name of the Persistence Unit
� osgi .unit .vers ion � (Str ing) The version of the associated Persistence Bundle
� osgi .unit .provider � (Str ing) The implementation class name of the JPA Provider

The life cycle of the Entity Manager Factory service is bound to the Persistence Bundle, the JPA Pro-
vider, and the selected Data Source Factory service.

A Client Bundle that wants to use an Entity Manager Factory service should therefore use an appro-
priate filter to select the Entity Manager Factory service that corresponds to its required Persistence
Unit. For example, the following snippet uses Declarative Services, see Declarative Services Specification
on page 141, to statically depend on such a service:

<reference name="accounting"

 target="(&(osgi.unit.name=Accounting)(osgi.unit.version=3.2.*))"

interface="javax.persistence.EntityManagerFactory"/>

127.3.4 Custom Configured Entity Manager
If a Client Bundle needs to provide configuration properties for the creation of an Entity Manager
Factory it should use the Entity Manager Factory Builder service. This can for example be used to pro-
vide the database selection properties when the Persistence Unit is incomplete or if the database
selection needs to be overridden.

The Entity Manager Factory Builder service�s life cycle must not depend on the availability of any
Data Source Factory, even if a JDBC driver class name is specified in the Persistence Descriptor. The
Entity Manager Factory Builder service is registered with the same service properties as the corre-
sponding Entity Factory service, see Service Registrations on page 411.

The following method is defined on the EntityManagerFactoryBui lder interface:

� createEntityManagerFactory(Map) - Returns a custom configured EntityManagerFactory
instance for the Persistence Unit associated with the service. Accepts a map with the configu-
ration properties to be applied during Entity Manager Factory creation. The method must return a
proper Entity Manager Factory or throw an Exception.

The createEntityManagerFactory method allows standard and vendor-specific properties to be
passed in and applied to the Entity Manager Factory being created. However, some properties cannot
be honored by the aforementioned method. For example, the javax.pers istence.provider JPA prop-
erty, as a means to specify a specific JPA Provider at runtime, cannot be supported because the JPA
Provider has already been decided; it is the JPA Provider that registered the Entity Manager Factory
Builder service. A JPA Provider should throw an Exception if it recognizes the property but it cannot
use the property when specified through the builder. Unrecognized properties must be ignored.

Once an Entity Manager Factory is created the specified Data Source becomes associated with the
Entity Manager Factory. It is therefore not possible to re-associate an Entity Manager Factory with
another Data Source by providing different properties. A JPA Provider must throw an Exception
when an attempt is made to re-specify the database properties. See Rebinding on page 413 for further
information.

OSGi Service Platform Release 4, Version 4.2 Page 409

JPA Service Specification Version 1.0 Extending a Persistence Bundle

As an example, a sample snippet of a client that wants to operate on a persistence unit named
Accounting and pass in the JDBC user name and password properties is:

ServiceReference[] refs = context.getServiceReferences(

EntityManagerFactoryBuilder.class.getName(),

"(osgi.unit.name=Accounting)");

if (refs != null) {

EntityManagerFactoryBuilder emfBuilder =

(EntityManagerFactoryBuilder) context.getService(refs[0]);

 if (emfBuilder != null) {

 Map<String,Object> props = new HashMap<String,Object>();

 props.put("javax.persistence. jdbc.user", userString);
 props.put("javax.persistence. jdbc.password", passwordString);
 EntityManagerFactory emf = emfBuilder.createEntityManagerFactory(props);

 EntityManager em = emf.createEntityManager();

 ...

}

The example does not handle the dynamic dependencies on the associated Data Source Factory ser-
vice.

127.4 Extending a Persistence Bundle
A Persistence Bundle is identified by its Meta-Persistence manifest header that references a number of
Persistence Descriptor resources. Persistence bundles must be detected by a JPA Provider. The JPA
Provider must parse any Persistence Descriptors in these bundles and detect the assigned Persistence
Units. For each assigned Persistence Unit, the JPA Provider must register an Entity Manager Factory
Builder service when the Persistence Bundle is ready, see Ready Phase on page 411.

For complete and assigned Persistence Units, the JPA Provider must find the required Data Source
Factory service based on the driver name. When the Persistence Bundle is ready and the selected Data
Source Factory is available, the JPA Provider must have an Entity Manager Factory service registered
that is linked to that Data Source Factory.

When the Persistence Bundle is stopped (or the JPA Provider stops), the JPA Provider must close all
connections and cleanup any resources associated with the Persistence Bundle.

This process is outlined in detail in the following sections.

127.4.1 Class Space Consistency
A JPA Provider must ignore Persistence Bundles that are in another class space for the
javax.pers istence.* packages. Such a JPA Provider cannot create JPA Services that would be visible
and usable by the Client Bundles.

127.4.2 Meta Persistence Header
A Persistence Bundle is a bundle that contains the Meta-Persistence header. If this header is not present,
then this specification does not apply and a JPA Provider should ignore the corresponding bundle.

The persistence root of a Persistence Unit is the root of the Persistence Bundle's JAR

The Meta-Persistence header has a syntax of:

Meta-Persistence ::= (jar-path (',' jar-path)*)?

jar-path ::= path (�!/� spath)?

spath ::= path // must not start with slash (�/�)

Extending a Persistence Bundle JPA Service Specification Version 1.0

Page 410 OSGi Service Platform Release 4, Version 4.2

The header may include zero or more comma-separated jar-paths , each a path to a Persistence
Descriptor resource in the bundle. Paths may optionally be prefixed with the slash (� / �) character. The
JPA Provider must always include the META-INF/persistence.xml first if it is not one of the listed
paths. Wildcards in directories are not supported. The META-INF/persistence.xml is therefore the
default location for an empty header.

For example:

Meta-Persistence: META-INF/jpa.xml, persistence/jpa.xml

The previous example will instruct the JPA Provider to process the META-INF/persistence.xml
resource first, even though it is not explicitly listed. The JPA Provider must then subsequently pro-
cess META-INF/jpa.xml and the persistence/jpa.xml resources.

The paths in the Meta-Persistence header must be used with the Bundle.getEntry() method, or a
mechanism with similar semantics, to obtain the corresponding resource. The getEntry method does
not force the bundle to resolve when still unresolved; resolving might interfere with the efficiency of
any required entity class enhancements. However, the use of the getEntry method implies that frag-
ment bundles cannot be used to contain Persistence Descriptors nor entity classes.

Paths in the Meta-Persistence header can reference JAR files that are nested in the bundle by using the
! / jar : URL syntax to separate the JAR file from the path within the JAR, for example:

Meta-Persistence: embedded.jar!/META-INF/persistence.xml

This example refers to a resource in the embedded. jar resource, located in the META-INF directory of
embedded. jar .

The ! / splits the jar-path in a prefix and a suffix:

� Prefix � The prefix is a path to a JAR resource in the bundle.
� Suffix � The suffix is a path to a resource in the JAR identified by the prefix.

For example:

embedded.jar!/META-INF/persistence.xml

prefix: embedded.jar

suffix: META-INF/persistence.xml

It is not required that all listed or implied resources are present in the bundle�s JAR. For example, it is
valid that the default META-INF/pers istence.xml resource is absent. However, if no Persistence Units
are found at all then the absence of any Persistence Unit is regarded as an error that should be logged.
In this case, the Persistence Bundle is further ignored.

127.4.3 Processing
A JPA Provider can detect a Persistence Bundle as early as its installation time. This early detection
allows the JPA Provider to validate the Persistence Bundle as well as prepare any mechanisms to
enhance the classes for better performance. However, this process can also be delayed until the bun-
dle is started.

The JPA Provider must validate the Persistence Bundle. A valid Persistence Bundle must:

� Have no parsing errors of the Persistence Descriptors
� Validate all Persistence Descriptors against their schemas
� Have at least one assigned Persistence Unit
� Have all entity classes mentioned in the assigned Persistence Units on the Persistence Bundle�s

JAR.

A Persistence Bundle that uses multiple providers for its Persistence Units could become incompati-
ble with future versions of this specification.

OSGi Service Platform Release 4, Version 4.2 Page 411

JPA Service Specification Version 1.0 Extending a Persistence Bundle

If any validation fails, then this is an error and should be logged. Such a bundle is ignored completely
even if it also contains valid assigned Persistence Units. Only a bundle update can recover from this
state.

Persistence Units can restrict JPA Providers by specifying a provider dependency. JPA Providers that
do not own this JPA Provider implementation class must ignore such a Persistence Unit completely.
Otherwise, if the JPA Provider can service a Persistence Unit, it assigns itself to this Persistence Unit.

If after the processing of all Persistence Descriptors, the JPA Provider has no assigned Persistence
Units, then the JPA Provider must further ignore the Persistence Bundle.

127.4.4 Ready Phase
A Persistence Bundle is ready when its state is ACTIVE or, when a lazy activation policy is used,
STARTING . A JPA Provider must track the ready state of Persistence Bundles that contain assigned
Persistence Units.

While a Persistence Bundle is ready, the JPA Provider must have, for each assigned Persistence Unit,
an Entity Manager Factory Builder service registered to allow Client Bundles to create new
EntityManagerFactory objects. The JPA Provider must also register an Entity Manager Factory for
each assigned and complete Persistence Unit that has its corresponding Data Source available in the
service registry.

The service registration process is asynchronous with the Persistence Bundle start because a JPA Pro-
vider could start after a Persistence Bundle became ready.

127.4.5 Service Registrations
The JPA Services must be registered through the Bundle Context of the corresponding Persistence
Bundle to ensure proper class space consistency checks by the OSGi Framework.

JPA Services are always related to an assigned Persistence Unit. To identify this Persistence Unit and
the assigned JPA Provider, each JPA Service must have the following service properties:

� osgi.unit .name � (Str ing) The name of the Persistence Unit. This property corresponds to the
name attribute of the persistence-unit element in the Persistence Descriptor. It is used by Client
Bundles as the primary filter criterion to obtain a JPA Service for a required Persistence Unit.
There can be multiple JPA Services registered under the same osgi .unit .name , each representing a
different version of the Persistence Unit.

� osgi.unit .vers ion � (Str ing) The version of the Persistence Bundle, as specified in Bundle-Version
header, that provides the corresponding Persistence Unit. Client Bundles can filter their required
JPA Services based on a particular Persistence Unit version.

� osgi .unit .provider � (Str ing) The JPA Provider implementation class name that registered the
service. The osgi .unit .provider property allows Client Bundles to know the JPA Provider that is
servicing the Persistence Unit. Client Bundles should be careful when filtering on this property,
however, since the JPA Provider that is assigned a Persistence Unit may not be known by the
Client Bundle ahead of time. If there is a JPA Provider dependency, it is better to specify this
dependency in the Persistence Unit because other JPA Providers are then not allowed to assign
such a Persistence Unit and will therefore not register a service.

127.4.6 Registering the Entity Manager Factory Builder Service
Once the Persistence Bundle is ready, a JPA Provider must register an Entity Manager Factory Builder
service for each assigned Persistence Unit from that Persistence Bundle.

The Entity Manager Factory Builder service must be registered with the service properties listed in
Service Registrations on page 411. The Entity Manager Factory Builder service is registered under the
org.osgi .service. jpa.EntityManagerFactoryBui lder name. This interface is using the JPA packages
and is therefore bound to one of the two supported versions, see Dependencies on page 402.

JPA Provider JPA Service Specification Version 1.0

Page 412 OSGi Service Platform Release 4, Version 4.2

The Entity Manager Factory Builder service enables the creation of a parameterized version of an
Entity Factory Manager by allowing the caller to specify configuration properties. This approach is
necessary if, for example, the Persistence Unit is not complete.

127.4.7 Registering the Entity Manager Factory
A complete Persistence Unit is configured with a specific relational database driver, see JDBC Access
in JPA on page 406. A JPA Provider must have an Entity Manager Factory service registered for each
assigned and complete Persistence Unit when:

� The originating Persistence Bundle is ready, and
� A matching Data Source Factory service is available. Matching a Data Source Factory service to a

Persistence Unit is discussed in Database Access on page 413.

A JPA Provider must track the life cycle of the matching Data Source Factory service; while this ser-
vice is unavailable the Entity Manager Factory service must also be unavailable. Any active Entity
Managers created by the Entity Manager Factory service become invalid to use at that time.

The Entity Manager Factory service must be registered with the same service properties as described
for the Entity Manager Factory Builder service, see Service Registrations on page 411. It should be regis-
tered under the following name:

javax.pers istence.EntityManagerFactory

The EntityManagerFactory interface is from the JPA packages and is therefore bound to one of the
two supported versions, see Dependencies on page 402.

An Entity Manager Factory is bound to a Data Source Factory service because its assigned Persistence
Unit was complete. However, a Client Bundle could still provide JDBC configuration properties for
the createEntityManager(Map) method. This not always possible, see Rebinding on page 413.

127.4.8 Stopping
If a Persistence Bundle is being stopped, then the JPA Provider must ensure that any resources allo-
cated on behalf of the Persistence Bundle are cleaned up and all open connections are closed. This
cleanup must happen synchronously with the STOPPING event. Any Exceptions being thrown while
cleaning up should be logged but must not stop any further clean up.

If the JPA Provider is being stopped, the JPA Provider must unregister all JPA Services that it regis-
tered through the Persistence Bundles and clean up as if those bundles were stopped.

127.5 JPA Provider
JPA Providers supply the implementation of the JPA Services and the Persistence Provider service. It
is the responsibility of a JPA Provider to store and retrieve the entity classes from a relational data-
base. It is the responsibility of the JPA Provider to register a Persistence Provider and start tracking
Persistence Bundles, see Extending a Persistence Bundle on page 409.

127.5.1 Managed Model
A JPA Provider that supports running in managed mode should register a specific service for the Java
EE Containers: the Persistence Provider service. The interface is the standard JPA Pers istenceProvider
interface. See Dependencies on page 402 for the issues around the multiple versions that this specifica-
tion supports.

The service must be registered with the following service property:

� javax.persistence.provider � The JPA Provider implementation class name, a documented name
for all JPA Providers.

OSGi Service Platform Release 4, Version 4.2 Page 413

JPA Service Specification Version 1.0 JPA Provider

The Persistence Provider service enables a Java EE Container to find a particular JPA Provider. This
service is intended for containers only, not for Client Bundles because there are implicit assumptions
in the JPA Providers about the Java EE environment. A Java EE Container must obey the life cycle of
the Persistence Provider service. If this service is unregistered then it must close all connections and
clean up the corresponding resources.

127.5.2 Database Access
A Persistence Unit is configured to work with a relational database. JPA Providers must communicate
with a relational database through a compliant JDBC database driver. The database and driver param-
eters are specified with properties in the Persistence Unit or the configuration properties when a
Entity Manager Factory Builder is used to build an Entity Manager Factory. All JPA Providers, regard-
less of version, in an OSGi environment must support the following properties for database access:

� javax.pers istence. jdbc.dr iver � Fully-qualified name of the driver class.
� javax.pers istence. jdbc.ur l � Driver-specific URL to indicate database information
� javax.pers istence. jdbc.user � User name to use when obtaining connections
� javax.pers istence. jdbc.password � Password to use when obtaining connections

There are severe limitations in specifying these properties after the Entity Manager Factory is created
for the first time, see Rebinding on page 413.

127.5.3 Data Source Factory Service Matching
Providers must use the javax.persistence. jdbc.dr iver property, as defined in JDBC Access in JPA on
page 406, to obtain a Data Source Factory service. The Data Source Factory is specified in JDBC� Ser-
vice Specification on page 375. The javax.pers istence. jdbc.dr iver property must be matched with the
value of the Data Source Factory service property named osgi . jdbc.dr iver.class .

The Data Source Factory service is registered with the osgi . jdbc.dr iver .c lass service property that
holds the class name of the driver. This property must match the javax.persistence. jdbc.dr iver ser-
vice property of the Persistence Unit.

For example, if the Persistence Unit specifies the com.acme.db.Driver database driver in the
javax.pers istence. jdbc.dr iver property (or in the Persistence Descriptor property element), then the
following filter would select an appropriate Data Source Factory:

(&(objectClass=org.osgi.service.jdbc.DataSourceFactory)

 (osgi . jdbc.dr iver .c lass=com.acme.db.Driver))

Once the Data Source Factory is obtained, the JPA Provider must obtain a DataSource object. This
Data Source object must then be used for all relational database access.

In [2] JPA 1.0 the JPA JDBC properties were not standardized. JPA Providers typically defined a set of
JDBC properties, similar to those defined in JPA 2.0, to configure JDBC driver access. JPA 1.0 JPA Pro-
viders must look up the Data Source Factory service first using the JPA 2.0 JDBC properties. If these
properties are not defined then they should fall back to their proprietary driver properties.

127.5.4 Rebinding
In this specification, the Entity Manager Factory service is only registered when the Persistence Unit
is complete and a matching Data Source Factory service is available. However, the API of the Entity
Manager Factory allows the creation of an Entity Manager with configuration properties. Those con-
figuration properties could contain the JDBC properties to bind to another Data Source Factory ser-
vice than it had already selected.

This case must not be supported by a JPA Provider, an Illegal Argument Exception must be thrown. If
such a case would be supported then the life cycle of the Entity Manager Factory service would still
be bound to the first Data Source Factory. There would be no way for the JPA Provider to signal to the
Client Bundle that the returned Entity Manager is no longer valid because the rebound Data Source
Factory was unregistered.

Static Access JPA Service Specification Version 1.0

Page 414 OSGi Service Platform Release 4, Version 4.2

Therefore, after an Entity Manager Factory has been created, a JPA Provider must verify that the new
properties are compatible with the properties of the already created Entity Manager Factory. If no,
then an Exception must be thrown. If they are compatible, then an instance of the previous Entity
Manager Factory should be returned.

127.5.5 Enhancing Entity Classes
JPA Providers may choose to implement the JPA specifications using various implementation
approaches and techniques. This promotes innovation in the area, but also opens the door to limita-
tions and constraints arising due to implementation choices. For example, there are JPA Providers
that perform byte code weaving during the entity class loading. Dynamic byte code weaving requires
that the entity classes are not loaded until the JPA Provider is first able to intercept the loading of the
entity class and be given an opportunity to do its weaving. It also implies that the Persistence Bundle
and any other bundles that import packages from that bundle must be refreshed if the JPA Provider
needs to be changed.

This is necessary because the JPA Services are registered against the Bundle Contexts of the Persis-
tence Bundles and not the Bundle Context of the JPA Providers. Client Bundles must then unget the
service to unbind themselves from the uninstalled JPA Provider. However, since most JPA Providers
perform some kind of weaving or class transformation on the entity classes, the Persistence Bundle
will likely need to be refreshed. This will cause the Client Bundles to be refreshed also because they
depend on the packages of the entity classes.

127.5.6 Class Loading
JPA Providers cannot have package dependencies on entity classes in Persistence Bundles because
they cannot know at install time what Persistence Bundles they will be servicing. However, when a
JPA Provider is servicing a Persistence Bundle, it must be able to load classes and resources from that
Persistence Bundle according to the OSGi bundle rules. To do this class loading it must obtain a class
loader that has the same visibility as the Persistence Bundle�s bundle class loader. This will also allow
it to load and manage metadata for the entity classes and resources for that Persistence Bundle�s
assigned Persistence Units. These resources and entity classes must reside directly in the Persistence
Bundle, they must be accessed using the getEntry method. Entity classes and resources must not
reside in fragments.

127.5.7 Validation
There is not yet an OSGi service specification defined for validation providers. If validation is
required, the validation implementation will need to be included with the JPA Provider bundle.

127.6 Static Access
Non-managed client usage of JPA has traditionally been achieved through the Pers istence class.
Invoking a static method on the Persistence class is a dependency on the returned JPA Provider that
cannot be managed by the OSGi framework.

However, such an unmanaged dependency is supported in this specification by the Static Persistence
bundle. This bundle provides backwards compatibility for programs that use existing JPA access pat-
terns. However, usage of this static model requires that the deployer ensures that the actors needed
are in place at the appropriate times by controlling the life cycles of all participating bundles. The
normal OSGi safe-guards and dependency handling do not work in the case of static access.

A Static Persistence Bundle must provide static access from the Persistence class to the JPA Services.

127.6.1 Access
There are two methods on the Persistence class:

OSGi Service Platform Release 4, Version 4.2 Page 415

JPA Service Specification Version 1.0 Security

� createEntityManagerFactory(Str ing)
� createEntityManagerFactory(Str ing,Map)

Both methods take the name of a Persistence Unit. The last method also takes a map that contains
extra configuration properties. To support the usage of the static methods on the Persistence class,
the implementation of the Persistence.createEntityManagerFactory method family must do a
lookup of one of the JPA Services associated with the selected Persistence Unit.

If no configuration properties are specified, the Static Persistence Bundle must look for an Entity
Manager Factory service with the osgi .unit .name property set to the given name. The default service
should be used because no selector for a version is provided. If no such service is available, null must
be returned. Provisioning of multiple versioned Persistence Units is not supported. Deployers should
ensure only a single version of a Persistence Unit with the same name is present in an OSGi frame-
work at any moment in time.

Otherwise, if configuration properties are provided, the Static Access implementation must look for
an Entity Manager Factory Builder service with the osgi.unit .name property set to the given Persis-
tence Unit name. If no such service exists, nul l must be returned. Otherwise, the default service must
be used to create an Entity Manager Factory with the given configuration properties. The result must
be returned to the caller.

For service lookups, the Static Persistence Bundle must use its own Bundle Context, it must not
attempt to use the Bundle Context of the caller. All exceptions should be passed to the caller.

The class space of the Entity Manager Factory and the class space of the client cannot be enforced to
be consistent by the framework because it is the Persistence class that is doing the lookup of the ser-
vice, and not the actual calling Client Bundle that will be using the Entity Manager Factory. The
framework cannot make the connection and therefore cannot enforce that the class spaces corre-
spond. Deployers should therefore ensure that the involved class spaces are correctly wired.

127.7 Security
The security for this specification is based on the JPA specification.

127.8 org.osgi.service.jpa
JPA Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the bun-
dle�s manifest. For example:

Import-Package: org.osgi.service.jpa; version=�[1.0,2.0)�
EntityManagerFactoryBuilder

127.8.1 public interface EntityManagerFactoryBuilder
This service interface offers JPA clients the ability to create instances of EntityManagerFactory for a
given named persistence unit. A service instance will be created for each named persistence unit and
can be filtered by comparing the value of the osgi.unit.name property containing the persistence
unit name. This service is used specifically when the caller wants to pass in factory-scoped proper-
ties as arguments. If no properties are being used in the creation of the EntityManagerFactory then
the basic EntityManagerFactory service should be used.
JPA_UNIT_NAME

127.8.1.1 public static final String JPA_UNIT_NAME = �osgi.unit.name�

The name of the persistence unit.
JPA_UNIT_PROVIDER

References JPA Service Specification Version 1.0

Page 416 OSGi Service Platform Release 4, Version 4.2

127.8.1.2 public static final String JPA_UNIT_PROVIDER = �osgi.unit.provider�

The class name of the provider that registered the service and implements the JPA javax.persis-
tence.PersistenceProvider interface.
JPA_UNIT_VERSION

127.8.1.3 public static final String JPA_UNIT_VERSION = �osgi.unit.version�

The version of the persistence unit bundle.
createEntityManagerFactory(Map)

127.8.1.4 public EntityManagerFactory createEntityManagerFactory(Map<String,Object> props)

props Properties to be used, in addition to those in the persistence descriptor, for configuring the EntityMan-
agerFactory for the persistence unit.

� Return an EntityManagerFactory instance configured according to the properties defined in the cor-
responding persistence descriptor, as well as the properties passed into the method.

Returns An EntityManagerFactory for the persistence unit associated with this service. Must not be null.

127.9 References
[1] OSGi Core Specifications

http://www.osgi.org/Specifications/HomePage

[2] JPA 1.0
http://jcp.org/en/jsr/summary?id=220

[3] JPA 2.0
http://jcp.org/en/jsr/summary?id=317

[4] Java EE 5
http://java.sun.com/javaee/technologies/javaee5.jsp

