
Seam - Contextual Components

A Framework for

Enterprise Java
2.3.0.Final-SNAPSHOT

by Gavin King, Pete Muir, Norman Richards, Shane Bryzak, Michael Yuan,

Mike Youngstrom, Christian Bauer, Jay Balunas, Dan Allen, Max Rydahl

Andersen, Emmanuel Bernard, Nicklas Karlsson, Daniel Roth, Matt Drees,

Jacob Orshalick, Denis Forveille, Marek Novotny, and Jozef Hartinger

edited by Samson Kittoli

and thanks to James Cobb (Graphic Design), Cheyenne Weaver (Graphic Design),

Mark Newton, Steve Ebersole, Michael Courcy (French Translation), Nicola

Benaglia (Italian Translation), Stefano Travelli (Italian Translation), Francesco

Milesi (Italian Translation), and Japan JBoss User Group (Japanese Translation)

iii

Introduction to JBoss Seam .. xv

1. Contribute to Seam ... xix

1. Seam Tutorial .. 1

1.1. Using the Seam examples .. 1

1.1.1. Running the examples on JBoss AS ... 1

1.1.2. Running the example tests ... 2

1.2. Your first Seam application: the registration example .. 2

1.2.1. Understanding the code ... 3

1.2.2. How it works .. 14

1.3. Clickable lists in Seam: the messages example .. 15

1.3.1. Understanding the code .. 15

1.3.2. How it works .. 21

1.4. Seam and jBPM: the todo list example ... 21

1.4.1. Understanding the code .. 22

1.4.2. How it works .. 29

1.5. Seam pageflow: the numberguess example .. 30

1.5.1. Understanding the code .. 30

1.5.2. How it works .. 37

1.6. A complete Seam application: the Hotel Booking example 38

1.6.1. Introduction .. 38

1.6.2. Overview of the booking example .. 40

1.6.3. Understanding Seam conversations ... 40

1.6.4. The Seam Debug Page .. 49

1.7. Nested conversations: extending the Hotel Booking example 50

1.7.1. Introduction .. 50

1.7.2. Understanding Nested Conversations .. 52

1.8. A complete application featuring Seam and jBPM: the DVD Store example 58

1.9. Bookmarkable URLs with the Blog example .. 60

1.9.1. Using "pull"-style MVC .. 61

1.9.2. Bookmarkable search results page .. 63

1.9.3. Using "push"-style MVC in a RESTful application 66

2. Getting started with Seam, using seam-gen .. 71

2.1. Before you start .. 71

2.2. Setting up a new project ... 72

2.3. Creating a new action ... 75

2.4. Creating a form with an action ... 76

2.5. Generating an application from an existing database ... 77

2.6. Generating an application from existing JPA/EJB3 entities 78

2.7. Deploying the application as an EAR ... 78

2.8. Seam and incremental hot deployment ... 78

3. Getting started with Seam, using JBoss Tools .. 81

3.1. Before you start .. 81

4. Migration from 2.2 to 2.3 ... 83

4.1. Migration of XML Schemas ... 83

Seam - Contextual Components

iv

4.1.1. Seam schema migration ... 83

4.1.2. Java EE 6 schema changes ... 85

4.2. Java EE 6 upgrade ... 86

4.2.1. Using Bean Validation standard instead of Hibernate Validator 86

4.2.2. Migration of JSF 1 to JSF 2 Facelets templates .. 86

4.2.3. Migration to JPA 2.0 ... 87

4.2.4. Using compatible JNDI for resources ... 87

4.3. JBoss AS 7.1 deployment ... 87

4.3.1. Deployment changes .. 87

4.3.2. Datasource migration .. 88

4.4. Changes in testing framework ... 89

4.5. Dependency changes with using Maven ... 91

4.5.1. Seam Bill of Materials .. 91

5. The contextual component model ... 93

5.1. Seam contexts .. 93

5.1.1. Stateless context .. 93

5.1.2. Event context ... 94

5.1.3. Page context .. 94

5.1.4. Conversation context .. 94

5.1.5. Session context .. 95

5.1.6. Business process context ... 95

5.1.7. Application context ... 95

5.1.8. Context variables ... 95

5.1.9. Context search priority .. 96

5.1.10. Concurrency model .. 96

5.2. Seam components .. 97

5.2.1. Stateless session beans ... 98

5.2.2. Stateful session beans ... 98

5.2.3. Entity beans ... 99

5.2.4. JavaBeans ... 99

5.2.5. Message-driven beans .. 99

5.2.6. Interception .. 100

5.2.7. Component names ... 100

5.2.8. Defining the component scope .. 102

5.2.9. Components with multiple roles ... 103

5.2.10. Built-in components .. 103

5.3. Bijection .. 104

5.4. Lifecycle methods ... 107

5.5. Conditional installation ... 107

5.6. Logging .. 109

5.7. The Mutable interface and @ReadOnly .. 110

5.8. Factory and manager components ... 112

6. Configuring Seam components ... 115

6.1. Configuring components via property settings ... 115

v

6.2. Configuring components via components.xml .. 115

6.3. Fine-grained configuration files .. 119

6.4. Configurable property types ... 120

6.5. Using XML Namespaces ... 122

7. Events, interceptors and exception handling ... 127

7.1. Seam events .. 127

7.2. Page actions ... 128

7.3. Page parameters .. 129

7.3.1. Mapping request parameters to the model ... 129

7.4. Propagating request parameters .. 130

7.5. URL rewriting with page parameters ... 131

7.6. Conversion and Validation ... 132

7.7. Navigation .. 133

7.8. Fine-grained files for definition of navigation, page actions and parameters 137

7.9. Component-driven events .. 137

7.10. Contextual events ... 139

7.11. Seam interceptors ... 141

7.12. Managing exceptions ... 143

7.12.1. Exceptions and transactions .. 143

7.12.2. Enabling Seam exception handling .. 144

7.12.3. Using annotations for exception handling ... 144

7.12.4. Using XML for exception handling ... 145

7.12.5. Some common exceptions .. 147

8. Conversations and workspace management ... 149

8.1. Seam's conversation model ... 149

8.2. Nested conversations .. 152

8.3. Starting conversations with GET requests ... 153

8.4. Requiring a long-running conversation .. 154

8.5. Using <s:link> and <s:button> .. 155

8.6. Success messages ... 157

8.7. Natural conversation ids .. 158

8.8. Creating a natural conversation ... 158

8.9. Redirecting to a natural conversation ... 159

8.10. Workspace management ... 160

8.10.1. Workspace management and JSF navigation 160

8.10.2. Workspace management and jPDL pageflow .. 161

8.10.3. The conversation switcher ... 162

8.10.4. The conversation list ... 162

8.10.5. Breadcrumbs .. 163

8.11. Conversational components and JSF component bindings 164

8.12. Concurrent calls to conversational components ... 165

8.12.1. How should we design our conversational AJAX application? 166

8.12.2. Dealing with errors ... 167

9. Pageflows and business processes ... 169

Seam - Contextual Components

vi

9.1. Pageflow in Seam ... 169

9.1.1. The two navigation models ... 169

9.1.2. Seam and the back button .. 173

9.2. Using jPDL pageflows ... 174

9.2.1. Installing pageflows .. 174

9.2.2. Starting pageflows .. 175

9.2.3. Page nodes and transitions ... 176

9.2.4. Controlling the flow ... 177

9.2.5. Ending the flow .. 178

9.2.6. Pageflow composition ... 178

9.3. Business process management in Seam .. 178

9.4. Using jPDL business process definitions ... 180

9.4.1. Installing process definitions .. 180

9.4.2. Initializing actor ids ... 180

9.4.3. Initiating a business process ... 180

9.4.4. Task assignment .. 181

9.4.5. Task lists ... 181

9.4.6. Performing a task ... 182

10. Seam and Object/Relational Mapping .. 185

10.1. Introduction ... 185

10.2. Seam managed transactions .. 186

10.2.1. Disabling Seam-managed transactions ... 187

10.2.2. Configuring a Seam transaction manager ... 187

10.2.3. Transaction synchronization .. 188

10.3. Seam-managed persistence contexts ... 188

10.3.1. Using a Seam-managed persistence context with JPA 189

10.3.2. Using a Seam-managed Hibernate session .. 189

10.3.3. Seam-managed persistence contexts and atomic conversations 190

10.4. Using the JPA "delegate" ... 192

10.5. Using EL in EJB-QL/HQL .. 193

10.6. Using Hibernate filters ... 194

11. JSF form validation in Seam .. 195

12. Groovy integration ... 203

12.1. Groovy introduction ... 203

12.2. Writing Seam applications in Groovy .. 203

12.2.1. Writing Groovy components .. 203

12.2.2. seam-gen ... 205

12.3. Deployment ... 205

12.3.1. Deploying Groovy code ... 206

12.3.2. Native .groovy file deployment at development time 206

12.3.3. seam-gen ... 206

13. Writing your presentation layer using Apache Wicket ... 207

13.1. Adding Seam to your wicket application .. 207

13.1.1. Bijection ... 207

vii

13.1.2. Orchestration .. 208

13.2. Setting up your project .. 209

13.2.1. Runtime instrumentation ... 209

13.2.2. Compile-time instrumentation .. 210

13.2.3. The @SeamWicketComponent annotation ... 212

13.2.4. Defining the Application .. 212

14. The Seam Application Framework ... 215

14.1. Introduction ... 215

14.2. Home objects .. 217

14.3. Query objects .. 222

14.4. Controller objects .. 225

15. Seam and JBoss Rules .. 227

15.1. Installing rules ... 227

15.2. Using rules from a Seam component .. 230

15.3. Using rules from a jBPM process definition ... 230

16. Security .. 233

16.1. Overview .. 233

16.2. Disabling Security ... 233

16.3. Authentication ... 234

16.3.1. Configuring an Authenticator component .. 234

16.3.2. Writing an authentication method ... 234

16.3.3. Writing a login form .. 237

16.3.4. Configuration Summary ... 238

16.3.5. Remember Me ... 238

16.3.6. Handling Security Exceptions .. 241

16.3.7. Login Redirection .. 242

16.3.8. HTTP Authentication ... 243

16.3.9. Advanced Authentication Features ... 244

16.4. Identity Management ... 244

16.4.1. Configuring IdentityManager .. 245

16.4.2. JpaIdentityStore .. 246

16.4.3. LdapIdentityStore .. 252

16.4.4. Writing your own IdentityStore ... 254

16.4.5. Authentication with Identity Management .. 254

16.4.6. Using IdentityManager .. 254

16.5. Error Messages ... 259

16.6. Authorization ... 260

16.6.1. Core concepts .. 260

16.6.2. Securing components ... 261

16.6.3. Security in the user interface ... 263

16.6.4. Securing pages .. 265

16.6.5. Securing Entities .. 265

16.6.6. Typesafe Permission Annotations .. 268

16.6.7. Typesafe Role Annotations ... 269

Seam - Contextual Components

viii

16.6.8. The Permission Authorization Model .. 270

16.6.9. RuleBasedPermissionResolver .. 273

16.6.10. PersistentPermissionResolver .. 278

16.7. Permission Management ... 287

16.7.1. PermissionManager .. 287

16.7.2. Permission checks for PermissionManager operations 288

16.8. SSL Security ... 289

16.8.1. Overriding the default ports ... 290

16.9. CAPTCHA .. 290

16.9.1. Configuring the CAPTCHA Servlet ... 290

16.9.2. Adding a CAPTCHA to a form ... 291

16.9.3. Customising the CAPTCHA algorithm .. 291

16.10. Security Events ... 292

16.11. Run As ... 292

16.12. Extending the Identity component ... 293

16.13. OpenID ... 294

16.13.1. Configuring OpenID .. 294

16.13.2. Presenting an OpenIdDLogin form ... 295

16.13.3. Logging in immediately ... 295

16.13.4. Deferring login .. 296

16.13.5. Logging out .. 296

17. Internationalization, localization and themes ... 297

17.1. Internationalizing your app ... 297

17.1.1. Application server configuration ... 297

17.1.2. Translated application strings .. 298

17.1.3. Other encoding settings .. 298

17.2. Locales ... 299

17.3. Labels .. 300

17.3.1. Defining labels .. 300

17.3.2. Displaying labels .. 301

17.3.3. Faces messages .. 302

17.4. Timezones .. 302

17.5. Themes .. 303

17.6. Persisting locale and theme preferences via cookies 304

18. Seam Text .. 305

18.1. Basic fomatting ... 305

18.2. Entering code and text with special characters .. 307

18.3. Links .. 308

18.4. Entering HTML .. 309

18.5. Using the SeamTextParser .. 309

19. iText PDF generation ... 311

19.1. Using PDF Support ... 311

19.1.1. Creating a document .. 311

19.1.2. Basic Text Elements ... 312

ix

19.1.3. Headers and Footers .. 317

19.1.4. Chapters and Sections .. 318

19.1.5. Lists ... 320

19.1.6. Tables .. 321

19.1.7. Document Constants .. 324

19.2. Charting .. 324

19.3. Bar codes ... 333

19.4. Fill-in-forms ... 334

19.5. Rendering Swing/AWT components .. 335

19.6. Configuring iText ... 336

19.7. Further documentation ... 337

20. The Microsoft® Excel® spreadsheet application .. 339

20.1. The Microsoft® Excel® spreadsheet application support 339

20.2. Creating a simple workbook ... 340

20.3. Workbooks .. 341

20.4. Worksheets ... 343

20.5. Columns ... 347

20.6. Cells ... 348

20.6.1. Validation ... 349

20.6.2. Format masks .. 353

20.7. Formulas .. 353

20.8. Images ... 354

20.9. Hyperlinks ... 355

20.10. Headers and footers .. 356

20.11. Print areas and titles ... 358

20.12. Worksheet Commands ... 359

20.12.1. Grouping .. 359

20.12.2. Page breaks ... 360

20.12.3. Merging .. 361

20.13. Datatable exporter ... 361

20.14. Fonts and layout ... 362

20.14.1. Stylesheet links .. 363

20.14.2. Fonts ... 363

20.14.3. Borders .. 364

20.14.4. Background .. 365

20.14.5. Column settings .. 365

20.14.6. Cell settings ... 365

20.14.7. The datatable exporter .. 366

20.14.8. Layout examples .. 366

20.14.9. Limitations .. 366

20.15. Internationalization ... 366

20.16. Links and further documentation ... 367

21. RSS support ... 369

21.1. Installation .. 369

Seam - Contextual Components

x

21.2. Generating feeds ... 369

21.3. Feeds ... 370

21.4. Entries .. 370

21.5. Links and further documentation .. 371

22. Email .. 373

22.1. Creating a message .. 373

22.1.1. Attachments ... 374

22.1.2. HTML/Text alternative part .. 376

22.1.3. Multiple recipients ... 376

22.1.4. Multiple messages .. 376

22.1.5. Templating ... 376

22.1.6. Internationalisation .. 377

22.1.7. Other Headers .. 378

22.2. Receiving emails ... 378

22.3. Configuration ... 379

22.3.1. mailSession .. 379

22.4. Tags ... 380

23. Asynchronicity and messaging .. 383

23.1. Messaging in Seam ... 383

23.1.1. Configuration .. 383

23.1.2. Sending messages ... 384

23.1.3. Receiving messages using a message-driven bean 385

23.1.4. Receiving messages in the client ... 386

23.2. Asynchronicity ... 386

23.2.1. Asynchronous methods ... 387

23.2.2. Asynchronous methods with the Quartz Dispatcher 391

23.2.3. Asynchronous events .. 393

23.2.4. Handling exceptions from asynchronous calls 394

24. Caching .. 395

24.1. Using Caching in Seam ... 396

24.2. Page fragment caching .. 398

25. Web Services ... 401

25.1. Configuration and Packaging ... 401

25.2. Conversational Web Services .. 401

25.2.1. A Recommended Strategy .. 402

25.3. An example web service .. 403

25.4. RESTful HTTP webservices with RESTEasy ... 405

25.4.1. RESTEasy configuration and request serving 405

25.4.2. Resources as Seam components .. 408

25.4.3. Securing resources ... 411

25.4.4. Mapping exceptions to HTTP responses .. 411

25.4.5. Exposing entities via RESTful API ... 412

25.4.6. Testing resources and providers .. 415

26. Remoting .. 417

xi

26.1. Configuration ... 417

26.2. The "Seam" object .. 418

26.2.1. A Hello World example ... 418

26.2.2. Seam.Component ... 420

26.2.3. Seam.Remoting .. 422

26.3. Client Interfaces .. 422

26.4. The Context .. 423

26.4.1. Setting and reading the Conversation ID .. 423

26.4.2. Remote calls within the current conversation scope 423

26.5. Batch Requests ... 424

26.6. Working with Data types .. 424

26.6.1. Primitives / Basic Types .. 424

26.6.2. JavaBeans ... 425

26.6.3. Dates and Times .. 425

26.6.4. Enums ... 425

26.6.5. Collections ... 426

26.7. Debugging .. 427

26.8. Handling Exceptions .. 427

26.9. The Loading Message ... 427

26.9.1. Changing the message ... 428

26.9.2. Hiding the loading message .. 428

26.9.3. A Custom Loading Indicator .. 428

26.10. Controlling what data is returned .. 428

26.10.1. Constraining normal fields ... 429

26.10.2. Constraining Maps and Collections .. 429

26.10.3. Constraining objects of a specific type ... 430

26.10.4. Combining Constraints .. 430

26.11. Transactional Requests ... 430

26.12. JMS Messaging ... 431

26.12.1. Configuration .. 431

26.12.2. Subscribing to a JMS Topic ... 431

26.12.3. Unsubscribing from a Topic ... 432

26.12.4. Tuning the Polling Process .. 432

27. Seam and the Google Web Toolkit .. 433

27.1. Configuration ... 433

27.2. Preparing your component ... 433

27.3. Hooking up a GWT widget to the Seam component ... 434

27.4. GWT Ant Targets .. 436

27.5. GWT Maven plugin ... 437

28. Spring Framework integration ... 439

28.1. Injecting Seam components into Spring beans .. 439

28.2. Injecting Spring beans into Seam components .. 441

28.3. Making a Spring bean into a Seam component ... 441

28.4. Seam-scoped Spring beans ... 442

Seam - Contextual Components

xii

28.5. Using Spring PlatformTransactionManagement ... 443

28.6. Using a Seam Managed Persistence Context in Spring 444

28.7. Using a Seam Managed Hibernate Session in Spring 446

28.8. Spring Application Context as a Seam Component .. 446

28.9. Using a Spring TaskExecutor for @Asynchronous ... 447

29. Guice integration ... 449

29.1. Creating a hybrid Seam-Guice component .. 449

29.2. Configuring an injector ... 450

29.3. Using multiple injectors .. 451

30. Hibernate Search ... 453

30.1. Introduction ... 453

30.2. Configuration ... 453

30.3. Usage ... 454

31. Configuring Seam and packaging Seam applications .. 457

31.1. Basic Seam configuration .. 457

31.1.1. Integrating Seam with JSF and your servlet container 457

31.1.2. Seam Resource Servlet .. 459

31.1.3. Seam servlet filters ... 459

31.1.4. Integrating Seam with your EJB container .. 464

31.1.5. Don't forget! ... 468

31.2. Using Alternate JPA Providers ... 468

31.3. Configuring Seam in Java EE 6 ... 469

31.3.1. Packaging .. 469

31.4. Configuring Seam without EJB ... 471

31.4.1. Boostrapping Hibernate in Seam ... 471

31.4.2. Boostrapping JPA in Seam ... 472

31.4.3. Packaging .. 472

31.5. Configuring Seam in Java SE .. 473

31.6. Configuring jBPM in Seam ... 473

31.6.1. Packaging .. 474

31.7. Deployment in JBoss AS 7 .. 475

31.8. Configuring SFSB and Session Timeouts in JBoss AS 7 478

31.9. Running Seam in a Portlet ... 479

31.10. Deploying custom resources .. 479

32. Seam annotations .. 483

32.1. Annotations for component definition .. 483

32.2. Annotations for bijection .. 486

32.3. Annotations for component lifecycle methods .. 490

32.4. Annotations for context demarcation ... 491

32.5. Annotations for use with Seam JavaBean components in a J2EE environment ... 495

32.6. Annotations for exceptions ... 496

32.7. Annotations for Seam Remoting ... 496

32.8. Annotations for Seam interceptors .. 497

32.9. Annotations for asynchronicity .. 497

xiii

32.10. Annotations for use with JSF ... 498

32.10.1. Annotations for use with dataTable .. 499

32.11. Meta-annotations for databinding .. 500

32.12. Annotations for packaging .. 500

32.13. Annotations for integrating with the servlet container 501

33. Built-in Seam components ... 503

33.1. Context injection components .. 503

33.2. JSF-related components .. 503

33.3. Utility components ... 505

33.4. Components for internationalization and themes .. 506

33.5. Components for controlling conversations ... 507

33.6. jBPM-related components .. 508

33.7. Security-related components .. 510

33.8. JMS-related components ... 510

33.9. Mail-related components .. 510

33.10. Infrastructural components ... 511

33.11. Miscellaneous components .. 513

33.12. Special components .. 514

34. Seam JSF controls ... 517

34.1. Tags ... 517

34.1.1. Navigation Controls .. 517

34.1.2. Converters and Validators ... 520

34.1.3. Formatting .. 526

34.1.4. Seam Text ... 529

34.1.5. Form support .. 530

34.1.6. Other ... 533

34.2. Annotations ... 537

35. JBoss EL .. 539

35.1. Parameterized Expressions .. 539

35.1.1. Usage .. 539

35.1.2. Limitations and Hints .. 541

35.2. Projection .. 542

36. Clustering and EJB Passivation .. 545

36.1. Clustering ... 545

36.1.1. Programming for clustering ... 546

36.1.2. Deploying a Seam application to a JBoss AS cluster with session

replication .. 546

36.1.3. Validating the distributable services of an application running in a JBoss

AS cluster ... 548

36.2. EJB Passivation and the ManagedEntityInterceptor ... 549

36.2.1. The friction between passivation and persistence 550

36.2.2. Case #1: Surviving EJB passivation ... 550

36.2.3. Case #2: Surviving HTTP session replication .. 551

36.2.4. ManagedEntityInterceptor wrap-up ... 552

Seam - Contextual Components

xiv

37. Performance Tuning ... 553

37.1. Bypassing Interceptors .. 553

38. Testing Seam applications ... 555

38.1. Unit testing Seam components ... 555

38.2. Integration testing Seam components ... 556

38.2.1. Configuration .. 558

38.2.2. Using JUnitSeamTest with Arquillian .. 559

38.2.3. Integration testing Seam application user interactions 561

39. Dependencies ... 569

39.1. JDK Dependencies .. 569

39.1.1. Oracle's JDK 6 Considerations .. 569

39.2. Project Dependencies .. 569

39.2.1. Core .. 569

39.2.2. RichFaces .. 570

39.2.3. Seam Mail .. 570

39.2.4. Seam PDF ... 571

39.2.5. Seam Microsoft Excel ... 571

39.2.6. Seam RSS support ... 571

39.2.7. Drools .. 572

39.2.8. JBPM ... 572

39.2.9. GWT .. 572

39.2.10. Spring .. 572

39.2.11. Groovy ... 573

39.3. Dependency Management using Maven ... 573

xv

Introduction to JBoss Seam

Seam is an application framework for Enterprise Java. It is inspired by the following principles:

One kind of "stuff"

Seam defines a uniform component model for all business logic in your application. A

Seam component may be stateful, with the state associated with any one of several well-

defined contexts, including the long-running, persistent, business process context and the

conversation context, which is preserved across multiple web requests in a user interaction.

There is no distinction between presentation tier components and business logic components

in Seam. You can layer your application according to whatever architecture you devise, rather

than being forced to shoehorn your application logic into an unnatural layering scheme forced

upon you by whatever combination of stovepipe frameworks you're using today.

Unlike plain Java EE or Java EE components, Seam components may simultaneously access

state associated with the web request and state held in transactional resources (without the

need to propagate web request state manually via method parameters). You might object

that the application layering imposed upon you by the old Java EE platform was a Good

Thing. Well, nothing stops you creating an equivalent layered architecture using Seam — the

difference is that you get to architect your own application and decide what the layers are and

how they work together.

Integrate JSF with EJB 3.0

JSF and EJB 3 are two of the best new features of Java EE 5. EJB3 is a brand new

component model for server side business and persistence logic. Meanwhile, JSF is a great

component model for the presentation tier. Unfortunately, neither component model is able

to solve all problems in computing by itself. Indeed, JSF and EJB3 work best used together.

But the Java EE 5 specification provides no standard way to integrate the two component

models. Fortunately, the creators of both models foresaw this situation and provided standard

extension points to allow extension and integration with other frameworks.

Seam unifies the component models of JSF and EJB 3, eliminating glue code, and letting the

developer think about the business problem.

It is possible to write Seam applications where "everything" is an EJB. This may come as a

surprise if you're used to thinking of EJBs as coarse-grained, so-called "heavyweight" objects.

However, version 3.0 has completely changed the nature of EJB from the point of view of

the developer. An EJB is a fine-grained object — nothing more complex than an annotated

JavaBean. Seam even encourages you to use session beans as JSF action listeners!

On the other hand, if you prefer not to adopt EJB 3.0 at this time, you don't have to. Virtually

any Java class may be a Seam component, and Seam provides all the functionality that you

expect from a "lightweight" container, and more, for any component, EJB or otherwise.

Integrated with Java EE6

While Seam 2.2 was targeted Java EE 5 mainly, you can use some Java EE 6 technologies

also on Seam 2.3.x.

Introduction to JBoss Seam

xvi

Seam 2 and some of its extensions/implementations were added into Java EE 6 as CDI

technology. So this should be a current focus of majority users. But for previous Seam 2.2

users who doesn't want or can't use pure Java EE 6, we bring some new features from the

Java EE 6 set like JSF 2, JPA 2 and Bean Validation integrations into Seam 2.3.x.

Note

Be warned - Seam 2.3 should work only on Java EE 6 certified server like

JBoss AS 7 is.

Integrated AJAX

Seam supports the best open source JSF-based AJAX solutions: RichFaces and ICEfaces.

These solutions let you add AJAX capability to your user interface without the need to write

any JavaScript code.

Alternatively, Seam provides a built-in JavaScript remoting layer that lets you call components

asynchronously from client-side JavaScript without the need for an intermediate action layer.

You can even subscribe to server-side JMS topics and receive messages via AJAX push.

Neither of these approaches would work well, were it not for Seam's built-in concurrency and

state management, which ensures that many concurrent fine-grained, asynchronous AJAX

requests are handled safely and efficiently on the server side.

Business process as a first class construct

Optionally, Seam provides transparent business process management via jBPM. You won't

believe how easy it is to implement complex workflows, collaboration and task management

using jBPM and Seam.

Seam even allows you to define presentation tier pageflow using the same language (jPDL)

that jBPM uses for business process definition.

JSF provides an incredibly rich event model for the presentation tier. Seam enhances this

model by exposing jBPM's business process related events via exactly the same event

handling mechanism, providing a uniform event model for Seam's uniform component model.

Declarative state management

We're all used to the concept of declarative transaction management and declarative

security from the early days of EJB. EJB 3.0 even introduces declarative persistence

context management. These are three examples of a broader problem of managing state

that is associated with a particular context, while ensuring that all needed cleanup occurs

when the context ends. Seam takes the concept of declarative state management much

further and applies it to application state. Traditionally, Java EE applications implement

state management manually, by getting and setting servlet session and request attributes.

This approach to state management is the source of many bugs and memory leaks when

applications fail to clean up session attributes, or when session data associated with different

xvii

workflows collides in a multi-window application. Seam has the potential to almost entirely

eliminate this class of bugs.

Declarative application state management is made possible by the richness of the context

model defined by Seam. Seam extends the context model defined by the servlet spec —

request, session, application — with two new contexts — conversation and business process

— that are more meaningful from the point of view of the business logic.

You'll be amazed at how many things become easier once you start using conversations. Have

you ever suffered pain dealing with lazy association fetching in an ORM solution like Hibernate

or JPA? Seam's conversation-scoped persistence contexts mean you'll rarely have to see a

LazyInitializationException. Have you ever had problems with the refresh button? The

back button? With duplicate form submission? With propagating messages across a post-

then-redirect? Seam's conversation management solves these problems without you even

needing to really think about them. They're all symptoms of the broken state management

architecture that has been prevalent since the earliest days of the web.

Bijection

The notion of Inversion of Control or dependency injection exists in both JSF and EJB3, as

well as in numerous so-called "lightweight containers". Most of these containers emphasize

injection of components that implement stateless services. Even when injection of stateful

components is supported (such as in JSF), it is virtually useless for handling application

state because the scope of the stateful component cannot be defined with sufficient flexibility,

and because components belonging to wider scopes may not be injected into components

belonging to narrower scopes.

Bijection differs from IoC in that it is dynamic, contextual, and bidirectional. You can think of

it as a mechanism for aliasing contextual variables (names in the various contexts bound to

the current thread) to attributes of the component. Bijection allows auto-assembly of stateful

components by the container. It even allows a component to safely and easily manipulate the

value of a context variable, just by assigning it to an attribute of the component.

Workspace management and multi-window browsing

Seam applications let the user freely switch between multiple browser tabs, each associated

with a different, safely isolated, conversation. Applications may even take advantage of

workspace management, allowing the user to switch between conversations (workspaces) in

a single browser tab. Seam provides not only correct multi-window operation, but also multi-

window-like operation in a single window!

Prefer annotations to XML

Traditionally, the Java community has been in a state of deep confusion about precisely

what kinds of meta-information counts as configuration. Java EE and popular "lightweight"

containers have provided XML-based deployment descriptors both for things which are

truly configurable between different deployments of the system, and for any other kinds or

declaration which can not easily be expressed in Java. Java 5 annotations changed all this.

EJB 3.0 embraces annotations and "configuration by exception" as the easiest way to provide

information to the container in a declarative form. Unfortunately, JSF is still heavily dependent

Introduction to JBoss Seam

xviii

on verbose XML configuration files. Seam extends the annotations provided by EJB 3.0 with

a set of annotations for declarative state management and declarative context demarcation.

This lets you eliminate the noisy JSF managed bean declarations and reduce the required

XML to just that information which truly belongs in XML (the JSF navigation rules).

Integration testing is easy

Seam components, being plain Java classes, are by nature unit testable. But for complex

applications, unit testing alone is insufficient. Integration testing has traditionally been a messy

and difficult task for Java web applications. Therefore, Seam provides for testability of Seam

applications as a core feature of the framework. You can easily write JUnit or TestNG tests

that reproduce a whole interaction with a user, exercising all components of the system apart

from the view. You can run these tests directly inside your IDE, where Seam will automatically

deploy EJB components using Arquillian.

The specs ain't perfect

We think the latest incarnation of Java EE is great. But we know it's never going to be perfect.

Where there are holes in the specifications (for example, limitations in the JSF lifecycle for

GET requests), Seam fixes them. And the authors of Seam are working with the JCP expert

groups to make sure those fixes make their way back into the next revision of the standards.

There's more to a web application than serving HTML pages

Today's web frameworks think too small. They let you get user input off a form and into

your Java objects. And then they leave you hanging. A truly complete web application

framework should address problems like persistence, concurrency, asynchronicity, state

management, security, email, messaging, PDF and chart generation, workflow, wikitext

rendering, webservices, caching and more. Once you scratch the surface of Seam, you'll be

amazed at how many problems become simpler...

Seam integrates JPA and Hibernate for persistence, the EJB Timer Service and Quartz for

lightweight asychronicity, jBPM for workflow, JBoss Rules for business rules, Meldware Mail

for email, Hibernate Search and Lucene for full text search, JMS for messaging and JBoss

Cache for page fragment caching. Seam layers an innovative rule-based security framework

over JAAS and JBoss Rules. There's even JSF tag libraries for rendering PDF, outgoing

email, charts and wikitext. Seam components may be called synchronously as a Web Service,

asynchronously from client-side JavaScript or Google Web Toolkit or, of course, directly from

JSF.

Get started now!

Seam should work in any Java EE application server, and even works in Tomcat. If your

environment supports EJB 3.0 or 3.1, great! If it doesn't, no problem, you can use Seam's

built-in transaction management with JPA or Hibernate for persistence.

Contribute to Seam

xix

It turns out that the combination of Seam, JSF and EJB is the simplest way to write a complex

web application in Java. You won't believe how little code is required!

1. Contribute to Seam

Visit SeamFramework.org [http://www.seamframework.org/Community/Contribute] to find out

how to contribute to Seam!

http://www.seamframework.org/Community/Contribute
http://www.seamframework.org/Community/Contribute

xx

Chapter 1.

1

Seam Tutorial

1.1. Using the Seam examples

Seam provides a number of example applications demonstrating how to use the various features of

Seam. This tutorial will guide you through a few of those examples to help you get started learning

Seam. The Seam examples are located in the examples subdirectory of the Seam distribution. The

registration example, which will be the first example we look at, is in the examples/registration

directory.

Each example has the very similar directory structure which is based on Maven

project structure defaults [http://maven.apache.org/guides/introduction/introduction-to-the-

standard-directory-layout.html]:

• The <example>-ear directory contains enterprise application submodule files such as

aggregator for web application files, EJB project.

• The <example>-web directory contains web application submodule view-related files such as

web page templates, images and stylesheets.

• The <example>-ejb directory contains Enterprise Java Beans components.

• The <example>-tests directory contains integration and functional tests.

• The <example>-web/src/main/webapp directory contains view-related files such as web page

templates, images and stylesheets.

• The <example>-[ear|ejb]/src/main/resources directory contains deployment descriptors

and other configuration files.

• The <example>-ejb/src/main/java directory contains the application source code.

The example applications run on JBoss AS 7.1.1 with no additional configuration. The following

sections will explain the procedure. Note that all the examples are built and run from the Maven

pom.xml, so you'll need at least version 3.x of Maven installed before you get started. At the time

of writing this text recent version of Maven was 3.0.4.

1.1.1. Running the examples on JBoss AS

The examples are configured for use on JBoss AS 7.1. You'll need to set JBOSS_HOME, in your

environment, to the location of your JBoss AS installation.

Once you've set the location of JBoss AS and started the application server, you can build any

example by typing mvn install in the example root directory. Any example is deployed by

http://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
http://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
http://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
http://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html

Chapter 1. Seam Tutorial

2

changing directory to *-ear or *-web directory in case of existence only *-web submodule. Type in

that submodule mvn jboss-as:deploy. Any example that is packaged as an EAR deploys to a

URL like /seam-example, where example is the name of the example folder, with one exception.

If the example folder begins with seam, the prefix "seam" is ommitted. For instance, if JBoss AS

is running on port 8080, the URL for the registration example is http://localhost:8080/seam-

registration/ [http://localhost:8080/seam-registration/], whereas the URL for the seamspace

example is http://localhost:8080/seam-space/ [http://localhost:8080/seam-space/].

If, on the other hand, the example gets packaged as a WAR, then it deploys to a URL like /jboss-

seam-example. Several of the examples can only be deployed as a WAR. Those examples are

groovybooking, hibernate, jpa, and spring.

1.1.2. Running the example tests

Most of the examples come with a suite of Arquillian JUnit integration tests. The easiest way to

run the tests is to run mvn verify -Darquillian=jbossas-managed-7. It is also possible to run

the tests inside your IDE using the JUnit plugin. Consult the readme.txt in the examples directory

of the Seam distribution for more information.

1.2. Your first Seam application: the registration

example

The registration example is a simple application that lets a new user store his username, real name

and password in the database. The example isn't intended to show off all of the cool functionality

of Seam. However, it demonstrates the use of an EJB3 session bean as a JSF action listener,

and basic configuration of Seam.

We'll go slowly, since we realize you might not yet be familiar with EJB 3.0.

The start page displays a very basic form with three input fields. Try filling them in and then

submitting the form. This will save a user object in the database.

http://localhost:8080/seam-registration/
http://localhost:8080/seam-registration/
http://localhost:8080/seam-registration/
http://localhost:8080/seam-space/
http://localhost:8080/seam-space/

Understanding the code

3

1.2.1. Understanding the code

The example is implemented with two Facelets templates, one entity bean and one stateless

session bean. Let's take a look at the code, starting from the "bottom".

1.2.1.1. The entity bean: User.java

We need an EJB entity bean for user data. This class defines persistence and validation

declaratively, via annotations. It also needs some extra annotations that define the class as a

Seam component.

Example 1.1. User.java

@Entity

@Name("user")

@Scope(SESSION)

@Table(name="users")

public class User implements Serializable

{

 private static final long serialVersionUID = 1881413500711441951L;

 private String username;

 private String password;

Chapter 1. Seam Tutorial

4

 private String name;

 public User(String name, String password, String username)

 {

 this.name = name;

 this.password = password;

 this.username = username;

 }

 public User() {}

 @NotNull @Size(min=5, max=15)

 public String getPassword()

 {

 return password;

 }

 public void setPassword(String password)

 {

 this.password = password;

 }

 @NotNull

 public String getName()

 {

 return name;

 }

 public void setName(String name)

 {

 this.name = name;

 }

 @Id @NotNull @Size(min=5, max=15)

 public String getUsername()

 {

 return username;

 }

 public void setUsername(String username)

 {

 this.username = username;

 }

Understanding the code

5

}

The EJB3 standard @Entity annotation indicates that the User class is an entity bean.

A Seam component needs a component name specified by the @Name annotation. This

name must be unique within the Seam application. When JSF asks Seam to resolve a context

variable with a name that is the same as a Seam component name, and the context variable

is currently undefined (null), Seam will instantiate that component, and bind the new instance

to the context variable. In this case, Seam will instantiate a User the first time JSF encounters

a variable named user.

Whenever Seam instantiates a component, it binds the new instance to a context variable

in the component's default context. The default context is specified using the @Scope

annotation. The User bean is a session scoped component.

The EJB standard @Table annotation indicates that the User class is mapped to the users

table.

name, password and username are the persistent attributes of the entity bean. All of our

persistent attributes define accessor methods. These are needed when this component is

used by JSF in the render response and update model values phases.

An empty constructor is both required by both the EJB specification and by Seam.

The @NotNull and @Size annotations are part of the Bean Validation annotations

specification (JSR-303). Seam integrates Bean Validation through Hibernate Validator, which

is the reference implementation, and lets you use it for data validation (even if you are not

using Hibernate for persistence).

The EJB standard @Id annotation indicates the primary key attribute of the entity bean.

The most important things to notice in this example are the @Name and @Scope annotations. These

annotations establish that this class is a Seam component.

We'll see below that the properties of our User class are bound directly to JSF components and

are populated by JSF during the update model values phase. We don't need any tedious glue

code to copy data back and forth between the JSF pages and the entity bean domain model.

However, entity beans shouldn't do transaction management or database access. So we can't

use this component as a JSF action listener. For that we need a session bean.

1.2.1.2. The stateless session bean class: RegisterAction.java

Most Seam application use session beans as JSF action listeners (you can use JavaBeans instead

if you like).

We have exactly one JSF action in our application, and one session bean method attached to it.

In this case, we'll use a stateless session bean, since all the state associated with our action is

held by the User bean.

This is the only really interesting code in the example!

Chapter 1. Seam Tutorial

6

Example 1.2. RegisterAction.java

@Stateless

@Name("register")

public class RegisterAction implements Register

{

 @In

 private User user;

 @PersistenceContext

 private EntityManager em;

 @Logger

 private Log log;

 public String register()

 {

 List existing = em.createQuery(

 "select username from User where username = #{user.username}")

 .getResultList();

 if (existing.size()==0)

 {

 em.persist(user);

 log.info("Registered new user #{user.username}");

 return "/registered.xhtml";

 }

 else

 {

 FacesMessages.instance().add("User #{user.username} already exists");

 return null;

 }

 }

}

The EJB @Stateless annotation marks this class as a stateless session bean.

The @In annotation marks an attribute of the bean as injected by Seam. In this case, the

attribute is injected from a context variable named user (the instance variable name).

The EJB standard @PersistenceContext annotation is used to inject the EJB3 entity

manager.

Understanding the code

7

The Seam @Logger annotation is used to inject the component's Log instance.

The action listener method uses the standard EJB3 EntityManager API to interact with

the database, and returns the JSF outcome. Note that, since this is a session bean, a

transaction is automatically begun when the register() method is called, and committed

when it completes.

Notice that Seam lets you use a JSF EL expression inside EJB-QL. Under the covers, this

results in an ordinary JPA setParameter() call on the standard JPA Query object. Nice,

huh?

The Log API lets us easily display templated log messages which can also make use of JSF

EL expressions.

JSF action listener methods return a string-valued outcome that determines what page will

be displayed next. A null outcome (or a void action listener method) redisplays the previous

page. In plain JSF, it is normal to always use a JSF navigation rule to determine the JSF view

id from the outcome. For complex application this indirection is useful and a good practice.

However, for very simple examples like this one, Seam lets you use the JSF view id as the

outcome, eliminating the requirement for a navigation rule. Note that when you use a view

id as an outcome, Seam always performs a browser redirect.

Seam provides a number of built-in components to help solve common problems. The

FacesMessages component makes it easy to display templated error or success messages.

(As of Seam 2.1, you can use StatusMessages instead to remove the semantic dependency

on JSF). Built-in Seam components may be obtained by injection, or by calling the

instance() method on the class of the built-in component.

Note that we did not explicitly specify a @Scope this time. Each Seam component type has a default

scope if not explicitly specified. For stateless session beans, the default scope is the stateless

context, which is the only sensible value.

Our session bean action listener performs the business and persistence logic for our mini-

application. In more complex applications, we might need require a separate service layer. This

is easy to achieve with Seam, but it's overkill for most web applications. Seam does not force you

into any particular strategy for application layering, allowing your application to be as simple, or

as complex, as you want.

Note that in this simple application, we've actually made it far more complex than it needs to be.

If we had used the Seam application framework controllers, we would have eliminated all of our

application code. However, then we wouldn't have had much of an application to explain.

1.2.1.3. The session bean local interface: Register.java

Naturally, our session bean needs a local interface.

Example 1.3. Register.java

@Local

public interface Register

Chapter 1. Seam Tutorial

8

{

 public String register();

}

That's the end of the Java code. Now we'll look at the view.

1.2.1.4. The view: register.xhtml and registered.xhtml

The view pages for a Seam application could be implemented using any technology that supports

JSF. In this example we use Facelets, because we think it's better than JSF.

Example 1.4. register.xhtml

<?xml version="1.0" encoding="utf-8"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"

 xmlns:s="http://jboss.org/schema/seam/taglib"

 xmlns:h="http://java.sun.com/jsf/html"

 xmlns:f="http://java.sun.com/jsf/core">

 <h:head>

 <title>Register New User</title>

 </h:head>

 <h:body>

 <h:head>f:view>

 <h:form>

 <s:validateAll>

 <h:panelGrid columns="2">

 Username: <h:inputText value="#{user.username}" required="true"/>

 Real Name: <h:inputText value="#{user.name}" required="true"/>

 Password: <h:inputSecret value="#{user.password}" required="true"/>

 </h:panelGrid>

 </s:validateAll>

 <h:messages/>

 <h:commandButton value="Register" action="#{register.register}"/>

 </h:form>

 </f:view>

 </h:body>

</html>

Understanding the code

9

The only thing here that is specific to Seam is the <s:validateAll> tag. This JSF component

tells JSF to validate all the contained input fields against the Bean Validation annotations specified

on the entity bean.

Example 1.5. registered.xhtml

<?xml version="1.0" encoding="utf-8"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"

 xmlns:f="http://java.sun.com/jsf/core">

 <h:head>

 <title>Successfully Registered New User</title>

 </h:head>

 <h:body>

 <f:view>

 Welcome, #{user.name}, you are successfully registered as #{user.username}.

 </f:view>

 </h:body>

</html>

This is a simple Facelets page using some inline EL. There's nothing specific to Seam here.

1.2.1.5. The Seam component deployment descriptor: components.xml

Since this is the first Seam app we've seen, we'll take a look at the deployment descriptors.

Before we get into them, it is worth noting that Seam strongly values minimal configuration. These

configuration files will be created for you when you create a Seam application. You'll never need

to touch most of these files. We're presenting them now only to help you understand what all the

pieces in the example are doing.

If you've used many Java frameworks before, you'll be used to having to declare all your

component classes in some kind of XML file that gradually grows more and more unmanageable

as your project matures. You'll be relieved to know that Seam does not require that application

components be accompanied by XML. Most Seam applications require a very small amount of

XML that does not grow very much as the project gets bigger.

Nevertheless, it is often useful to be able to provide for some external configuration of some

components (particularly the components built in to Seam). You have a couple of options here,

but the most flexible option is to provide this configuration in a file called components.xml, located

in the WEB-INF directory. We'll use the components.xml file to tell Seam how to find our EJB

components in JNDI:

Chapter 1. Seam Tutorial

10

Example 1.6. components.xml

<?xml version="1.0" encoding="UTF-8"?>

<components xmlns="http://jboss.org/schema/seam/components"

 xmlns:core="http://jboss.org/schema/seam/core"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="

 http://jboss.org/schema/seam/core

 http://jboss.org/schema/seam/core-2.3.xsd

 http://jboss.org/schema/seam/components

 http://jboss.org/schema/seam/components-2.3.xsd">

 <core:init jndi-pattern="${jndiPattern}"/>

</components>

This code configures a property named jndiPattern of a built-in Seam component named

org.jboss.seam.core.init. The funny @ symbols are there because our Maven build

puts the correct JNDI pattern in when we deploy the application, which it reads from the

components.properties file. You learn more about how this process works in Section 6.2,

“Configuring components via components.xml”.

Note

Eclipse M2e Web tools plugin can't use the @ for token property filtering. Fortunately

there works the other way which is in Maven filtering defined - ${property}.

1.2.1.6. The web deployment description: web.xml

The presentation layer for our mini-application will be deployed in a WAR. So we'll need a web

deployment descriptor.

Example 1.7. web.xml

<?xml version="1.0" encoding="UTF-8"?>

<web-app xmlns="http://java.sun.com/xml/ns/javaee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="

 http://java.sun.com/xml/ns/javaee

 http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd"

 version="3.0">

Understanding the code

11

 <listener>

 <listener-class>org.jboss.seam.servlet.SeamListener</listener-class>

 </listener>

 <context-param>

 <param-name>javax.faces.DEFAULT_SUFFIX</param-name>

 <param-value>.xhtml</param-value>

 </context-param>

 <servlet>

 <servlet-name>Faces Servlet</servlet-name>

 <servlet-class>javax.faces.webapp.FacesServlet</servlet-class>

 <load-on-startup>1</load-on-startup>

 </servlet>

 <servlet-mapping>

 <servlet-name>Faces Servlet</servlet-name>

 <url-pattern>*.seam</url-pattern>

 </servlet-mapping>

 <session-config>

 <session-timeout>10</session-timeout>

 </session-config>

</web-app>

This web.xml file configures Seam and JSF. The configuration you see here is pretty much

identical in all Seam applications.

1.2.1.7. The JSF configuration: faces-config.xml

Most Seam applications use JSF views as the presentation layer. So usually we'll need faces-

config.xml. In our case, we are going to use Facelets for defining our views, so we need to tell

JSF to use Facelets as its templating engine.

Example 1.8. faces-config.xml

<?xml version="1.0" encoding="UTF-8"?>

<faces-config xmlns="http://java.sun.com/xml/ns/javaee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="

 http://java.sun.com/xml/ns/javaee

 http://java.sun.com/xml/ns/javaee/web-facesconfig_2_1.xsd"

 version="2.1">

Chapter 1. Seam Tutorial

12

</faces-config>

Note that we don't need any JSF managed bean declarations and neither FaceletViewHandler

definition as Facelets are default view technology in JSF 2! Our managed beans are annotated

Seam components. So basically we don't need faces-config.xml at all, but here is the faces-

config.xml as the template for advanced JSF configurations.

In fact, once you have all the basic descriptors set up, the only XML you need to write as you

add new functionality to a Seam application is orchestration: navigation rules or jBPM process

definitions. Seam's stand is that process flow and configuration data are the only things that truly

belong in XML.

In this simple example, we don't even need a navigation rule, since we decided to embed the

view id in our action code.

1.2.1.8. The EJB deployment descriptor: ejb-jar.xml

The ejb-jar.xml file integrates Seam with EJB3, by attaching the SeamInterceptor to all

session beans in the archive.

<?xml version="1.0" encoding="UTF-8"?>

<ejb-jar xmlns="http://java.sun.com/xml/ns/javaee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="

 http://java.sun.com/xml/ns/javaee

 http://java.sun.com/xml/ns/javaee/ejb-jar_3_0.xsd"

 version="3.0">

 <interceptors>

 <interceptor>

 <interceptor-class>org.jboss.seam.ejb.SeamInterceptor</interceptor-class>

 </interceptor>

 </interceptors>

 <assembly-descriptor>

 <interceptor-binding>

 <ejb-name>*</ejb-name>

 <interceptor-class>org.jboss.seam.ejb.SeamInterceptor</interceptor-class>

 </interceptor-binding>

 </assembly-descriptor>

</ejb-jar>

Understanding the code

13

1.2.1.9. The EJB persistence deployment descriptor: persistence.xml

The persistence.xml file tells the EJB persistence provider where to find the datasource, and

contains some vendor-specific settings. In this case, enables automatic schema export at startup

time.

<?xml version="1.0" encoding="UTF-8"?>

<persistence xmlns="http://java.sun.com/xml/ns/persistence"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="

 http://java.sun.com/xml/ns/persistence

 http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd"

 version="2.0">

 <persistence-unit name="userDatabase">

 <provider>org.hibernate.ejb.HibernatePersistence</provider>

 <jta-data-source>java:jboss/datasources/ExampleDS</jta-data-source>

 <properties>

 <property name="hibernate.hbm2ddl.auto" value="create-drop"/>

 </properties>

 </persistence-unit>

</persistence>

1.2.1.10. The EAR deployment descriptor: application.xml

Finally, since our application is deployed as an EAR, we need a deployment descriptor there, too.

Note

This file can be generated by Maven EAR plugin and registration application has

got this set up in registration-ear/pom.xml.

Just for clarity, the following is the result of that generation:

Example 1.9. registration application

<?xml version="1.0" encoding="UTF-8"?>

<application xmlns="http://java.sun.com/xml/ns/javaee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="

 http://java.sun.com/xml/ns/javaee

Chapter 1. Seam Tutorial

14

 http://java.sun.com/xml/ns/javaee/application_6.xsd"

 version="6">

 <display-name>registration-ear</display-name>

 <module>

 <web>

 <web-uri>registration-web.war</web-uri>

 <context-root>/seam-registration</context-root>

 </web>

 </module>

 <module>

 <ejb>registration-ejb.jar</ejb>

 </module>

 <module>

 <ejb>jboss-seam.jar</ejb>

 </module>

</application>

This deployment descriptor links modules in the enterprise archive and binds the web application

to the context root /seam-registration.

We've now seen all the files in the entire application!

1.2.2. How it works

When the form is submitted, JSF asks Seam to resolve the variable named user. Since there is no

value already bound to that name (in any Seam context), Seam instantiates the user component,

and returns the resulting User entity bean instance to JSF after storing it in the Seam session

context.

The form input values are now validated against the Bean Validator constraints specified on the

User entity. If the constraints are violated, JSF redisplays the page. Otherwise, JSF binds the form

input values to properties of the User entity bean.

Next, JSF asks Seam to resolve the variable named register. Seam uses the JNDI pattern

mentioned earlier to locate the stateless session bean, wraps it as a Seam component, and returns

it. Seam then presents this component to JSF and JSF invokes the register() action listener

method.

But Seam is not done yet. Seam intercepts the method call and injects the User entity from the

Seam session context, before allowing the invocation to continue.

The register() method checks if a user with the entered username already exists. If so, an error

message is queued with the FacesMessages component, and a null outcome is returned, causing

a page redisplay. The FacesMessages component interpolates the JSF expression embedded in

the message string and adds a JSF FacesMessage to the view.

Clickable lists in Seam: the messages example

15

If no user with that username exists, the "/registered.xhtml" outcome triggers a browser

redirect to the registered.xhtml page. When JSF comes to render the page, it asks Seam to

resolve the variable named user and uses property values of the returned User entity from Seam's

session scope.

1.3. Clickable lists in Seam: the messages example

Clickable lists of database search results are such an important part of any online application that

Seam provides special functionality on top of JSF to make it easier to query data using EJB-QL

or HQL and display it as a clickable list using a JSF <h:dataTable>. The messages example

demonstrates this functionality.

1.3.1. Understanding the code

The message list example has one entity bean, Message, one session bean, MessageListBean

and one JSF.

Chapter 1. Seam Tutorial

16

1.3.1.1. The entity bean: Message.java

The Message entity defines the title, text, date and time of a message, and a flag indicating whether

the message has been read:

Example 1.10. Message.java

@Entity

@Name("message")

@Scope(EVENT)

public class Message implements Serializable

{

 private Long id;

 private String title;

 private String text;

 private boolean read;

 private Date datetime;

 @Id @GeneratedValue

 public Long getId()

 {

 return id;

 }

 public void setId(Long id)

 {

 this.id = id;

 }

 @NotNull @Size(max=100)

 public String getTitle()

 {

 return title;

 }

 public void setTitle(String title)

 {

 this.title = title;

 }

 @NotNull @Lob

 public String getText()

 {

 return text;

 }

 public void setText(String text)

Understanding the code

17

 {

 this.text = text;

 }

 @NotNull

 public boolean isRead()

 {

 return read;

 }

 public void setRead(boolean read)

 {

 this.read = read;

 }

 @NotNull

 @Basic @Temporal(TemporalType.TIMESTAMP)

 public Date getDatetime()

 {

 return datetime;

 }

 public void setDatetime(Date datetime)

 {

 this.datetime = datetime;

 }

}

1.3.1.2. The stateful session bean: MessageManagerBean.java

Just like in the previous example, we have a session bean, MessageManagerBean, which defines

the action listener methods for the two buttons on our form. One of the buttons selects a message

from the list, and displays that message. The other button deletes a message. So far, this is not

so different to the previous example.

But MessageManagerBean is also responsible for fetching the list of messages the first time we

navigate to the message list page. There are various ways the user could navigate to the page,

and not all of them are preceded by a JSF action — the user might have bookmarked the page, for

example. So the job of fetching the message list takes place in a Seam factory method, instead

of in an action listener method.

We want to cache the list of messages in memory between server requests, so we will make this

a stateful session bean.

Chapter 1. Seam Tutorial

18

Example 1.11. MessageManagerBean.java

@Stateful

@Scope(SESSION)

@Name("messageManager")

public class MessageManagerBean implements Serializable, MessageManager

{

 @DataModel

 private List<Message> messageList;

 @DataModelSelection

 @Out(required=false)

 private Message message;

 @PersistenceContext(type=EXTENDED)

 private EntityManager em;

 @Factory("messageList")

 public void findMessages()

 {

 messageList = em.createQuery("select msg from Message msg order by msg.datetime desc")

 .getResultList();

 }

 public void select()

 {

 message.setRead(true);

 }

 public void delete()

 {

 messageList.remove(message);

 em.remove(message);

 message=null;

 }

 @Remove

 public void destroy() {}

}

Understanding the code

19

The @DataModel annotation exposes an attribute of type java.util.List to the JSF page

as an instance of javax.faces.model.DataModel. This allows us to use the list in a JSF

<h:dataTable> with clickable links for each row. In this case, the DataModel is made

available in a session context variable named messageList.

The @DataModelSelection annotation tells Seam to inject the List element that

corresponded to the clicked link.

The @Out annotation then exposes the selected value directly to the page. So every time

a row of the clickable list is selected, the Message is injected to the attribute of the stateful

bean, and the subsequently outjected to the event context variable named message.

This stateful bean has an EJB3 extended persistence context. The messages retrieved in the

query remain in the managed state as long as the bean exists, so any subsequent method

calls to the stateful bean can update them without needing to make any explicit call to the

EntityManager.

The first time we navigate to the JSF page, there will be no value in the messageList context

variable. The @Factory annotation tells Seam to create an instance of MessageManagerBean

and invoke the findMessages() method to initialize the value. We call findMessages() a

factory method for messages.

The select() action listener method marks the selected Message as read, and updates it

in the database.

The delete() action listener method removes the selected Message from the database.

All stateful session bean Seam components must have a method with no parameters marked

@Remove that Seam uses to remove the stateful bean when the Seam context ends, and

clean up any server-side state.

Note that this is a session-scoped Seam component. It is associated with the user login session,

and all requests from a login session share the same instance of the component. (In Seam

applications, we usually use session-scoped components sparingly.)

1.3.1.3. The session bean local interface: MessageManager.java

All session beans have a business interface, of course.

Example 1.12. MessageManager.java

@Local

public interface MessageManager

{

 public void findMessages();

 public void select();

 public void delete();

 public void destroy();

}

From now on, we won't show local interfaces in our code examples.

Chapter 1. Seam Tutorial

20

Let's skip over components.xml, persistence.xml, web.xml, ejb-jar.xml, faces-config.xml

and application.xml since they are much the same as the previous example, and go straight

to the JSF.

1.3.1.4. The view: messages.xhtml

The JSF page is a straightforward use of the JSF <h:dataTable> component. Again, nothing

specific to Seam.

Example 1.13. messages.xhtml

<?xml version="1.0" encoding="utf-8"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"

 xmlns:s="http://jboss.org/schema/seam/taglib"

 xmlns:h="http://java.sun.com/jsf/html"

 xmlns:f="http://java.sun.com/jsf/core">

 <h:head>

 <title>Messages</title>

 </h:head>

 <h:body>

 <f:view>

 <h2>Message List</h2>

 <h:outputText id="noMessages" value="No messages to display"

 rendered="#{messageList.rowCount==0}"/>

 <h:dataTable id="messages" var="msg" value="#{messageList}"

 rendered="#{messageList.rowCount>0}">

 <h:column>

 <f:facet name="header">

 <h:outputText value="Read"/>

 </f:facet>

 <h:selectBooleanCheckbox id="read" value="#{msg.read}" disabled="true"/>

 </h:column>

 <h:column>

 <f:facet name="header">

 <h:outputText value="Title"/>

 </f:facet>

 <s:link id="link" value="#{msg.title}" action="#{messageManager.select}"/>

 </h:column>

 <h:column>

 <f:facet name="header">

 <h:outputText value="Date/Time"/>

 </f:facet>

How it works

21

 <h:outputText id="date" value="#{msg.datetime}">

 <f:convertDateTime type="both" dateStyle="medium" timeStyle="short"/>

 </h:outputText>

 </h:column>

 <h:column>

 <s:button id="delete" value="Delete" action="#{messageManager.delete}"/>

 </h:column>

 </h:dataTable>

 <h3><h:outputText id="title" value="#{message.title}"/></h3>

 <div><h:outputText id="text" value="#{message.text}"/></div>

 </f:view>

 </h:body>

</html>

1.3.2. How it works

The first time we navigate to the messages.xhtml page, the page will try to resolve the

messageList context variable. Since this context variable is not initialized, Seam will call the

factory method findMessages(), which performs a query against the database and results in

a DataModel being outjected. This DataModel provides the row data needed for rendering the

<h:dataTable>.

When the user clicks the <h:commandLink>, JSF calls the select() action listener. Seam

intercepts this call and injects the selected row data into the message attribute of the

messageManager component. The action listener fires, marking the selected Message as read. At

the end of the call, Seam outjects the selected Message to the context variable named message.

Next, the EJB container commits the transaction, and the change to the Message is flushed to

the database. Finally, the page is re-rendered, redisplaying the message list, and displaying the

selected message below it.

If the user clicks the <h:commandButton>, JSF calls the delete() action listener. Seam intercepts

this call and injects the selected row data into the message attribute of the messageList

component. The action listener fires, removing the selected Message from the list, and also

calling remove() on the EntityManager. At the end of the call, Seam refreshes the messageList

context variable and clears the context variable named message. The EJB container commits

the transaction, and deletes the Message from the database. Finally, the page is re-rendered,

redisplaying the message list.

1.4. Seam and jBPM: the todo list example

jBPM provides sophisticated functionality for workflow and task management. To get a small taste

of how jBPM integrates with Seam, we'll show you a simple "todo list" application. Since managing

lists of tasks is such core functionality for jBPM, there is hardly any Java code at all in this example.

Chapter 1. Seam Tutorial

22

1.4.1. Understanding the code

The center of this example is the jBPM process definition. There are also two JSFs and two trivial

JavaBeans (There was no reason to use session beans, since they do not access the database,

or have any other transactional behavior). Let's start with the process definition:

Example 1.14. todo.jpdl.xml

<process-definition name="todo">

 <start-state name="start">

 <transition to="todo"/>

 </start-state>

 <task-node name="todo">

 <task name="todo" description="#{todoList.description}">

 <assignment actor-id="#{actor.id}"/>

 </task>

 <transition to="done"/>

 </task-node>

Understanding the code

23

 <end-state name="done"/>

</process-definition>

The <start-state> node represents the logical start of the process. When the process

starts, it immediately transitions to the todo node.

The <task-node> node represents a wait state, where business process execution pauses,

waiting for one or more tasks to be performed.

The <task> element defines a task to be performed by a user. Since there is only one task

defined on this node, when it is complete, execution resumes, and we transition to the end

state. The task gets its description from a Seam component named todoList (one of the

JavaBeans).

Tasks need to be assigned to a user or group of users when they are created. In this case,

the task is assigned to the current user, which we get from a built-in Seam component named

actor. Any Seam component may be used to perform task assignment.

The <end-state> node defines the logical end of the business process. When execution

reaches this node, the process instance is destroyed.

This document defines our business process as a graph of nodes. This is the most trivial possible

business process: there is one task to be performed, and when that task is complete, the business

process ends.

The first JavaBean handles the login screen login.xhtml. Its job is just to initialize the jBPM actor

id using the actor component. In a real application, it would also need to authenticate the user.

Example 1.15. Login.java

@Name("login")

public class Login

{

 @In

 private Actor actor;

 private String user;

 public String getUser()

 {

 return user;

 }

 public void setUser(String user)

 {

 this.user = user;

 }

Chapter 1. Seam Tutorial

24

 public String login()

 {

 actor.setId(user);

 return "/todo.xhtml";

 }

}

Here we see the use of @In to inject the built-in Actor component.

The JSF itself is trivial:

Example 1.16. login.xhtml

<?xml version="1.0" encoding="utf-8"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"

 xmlns:s="http://jboss.org/schema/seam/taglib"

 xmlns:h="http://java.sun.com/jsf/html"

 xmlns:f="http://java.sun.com/jsf/core">

 <h:head>

 <title>Login</title>

 </h:head>

 <h:body>

 <h1>Login</h1>

 <f:view>

 <h:form id="login">

 <div>

 <h:inputText id="username" value="#{login.user}"/>

 <h:commandButton id="submit" value="Login" action="#{login.login}"/>

 </div>

 </h:form>

 </f:view>

 </h:body>

</html>

The second JavaBean is responsible for starting business process instances, and ending tasks.

Example 1.17. TodoList.java

@Name("todoList")

Understanding the code

25

public class TodoList

{

 private String description;

 public String getDescription()

 {

 return description;

 }

 public void setDescription(String description)

 {

 this.description = description;

 }

 @CreateProcess(definition="todo")

 public void createTodo() {}

 @StartTask @EndTask

 public void done() {}

}

The description property accepts user input from the JSF page, and exposes it to the process

definition, allowing the task description to be set.

The Seam @CreateProcess annotation creates a new jBPM process instance for the named

process definition.

The Seam @StartTask annotation starts work on a task. The @EndTask ends the task, and

allows the business process execution to resume.

In a more realistic example, @StartTask and @EndTask would not appear on the same method,

because there is usually work to be done using the application in order to complete the task.

Finally, the core of the application is in todo.xhtml:

Example 1.18. todo.xhtml

<?xml version="1.0" encoding="utf-8"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"

 xmlns:s="http://jboss.org/schema/seam/taglib"

 xmlns:h="http://java.sun.com/jsf/html"

 xmlns:f="http://java.sun.com/jsf/core">

<head>

Chapter 1. Seam Tutorial

26

<title>Todo List</title>

</head>

<body>

<h1>Todo List</h1>

<f:view>

 <h:form id="list">

 <div>

 <h:outputText id="noItems" value="There are no todo items." rendered="#{empty

 taskInstancePriorityList}"/>

 <h:dataTable id="items" value="#{taskInstancePriorityList}" var="task" rendered="#{not

 empty taskInstancePriorityList}">

 <h:column>

 <f:facet name="header">

 <h:outputText value="Description"/>

 </f:facet>

 <h:inputText id="description" value="#{task.description}" style="width: 400"/>

 </h:column>

 <h:column>

 <f:facet name="header">

 <h:outputText value="Created"/>

 </f:facet>

 <h:outputText value="#{task.taskMgmtInstance.processInstance.start}">

 <f:convertDateTime type="date"/>

 </h:outputText>

 </h:column>

 <h:column>

 <f:facet name="header">

 <h:outputText value="Priority"/>

 </f:facet>

 <h:inputText id="priority" value="#{task.priority}" style="width: 30"/>

 </h:column>

 <h:column>

 <f:facet name="header">

 <h:outputText value="Due Date"/>

 </f:facet>

 <h:inputText id="dueDate" value="#{task.dueDate}" style="width: 100">

 <f:convertDateTime type="date" dateStyle="short"/>

 </h:inputText>

 </h:column>

 <h:column>

 <s:button id="done" action="#{todoList.done}" taskInstance="#{task}" value="Done"/>

 </h:column>

 </h:dataTable>

 </div>

Understanding the code

27

 <div>

 <h:messages/>

 </div>

 <div>

 <h:commandButton id="update" value="Update Items" rendered="#{not empty

 taskInstanceList}"/>

 </div>

 </h:form>

 <h:form id="new">

 <div>

 <h:inputText id="description" value="#{todoList.description}" style="width: 400"/>

 <h:commandButton id="create" value="Create New Item" action="#{todoList.createTodo}"/>

 </div>

 </h:form>

</f:view>

</body>

</html>

Let's take this one piece at a time.

The page renders a list of tasks, which it gets from a built-in Seam component named

taskInstanceList. The list is defined inside a JSF form.

Example 1.19. todo.xhtml

<h:form id="list">

 <div>

 <h:outputText value="There are no todo items." rendered="#{empty taskInstanceList}"/>

 <h:dataTable value="#{taskInstanceList}" var="task"

 rendered="#{not empty taskInstanceList}">

 ...

 </h:dataTable>

 </div>

</h:form>

Each element of the list is an instance of the jBPM class TaskInstance. The following code simply

displays the interesting properties of each task in the list. For the description, priority and due

date, we use input controls, to allow the user to update these values.

<h:column>

 <f:facet name="header">

 <h:outputText value="Description"/>

Chapter 1. Seam Tutorial

28

 </f:facet>

 <h:inputText value="#{task.description}"/>

</h:column>

<h:column>

 <f:facet name="header">

 <h:outputText value="Created"/>

 </f:facet>

 <h:outputText value="#{task.taskMgmtInstance.processInstance.start}">

 <f:convertDateTime type="date"/>

 </h:outputText>

</h:column>

<h:column>

 <f:facet name="header">

 <h:outputText value="Priority"/>

 </f:facet>

 <h:inputText value="#{task.priority}" style="width: 30"/>

</h:column>

<h:column>

 <f:facet name="header">

 <h:outputText value="Due Date"/>

 </f:facet>

 <h:inputText value="#{task.dueDate}" style="width: 100">

 <f:convertDateTime type="date" dateStyle="short"/>

 </h:inputText>

</h:column>

Note
Seam provides a default JSF date converter for converting a string to a date (no

time). Thus, the converter is not necessary for the field bound to #{task.dueDate}.

This button ends the task by calling the action method annotated @StartTask @EndTask. It passes

the task id to Seam as a request parameter:

<h:column>

 <s:button value="Done" action="#{todoList.done}" taskInstance="#{task}"/>

</h:column>

Note that this is using a Seam <s:button> JSF control from the seam-ui.jar package. This

button is used to update the properties of the tasks. When the form is submitted, Seam and jBPM

will make any changes to the tasks persistent. There is no need for any action listener method:

How it works

29

<h:commandButton value="Update Items" action="update"/>

A second form on the page is used to create new items, by calling the action method annotated

@CreateProcess.

<h:form id="new">

 <div>

 <h:inputText value="#{todoList.description}"/>

 <h:commandButton value="Create New Item" action="#{todoList.createTodo}"/>

 </div>

</h:form>

1.4.2. How it works

After logging in, todo.xhtml uses the taskInstanceList component to display a table of

outstanding todo items for a the current user. Initially there are none. It also presents a form to

enter a new entry. When the user types the todo item and hits the "Create New Item" button,

#{todoList.createTodo} is called. This starts the todo process, as defined in todo.jpdl.xml.

The process instance is created, starting in the start state and immediately transition to the todo

state, where a new task is created. The task description is set based on the user's input, which

was saved to #{todoList.description}. Then, the task is assigned to the current user, which

was stored in the seam actor component. Note that in this example, the process has no extra

process state. All the state in this example is stored in the task definition. The process and task

information is stored in the database at the end of the request.

When todo.xhtml is redisplayed, taskInstanceList now finds the task that was just created.

The task is shown in an h:dataTable. The internal state of the task is displayed in each column:

#{task.description}, #{task.priority}, #{task.dueDate}, etc... These fields can all be

edited and saved back to the database.

Each todo item also has "Done" button, which calls #{todoList.done}. The todoList component

knows which task the button is for because each s:button specificies taskInstance="#{task}",

referring to the task for that particular line of the table. The @StartTast and @EndTask annotations

cause seam to make the task active and immediately complete the task. The original process then

transitions into the done state, according to the process definition, where it ends. The state of the

task and process are both updated in the database.

When todo.xhtml is displayed again, the now-completed task is no longer displayed in the

taskInstanceList, since that component only display active tasks for the user.

Chapter 1. Seam Tutorial

30

1.5. Seam pageflow: the numberguess example

For Seam applications with relatively freeform (ad hoc) navigation, JSF/Seam navigation rules are

a perfectly good way to define the page flow. For applications with a more constrained style of

navigation, especially for user interfaces which are more stateful, navigation rules make it difficult

to really understand the flow of the system. To understand the flow, you need to piece it together

from the view pages, the actions and the navigation rules.

Seam allows you to use a jPDL process definition to define pageflow. The simple number guessing

example shows how this is done.

1.5.1. Understanding the code

The example is implemented using one JavaBean, three JSF pages and a jPDL pageflow

definition. Let's begin with the pageflow:

Example 1.20. pageflow.jpdl.xml

<pageflow-definition

 xmlns="http://jboss.org/schema/seam/pageflow"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://jboss.org/schema/seam/pageflow

 http://jboss.org/schema/seam/pageflow-2.3.xsd"

 name="numberGuess">

 <start-page name="displayGuess" view-id="/numberGuess.xhtml">

 <redirect/>

 <transition name="guess" to="evaluateGuess">

 <action expression="#{numberGuess.guess}"/>

Understanding the code

31

 </transition>

 <transition name="giveup" to="giveup"/>

 <transition name="cheat" to="cheat"/>

 </start-page>

 <decision name="evaluateGuess" expression="#{numberGuess.correctGuess}">

 <transition name="true" to="win"/>

 <transition name="false" to="evaluateRemainingGuesses"/>

 </decision>

 <decision name="evaluateRemainingGuesses" expression="#{numberGuess.lastGuess}">

 <transition name="true" to="lose"/>

 <transition name="false" to="displayGuess"/>

 </decision>

 <page name="giveup" view-id="/giveup.xhtml">

 <redirect/>

 <transition name="yes" to="lose"/>

 <transition name="no" to="displayGuess"/>

 </page>

 <process-state name="cheat">

 <sub-process name="cheat"/>

 <transition to="displayGuess"/>

 </process-state>

 <page name="win" view-id="/win.xhtml">

 <redirect/>

 <end-conversation/>

 </page>

 <page name="lose" view-id="/lose.xhtml">

 <redirect/>

 <end-conversation/>

 </page>

</pageflow-definition>

The <page> element defines a wait state where the system displays a particular JSF view

and waits for user input. The view-id is the same JSF view id used in plain JSF navigation

rules. The redirect attribute tells Seam to use post-then-redirect when navigating to the

page. (This results in friendly browser URLs.)

Chapter 1. Seam Tutorial

32

The <transition> element names a JSF outcome. The transition is triggered when a JSF

action results in that outcome. Execution will then proceed to the next node of the pageflow

graph, after invocation of any jBPM transition actions.

A transition <action> is just like a JSF action, except that it occurs when a jBPM transition

occurs. The transition action can invoke any Seam component.

A <decision> node branches the pageflow, and determines the next node to execute by

evaluating a JSF EL expression.

Now that we have seen the pageflow, it is very, very easy to understand the rest of the application!

Here is the main page of the application, numberGuess.xhtml:

Example 1.21. numberGuess.xhtml

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/

xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"

 xmlns:h="http://java.sun.com/jsf/html"

 xmlns:f="http://java.sun.com/jsf/core"

 xmlns:s="http://jboss.org/schema/seam/taglib">

 <h:head>

 <title>Guess a number...</title>

 <link href="niceforms.css" rel="stylesheet" type="text/css" />

 <script language="javascript" type="text/javascript" src="niceforms.js"><!-- --></script>

 </h:head>

 <h:body>

 <h1>Guess a number...</h1>

 <h:form id="NumberGuessMain" styleClass="niceform">

 <div>

 <h:messages id="messages" globalOnly="true"/>

 <h:outputText id="Higher"

 value="Higher!"

 rendered="#{numberGuess.randomNumber gt numberGuess.currentGuess}"/>

 <h:outputText id="Lower"

 value="Lower!"

 rendered="#{numberGuess.randomNumber lt numberGuess.currentGuess}"/>

 </div>

 <div>

 I'm thinking of a number between <h:outputText id="Smallest"

 value="#{numberGuess.smallest}"/> and

 <h:outputText id="Biggest" value="#{numberGuess.biggest}"/>. You have

 <h:outputText id="RemainingGuesses" value="#{numberGuess.remainingGuesses}"/>

 guesses.

Understanding the code

33

 </div>

 <div>

 Your guess:

 <h:inputText id="inputGuess" value="#{numberGuess.currentGuess}" required="true"

 size="3"

 rendered="#{(numberGuess.biggest-numberGuess.smallest) gt 20}">

 <f:validateLongRange maximum="#{numberGuess.biggest}"

 minimum="#{numberGuess.smallest}"/>

 </h:inputText>

 <h:selectOneMenu id="selectGuessMenu" value="#{numberGuess.currentGuess}"

 required="true"

 rendered="#{(numberGuess.biggest-numberGuess.smallest) le 20 and

 (numberGuess.biggest-numberGuess.smallest) gt 4}">

 <s:selectItems id="PossibilitiesMenuItems" value="#{numberGuess.possibilities}" var="i"

 label="#{i}"/>

 </h:selectOneMenu>

 <h:selectOneRadio id="selectGuessRadio" value="#{numberGuess.currentGuess}"

 required="true"

 rendered="#{(numberGuess.biggest-numberGuess.smallest) le 4}">

 <s:selectItems id="PossibilitiesRadioItems" value="#{numberGuess.possibilities}" var="i"

 label="#{i}"/>

 </h:selectOneRadio>

 <h:commandButton id="GuessButton" value="Guess" action="guess"/>

 <s:button id="CheatButton" value="Cheat" action="cheat"/>

 <s:button id="GiveUpButton" value="Give up" action="giveup"/>

 </div>

 <div>

 <h:message id="message" for="inputGuess" style="color: red"/>

 </div>

 </h:form>

 </h:body>

</html>

Notice how the command button names the guess transition instead of calling an action directly.

The win.xhtml page is predictable:

Example 1.22. win.xhtml

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/

xhtml1/DTD/xhtml1-transitional.dtd">

Chapter 1. Seam Tutorial

34

<html xmlns="http://www.w3.org/1999/xhtml"

 xmlns:h="http://java.sun.com/jsf/html"

 xmlns:f="http://java.sun.com/jsf/core"

 xmlns:s="http://jboss.org/schema/seam/taglib">

 <h:head>

 <title>You won!</title>

 <link href="niceforms.css" rel="stylesheet" type="text/css" />

 </h:head>

 <h:body>

 <h1>You won!</h1>

 Yes, the answer was <h:outputText id="CurrentGuess"

 value="#{numberGuess.currentGuess}" />.

 It took you <h:outputText id="GuessCount" value="#{numberGuess.guessCount}" /> guesses.

 <h:outputText id="CheatedMessage" value="But you cheated, so it doesn't count!"

 rendered="#{numberGuess.cheat}"/>

 Would you like to play again?

 </h:body>

</html>

The lose.xhtml looks roughly the same, so we'll skip over it.

Finally, we'll look at the actual application code:

Example 1.23. NumberGuess.java

@Name("numberGuess")

@Scope(ScopeType.CONVERSATION)

public class NumberGuess implements Serializable {

 private int randomNumber;

 private Integer currentGuess;

 private int biggest;

 private int smallest;

 private int guessCount;

 private int maxGuesses;

 private boolean cheated;

 @Create

 public void begin()

 {

 randomNumber = new Random().nextInt(100);

 guessCount = 0;

 biggest = 100;

Understanding the code

35

 smallest = 1;

 }

 public void setCurrentGuess(Integer guess)

 {

 this.currentGuess = guess;

 }

 public Integer getCurrentGuess()

 {

 return currentGuess;

 }

 public void guess()

 {

 if (currentGuess>randomNumber)

 {

 biggest = currentGuess - 1;

 }

 if (currentGuess<randomNumber)

 {

 smallest = currentGuess + 1;

 }

 guessCount ++;

 }

 public boolean isCorrectGuess()

 {

 return currentGuess==randomNumber;

 }

 public int getBiggest()

 {

 return biggest;

 }

 public int getSmallest()

 {

 return smallest;

 }

 public int getGuessCount()

 {

 return guessCount;

Chapter 1. Seam Tutorial

36

 }

 public boolean isLastGuess()

 {

 return guessCount==maxGuesses;

 }

 public int getRemainingGuesses() {

 return maxGuesses-guessCount;

 }

 public void setMaxGuesses(int maxGuesses) {

 this.maxGuesses = maxGuesses;

 }

 public int getMaxGuesses() {

 return maxGuesses;

 }

 public int getRandomNumber() {

 return randomNumber;

 }

 public void cheated()

 {

 cheated = true;

 }

 public boolean isCheat() {

 return cheated;

 }

 public List<Integer> getPossibilities()

 {

 List<Integer> result = new ArrayList<Integer>();

 for(int i=smallest; i<=biggest; i++) result.add(i);

 return result;

 }

}

The first time a JSF page asks for a numberGuess component, Seam will create a new one

for it, and the @Create method will be invoked, allowing the component to initialize itself.

How it works

37

The pages.xml file starts a Seam conversation (much more about that later), and specifies the

pageflow definition to use for the conversation's page flow.

Example 1.24. pages.xml

<?xml version="1.0" encoding="UTF-8"?>

<pages xmlns="http://jboss.org/schema/seam/pages"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://jboss.org/schema/seam/pages http://jboss.org/schema/seam/

pages-2.3.xsd">

 <page view-id="/numberGuess.xhtml">

 <begin-conversation join="true" pageflow="numberGuess"/>

 </page>

</pages>

As you can see, this Seam component is pure business logic! It doesn't need to know anything at

all about the user interaction flow. This makes the component potentially more reuseable.

1.5.2. How it works

We'll step through basic flow of the application. The game starts with the numberGuess.xhtml

view. When the page is first displayed, the pages.xml configuration causes conversation to begin

and associates the numberGuess pageflow with that conversation. The pageflow starts with a

start-page tag, which is a wait state, so the numberGuess.xhtml is rendered.

The view references the numberGuess component, causing a new instance to be created and

stored in the conversation. The @Create method is called, initializing the state of the game. The

view displays an h:form that allows the user to edit #{numberGuess.currentGuess}.

The "Guess" button triggers the guess action. Seam defers to the pageflow to handle the

action, which says that the pageflow should transition to the evaluateGuess state, first invoking

#{numberGuess.guess}, which updates the guess count and highest/lowest suggestions in the

numberGuess component.

The evaluateGuess state checks the value of #{numberGuess.correctGuess} and transitions

either to the win or evaluatingRemainingGuesses state. We'll assume the number was incorrect,

in which case the pageflow transitions to evaluatingRemainingGuesses. That is also a decision

state, which tests the #{numberGuess.lastGuess} state to determine whether or not the user

has more guesses. If there are more guesses (lastGuess is false), we transition back to the

original displayGuess state. Finally we've reached a page state, so the associated page /

numberGuess.xhtml is displayed. Since the page has a redirect element, Seam sends a redirect

to the user's browser, starting the process over.

Chapter 1. Seam Tutorial

38

We won't follow the state any more except to note that if on a future request either the win or the

lose transition were taken, the user would be taken to either the /win.xhtml or /lose.xhtml.

Both states specify that Seam should end the conversation, tossing away all the game state and

pageflow state, before redirecting the user to the final page.

The numberguess example also contains Giveup and Cheat buttons. You should be able to trace

the pageflow state for both actions relatively easily. Pay particular attention to the cheat transition,

which loads a sub-process to handle that flow. Although it's overkill for this application, it does

demonstrate how complex pageflows can be broken down into smaller parts to make them easier

to understand.

1.6. A complete Seam application: the Hotel Booking

example

1.6.1. Introduction

The booking application is a complete hotel room reservation system incorporating the following

features:

• User registration

• Login

• Logout

• Set password

• Hotel search

• Hotel selection

• Room reservation

• Reservation confirmation

• Existing reservation list

Introduction

39

The booking application uses JSF 2, EJB 3.0 and Seam, together with Facelets for the view. There

is also a port of this application to JSF 2, Seam, JavaBeans and Hibernate4.

One of the things you'll notice if you play with this application for long enough is that it is extremely

robust. You can play with back buttons and browser refresh and opening multiple windows and

entering nonsensical data as much as you like and you will find it very difficult to make the

Chapter 1. Seam Tutorial

40

application crash. You might think that we spent weeks testing and fixing bugs to achieve this.

Actually, this is not the case. Seam was designed to make it very straightforward to build robust

web applications and a lot of robustness that you are probably used to having to code yourself

comes naturally and automatically with Seam.

As you browse the sourcecode of the example application, and learn how the application works,

observe how the declarative state management and integrated validation has been used to

achieve this robustness.

1.6.2. Overview of the booking example

The project structure is identical to the previous one, to install and deploy this application, please

refer to Section 1.1, “Using the Seam examples”. Once you've successfully started the application,

you can access it by pointing your browser to http://localhost:8080/seam-booking/ [http://

localhost:8080/seam-booking/]

The application uses six session beans for to implement the business logic for the listed features.

• AuthenticatorAction provides the login authentication logic.

• BookingListAction retrieves existing bookings for the currently logged in user.

• ChangePasswordAction updates the password of the currently logged in user.

• HotelBookingAction implements booking and confirmation functionality. This functionality is

implemented as a conversation, so this is one of the most interesting classes in the application.

• HotelSearchingAction implements the hotel search functionality.

• RegisterAction registers a new system user.

Three entity beans implement the application's persistent domain model.

• Hotel is an entity bean that represent a hotel

• Booking is an entity bean that represents an existing booking

• User is an entity bean to represents a user who can make hotel bookings

1.6.3. Understanding Seam conversations

We encourage you browse the sourcecode at your pleasure. In this tutorial we'll concentrate

upon one particular piece of functionality: hotel search, selection, booking and confirmation. From

the point of view of the user, everything from selecting a hotel to confirming a booking is one

continuous unit of work, a conversation. Searching, however, is not part of the conversation. The

user can select multiple hotels from the same search results page, in different browser tabs.

Most web application architectures have no first class construct to represent a conversation. This

causes enormous problems managing conversational state. Usually, Java web applications use a

combination of several techniques. Some state can be transfered in the URL. What can't is either

http://localhost:8080/seam-booking/
http://localhost:8080/seam-booking/
http://localhost:8080/seam-booking/

Understanding Seam conversations

41

thrown into the HttpSession or flushed to the database after every request, and reconstructed

from the database at the beginning of each new request.

Since the database is the least scalable tier, this often results in an utterly unacceptable lack of

scalability. Added latency is also a problem, due to the extra traffic to and from the database on

every request. To reduce this redundant traffic, Java applications often introduce a data (second-

level) cache that keeps commonly accessed data between requests. This cache is necessarily

inefficient, because invalidation is based upon an LRU policy instead of being based upon when

the user has finished working with the data. Furthermore, because the cache is shared between

many concurrent transactions, we've introduced a whole raft of problem's associated with keeping

the cached state consistent with the database.

Now consider the state held in the HttpSession. The HttpSession is great place for true session

data, data that is common to all requests that the user has with the application. However, it's a bad

place to store data related to individual series of requests. Using the session of conversational

quickly breaks down when dealing with the back button and multiple windows. On top of that,

without careful programming, data in the HTTP Session can grow quite large, making the HTTP

session difficult to cluster. Developing mechanisms to isolate session state associated with

different concurrent conversations, and incorporating failsafes to ensure that conversation state

is destroyed when the user aborts one of the conversations by closing a browser window or tab

is not for the faint hearted. Fortunately, with Seam, you don't have to worry about that.

Seam introduces the conversation context as a first class construct. You can safely keep

conversational state in this context, and be assured that it will have a well-defined lifecycle. Even

better, you won't need to be continually pushing data back and forth between the application

server and the database, since the conversation context is a natural cache of data that the user

is currently working with.

In this application, we'll use the conversation context to store stateful session beans. There is

an ancient canard in the Java community that stateful session beans are a scalability killer. This

may have been true in the early days of enterprise Java, but it is no longer true today. Modern

application servers have extremely sophisticated mechanisms for stateful session bean state

replication. JBoss AS, for example, performs fine-grained replication, replicating only those bean

attribute values which actually changed. Note that all the traditional technical arguments for why

stateful beans are inefficient apply equally to the HttpSession, so the practice of shifting state from

business tier stateful session bean components to the web session to try and improve performance

is unbelievably misguided. It is certainly possible to write unscalable applications using stateful

session beans, by using stateful beans incorrectly, or by using them for the wrong thing. But that

doesn't mean you should never use them. If you remain unconvinced, Seam allows the use of

POJOs instead of stateful session beans. With Seam, the choice is yours.

The booking example application shows how stateful components with different scopes can

collaborate together to achieve complex behaviors. The main page of the booking application

allows the user to search for hotels. The search results are kept in the Seam session scope. When

the user navigates to one of these hotels, a conversation begins, and a conversation scoped

component calls back to the session scoped component to retrieve the selected hotel.

Chapter 1. Seam Tutorial

42

The booking example also demonstrates the use of RichFaces Ajax to implement rich client

behavior without the use of handwritten JavaScript.

The search functionality is implemented using a session-scope stateful session bean, similar to

the one we saw in the message list example.

Example 1.25. HotelSearchingAction.java

@Stateful

@Name("hotelSearch")

@Scope(ScopeType.SESSION)

@Restrict("#{identity.loggedIn}")

public class HotelSearchingAction implements HotelSearching

{

 @PersistenceContext

 private EntityManager em;

 private String searchString;

 private int pageSize = 10;

 private int page;

 @DataModel

 private List<Hotel> hotels;

 public void find()

 {

 page = 0;

 queryHotels();

 }

 public void nextPage()

 {

 page++;

 queryHotels();

 }

 private void queryHotels()

 {

 hotels =

 em.createQuery("select h from Hotel h where lower(h.name) like #{pattern} " +

 "or lower(h.city) like #{pattern} " +

 "or lower(h.zip) like #{pattern} " +

 "or lower(h.address) like #{pattern}")

 .setMaxResults(pageSize)

Understanding Seam conversations

43

 .setFirstResult(page * pageSize)

 .getResultList();

 }

 public boolean isNextPageAvailable()

 {

 return hotels!=null && hotels.size()==pageSize;

 }

 public int getPageSize() {

 return pageSize;

 }

 public void setPageSize(int pageSize) {

 this.pageSize = pageSize;

 }

 @Factory(value="pattern", scope=ScopeType.EVENT)

 public String getSearchPattern()

 {

 return searchString==null ?

 "%" : '%' + searchString.toLowerCase().replace('*', '%') + '%';

 }

 public String getSearchString()

 {

 return searchString;

 }

 public void setSearchString(String searchString)

 {

 this.searchString = searchString;

 }

 @Remove

 public void destroy() {}

}

The EJB standard @Stateful annotation identifies this class as a stateful session bean.

Stateful session beans are scoped to the conversation context by default.

The @Restrict annotation applies a security restriction to the component. It restricts access

to the component allowing only logged-in users. The security chapter explains more about

security in Seam.

Chapter 1. Seam Tutorial

44

The @DataModel annotation exposes a List as a JSF ListDataModel. This makes it easy

to implement clickable lists for search screens. In this case, the list of hotels is exposed to

the page as a ListDataModel in the conversation variable named hotels.

The EJB standard @Remove annotation specifies that a stateful session bean should be

removed and its state destroyed after invocation of the annotated method. In Seam, all

stateful session beans must define a method with no parameters marked @Remove. This

method will be called when Seam destroys the session context.

The main page of the application is a Facelets page. Let's look at the fragment which relates to

searching for hotels:

Example 1.26. main.xhtml

<div class="section">

 <h:messages id="messages" globalOnly="true"/>

 <h1>Search Hotels</h1>

 <h:form id="searchCriteria">

 <fieldset>

 <h:inputText id="searchString" value="#{hotelSearch.searchString}" style="width: 165px;">

 <a:ajax event="keyup" render="searchResults" listener="#{hotelSearch.find}"/>

 </h:inputText>

 <a:commandButton id="findHotels" value="Find Hotels" actionListener="#{hotelSearch.find}"

 render="searchResults"/>

 <a:status id="status">

 <f:facet id="StartStatus" name="start">

 <h:graphicImage id="SpinnerGif" value="/img/spinner.gif"/>

 </f:facet>

 </a:status>

 <h:outputLabel id="MaximumResultsLabel" for="pageSize">Maximum results:</

h:outputLabel>

 <h:selectOneMenu id="pageSize" value="#{hotelSearch.pageSize}">

 <f:selectItem id="PageSize5" itemLabel="5" itemValue="5"/>

 <f:selectItem id="PageSize10" itemLabel="10" itemValue="10"/>

 <f:selectItem id="PageSize20" itemLabel="20" itemValue="20"/>

 </h:selectOneMenu>

Understanding Seam conversations

45

 </fieldset>

 </h:form>

</div>

<a:outputPanel id="searchResults">

 <div class="section">

 <h:outputText id="NoHotelsFoundMessage" value="No Hotels Found" rendered="# {hotels !

= null and hotels.rowCount==0}"/>

 <h:dataTable id="hotels" value="#{hotels}" var="hot" rendered="#{hotels.rowCount>0}">

 <h:column id="column1">

 <f:facet id="NameFacet" name="header">Name</f:facet>

 #{hot.name}

 </h:column>

 <h:column id="column2">

 <f:facet id="AddressFacet" name="header">Address</f:facet>

 #{hot.address}

 </h:column>

 <h:column id="column3">

 <f:facet id="CityStateFacet" name="header">City, State</f:facet>

 #{hot.city}, #{hot.state}, #{hot.country}

 </h:column>

 <h:column id="column4">

 <f:facet id="ZipFacet" name="header">Zip</f:facet>

 #{hot.zip}

 </h:column>

 <h:column id="column5">

 <f:facet id="ActionFacet" name="header">Action</f:facet>

 <s:link id="viewHotel" value="View Hotel" action="#{hotelBooking.selectHotel(hot)}"/>

 </h:column>

 </h:dataTable>

 <s:link id="MoreResultsLink" value="More results" action="#{hotelSearch.nextPage}"

 rendered="#{hotelSearch.nextPageAvailable}"/>

 </div>

</a:outputPanel>

The RichFaces <a:ajax> tag allows a JSF action event listener to be called by asynchronous

XMLHttpRequest when a JavaScript event like onkeyup occurs. Even better, the render

attribute lets us render a fragment of the JSF page and perform a partial page update when

the asynchronous response is received.

The RichFaces <a:status> tag lets us display an animated image while we wait for

asynchronous requests to return.

Chapter 1. Seam Tutorial

46

The RichFaces <a:outputPanel> tag defines a region of the page which can be re-rendered

by an asynchronous request.

The Seam <s:link> tag lets us attach a JSF action listener to an ordinary (non-JavaScript)

HTML link. The advantage of this over the standard JSF <h:commandLink> is that it preserves

the operation of "open in new window" and "open in new tab".

If you're wondering how navigation occurs, you can find all the rules in WEB-INF/pages.xml;

this is discussed in Section 7.7, “Navigation”.

This page displays the search results dynamically as we type, and lets us choose a hotel and pass

it to the selectHotel() method of the HotelBookingAction, which is where the really interesting

stuff is going to happen.

Now let's see how the booking example application uses a conversation-scoped stateful session

bean to achieve a natural cache of persistent data related to the conversation. The following code

example is pretty long. But if you think of it as a list of scripted actions that implement the various

steps of the conversation, it's understandable. Read the class from top to bottom, as if it were

a story.

Example 1.27. HotelBookingAction.java

@Stateful

@Name("hotelBooking")

@Restrict("#{identity.loggedIn}")

public class HotelBookingAction implements HotelBooking

{

 @PersistenceContext(type=EXTENDED)

 private EntityManager em;

 @In

 private User user;

 @In(required=false) @Out

 private Hotel hotel;

 @In(required=false)

 @Out(required=false)

 private Booking booking;

 @In

 private FacesMessages facesMessages;

 @In

 private Events events;

Understanding Seam conversations

47

 @Logger

 private Log log;

 private boolean bookingValid;

 @Begin

 public void selectHotel(Hotel selectedHotel)

 {

 hotel = em.merge(selectedHotel);

 }

 public void bookHotel()

 {

 booking = new Booking(hotel, user);

 Calendar calendar = Calendar.getInstance();

 booking.setCheckinDate(calendar.getTime());

 calendar.add(Calendar.DAY_OF_MONTH, 1);

 booking.setCheckoutDate(calendar.getTime());

 }

 public void setBookingDetails()

 {

 Calendar calendar = Calendar.getInstance();

 calendar.add(Calendar.DAY_OF_MONTH, -1);

 if (booking.getCheckinDate().before(calendar.getTime()))

 {

 facesMessages.addToControl("checkinDate", "Check in date must be a future date");

 bookingValid=false;

 }

 else if (!booking.getCheckinDate().before(booking.getCheckoutDate()))

 {

 facesMessages.addToControl("checkoutDate",

 "Check out date must be later than check in date");

 bookingValid=false;

 }

 else

 {

 bookingValid=true;

 }

 }

 public boolean isBookingValid()

 {

Chapter 1. Seam Tutorial

48

 return bookingValid;

 }

 @End

 public void confirm()

 {

 em.persist(booking);

 facesMessages.add("Thank you, #{user.name}, your confimation number " +

 " for #{hotel.name} is #{booki g.id}");

 log.info("New booking: #{booking.id} for #{user.username}");

 events.raiseTransactionSuccessEvent("bookingConfirmed");

 }

 @End

 public void cancel() {}

 @Remove

 public void destroy() {}

This bean uses an EJB3 extended persistence context, so that any entity instances remain

managed for the whole lifecycle of the stateful session bean.

The @Out annotation declares that an attribute value is outjected to a context variable after

method invocations. In this case, the context variable named hotel will be set to the value

of the hotel instance variable after every action listener invocation completes.

The @Begin annotation specifies that the annotated method begins a long-running

conversation, so the current conversation context will not be destroyed at the end of the

request. Instead, it will be reassociated with every request from the current window, and

destroyed either by timeout due to conversation inactivity or invocation of a matching @End

method.

The @End annotation specifies that the annotated method ends the current long-running

conversation, so the current conversation context will be destroyed at the end of the request.

This EJB remove method will be called when Seam destroys the conversation context. Don't

forget to define this method!

HotelBookingAction contains all the action listener methods that implement selection, booking

and booking confirmation, and holds state related to this work in its instance variables. We think

you'll agree that this code is much cleaner and simpler than getting and setting HttpSession

attributes.

Even better, a user can have multiple isolated conversations per login session. Try it! Log in, run

a search, and navigate to different hotel pages in multiple browser tabs. You'll be able to work

on creating two different hotel reservations at the same time. If you leave any one conversation

inactive for long enough, Seam will eventually time out that conversation and destroy its state. If,

after ending a conversation, you backbutton to a page of that conversation and try to perform an

The Seam Debug Page

49

action, Seam will detect that the conversation was already ended, and redirect you to the search

page.

1.6.4. The Seam Debug Page

The WAR also includes seam-debug.jar. The Seam debug page will be available if this jar is

deployed in WEB-INF/lib, along with the Facelets, and if you set the debug property of the init

component:

<core:init jndi-pattern="@jndiPattern@" debug="true"/>

This page lets you browse and inspect the Seam components in any of the Seam contexts

associated with your current login session. Just point your browser at http://localhost:8080/

seam-booking/debug.seam [http://localhost:8080/seam-booking/debug.seam].

http://localhost:8080/seam-booking/debug.seam
http://localhost:8080/seam-booking/debug.seam
http://localhost:8080/seam-booking/debug.seam

Chapter 1. Seam Tutorial

50

1.7. Nested conversations: extending the Hotel Booking

example

1.7.1. Introduction

Long-running conversations make it simple to maintain consistency of state in an application

even in the face of multi-window operation and back-buttoning. Unfortunately, simply beginning

and ending a long-running conversation is not always enough. Depending on the requirements

of the application, inconsistencies between what the user's expectations and the reality of the

application’s state can still result.

Introduction

51

The nested booking application extends the features of the hotel booking application to incorporate

the selection of rooms. Each hotel has available rooms with descriptions for a user to select from.

This requires the addition of a room selection page in the hotel reservation flow.

The user now has the option to select any available room to be included in the booking. As with

the hotel booking application we saw previously, this can lead to issues with state consistency.

As with storing state in the HTTPSession, if a conversation variable changes it affects all windows

operating within the same conversation context.

Chapter 1. Seam Tutorial

52

To demonstrate this, let’s suppose the user clones the room selection screen in a new window.

The user then selects the Wonderful Room and proceeds to the confirmation screen. To see just

how much it would cost to live the high-life, the user returns to the original window, selects the

Fantastic Suite for booking, and again proceeds to confirmation. After reviewing the total cost,

the user decides that practicality wins out and returns to the window showing Wonderful Room

to confirm.

In this scenario, if we simply store all state in the conversation, we are not protected from multi-

window operation within the same conversation. Nested conversations allow us to achieve correct

behavior even when context can vary within the same conversation.

1.7.2. Understanding Nested Conversations

Now let's see how the nested booking example extends the behavior of the hotel booking

application through use of nested conversations. Again, we can read the class from top to bottom,

as if it were a story.

Example 1.28. RoomPreferenceAction.java

@Stateful

@Name("roomPreference")

@Restrict("#{identity.loggedIn}")

public class RoomPreferenceAction implements RoomPreference

{

 @Logger

 private Log log;

 @In private Hotel hotel;

 @In private Booking booking;

 @DataModel(value="availableRooms")

 private List<Room> availableRooms;

 @DataModelSelection(value="availableRooms")

 private Room roomSelection;

 @In(required=false, value="roomSelection")

 @Out(required=false, value="roomSelection")

 private Room room;

 @Factory("availableRooms")

 public void loadAvailableRooms()

 {

Understanding Nested Conversations

53

 availableRooms = hotel.getAvailableRooms(booking.getCheckinDate(), booking.getCheckoutDate());

 log.info("Retrieved #0 available rooms", availableRooms.size());

 }

 public BigDecimal getExpectedPrice()

 {

 log.info("Retrieving price for room #0", roomSelection.getName());

 return booking.getTotal(roomSelection);

 }

 @Begin(nested=true)

 public String selectPreference()

 {

 log.info("Room selected");

 this.room = this.roomSelection;

 return "payment";

 }

 public String requestConfirmation()

 {

 // all validations are performed through the s:validateAll, so checks are already

 // performed

 log.info("Request confirmation from user");

 return "confirm";

 }

 @End(beforeRedirect=true)

 public String cancel()

 {

 log.info("ending conversation");

 return "cancel";

 }

 @Destroy @Remove

 public void destroy() {}

}

Chapter 1. Seam Tutorial

54

The hotel instance is injected from the conversation context. The hotel is loaded through

an extended persistence context so that the entity remains managed throughout the

conversation. This allows us to lazily load the availableRooms through an @Factory method

by simply walking the association.

When @Begin(nested=true) is encountered, a nested conversation is pushed onto the

conversation stack. When executing within a nested conversation, components still have

access to all outer conversation state, but setting any values in the nested conversation’s

state container does not affect the outer conversation. In addition, nested conversations can

exist concurrently stacked on the same outer conversation, allowing independent state for

each.

The roomSelection is outjected to the conversation based on the @DataModelSelection.

Note that because the nested conversation has an independent context, the roomSelection

is only set into the new nested conversation. Should the user select a different preference in

another window or tab a new nested conversation would be started.

The @End annotation pops the conversation stack and resumes the outer conversation. The

roomSelection is destroyed along with the conversation context.

When we begin a nested conversation it is pushed onto the conversation stack. In the

nestedbooking example, the conversation stack consists of the outer long-running conversation

(the booking) and each of the nested conversations (room selections).

Example 1.29. rooms.xhtml

<div class="section">

 <h1>Room Preference</h1>

</div>

<div class="section">

 <h:form id="room_selections_form">

 <div class="section">

 <h:outputText styleClass="output" value="No rooms available for the dates selected: "

 rendered="#{availableRooms != null and availableRooms.rowCount == 0}"/>

 <h:outputText styleClass="output" value="Rooms available for the dates selected: "

 rendered="#{availableRooms != null and availableRooms.rowCount > 0}"/>

 <h:outputText styleClass="output" value="#{booking.checkinDate}"/> -

 <h:outputText styleClass="output" value="#{booking.checkoutDate}"/>

 <h:dataTable id="rooms" value="#{availableRooms}" var="room"

 rendered=" #{availableRooms.rowCount > 0}">

 <h:column>

 <f:facet name="header">Name</f:facet>

 #{room.name}

 </h:column>

 <h:column>

 <f:facet name="header">Description</f:facet>

Understanding Nested Conversations

55

 #{room.description}

 </h:column>

 <h:column>

 <f:facet name="header">Per Night</f:facet>

 <h:outputText value="#{room.price}">

 <f:convertNumber type="currency" currencySymbol="$"/>

 </h:outputText>

 </h:column>

 <h:column>

 <f:facet name="header">Action</f:facet>

 <h:commandLink id="selectRoomPreference"

 action="#{roomPreference .selectPreference}">Select</h:commandLink>

 </h:column>

 </h:dataTable>

 </div>

 <div class="entry">

 <div class="label"> </div>

 <div class="input">

 <s:button id="cancel" value="Revise Dates" view="/book.xhtml"/>

 </div>

 </div>

 </h:form>

</div>

When requested from EL, the #{availableRooms} are loaded by the @Factory method

defined in RoomPreferenceAction. The @Factory method will only be executed once to load

the values into the current context as a @DataModel instance.

Invoking the #{roomPreference.selectPreference} action results in the row being

selected and set into the @DataModelSelection. This value is then outjected to the nested

conversation context.

Revising the dates simply returns to the /book.xhtml. Note that we have not yet nested

a conversation (no room preference has been selected), so the current conversation can

simply be resumed. The <s:button> component simply propagates the current conversation

when displaying the /book.xhtml view.

Now that we have seen how to nest a conversation, let's see how we can confirm the booking

once a room has been selected. This can be achieved by simply extending the behavior of the

HotelBookingAction.

Example 1.30. HotelBookingAction.java

@Stateful

@Name("hotelBooking")

Chapter 1. Seam Tutorial

56

@Restrict("#{identity.loggedIn}")

public class HotelBookingAction implements HotelBooking

{

 @PersistenceContext(type=EXTENDED)

 private EntityManager em;

 @In

 private User user;

 @In(required=false) @Out

 private Hotel hotel;

 @In(required=false)

 @Out(required=false)

 private Booking booking;

 @In(required=false)

 private Room roomSelection;

 @In

 private FacesMessages facesMessages;

 @In

 private Events events;

 @Logger

 private Log log;

 @Begin

 public void selectHotel(Hotel selectedHotel)

 {

 log.info("Selected hotel #0", selectedHotel.getName());

 hotel = em.merge(selectedHotel);

 }

 public String setBookingDates()

 {

 // the result will indicate whether or not to begin the nested conversation

 // as well as the navigation. if a null result is returned, the nested

 // conversation will not begin, and the user will be returned to the current

 // page to fix validation issues

 String result = null;

Understanding Nested Conversations

57

 Calendar calendar = Calendar.getInstance();

 calendar.add(Calendar.DAY_OF_MONTH, -1);

 // validate what we have received from the user so far

 if (booking.getCheckinDate().before(calendar.getTime()))

 {

 facesMessages.addToControl("checkinDate", "Check in date must be a future date");

 }

 else if (!booking.getCheckinDate().before(booking.getCheckoutDate()))

 {

 facesMessages.addToControl("checkoutDate", "Check out date must be later than check

 in date");

 }

 else

 {

 result = "rooms";

 }

 return result;

 }

 public void bookHotel()

 {

 booking = new Booking(hotel, user);

 Calendar calendar = Calendar.getInstance();

 booking.setCheckinDate(calendar.getTime());

 calendar.add(Calendar.DAY_OF_MONTH, 1);

 booking.setCheckoutDate(calendar.getTime());

 }

 @End(root=true)

 public void confirm()

 {

 // on confirmation we set the room preference in the booking. the room preference

 // will be injected based on the nested conversation we are in.

 booking.setRoomPreference(roomSelection);

 em.persist(booking);

 facesMessages.add("Thank you, #{user.name}, your confimation number for #{hotel.name}

 is #{booking.id}");

 log.info("New booking: #{booking.id} for #{user.username}");

 events.raiseTransactionSuccessEvent("bookingConfirmed");

 }

Chapter 1. Seam Tutorial

58

 @End(root=true, beforeRedirect=true)

 public void cancel() {}

 @Destroy @Remove

 public void destroy() {}

}

Annotating an action with @End(root=true) ends the root conversation which effectively

destroys the entire conversation stack. When any conversation is ended, its nested

conversations are ended as well. As the root is the conversation that started it all, this is a

simple way to destroy and release all state associated with a workspace once the booking

is confirmed.

The roomSelection is only associated with the booking on user confirmation. While

outjecting values to the nested conversation context will not impact the outer conversation,

any objects injected from the outer conversation are injected by reference. This means that

any changing to these objects will be reflected in the parent conversation as well as other

concurrent nested conversations.

By simply annotating the cancellation action with @End(root=true,

beforeRedirect=true) we can easily destroy and release all state associated with the

workspace prior to redirecting the user back to the hotel selection view.

Feel free to deploy the application, open many windows or tabs and attempt combinations of

various hotels with various room preferences. Confirming a booking always results in the correct

hotel and room preference thanks to the nested conversation model.

1.8. A complete application featuring Seam and jBPM:

the DVD Store example

The DVD Store demo application shows the practical usage of jBPM for both task management

and pageflow.

The user screens take advantage of a jPDL pageflow to implement searching and shopping cart

functionality.

A complete application featuring Seam and jBPM: the DVD Store example

59

The administration screens take use jBPM to manage the approval and shipping cycle for

orders. The business process may even be changed dynamically, by selecting a different process

definition!

Chapter 1. Seam Tutorial

60

The Seam DVD Store demo can be run from dvdstore directory, just like the other demo

applications.

1.9. Bookmarkable URLs with the Blog example

Seam makes it very easy to implement applications which keep state on the server-side. However,

server-side state is not always appropriate, especially in for functionality that serves up content.

For this kind of problem we often want to keep application state in the URL so that any page can

be accessed at any time through a bookmark. The blog example shows how to a implement an

application that supports bookmarking throughout, even on the search results page. This example

demonstrates how Seam can manage application state in the URL as well as how Seam can

rewrite those URLs to be even

Using "pull"-style MVC

61

The Blog example demonstrates the use of "pull"-style MVC, where instead of using action listener

methods to retrieve data and prepare the data for the view, the view pulls data from components

as it is being rendered.

1.9.1. Using "pull"-style MVC

This snippet from the index.xhtml facelets page displays a list of recent blog entries:

Example 1.31.

<h:dataTable value="#{blog.recentBlogEntries}" var="blogEntry" rows="3">

 <h:column>

 <div class="blogEntry">

 <h3>#{blogEntry.title}</h3>

 <div>

Chapter 1. Seam Tutorial

62

 <s:formattedText value="#{blogEntry.excerpt==null ? blogEntry.body : blogEntry.excerpt}"/>

 </div>

 <p>

 <s:link view="/entry.xhtml" rendered="#{blogEntry.excerpt!=null}" propagation="none"

 value="Read more...">

 <f:param name="blogEntryId" value="#{blogEntry.id}"/>

 </s:link>

 </p>

 <p>

 [Posted on

 <h:outputText value="#{blogEntry.date}">

 <f:convertDateTime timeZone="#{blog.timeZone}" locale="#{blog.locale}" type="both"/>

 </h:outputText>]

 <s:link view="/entry.xhtml" propagation="none" value="[Link]">

 <f:param name="blogEntryId" value="#{blogEntry.id}"/>

 </s:link>

 </p>

 </div>

 </h:column>

</h:dataTable>

If we navigate to this page from a bookmark, how does the #{blog.recentBlogEntries} data

used by the <h:dataTable> actually get initialized? The Blog is retrieved lazily — "pulled" —

when needed, by a Seam component named blog. This is the opposite flow of control to what is

used in traditional action-based web frameworks like Struts.

Example 1.32.

@Name("blog")

@Scope(ScopeType.STATELESS)

@AutoCreate

public class BlogService

{

 @In EntityManager entityManager;

 @Unwrap

 public Blog getBlog()

 {

 return (Blog) entityManager.createQuery("select distinct b from Blog b left join fetch

 b.blogEntries")

 .setHint("org.hibernate.cacheable", true)

Bookmarkable search results page

63

 .getSingleResult();

 }

}

This component uses a seam-managed persistence context. Unlike the other examples

we've seen, this persistence context is managed by Seam, instead of by the EJB3 container.

The persistence context spans the entire web request, allowing us to avoid any exceptions

that occur when accessing unfetched associations in the view.

The @Unwrap annotation tells Seam to provide the return value of the method — the Blog

— instead of the actual BlogService component to clients. This is the Seam manager

component pattern.

This is good so far, but what about bookmarking the result of form submissions, such as a search

results page?

1.9.2. Bookmarkable search results page

The blog example has a tiny form in the top right of each page that allows the user to search for blog

entries. This is defined in a file, menu.xhtml, included by the facelets template, template.xhtml:

Example 1.33.

<div id="search">

 <h:form>

 <h:inputText value="#{searchAction.searchPattern}"/>

 <h:commandButton value="Search" action="/search.xhtml"/>

 </h:form>

</div>

To implement a bookmarkable search results page, we need to perform a browser redirect after

processing the search form submission. Because we used the JSF view id as the action outcome,

Seam automatically redirects to the view id when the form is submitted. Alternatively, we could

have defined a navigation rule like this:

<navigation-rule>

 <navigation-case>

 <from-outcome>searchResults</from-outcome>

 <to-view-id>/search.xhtml</to-view-id>

 <redirect/>

 </navigation-case>

</navigation-rule>

Chapter 1. Seam Tutorial

64

Then the form would have looked like this:

<div id="search">

 <h:form>

 <h:inputText value="#{searchAction.searchPattern}"/>

 <h:commandButton value="Search" action="searchResults"/>

 </h:form>

</div>

But when we redirect, we need to include the values submitted with the form in the URL to get

a bookmarkable URL like http://localhost:8080/seam-blog/search/. JSF does not provide

an easy way to do this, but Seam does. We use two Seam features to accomplish this: page

parameters and URL rewriting. Both are defined in WEB-INF/pages.xml:

Example 1.34.

<pages>

 <page view-id="/search.xhtml">

 <rewrite pattern="/search/{searchPattern}"/>

 <rewrite pattern="/search"/>

 <param name="searchPattern" value="#{searchService.searchPattern}"/>

 </page>

 ...

</pages>

The page parameter instructs Seam to link the request parameter named searchPattern to

the value of #{searchService.searchPattern}, both whenever a request for the Search page

comes in and whenever a link to the search page is generated. Seam takes responsibility for

maintaining the link between URL state and application state, and you, the developer, don't have

to worry about it.

Without URL rewriting, the URL for a search on the term book would be http://localhost:8080/

seam-blog/seam/search.xhtml?searchPattern=book. This is nice, but Seam can make the

URL even simpler using a rewrite rule. The first rewrite rule, for the pattern /search/

{searchPattern}, says that any time we have a URL for search.xhtml with a searchPattern

request parameter, we can fold that URL into the simpler URL. So,the URL we saw

earlier, http://localhost:8080/seam-blog/seam/search.xhtml?searchPattern=book can

be written instead as http://localhost:8080/seam-blog/search/book.

Just like with page parameters, URL rewriting is bi-directional. That means that Seam forwards

requests for the simpler URL to the right view, and it also automatically generates the simpler

Bookmarkable search results page

65

view for you. You never need to worry about constructing URLs. It's all handled transparently

behind the scenes. The only requirement is that to use URL rewriting, the rewrite filter needs to

be enabled in components.xml.

<web:rewrite-filter view-mapping="/seam/*" />

The redirect takes us to the search.xhtml page:

<h:dataTable value="#{searchResults}" var="blogEntry">

 <h:column>

 <div>

 <s:link view="/entry.xhtml" propagation="none" value="#{blogEntry.title}">

 <f:param name="blogEntryId" value="#{blogEntry.id}"/>

 </s:link>

 posted on

 <h:outputText value="#{blogEntry.date}">

 <f:convertDateTime timeZone="#{blog.timeZone}" locale="#{blog.locale}" type="both"/>

 </h:outputText>

 </div>

 </h:column>

</h:dataTable>

Which again uses "pull"-style MVC to retrieve the actual search results using Hibernate Search.

@Name("searchService")

public class SearchService

{

 @In

 private FullTextEntityManager entityManager;

 private String searchPattern;

 @Factory("searchResults")

 public List<BlogEntry> getSearchResults()

 {

 if (searchPattern==null || "".equals(searchPattern)) {

 searchPattern = null;

 return entityManager.createQuery("select be from BlogEntry be order by date

 desc").getResultList();

 }

Chapter 1. Seam Tutorial

66

 else

 {

 Map<String,Float> boostPerField = new HashMap<String,Float>();

 boostPerField.put("title", 4f);

 boostPerField.put("body", 1f);

 String[] productFields = {"title", "body"};

 QueryParser parser = new MultiFieldQueryParser(productFields, new StandardAnalyzer(), boostPerField);

 parser.setAllowLeadingWildcard(true);

 org.apache.lucene.search.Query luceneQuery;

 try

 {

 luceneQuery = parser.parse(searchPattern);

 }

 catch (ParseException e)

 {

 return null;

 }

 return entityManager.createFullTextQuery(luceneQuery, BlogEntry.class)

 .setMaxResults(100)

 .getResultList();

 }

 }

 public String getSearchPattern()

 {

 return searchPattern;

 }

 public void setSearchPattern(String searchPattern)

 {

 this.searchPattern = searchPattern;

 }

}

1.9.3. Using "push"-style MVC in a RESTful application

Very occasionally, it makes more sense to use push-style MVC for processing RESTful pages,

and so Seam provides the notion of a page action. The Blog example uses a page action for the

blog entry page, entry.xhtml. Note that this is a little bit contrived, it would have been easier to

use pull-style MVC here as well.

Using "push"-style MVC in a RESTful application

67

The entryAction component works much like an action class in a traditional push-MVC action-

oriented framework like Struts:

@Name("entryAction")

@Scope(STATELESS)

public class EntryAction

{

 @In Blog blog;

 @Out BlogEntry blogEntry;

 public void loadBlogEntry(String id) throws EntryNotFoundException

 {

 blogEntry = blog.getBlogEntry(id);

 if (blogEntry==null) throw new EntryNotFoundException(id);

 }

}

Page actions are also declared in pages.xml:

<pages>

 ...

 <page view-id="/entry.xhtml">

 <rewrite pattern="/entry/{blogEntryId}" />

 <rewrite pattern="/entry" />

 <param name="blogEntryId"

 value="#{blogEntry.id}"/>

 <action execute="#{entryAction.loadBlogEntry(blogEntry.id)}"/>

 </page>

 <page view-id="/post.xhtml" login-required="true">

 <rewrite pattern="/post" />

 <action execute="#{postAction.post}"

 if="#{validation.succeeded}"/>

 <action execute="#{postAction.invalid}"

 if="#{validation.failed}"/>

Chapter 1. Seam Tutorial

68

 <navigation from-action="#{postAction.post}">

 <redirect view-id="/index.xhtml"/>

 </navigation>

 </page>

 <page view-id="*">

 <action execute="#{blog.hitCount.hit}"/>

 </page>

</pages>

Notice that the example is using page actions for post validation and the pageview counter. Also

notice the use of a parameter in the page action method binding. This was not a standard feature

of JSF EL in Java EE 5, but now it is and works like Seam lets you use it before, not just for page

actions but also in JSF method bindings.

When the entry.xhtml page is requested, Seam first binds the page parameter blogEntryId

to the model. Keep in mind that because of the URL rewriting, the blogEntryId parameter name

won't show up in the URL. Seam then runs the page action, which retrieves the needed data —

the blogEntry — and places it in the Seam event context. Finally, the following is rendered:

<div class="blogEntry">

 <h3>#{blogEntry.title}</h3>

 <div>

 <s:formattedText value="#{blogEntry.body}"/>

 </div>

 <p>

 [Posted on

 <h:outputText value="#{blogEntry.date}">

 <f:convertDateTime timeZone="#{blog.timeZone}" locale="#{blog.locale}" type="both"/>

 </h:outputText>]

 </p>

</div>

If the blog entry is not found in the database, the EntryNotFoundException exception is thrown.

We want this exception to result in a 404 error, not a 505, so we annotate the exception class:

@ApplicationException(rollback=true)

@HttpError(errorCode=HttpServletResponse.SC_NOT_FOUND)

public class EntryNotFoundException extends Exception

{

Using "push"-style MVC in a RESTful application

69

 EntryNotFoundException(String id)

 {

 super("entry not found: " + id);

 }

}

An alternative implementation of the example does not use the parameter in the method binding:

@Name("entryAction")

@Scope(STATELESS)

public class EntryAction

{

 @In(create=true)

 private Blog blog;

 @In @Out

 private BlogEntry blogEntry;

 public void loadBlogEntry() throws EntryNotFoundException

 {

 blogEntry = blog.getBlogEntry(blogEntry.getId());

 if (blogEntry==null) throw new EntryNotFoundException(id);

 }

}

<pages>

 ...

 <page view-id="/entry.xhtml" action="#{entryAction.loadBlogEntry}">

 <param name="blogEntryId" value="#{blogEntry.id}"/>

 </page>

 ...

</pages>

It is a matter of taste which implementation you prefer.

The blog demo also demonstrates very simple password authentication, posting to the blog, page

fragment caching and atom feed generation.

70

Chapter 2.

71

Getting started with Seam, using

seam-gen
The Seam distribution includes a command line utility that makes it really easy to set up an Eclipse

project, generate some simple Seam skeleton code, and reverse engineer an application from a

preexisting database.

This is the easy way to get your feet wet with Seam, and gives you some ammunition for next

time you find yourself trapped in an elevator with one of those tedious Ruby guys ranting about

how great and wonderful his new toy is for building totally trivial applications that put things in

databases.

In this release, seam-gen works best for people with JBoss AS. You can use the generated project

with other J2EE or Java EE 5 application servers by making a few manual changes to the project

configuration.

You can use seam-gen without Eclipse, but in this tutorial, we want to show you how to use it in

conjunction with Eclipse for debugging and integration testing. If you don't want to install Eclipse,

you can still follow along with this tutorial—all steps can be performed from the command line.

seam-gen is basically just an intricate Ant script wrapped around Hibernate Tools, together with

some templates. That makes it easy to customize if you need to.

2.1. Before you start

Make sure you have JDK 6 (see Section 39.1, “JDK Dependencies” for details), JBoss AS 7.1.1

and Maven 3.x, along with recent versions of Eclipse, the JBoss IDE plugin for Eclipse correctly

installed before starting. Add your JBoss installation to the JBoss Server View in Eclipse. Start

JBoss in debug mode. Finally, start a command prompt in the directory where you unzipped the

Seam distribution.

JBoss has sophisticated support for hot re-deployment of WARs and EARs. Unfortunately, due

to bugs in the JVM, repeated redeployment of an EAR—which is common during development—

eventually causes the JVM to run out of perm gen space. For this reason, we recommend running

JBoss in a JVM with a large perm gen space at development time. If you're running JBoss from

JBoss IDE, you can configure this in the server launch configuration, under "VM arguments". We

suggest the following values:

-Xms512m -Xmx1024m -XX:PermSize=256m -XX:MaxPermSize=512m

If you don't have so much memory available, the following is our minimum recommendation:

Chapter 2. Getting started wi...

72

-Xms256m -Xmx512m -XX:PermSize=128m -XX:MaxPermSize=256m

If you're running JBoss from the command line, you can configure the JVM options in bin/

standalone.conf.

If you don't want to bother with this stuff now, you don't have to—come back to it later, when you

get your first OutOfMemoryException.

2.2. Setting up a new project

The first thing we need to do is configure seam-gen for your environment: JBoss AS installation

directory, project workspace, and database connection. It's easy, just type:

cd jboss-seam-2.3.0

seam setup

And you will be prompted for the needed information:

~/workspace/jboss-seam$./seam setup

Buildfile: build.xml

init:

setup:

 [echo] Welcome to seam-gen :-)

 [input] Enter your project workspace (the directory that contains your Seam projects) [C:/

Projects] [C:/Projects]

/Users/pmuir/workspace

 [input] Enter your JBoss AS home directory [C:/Program Files/jboss-as-7.1.1.Final] [C:/Program

 Files/jboss-as-7.1.1.Final]

/Applications/jboss-as-7.1.1.Final

 [input] Enter the project name [myproject] [myproject]

helloworld

 [echo] Accepted project name as: helloworld

 [input] Select a RichFaces skin [blueSky] ([blueSky], emeraldTown, ruby, classic, japanCherry,

 wine, deepMarine, DEFAULT, plain)

 [input] Is this project deployed as an EAR (with EJB components) or a WAR (with no EJB

 support) [ear] ([ear], war,)

 [input] Enter the Java package name for your session beans [com.mydomain.helloworld]

 [com.mydomain.helloworld]

Setting up a new project

73

org.jboss.helloworld

 [input] Enter the Java package name for your entity beans [org.jboss.helloworld]

 [org.jboss.helloworld]

 [input] Enter the Java package name for your test cases [org.jboss.helloworld.test]

 [org.jboss.helloworld.test]

 [input] What kind of database are you using? [h2] ([h2], hsql, mysql, oracle, postgres, mssql,

 db2, sybase, enterprisedb)

mysql

 [input] Enter the Hibernate dialect for your database [org.hibernate.dialect.MySQLDialect]

 [org.hibernate.dialect.MySQLDialect]

 [input] Enter the filesystem path to the JDBC driver jar [lib/hsqldb.jar] [lib/hsqldb.jar]

/Users/pmuir/java/mysql.jar

 [input] Enter JDBC driver class for your database [com.mysql.jdbc.Driver]

 [com.mysql.jdbc.Driver]

 [input] Enter the JDBC URL for your database [jdbc:mysql:///test] [jdbc:mysql:///test]

jdbc:mysql:///helloworld

 [input] Enter database username [sa] [sa]

pmuir

 [input] Enter database password [] []

 [input] skipping input as property hibernate.default_schema.new has already been set.

 [input] Enter the database catalog name (it is OK to leave this blank) [] []

 [input] Are you working with tables that already exist in the database? [n] (y, [n],)

y

 [input] Do you want to drop and recreate the database tables and data in import.sql each time

 you deploy? [n] (y, [n],)

n

[propertyfile] Creating new property file: /Users/pmuir/workspace/jboss-seam/seam-gen/

build.properties

 [echo] Installing JDBC driver jar to JBoss server

 [echo] Type 'seam create-project' to create the new project

BUILD SUCCESSFUL

Total time: 1 minute 32 seconds

~/workspace/jboss-seam $

The tool provides sensible defaults, which you can accept by just pressing enter at the prompt.

Chapter 2. Getting started wi...

74

The most important choice you need to make is between EAR deployment and WAR deployment

of your project. EAR projects support EJB 3.0 and require Java EE 5. WAR projects do not support

EJB 3.0, but may be deployed to a J2EE environment. The packaging of a WAR is also simpler to

understand. If you installed an EJB3-ready application server like JBoss, choose ear. Otherwise,

choose war. We'll assume that you've chosen an EAR deployment for the rest of the tutorial, but

you can follow exactly the same steps for a WAR deployment.

If you are working with an existing data model, make sure you tell seam-gen that the tables already

exist in the database.

The settings are stored in seam-gen/build.properties, but you can also modify them simply

by running seam setup a second time.

Now we can create a new project in our Eclipse workspace directory, by typing:

seam new-project

C:\Projects\jboss-seam>seam new-project

Buildfile: build.xml

...

new-project:

 [echo] A new Seam project named 'helloworld' was created in the C:\Projects directory

 [echo] Type 'seam explode' and go to http://localhost:8080/helloworld

 [echo] Eclipse Users: Add the project into Eclipse using File > New > Project and select General

 > Project (not Java Project)

 [echo] NetBeans Users: Open the project in NetBeans

BUILD SUCCESSFUL

Total time: 7 seconds

C:\Projects\jboss-seam>

This copies the Seam jars, dependent jars and the JDBC driver jar to a new Eclipse project, and

generates all needed resources and configuration files, a facelets template file and stylesheet,

along with Eclipse metadata and an Ant build script. The Eclipse project will be automatically

deployed to an exploded directory structure in JBoss AS as soon as you add the project using

New -> Project... -> General -> Project -> Next, typing the Project name (helloworld

in this case), and then clicking Finish. Do not select Java Project from the New Project wizard.

If your default JDK in Eclipse is not a Java SE 6 JDK, you will need to select a Java SE 6 compliant

JDK using Project -> Properties -> Java Compiler.

Alternatively, you can deploy the project from outside Eclipse by typing seam explode.

Creating a new action

75

Go to http://localhost:8080/helloworld to see a welcome page. This is a facelets page,

view/home.xhtml, using the template view/layout/template.xhtml. You can edit this page,

or the template, in Eclipse, and see the results immediately, by clicking refresh in your browser.

Don't get scared by the XML configuration documents that were generated into the project

directory. They are mostly standard Java EE stuff, the stuff you need to create once and then

never look at again, and they are 90% the same between all Seam projects. (They are so easy

to write that even seam-gen can do it.)

The generated project includes three database and persistence configurations. The

persistence-test.xml and import-test.sql files are used when running the TestNG unit

tests against HSQLDB. The database schema and the test data in import-test.sql is always

exported to the database before running tests. The myproject-dev-ds.xml, persistence-

dev.xmland import-dev.sql files are for use when deploying the application to your

development database. The schema might be exported automatically at deployment, depending

upon whether you told seam-gen that you are working with an existing database. The myproject-

prod-ds.xml, persistence-prod.xmland import-prod.sql files are for use when deploying the

application to your production database. The schema is not exported automatically at deployment.

2.3. Creating a new action

If you're used to traditional action-style web frameworks, you're probably wondering how you can

create a simple web page with a stateless action method in Java. If you type:

seam new-action

Seam will prompt for some information, and generate a new facelets page and Seam component

for your project.

C:\Projects\jboss-seam>seam new-action

Buildfile: build.xml

validate-workspace:

validate-project:

action-input:

 [input] Enter the Seam component name

ping

 [input] Enter the local interface name [Ping]

 [input] Enter the bean class name [PingBean]

 [input] Enter the action method name [ping]

Chapter 2. Getting started wi...

76

 [input] Enter the page name [ping]

setup-filters:

new-action:

 [echo] Creating a new stateless session bean component with an action method

 [copy] Copying 1 file to C:\Projects\helloworld\src\hot\org\jboss\helloworld

 [copy] Copying 1 file to C:\Projects\helloworld\src\hot\org\jboss\helloworld

 [copy] Copying 1 file to C:\Projects\helloworld\src\hot\org\jboss\helloworld\test

 [copy] Copying 1 file to C:\Projects\helloworld\src\hot\org\jboss\helloworld\test

 [copy] Copying 1 file to C:\Projects\helloworld\view

 [echo] Type 'seam restart' and go to http://localhost:8080/helloworld/ping.seam

BUILD SUCCESSFUL

Total time: 13 seconds

C:\Projects\jboss-seam>

Because we've added a new Seam component, we need to restart the exploded directory

deployment. You can do this by typing seam restart, or by running the restart target in the

generated project build.xml file from inside Eclipse. Another way to force a restart is to edit

the file resources/META-INF/application.xml in Eclipse. Note that you do not need to restart

JBoss each time you change the application.

Now go to http://localhost:8080/helloworld/ping.seam and click the button. You can see

the code behind this action by looking in the project src directory. Put a breakpoint in the ping()

method, and click the button again.

Finally, locate the PingTest.xml file in the test package and run the integration tests using the

TestNG plugin for Eclipse. Alternatively, run the tests using seam test or the test target of the

generated build.

2.4. Creating a form with an action

The next step is to create a form. Type:

seam new-form

C:\Projects\jboss-seam>seam new-form

Buildfile: C:\Projects\jboss-seam\seam-gen\build.xml

validate-workspace:

Generating an application from an existing database

77

validate-project:

action-input:

 [input] Enter the Seam component name

hello

 [input] Enter the local interface name [Hello]

 [input] Enter the bean class name [HelloBean]

 [input] Enter the action method name [hello]

 [input] Enter the page name [hello]

setup-filters:

new-form:

 [echo] Creating a new stateful session bean component with an action method

 [copy] Copying 1 file to C:\Projects\hello\src\hot\com\hello

 [copy] Copying 1 file to C:\Projects\hello\src\hot\com\hello

 [copy] Copying 1 file to C:\Projects\hello\src\hot\com\hello\test

 [copy] Copying 1 file to C:\Projects\hello\view

 [copy] Copying 1 file to C:\Projects\hello\src\hot\com\hello\test

 [echo] Type 'seam restart' and go to http://localhost:8080/hello/hello.seam

BUILD SUCCESSFUL

Total time: 5 seconds

C:\Projects\jboss-seam>

Restart the application again, and go to http://localhost:8080/helloworld/hello.seam.

Then take a look at the generated code. Run the test. Try adding some new fields to the form and

Seam component (remember to restart the deployment each time you change the Java code).

2.5. Generating an application from an existing

database

Manually create some tables in your database. (If you need to switch to a different database, just

run seam setup again.) Now type:

seam generate-entities

Chapter 2. Getting started wi...

78

Restart the deployment, and go to http://localhost:8080/helloworld. You can browse the

database, edit existing objects, and create new objects. If you look at the generated code, you'll

probably be amazed how simple it is! Seam was designed so that data access code is easy to

write by hand, even for people who don't want to cheat by using seam-gen.

2.6. Generating an application from existing JPA/EJB3

entities

Place your existing, valid entity classes inside the src/main. Now type

seam generate-ui

Restart the deployment, and go to http://localhost:8080/helloworld.

2.7. Deploying the application as an EAR

Finally, we want to be able to deploy the application using standard Java EE 5 packaging. First,

we need to remove the exploded directory by running seam unexplode. To deploy the EAR, we

can type seam deploy at the command prompt, or run the deploy target of the generated project

build script. You can undeploy using seam undeploy or the undeploy target.

By default, the application will be deployed with the dev profile. The EAR will include the

persistence-dev.xml and import-dev.sql files, and the myproject-dev-ds.xml file will be

deployed. You can change the profile, and use the prod profile, by typing

seam -Dprofile=prod deploy

You can even define new deployment profiles for your application. Just add appropriately

named files to your project—for example, persistence-staging.xml, import-staging.sql and

myproject-staging-ds.xml—and select the name of the profile using -Dprofile=staging.

2.8. Seam and incremental hot deployment

When you deploy your Seam application as an exploded directory, you'll get some support for

incremental hot deployment at development time. You need to enable debug mode in both Seam

and Facelets, by adding this line to components.xml:

<core:init debug="true">

Now, the following files may be redeployed without requiring a full restart of the web application:

Seam and incremental hot deployment

79

• any facelets page

• any pages.xml file

But if we want to change any Java code, we still need to do a full restart of the application.

(In JBoss this can be handled by configuring deployment scanner mode [https://docs.jboss.org/

author/display/AS7/Deployment+Scanner+configuration] - more details how to do that are in

$JBOSS_HOME/standalone/deployments/README.txt

But if you really want a fast edit/compile/test cycle, Seam supports incremental redeployment

of JavaBean components. To make use of this functionality, you must deploy the JavaBean

components into the WEB-INF/dev directory, so that they will be loaded by a special Seam

classloader, instead of by the WAR or EAR classloader.

You need to be aware of the following limitations:

• the components must be JavaBean components, they cannot be EJB3 beans (we are working

on fixing this limitation)

• entities can never be hot-deployed

• components deployed via components.xml may not be hot-deployed

• the hot-deployable components will not be visible to any classes deployed outside of WEB-INF/

dev

• Seam debug mode must be enabled and jboss-seam-debug.jar must be in WEB-INF/lib

• You must have the Seam filter installed in web.xml

• You may see errors if the system is placed under any load and debug is enabled.

If you create a WAR project using seam-gen, incremental hot deployment is available out of the

box for classes in the src/hot source directory. However, seam-gen does not support incremental

hot deployment for EAR projects.

https://docs.jboss.org/author/display/AS7/Deployment+Scanner+configuration
https://docs.jboss.org/author/display/AS7/Deployment+Scanner+configuration
https://docs.jboss.org/author/display/AS7/Deployment+Scanner+configuration

80

Chapter 3.

81

Getting started with Seam, using

JBoss Tools
JBoss Tools is a collection of Eclipse plugins. JBoss Tools a project creation wizard for Seam,

Content Assist for the Unified Expression Language (EL) in both facelets and Java code, a

graphical editor for Seam configuration files, support for running Seam integration tests from within

Eclipse, and much more.

In short, if you are an Eclipse user, then you'll want JBoss Tools!

Please read the latest JBoss Tools documentation at http://docs.jboss.org/tools/latest/en/

seam_tools_ref_guide/html/index.html.

JBoss Tools, as with seam-gen, works best with JBoss AS, but it's possible with a few tweaks to

get your app running on other application servers. The changes are much like those described

for seam-gen later in this reference manual.

3.1. Before you start

Make sure you have JDK 6, JBoss AS 7.1.1.Final, Eclipse 3.7, the JBoss Tools plugins (at least

Seam Tools, the Visual Page Editor and JBoss AS Tools) and the JUnit plugin for Eclipse correctly

installed before starting.

Please see the official JBoss Tools Getting started [http://docs.jboss.org/tools/latest/en/

GettingStartedGuide/html_single/index.html] page for the quickest way to get JBoss Tools setup

in Eclipse.

http://docs.jboss.org/tools/latest/en/seam_tools_ref_guide/html/index.html
http://docs.jboss.org/tools/latest/en/seam_tools_ref_guide/html/index.html
http://docs.jboss.org/tools/latest/en/GettingStartedGuide/html_single/index.html
http://docs.jboss.org/tools/latest/en/GettingStartedGuide/html_single/index.html
http://docs.jboss.org/tools/latest/en/GettingStartedGuide/html_single/index.html

82

Chapter 4.

83

Migration from 2.2 to 2.3
Before you get started with Seam 2.3, there are a few things you should be aware of. This process

should not be too painful - if you get stuck, just refer back to the updated Seam examples in Seam

distribution.

This migration guide assumes you are using Seam 2.2, if you are migrating from Seam 1.2 or

2.0, see the jboss-seam-x.y.z.Final/seam2migration.txt and jboss-seam-x.y.z.Final/

seam21migration.txt guide as well.

4.1. Migration of XML Schemas

4.1.1. Seam schema migration

XML schemas for validation Files that use the Seam 2.2 XSDs should be updated to refer to the

2.3 XSDs, notice the version change. Current namespace pattern is www.jboss.org/schema/

seam/* and schemaLocation URL was changed to www.jboss.org/schema/seam/*_-2.3.xsd,

where * is Seam module.

Following snippet is an example of component declaration for 2.2 version:

Example 4.1. Before migration of Seam components.xml

<?xml version="1.0" encoding="UTF-8"?>

 <components xmlns="http://jboss.com/products/seam/components"

 xmlns:core="http://jboss.com/products/seam/core"

 xmlns:persistence="http://jboss.com/products/seam/persistence"

 xmlns:security="http://jboss.com/products/seam/security"

 xmlns:theme="http://jboss.com/products/seam/theme"

 xmlns:cache="http://jboss.com/products/seam/cache"

 xmlns:web="http://jboss.com/products/seam/web"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation=

 "http://jboss.com/products/seam/core http://jboss.com/products/seam/core-2.2.xsd

 http://jboss.com/products/seam/persistence http://jboss.com/products/seam/

persistence-2.2.xsd

 http://jboss.com/products/seam/security http://jboss.com/products/seam/security-2.2.xsd

 http://jboss.com/products/seam/theme http://jboss.com/products/seam/theme-2.2.xsd

 http://jboss.com/products/seam/cache http://jboss.com/products/seam/cache-2.2.xsd

 http://jboss.com/products/seam/web http://jboss.com/products/seam/web-2.2.xsd

 http://jboss.com/products/seam/components http://jboss.com/products/seam/

components-2.2.xsd">

Chapter 4. Migration from 2.2...

84

And finally migrated declaration of components.xml for 2.3 version:

Example 4.2. Migrated components.xml

<?xml version="1.0" encoding="UTF-8"?>

 <components xmlns="http://jboss.org/schema/seam/components"

 xmlns:core="http://jboss.org/schema/seam/core"

 xmlns:persistence="http://jboss.org/schema/seam/persistence"

 xmlns:security="http://jboss.org/schema/seam/security"

 xmlns:theme="http://jboss.org/schema/seam/theme"

 xmlns:cache="http://jboss.org/schema/seam/cache"

 xmlns:web="http://jboss.org/schema/seam/web"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation=

 "http://jboss.org/schema/seam/core http://jboss.org/schema/seam/core-2.3.xsd

 http://jboss.org/schema/seam/persistence http://jboss.org/schema/seam/

persistence-2.3.xsd

 http://jboss.org/schema/seam/security http://jboss.org/schema/seam/security-2.3.xsd

 http://jboss.org/schema/seam/theme http://jboss.org/schema/seam/theme-2.3.xsd

 http://jboss.org/schema/seam/cache http://jboss.org/schema/seam/cache-2.3.xsd

 http://jboss.org/schema/seam/web http://jboss.org/schema/seam/web-2.3.xsd

 http://jboss.org/schema/seam/components http://jboss.org/schema/seam/

components-2.3.xsd">

Next remainning migration step is pages.xml file(s) as well as other files only requires that the

schemas be upgraded.

Example 4.3. Before migration of Seam pages.xml

<?xml version="1.0" encoding="UTF-8"?>

<pages xmlns="http://jboss.com/products/seam/pages"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://jboss.com/products/seam/pages http://jboss.com/products/

seam/pages-2.2.xsd">

 ...

</pages>

Example 4.4. After migration of Seam pages.xml

<?xml version="1.0" encoding="UTF-8"?>

<pages xmlns="http://jboss.org/schema/seam/pages"

Java EE 6 schema changes

85

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://jboss.org/schema/seam/pages http://jboss.org/schema/seam/

pages-2.3.xsd">

 ...

</pages>

4.1.2. Java EE 6 schema changes

Seam 2.3 technology upgrade includes also Java EE 6 upgrade so you need to update the

following descriptors

• persistence.xml for using JPA 2

• web.xml for using Servlet 3.0 and Web application

• application.xml for using Enterprise Java 6 application

• faces-config.xml if you need to specify some advanced configuration for JSF 2 (this desciptor

file is not mandatory, you don't have to use/include it in your application)

Examples of changed headers with correct versions are the following:

Example 4.5. persistence.xml

<persistence xmlns="http://java.sun.com/xml/ns/persistence"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence http://java.sun.com/xml/ns/

persistence/persistence_2_0.xsd"

 version="2.0">

Example 4.6. application.xml

<application xmlns="http://java.sun.com/xml/ns/javaee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/javaee/

application_6.xsd"

 version="6">

Example 4.7. web.xml

<web-app xmlns="http://java.sun.com/xml/ns/javaee"

Chapter 4. Migration from 2.2...

86

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/

javaee/web-app_3_0.xsd"

 version="3.0">

Example 4.8. faces-config.xml

<?xml version="1.0" encoding="UTF-8"?>

 <faces-config version="2.1"

 xmlns="http://java.sun.com/xml/ns/javaee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/

javaee/web-facesconfig_2_1.xsd">

4.2. Java EE 6 upgrade

Seam 2.3 can integrate with the major upgrades in Java EE (from 5 to 6). You can use persistence

with JPA 2, EJB 3.1 and Bean Validation. Almost all EE 6 technology upgrade requires to change

XML schema declaration. See Section 4.1.2, “Java EE 6 schema changes”

4.2.1. Using Bean Validation standard instead of Hibernate

Validator

Bean Validation is a standard included in Java EE 6 as new technology. Seam already uses for

validation Hibernate Validator which is a reference implementation.

You need to migrate from using of org.hibernate.validator.* Hibernate validator annotations

to javax.validation.constraint.* equivalent for instance Seam examples used a lot of

the following annotations and you can use this list as a helper (Using Bean Validation [http://

docs.oracle.com/javaee/6/tutorial/doc/gircz.html]):

• org.hibernate.validator.Length to javax.validation.constraint.Size,

• org.hibernate.validator.NotNull to javax.validation.constraint.NotNull,

• org.hibernate.validator.Pattern to javax.validation.constraint.Pattern.

4.2.2. Migration of JSF 1 to JSF 2 Facelets templates

Configuration file faces-config.xml is not required to be in your application, so for simple using

of JSF 2 you need to migrate only web.xml. If you anyway would like to have it, change the XML

schema declaration as is described in Example 4.8, “faces-config.xml”.

All your application JSF templates should use only facelets technology as JSP is deprecated.

http://docs.oracle.com/javaee/6/tutorial/doc/gircz.html
http://docs.oracle.com/javaee/6/tutorial/doc/gircz.html
http://docs.oracle.com/javaee/6/tutorial/doc/gircz.html

Migration to JPA 2.0

87

In facelet templates there are required to convert <head>/<body> tags to ><h:head>/

<h:body>respectively.

Depending on what JSF components that you use like Richfaces or Icefaces, there may be some

differences when upgrading from JSF 1.x to JSF 2.x. You may need to upgrade libraries entirely.

Consult any component framework documentation on those changes. This migration doesn't cover

these migration steps.

4.2.3. Migration to JPA 2.0

Using JPA 2 requires to change version to 2.0 in persistence.xml, see Example 4.5,

“persistence.xml” file and version in application.xml should be 6 if you are using EAR - see

Example 4.6, “application.xml” or version in web.xml file change to 3.0 if you use only WAR - look

at Example 4.7, “web.xml”.

What is important for developers, most application can use just WAR with EJB 3.1 and doesn't

have to package application as EAR.

JPA 2.0 is backward compatible with JPA 1.0, so you don't have to migrate any JPA annotation

or classes. JPA 2.0 is more like enhancement to JPA 1.0.

4.2.4. Using compatible JNDI for resources

Java EE 6 brings new standardized global rules for creating portable JNDI syntax. So you

have to change all JNDI strings from _your_application_/#{ejbName}/local to java:app/

application-module-name/#{ejbName} like for instance in WEB-INF/components.xml

change of jndiPattern from:

seam-mail/#{ejbName}/local

to

java:app/seam-mail-ejb/#{ejbName}

4.3. JBoss AS 7.1 deployment

4.3.1. Deployment changes

Next level is migration of your target runtime. Seam 2.3 uses JBoss AS 7 as default target runtime.

If you are using for development or testing default datasource in JBoss AS 7.1, you need to

change datasource JNDI in your persistence.xml from java:/DefaultDS to java:jboss/

datasources/ExampleDS.

Chapter 4. Migration from 2.2...

88

JBoss AS 7 has got refactored classloading model. Classloading of bundled or provided libraries

can be managed in jboss-deployment-structure.xml or in META-INF/MANIFEST.MF file in

section Dependencies. This migration documentation prefers using of jboss-deployment-

structure.xml file, which should be placed in META-INF directory of your WAR or EAR application

according to your application type.

For full EAR projects, the jboss-deployment-structure.xml will be located in the _your_ear_/

META-INF directory.

For Web (non-ear) projects, the jboss-deployment-structure.xml will be located in the

_your_war_/WEB-INF directory.

Minimal content for Seam 2.3 based application is:

<jboss-deployment-structure xmlns="urn:jboss:deployment-structure:1.0">

 <deployment>

 <dependencies>

 <module name="org.dom4j" export="true"/>

 <module name="org.apache.commons.collections" export="true"/>

 <module name="javax.faces.api" export="true"/> <!-- keep there only if you use JSF

 as view technology -->

 </dependencies>

 </deployment>

 </jboss-deployment-structure>

More details are described in JBoss AS 7 documentation [https://docs.jboss.org/author/display/

AS7/Class+Loading+in+AS7].

4.3.2. Datasource migration

You can also include now any database descriptor (*-ds.xml) files into your project in the META-

INF directory, and the data source will be deployed automatically when deployed to a JBoss AS

7.1 Application Server. The structure of the file though has changed. Before the datasource file

was a simple xml based file, but now is an IronJacamar [https://www.jboss.org/ironjacamar] based

file. Iron-Jacamar is the JBoss' JCA (Java Connector Architecture) project. Below on Example 4.9,

“Sample Seam 2.2 Datasource Descriptor File” is the former datasource for JBoss AS 4/5, and

Example 4.10, “Ironjacamar Datasource Descriptor File” shows the conversion to IronJacamar

using the same driver, url, and credentials.

Example 4.9. Sample Seam 2.2 Datasource Descriptor File

<?xml version="1.0" encoding="UTF-8"?>

 <!DOCTYPE datasources

 PUBLIC "-//JBoss//DTD JBOSS JCA Config 1.5//EN"

https://docs.jboss.org/author/display/AS7/Class+Loading+in+AS7
https://docs.jboss.org/author/display/AS7/Class+Loading+in+AS7
https://docs.jboss.org/author/display/AS7/Class+Loading+in+AS7
https://www.jboss.org/ironjacamar
https://www.jboss.org/ironjacamar

Changes in testing framework

89

 "http://www.jboss.org/j2ee/dtd/jboss-ds_1_5.dtd">

 <datasources>

 <local-tx-datasource>

 <jndi-name>seamdiscsDatasource</jndi-name>

 <connection-url>jdbc:hsqldb:.</connection-url>

 <driver-class>org.hsqldb.jdbcDriver</driver-class>

 <user-name>sa</user-name>

 <password></password>

 </local-tx-datasource>

 </datasources>

Example 4.10. Ironjacamar Datasource Descriptor File

<?xml version="1.0" encoding="UTF-8"?>

 <datasources xmlns="http://www.jboss.org/ironjacamar/schema">

 <datasource

 jndi-name="java:/jboss/seamdiscsDatasource"

 enabled="true"

 use-java-context="true" pool-name="seamdiscs">

 <connection-url>jdbc:hsqldb:.</connection-url>

 <driver>org.hsqldb.jdbcDriver</driver>

 <security>

 <user-name>sa</user-name>

 <password></password>

 </security>

 </datasource>

 </datasources>

4.4. Changes in testing framework

SeamTest and JBoss Embedded are legacy components and have many limitations and we

doesn't support it like we did in Seam 2.2.

We now bring Arquillian as the replacement of JBoss Embedded and you should

extend org.jboss.seam.mock.JUnitSeamTest instead of org.jboss.seam.mock.SeamTest,

DBUnit testing is provided by org.jboss.seam.mock.DBJUnitSeamTest instead of

org.jboss.seam.mock.DBUnitSeamTest. Due assertion issues with TestNG framework and

Arquillian, we use JUnit as preferred test framework. Migration to Junit and Arquillian goes in the

following steps:

1. Add

Chapter 4. Migration from 2.2...

90

@RunWith(Arquillian.class)

annotation to your test class.

2. Your test class should extend org.jboss.seam.mock.JUnitSeamTest instead of

org.jboss.seam.mock.SeamTest.

3. Add a method for creating an ShrinkWrap deployment, Seam examples and Seam integration

testsuite uses helper class for that purpose for instance. For inspiration look for instance

at Booking example test modules jboss-seam-x.y.z.Final/examples/booking/booking-

tests/src/test/java/org/jboss/seam/example/booking/test/Deployments.java.

package org.jboss.seam.example.booking.test;

import java.io.File;

import org.jboss.shrinkwrap.api.ShrinkWrap;

import org.jboss.shrinkwrap.api.spec.EnterpriseArchive;

import org.jboss.shrinkwrap.api.importer.ZipImporter;

public class Deployments {

 public static EnterpriseArchive bookingDeployment() {

 return ShrinkWrap.create(ZipImporter.class, "seam-booking.ear").importFrom(new File("../

booking-ear/target/seam-booking.ear"))

 .as(EnterpriseArchive.class);

 }

}

4. Add a method like

@Deployment(name="_your_test_name_")

 @OverProtocol("Servlet 3.0")

 public static org.jboss.shrinkwrap.api.Archive<?> createDeployment(){}

for creating test deployment archive. The following example is taken from Booking example

testsuite:

@Deployment(name="BookingTest")

 @OverProtocol("Servlet 3.0")

 public static Archive<?> createDeployment()

 {

 EnterpriseArchive er = Deployments.bookingDeployment();

Dependency changes with using Maven

91

 WebArchive web = er.getAsType(WebArchive.class, "booking-web.war");

 web.addClasses(BookingTest.class);

 return er;

 }

5. Add arquillian.xml file into root of your classpath for running Arquillian test(s). The file

content should specify path to remote or managed container and some specific options for

JVM or Arquillian. The example of arquillian file is at jboss-seam-x.y.z.Final/examples/

booking/booking-tests/src/test/resources-integration/arquillian.xml:

<?xml version="1.0" encoding="UTF-8"?>

<arquillian xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns="http://jboss.org/schema/arquillian"

 xsi:schemaLocation="http://jboss.org/schema/arquillian http://jboss.org/schema/arquillian/

arquillian_1_0.xsd">

 <engine>

 <property name="deploymentExportPath">target/</property>

 </engine>

 <container qualifier="jboss" default="true">

 <configuration>

 <property name="javaVmArguments">-Xmx1024m -XX:MaxPermSize=512m</property>

 <property name="jbossHome">target/jboss-as-${version.jbossas7}</property>

 </configuration>

 </container>

</arquillian>

More details in Seam reference documentation guide in Section 38.2, “Integration testing Seam

components”.

4.5. Dependency changes with using Maven

The "provided" platform is now JBoss AS 7.1.x as is written above, therefore all Java EE

dependencies included in AS 7 are now marked as provided.

4.5.1. Seam Bill of Materials

A Bill of materials is a set of dependeny elements in <dependencyManagement> section that can

be used to import into your application maven build and be able to declare which dependencies

and their versions that you wish to use in your application. The nice thing about the Seam BOM

is that the dependencies and their versions are there recommended dependencies that would

work well with Seam 2.3. The usage of Seam BOM is shown in Example 4.11, “Seam BOM

usage”. The Seam BOM is deployed in JBoss Maven repository [https://repository.jboss.org/

nexus/index.html#nexus-search;gav~org.jboss.seam~bom~~~].

https://repository.jboss.org/nexus/index.html#nexus-search;gav~org.jboss.seam~bom~~~
https://repository.jboss.org/nexus/index.html#nexus-search;gav~org.jboss.seam~bom~~~
https://repository.jboss.org/nexus/index.html#nexus-search;gav~org.jboss.seam~bom~~~

Chapter 4. Migration from 2.2...

92

Example 4.11. Seam BOM usage

<dependencyManagement>

 <dependencies>

 <dependency>

 <groupId>org.jboss.seam</groupId>

 <artifactId>bom</artifactId>

 <version>2.3.0.Final</version>

 <type>pom</type>

 <scope>import</scope>

 </dependency>

 ...

 </dependencies>

 </dependencyManagement>

 <dependencies>

 <dependency>

 <groupId>org.jboss.seam</groupId>

 <artifactId>jboss-seam</artifactId>

 <type>ejb</type>

 <dependency>

 ...

 </dependencies>

Chapter 5.

93

The contextual component model
The two core concepts in Seam are the notion of a context and the notion of a component.

Components are stateful objects, usually EJBs, and an instance of a component is associated

with a context, and given a name in that context. Bijection provides a mechanism for aliasing

internal component names (instance variables) to contextual names, allowing component trees to

be dynamically assembled, and reassembled by Seam.

Let's start by describing the contexts built in to Seam.

5.1. Seam contexts

Seam contexts are created and destroyed by the framework. The application does not control

context demarcation via explicit Java API calls. Context are usually implicit. In some cases,

however, contexts are demarcated via annotations.

The basic Seam contexts are:

• Stateless context

• Event (i.e., request) context

• Page context

• Conversation context

• Session context

• Business process context

• Application context

You will recognize some of these contexts from servlet and related specifications. However, two of

them might be new to you: conversation context, and business process context. One reason state

management in web applications is so fragile and error-prone is that the three built-in contexts

(request, session and application) are not especially meaningful from the point of view of the

business logic. A user login session, for example, is a fairly arbitrary construct in terms of the

actual application work flow. Therefore, most Seam components are scoped to the conversation

or business process contexts, since they are the contexts which are most meaningful in terms

of the application.

Let's look at each context in turn.

5.1.1. Stateless context

Components which are truly stateless (stateless session beans, primarily) always live in the

stateless context (which is basically the absence of a context since the instance Seam resolves

is not stored). Stateless components are not very interesting, and are arguably not very object-

Chapter 5. The contextual com...

94

oriented. Nevertheless, they do get developed and used and are thus an important part of any

Seam application.

5.1.2. Event context

The event context is the "narrowest" stateful context, and is a generalization of the notion of the

web request context to cover other kinds of events. Nevertheless, the event context associated

with the lifecycle of a JSF request is the most important example of an event context, and the

one you will work with most often. Components associated with the event context are destroyed

at the end of the request, but their state is available and well-defined for at least the lifecycle of

the request.

When you invoke a Seam component via RMI, or Seam Remoting, the event context is created

and destroyed just for the invocation.

5.1.3. Page context

The page context allows you to associate state with a particular instance of a rendered page.

You can initialize state in your event listener, or while actually rendering the page, and then have

access to it from any event that originates from that page. This is especially useful for functionality

like clickable lists, where the list is backed by changing data on the server side. The state is

actually serialized to the client, so this construct is extremely robust with respect to multi-window

operation and the back button.

5.1.4. Conversation context

The conversation context is a truly central concept in Seam. A conversation is a unit of work from

the point of view of the user. It might span several interactions with the user, several requests,

and several database transactions. But to the user, a conversation solves a single problem. For

example, "book hotel", "approve contract", "create order" are all conversations. You might like to

think of a conversation implementing a single "use case" or "user story", but the relationship is

not necessarily quite exact.

A conversation holds state associated with "what the user is doing now, in this window". A single

user may have multiple conversations in progress at any point in time, usually in multiple windows.

The conversation context allows us to ensure that state from the different conversations does not

collide and cause bugs.

It might take you some time to get used to thinking of applications in terms of conversations. But

once you get used to it, we think you'll love the notion, and never be able to not think in terms

of conversations again!

Some conversations last for just a single request. Conversations that span multiple requests must

be demarcated using annotations provided by Seam.

Some conversations are also tasks. A task is a conversation that is significant in terms of a long-

running business process, and has the potential to trigger a business process state transition when

it is successfully completed. Seam provides a special set of annotations for task demarcation.

Session context

95

Conversations may be nested, with one conversation taking place "inside" a wider conversation.

This is an advanced feature.

Usually, conversation state is actually held by Seam in the servlet session between

requests. Seam implements configurable conversation timeout, automatically destroying inactive

conversations, and thus ensuring that the state held by a single user login session does not grow

without bound if the user abandons conversations.

Seam serializes processing of concurrent requests that take place in the same long-running

conversation context, in the same process.

Alternatively, Seam may be configured to keep conversational state in the client browser.

5.1.5. Session context

A session context holds state associated with the user login session. While there are some cases

where it is useful to share state between several conversations, we generally frown on the use of

session context for holding components other than global information about the logged in user.

In a JSR-168 portal environment, the session context represents the portlet session.

5.1.6. Business process context

The business process context holds state associated with the long running business process. This

state is managed and made persistent by the BPM engine (JBoss jBPM). The business process

spans multiple interactions with multiple users, so this state is shared between multiple users, but

in a well-defined manner. The current task determines the current business process instance, and

the lifecycle of the business process is defined externally using a process definition language, so

there are no special annotations for business process demarcation.

5.1.7. Application context

The application context is the familiar servlet context from the servlet spec. Application context

is mainly useful for holding static information such as configuration data, reference data or

metamodels. For example, Seam stores its own configuration and metamodel in the application

context.

5.1.8. Context variables

A context defines a namespace, a set of context variables. These work much the same as session

or request attributes in the servlet spec. You may bind any value you like to a context variable,

but usually we bind Seam component instances to context variables.

So, within a context, a component instance is identified by the context variable name (this is

usually, but not always, the same as the component name). You may programmatically access a

named component instance in a particular scope via the Contexts class, which provides access

to several thread-bound instances of the Context interface:

Chapter 5. The contextual com...

96

User user = (User) Contexts.getSessionContext().get("user");

You may also set or change the value associated with a name:

Contexts.getSessionContext().set("user", user);

Usually, however, we obtain components from a context via injection, and put component

instances into a context via outjection.

5.1.9. Context search priority

Sometimes, as above, component instances are obtained from a particular known scope. Other

times, all stateful scopes are searched, in priority order. The order is as follows:

• Event context

• Page context

• Conversation context

• Session context

• Business process context

• Application context

You can perform a priority search by calling Contexts.lookupInStatefulContexts().

Whenever you access a component by name from a JSF page, a priority search occurs.

5.1.10. Concurrency model

Neither the servlet nor EJB specifications define any facilities for managing concurrent requests

originating from the same client. The servlet container simply lets all threads run concurrently

and leaves enforcing thread safeness to application code. The EJB container allows stateless

components to be accessed concurrently, and throws an exception if multiple threads access a

stateful session bean.

This behavior might have been okay in old-style web applications which were based around fine-

grained, synchronous requests. But for modern applications which make heavy use of many fine-

grained, asynchronous (AJAX) requests, concurrency is a fact of life, and must be supported by

the programming model. Seam weaves a concurrency management layer into its context model.

The Seam session and application contexts are multithreaded. Seam will allow concurrent

requests in a context to be processed concurrently. The event and page contexts are by nature

Seam components

97

single threaded. The business process context is strictly speaking multi-threaded, but in practice

concurrency is sufficiently rare that this fact may be disregarded most of the time. Finally, Seam

enforces a single thread per conversation per process model for the conversation context by

serializing concurrent requests in the same long-running conversation context.

Since the session context is multithreaded, and often contains volatile state, session scope

components are always protected by Seam from concurrent access so long as the Seam

interceptors are not disabled for that component. If interceptors are disabled, then any thread-

safety that is required must be implemented by the component itself. Seam serializes requests to

session scope JavaBeans by default (and detects and breaks any deadlocks that occur). This is

not the default behaviour for application scoped components however, since application scoped

components do not usually hold volatile state and because synchronization at the global level

is extremely expensive. However, you can force a serialized threading model on any JavaBean

component by adding the @Synchronized annotation.

Note

Seam 2.3 removed the serialization of Stateful session beans by Seam

synchronization interceptor because stateful session beans are serialized by EJB

3.1 container by default .

This concurrency model means that AJAX clients can safely use volatile session and

conversational state, without the need for any special work on the part of the developer.

Warning

Be warned that Statefull session Beans are not serialized by Seam anymore.

Serialization of Statefull session beans are controlled by EJB container, so there

is no need for Seam to duplicate that. So @Synchronized annotation is ignored

on Statefull session beans.

5.2. Seam components

Seam components are POJOs (Plain Old Java Objects). In particular, they are JavaBeans or

EJB 3.0 enterprise beans. While Seam does not require that components be EJBs and can even

be used without an EJB 3.0 compliant container, Seam was designed with EJB 3.0 in mind and

includes deep integration with EJB 3.0. Seam supports the following component types.

• EJB 3.0 stateless session beans

• EJB 3.0 stateful session beans

• EJB 3.0 entity beans (i.e., JPA entity classes)

Chapter 5. The contextual com...

98

• JavaBeans

• EJB 3.0 message-driven beans

• Spring beans (see Chapter 28, Spring Framework integration)

5.2.1. Stateless session beans

Stateless session bean components are not able to hold state across multiple invocations.

Therefore, they usually work by operating upon the state of other components in the various

Seam contexts. They may be used as JSF action listeners, but cannot provide properties to JSF

components for display.

Stateless session beans always live in the stateless context.

Stateless session beans can be accessed concurrently as a new instance is used for each

request. Assigning the instance to the request is the responsibility of the EJB3 container (normally

instances will be allocated from a reusable pool meaning that you may find any instance variables

contain data from previous uses of the bean).

Stateless session beans are the least interesting kind of Seam component.

Seam stateless session bean components may be instantiated using Component.getInstance()

or @In(create=true). They should not be directly instantiated via JNDI lookup or the new

operator.

5.2.2. Stateful session beans

Stateful session bean components are able to hold state not only across multiple invocations of

the bean, but also across multiple requests. Application state that does not belong in the database

should usually be held by stateful session beans. This is a major difference between Seam

and many other web application frameworks. Instead of sticking information about the current

conversation directly in the HttpSession, you should keep it in instance variables of a stateful

session bean that is bound to the conversation context. This allows Seam to manage the lifecycle

of this state for you, and ensure that there are no collisions between state relating to different

concurrent conversations.

Stateful session beans are often used as JSF action listener, and as backing beans that provide

properties to JSF components for display or form submission.

By default, stateful session beans are bound to the conversation context. They may never be

bound to the page or stateless contexts.

Concurrent requests to session-scoped stateful session beans are not serialized by Seam as long

as EJB 3.1 has changed that. This is a difference in comparison to previous Seam 2.2.x.

Seam stateful session bean components may be instantiated using Component.getInstance()

or @In(create=true). They should not be directly instantiated via JNDI lookup or the new

operator.

Entity beans

99

5.2.3. Entity beans

Entity beans may be bound to a context variable and function as a seam component. Because

entities have a persistent identity in addition to their contextual identity, entity instances are usually

bound explicitly in Java code, rather than being instantiated implicitly by Seam.

Entity bean components do not support bijection or context demarcation. Nor does invocation of

an entity bean trigger validation.

Entity beans are not usually used as JSF action listeners, but do often function as backing beans

that provide properties to JSF components for display or form submission. In particular, it is

common to use an entity as a backing bean, together with a stateless session bean action listener

to implement create/update/delete type functionality.

By default, entity beans are bound to the conversation context. They may never be bound to the

stateless context.

Note that it in a clustered environment is somewhat less efficient to bind an entity bean directly to

a conversation or session scoped Seam context variable than it would be to hold a reference to

the entity bean in a stateful session bean. For this reason, not all Seam applications define entity

beans to be Seam components.

Seam entity bean components may be instantiated using Component.getInstance(),

@In(create=true) or directly using the new operator.

5.2.4. JavaBeans

JavaBeans may be used just like a stateless or stateful session bean. However, they do not

provide the functionality of a session bean (declarative transaction demarcation, declarative

security, efficient clustered state replication, EJB 3.0 persistence, timeout methods, etc).

In a later chapter, we show you how to use Seam and Hibernate without an EJB container. In

this use case, components are JavaBeans instead of session beans. Note, however, that in many

application servers it is somewhat less efficient to cluster conversation or session scoped Seam

JavaBean components than it is to cluster stateful session bean components.

By default, JavaBeans are bound to the event context.

Concurrent requests to session-scoped JavaBeans are always serialized by Seam.

Seam JavaBean components may be instantiated using Component.getInstance() or

@In(create=true). They should not be directly instantiated using the new operator.

5.2.5. Message-driven beans

Message-driven beans may function as a seam component. However, message-driven beans

are called quite differently to other Seam components - instead of invoking them via the context

variable, they listen for messages sent to a JMS queue or topic.

Chapter 5. The contextual com...

100

Message-driven beans may not be bound to a Seam context. Nor do they have access to the

session or conversation state of their "caller". However, they do support bijection and some other

Seam functionality.

Message-driven beans are never instantiated by the application. They are instantiated by the EJB

container when a message is received.

5.2.6. Interception

In order to perform its magic (bijection, context demarcation, validation, etc), Seam must intercept

component invocations. For JavaBeans, Seam is in full control of instantiation of the component,

and no special configuration is needed. For entity beans, interception is not required since bijection

and context demarcation are not defined. For session beans, we must register an EJB interceptor

for the session bean component. We could use an annotation, as follows:

@Stateless

@Interceptors(SeamInterceptor.class)

public class LoginAction implements Login {

 ...

}

But a much better way is to define the interceptor in ejb-jar.xml.

<interceptors>

 <interceptor>

 <interceptor-class>org.jboss.seam.ejb.SeamInterceptor</interceptor-class>

 </interceptor>

</interceptors>

<assembly-descriptor>

 <interceptor-binding>

 <ejb-name>*</ejb-name>

 <interceptor-class>org.jboss.seam.ejb.SeamInterceptor</interceptor-class>

 </interceptor-binding>

</assembly-descriptor>

5.2.7. Component names

All seam components need a name. We can assign a name to a component using the @Name

annotation:

@Name("loginAction")

Component names

101

@Stateless

public class LoginAction implements Login {

 ...

}

This name is the seam component name and is not related to any other name defined by the EJB

specification. However, seam component names work just like JSF managed bean names and

you can think of the two concepts as identical.

@Name is not the only way to define a component name, but we always need to specify the name

somewhere. If we don't, then none of the other Seam annotations will function.

Whenever Seam instantiates a component, it binds the new instance to a variable in the scope

configured for the component that matches the component name. This behavior is identical to

how JSF managed beans work, except that Seam allows you to configure this mapping using

annotations rather than XML. You can also programmatically bind a component to a context

variable. This is useful if a particular component serves more than one role in the system. For

example, the currently logged in User might be bound to the currentUser session context

variable, while a User that is the subject of some administration functionality might be bound

to the user conversation context variable. Be careful, though, because through a programmatic

assignment, it's possible to overwrite a context variable that has a reference to a Seam component,

potentially confusing matters.

For very large applications, and for built-in seam components, qualified component names are

often used to avoid naming conflicts.

@Name("com.jboss.myapp.loginAction")

@Stateless

public class LoginAction implements Login {

 ...

}

We may use the qualified component name both in Java code and in JSF's expression language:

<h:commandButton type="submit" value="Login"

 action="#{com.jboss.myapp.loginAction.login}"/>

Since this is noisy, Seam also provides a means of aliasing a qualified name to a simple name.

Add a line like this to the components.xml file:

<factory name="loginAction" scope="STATELESS" value="#{com.jboss.myapp.loginAction}"/>

Chapter 5. The contextual com...

102

All of the built-in Seam components have qualified names but can be accessed through their

unqualified names due to the namespace import feature of Seam. The components.xml file

included in the Seam JAR defines the following namespaces.

<components xmlns="http://jboss.org/schema/seam/components">

 <import>org.jboss.seam.core</import>

 <import>org.jboss.seam.cache</import>

 <import>org.jboss.seam.transaction</import>

 <import>org.jboss.seam.framework</import>

 <import>org.jboss.seam.web</import>

 <import>org.jboss.seam.faces</import>

 <import>org.jboss.seam.international</import>

 <import>org.jboss.seam.theme</import>

 <import>org.jboss.seam.pageflow</import>

 <import>org.jboss.seam.bpm</import>

 <import>org.jboss.seam.jms</import>

 <import>org.jboss.seam.mail</import>

 <import>org.jboss.seam.security</import>

 <import>org.jboss.seam.security.management</import>

 <import>org.jboss.seam.security.permission</import>

 <import>org.jboss.seam.captcha</import>

 <import>org.jboss.seam.excel.exporter</import>

 <!-- ... --->

</components>

When attempting to resolve an unqualified name, Seam will check each of those namespaces,

in order. You can include additional namespaces in your application's components.xml file for

application-specific namespaces.

5.2.8. Defining the component scope

We can override the default scope (context) of a component using the @Scope annotation. This

lets us define what context a component instance is bound to, when it is instantiated by Seam.

@Name("user")

@Entity

@Scope(SESSION)

public class User {

 ...

}

Components with multiple roles

103

org.jboss.seam.ScopeType defines an enumeration of possible scopes.

5.2.9. Components with multiple roles

Some Seam component classes can fulfill more than one role in the system. For example, we

often have a User class which is usually used as a session-scoped component representing the

current user but is used in user administration screens as a conversation-scoped component. The

@Role annotation lets us define an additional named role for a component, with a different scope

— it lets us bind the same component class to different context variables. (Any Seam component

instance may be bound to multiple context variables, but this lets us do it at the class level, and

take advantage of auto-instantiation.)

@Name("user")

@Entity

@Scope(CONVERSATION)

@Role(name="currentUser", scope=SESSION)

public class User {

 ...

}

The @Roles annotation lets us specify as many additional roles as we like.

@Name("user")

@Entity

@Scope(CONVERSATION)

@Roles({@Role(name="currentUser", scope=SESSION),

 @Role(name="tempUser", scope=EVENT)})

public class User {

 ...

}

5.2.10. Built-in components

Like many good frameworks, Seam eats its own dogfood and is implemented mostly as a set of

built-in Seam interceptors (see later) and Seam components. This makes it easy for applications

to interact with built-in components at runtime or even customize the basic functionality of Seam

by replacing the built-in components with custom implementations. The built-in components are

defined in the Seam namespace org.jboss.seam.core and the Java package of the same name.

The built-in components may be injected, just like any Seam components, but they also provide

convenient static instance() methods:

Chapter 5. The contextual com...

104

FacesMessages.instance().add("Welcome back, #{user.name}!");

5.3. Bijection

Dependency injection or inversion of control is by now a familiar concept to most Java developers.

Dependency injection allows a component to obtain a reference to another component by

having the container "inject" the other component to a setter method or instance variable. In all

dependency injection implementations that we have seen, injection occurs when the component

is constructed, and the reference does not subsequently change for the lifetime of the component

instance. For stateless components, this is reasonable. From the point of view of a client, all

instances of a particular stateless component are interchangeable. On the other hand, Seam

emphasizes the use of stateful components. So traditional dependency injection is no longer a

very useful construct. Seam introduces the notion of bijection as a generalization of injection. In

contrast to injection, bijection is:

• contextual - bijection is used to assemble stateful components from various different contexts (a

component from a "wider" context may even have a reference to a component from a "narrower"

context)

• bidirectional - values are injected from context variables into attributes of the component being

invoked, and also outjected from the component attributes back out to the context, allowing the

component being invoked to manipulate the values of contextual variables simply by setting its

own instance variables

• dynamic - since the value of contextual variables changes over time, and since Seam

components are stateful, bijection takes place every time a component is invoked

In essence, bijection lets you alias a context variable to a component instance variable, by

specifying that the value of the instance variable is injected, outjected, or both. Of course, we use

annotations to enable bijection.

The @In annotation specifies that a value should be injected, either into an instance variable:

@Name("loginAction")

@Stateless

public class LoginAction implements Login {

 @In User user;

 ...

}

or into a setter method:

@Name("loginAction")

Bijection

105

@Stateless

public class LoginAction implements Login {

 User user;

 @In

 public void setUser(User user) {

 this.user=user;

 }

 ...

}

By default, Seam will do a priority search of all contexts, using the name of the property or instance

variable that is being injected. You may wish to specify the context variable name explicitly, using,

for example, @In("currentUser").

If you want Seam to create an instance of the component when there is no existing component

instance bound to the named context variable, you should specify @In(create=true). If the value

is optional (it can be null), specify @In(required=false).

For some components, it can be repetitive to have to specify @In(create=true) everywhere they

are used. In such cases, you can annotate the component @AutoCreate, and then it will always

be created, whenever needed, even without the explicit use of create=true.

You can even inject the value of an expression:

@Name("loginAction")

@Stateless

public class LoginAction implements Login {

 @In("#{user.username}") String username;

 ...

}

Injected values are disinjected (i.e., set to null) immediately after method completion and

outjection.

(There is much more information about component lifecycle and injection in the next chapter.)

The @Out annotation specifies that an attribute should be outjected, either from an instance

variable:

@Name("loginAction")

@Stateless

public class LoginAction implements Login {

Chapter 5. The contextual com...

106

 @Out User user;

 ...

}

or from a getter method:

@Name("loginAction")

@Stateless

public class LoginAction implements Login {

 User user;

 @Out

 public User getUser() {

 return user;

 }

 ...

}

An attribute may be both injected and outjected:

@Name("loginAction")

@Stateless

public class LoginAction implements Login {

 @In @Out User user;

 ...

}

or:

@Name("loginAction")

@Stateless

public class LoginAction implements Login {

 User user;

 @In

 public void setUser(User user) {

 this.user=user;

 }

Lifecycle methods

107

 @Out

 public User getUser() {

 return user;

 }

 ...

}

5.4. Lifecycle methods

Session bean and entity bean Seam components support all the usual EJB 3.0 lifecycle

callback (@PostConstruct, @PreDestroy, etc). But Seam also supports the use of any of these

callbacks with JavaBean components. However, since these annotations are not available in

a J2EE environment, Seam defines two additional component lifecycle callbacks, equivalent to

@PostConstruct and @PreDestroy.

The @Create method is called after Seam instantiates a component. Components may define only

one @Create method.

The @Destroy method is called when the context that the Seam component is bound to ends.

Components may define only one @Destroy method.

In addition, stateful session bean components must define a method with no parameters annotated

@Remove. This method is called by Seam when the context ends.

Finally, a related annotation is the @Startup annotation, which may be applied to any application

or session scoped component. The @Startup annotation tells Seam to instantiate the component

immediately, when the context begins, instead of waiting until it is first referenced by a

client. It is possible to control the order of instantiation of startup components by specifying

@Startup(depends={....}).

5.5. Conditional installation

The @Install annotation lets you control conditional installation of components that are required

in some deployment scenarios and not in others. This is useful if:

• You want to mock out some infrastructural component in tests.

• You want change the implementation of a component in certain deployment scenarios.

• You want to install some components only if their dependencies are available (useful for

framework authors).

@Install works by letting you specify precedence and dependencies.

The precedence of a component is a number that Seam uses to decide which component to

install when there are multiple classes with the same component name in the classpath. Seam

Chapter 5. The contextual com...

108

will choose the component with the higher precedence. There are some predefined precedence

values (in ascending order):

1. BUILT_IN — the lowest precedence components are the components built in to Seam.

2. FRAMEWORK — components defined by third-party frameworks may override built-in

components, but are overridden by application components.

3. APPLICATION — the default precedence. This is appropriate for most application components.

4. DEPLOYMENT — for application components which are deployment-specific.

5. MOCK — for mock objects used in testing.

Suppose we have a component named messageSender that talks to a JMS queue.

@Name("messageSender")

public class MessageSender {

 public void sendMessage() {

 //do something with JMS

 }

}

In our unit tests, we don't have a JMS queue available, so we would like to stub out this method.

We'll create a mock component that exists in the classpath when unit tests are running, but is

never deployed with the application:

@Name("messageSender")

@Install(precedence=MOCK)

public class MockMessageSender extends MessageSender {

 public void sendMessage() {

 //do nothing!

 }

}

The precedence helps Seam decide which version to use when it finds both components in the

classpath.

This is nice if we are able to control exactly which classes are in the classpath. But if I'm writing

a reusable framework with many dependencies, I don't want to have to break that framework

across many jars. I want to be able to decide which components to install depending upon

what other components are installed, and upon what classes are available in the classpath. The

@Install annotation also controls this functionality. Seam uses this mechanism internally to

Logging

109

enable conditional installation of many of the built-in components. However, you probably won't

need to use it in your application.

5.6. Logging

Who is not totally fed up with seeing noisy code like this?

private static final Log log = LogFactory.getLog(CreateOrderAction.class);

public Order createOrder(User user, Product product, int quantity) {

 if (log.isDebugEnabled()) {

 log.debug("Creating new order for user: " + user.username() +

 " product: " + product.name()

 + " quantity: " + quantity);

 }

 return new Order(user, product, quantity);

}

It is difficult to imagine how the code for a simple log message could possibly be more verbose.

There is more lines of code tied up in logging than in the actual business logic! I remain totally

astonished that the Java community has not come up with anything better in 10 years.

Seam provides a logging API that simplifies this code significantly:

@Logger private Log log;

public Order createOrder(User user, Product product, int quantity) {

 log.debug("Creating new order for user: #0 product: #1 quantity:

 #2", user.username(), product.name(), quantity);

 return new Order(user, product, quantity);

}

It doesn't matter if you declare the log variable static or not — it will work either way, except for

entity bean components which require the log variable to be static.

Note that we don't need the noisy if (log.isDebugEnabled()) guard, since string

concatenation happens inside the debug() method. Note also that we don't usually need to specify

the log category explicitly, since Seam knows what component it is injecting the Log into.

If User and Product are Seam components available in the current contexts, it gets even better:

@Logger private Log log;

Chapter 5. The contextual com...

110

public Order createOrder(User user, Product product, int quantity) {

 log.debug("Creating new order for user: #{user.username} product: #{product.name} quantity:

 #0", quantity);

 return new Order(user, product, quantity);

}

Seam logging automagically chooses whether to send output to log4j or JDK logging. If log4j is in

the classpath, Seam with use it. If it is not, Seam will use JDK logging.

5.7. The Mutable interface and @ReadOnly

Many application servers feature an amazingly broken implementation of HttpSession clustering,

where changes to the state of mutable objects bound to the session are only replicated when the

application calls setAttribute() explicitly. This is a source of bugs that can not effectively be

tested for at development time, since they will only manifest when failover occurs. Furthermore,

the actual replication message contains the entire serialized object graph bound to the session

attribute, which is inefficient.

Of course, EJB stateful session beans must perform automatic dirty checking and replication of

mutable state and a sophisticated EJB container can introduce optimizations such as attribute-

level replication. Unfortunately, not all Seam users have the good fortune to be working in an

environment that supports EJB 3.0. So, for session and conversation scoped JavaBean and entity

bean components, Seam provides an extra layer of cluster-safe state management over the top

of the web container session clustering.

For session or conversation scoped JavaBean components, Seam automatically forces replication

to occur by calling setAttribute() once in every request that the component was invoked by

the application. Of course, this strategy is inefficient for read-mostly components. You can control

this behavior by implementing the org.jboss.seam.core.Mutable interface, or by extending

org.jboss.seam.core.AbstractMutable, and writing your own dirty-checking logic inside the

component. For example,

@Name("account")

public class Account extends AbstractMutable

{

 private BigDecimal balance;

 public void setBalance(BigDecimal balance)

 {

 setDirty(this.balance, balance);

 this.balance = balance;

 }

 public BigDecimal getBalance()

The Mutable interface and @ReadOnly

111

 {

 return balance;

 }

 ...

}

Or, you can use the @ReadOnly annotation to achieve a similar effect:

@Name("account")

public class Account

{

 private BigDecimal balance;

 public void setBalance(BigDecimal balance)

 {

 this.balance = balance;

 }

 @ReadOnly

 public BigDecimal getBalance()

 {

 return balance;

 }

 ...

}

For session or conversation scoped entity bean components, Seam automatically forces

replication to occur by calling setAttribute() once in every request, unless the (conversation-

scoped) entity is currently associated with a Seam-managed persistence context, in which case no

replication is needed. This strategy is not necessarily efficient, so session or conversation scope

entity beans should be used with care. You can always write a stateful session bean or JavaBean

component to "manage" the entity bean instance. For example,

@Stateful

@Name("account")

public class AccountManager extends AbstractMutable

{

 private Account account; // an entity bean

Chapter 5. The contextual com...

112

 @Unwrap

 public Account getAccount()

 {

 return account;

 }

 ...

}

Note that the EntityHome class in the Seam Application Framework provides a great example of

managing an entity bean instance using a Seam component.

5.8. Factory and manager components

We often need to work with objects that are not Seam components. But we still want to be able to

inject them into our components using @In and use them in value and method binding expressions,

etc. Sometimes, we even need to tie them into the Seam context lifecycle (@Destroy, for example).

So the Seam contexts can contain objects which are not Seam components, and Seam provides a

couple of nice features that make it easier to work with non-component objects bound to contexts.

The factory component pattern lets a Seam component act as the instantiator for a non-component

object. A factory method will be called when a context variable is referenced but has no value

bound to it. We define factory methods using the @Factory annotation. The factory method binds

a value to the context variable, and determines the scope of the bound value. There are two styles

of factory method. The first style returns a value, which is bound to the context by Seam:

@Factory(scope=CONVERSATION)

public List<Customer> getCustomerList() {

 return ... ;

}

The second style is a method of type void which binds the value to the context variable itself:

@DataModel List<Customer> customerList;

@Factory("customerList")

public void initCustomerList() {

 customerList = ... ;

}

Factory and manager components

113

In both cases, the factory method is called when we reference the customerList context variable

and its value is null, and then has no further part to play in the lifecycle of the value. An even more

powerful pattern is the manager component pattern. In this case, we have a Seam component

that is bound to a context variable, that manages the value of the context variable, while remaining

invisible to clients.

A manager component is any component with an @Unwrap method. This method returns the value

that will be visible to clients, and is called every time a context variable is referenced.

@Name("customerList")

@Scope(CONVERSATION)

public class CustomerListManager

{

 ...

 @Unwrap

 public List<Customer> getCustomerList() {

 return ... ;

 }

}

The manager component pattern is especially useful if we have an object where you need more

control over the lifecycle of the component. For example, if you have a heavyweight object that

needs a cleanup operation when the context ends you could @Unwrap the object, and perform

cleanup in the @Destroy method of the manager component.

@Name("hens")

@Scope(APPLICATION)

public class HenHouse

{

 Set<Hen> hens;

 @In(required=false) Hen hen;

 @Unwrap

 public List<Hen> getHens()

 {

 if (hens == null)

 {

 // Setup our hens

 }

 return hens;

 }

Chapter 5. The contextual com...

114

 @Observer({"chickBorn", "chickenBoughtAtMarket"})

 public addHen()

 {

 hens.add(hen);

 }

 @Observer("chickenSoldAtMarket")

 public removeHen()

 {

 hens.remove(hen);

 }

 @Observer("foxGetsIn")

 public removeAllHens()

 {

 hens.clear();

 }

 ...

}

Here the managed component observes many events which change the underlying object. The

component manages these actions itself, and because the object is unwrapped on every access,

a consistent view is provided.

Chapter 6.

115

Configuring Seam components
The philosophy of minimizing XML-based configuration is extremely strong in Seam.

Nevertheless, there are various reasons why we might want to configure a Seam component

using XML: to isolate deployment-specific information from the Java code, to enable the creation

of re-usable frameworks, to configure Seam's built-in functionality, etc. Seam provides two basic

approaches to configuring components: configuration via property settings in a properties file or

in web.xml, and configuration via components.xml.

6.1. Configuring components via property settings

Seam components may be provided with configuration properties either via servlet context

parameters, via system properties, or via a properties file named seam.properties in the root

of the classpath.

The configurable Seam component must expose JavaBeans-style property setter methods

for the configurable attributes. If a Seam component named com.jboss.myapp.settings

has a setter method named setLocale(), we can provide a property named

com.jboss.myapp.settings.locale in the seam.properties file, a system property named

org.jboss.seam.properties.com.jboss.myapp.settings.locale via -D at startup, or as a

servlet context parameter, and Seam will set the value of the locale attribute whenever it

instantiates the component.

The same mechanism is used to configure Seam itself. For example, to set the conversation

timeout, we provide a value for org.jboss.seam.core.manager.conversationTimeout

in web.xml, seam.properties, or via a system property prefixed with

org.jboss.seam.properties. (There is a built-in Seam component named

org.jboss.seam.core.manager with a setter method named setConversationTimeout().)

6.2. Configuring components via components.xml

The components.xml file is a bit more powerful than property settings. It lets you:

• Configure components that have been installed automatically — including both built-in

components, and application components that have been annotated with the @Name annotation

and picked up by Seam's deployment scanner.

• Install classes with no @Name annotation as Seam components — this is most useful for certain

kinds of infrastructural components which can be installed multiple times with different names

(for example Seam-managed persistence contexts).

• Install components that do have a @Name annotation but are not installed by default because of

an @Install annotation that indicates the component should not be installed.

• Override the scope of a component.

A components.xml file may appear in one of three different places:

Chapter 6. Configuring Seam c...

116

• The WEB-INF directory of a war.

• The META-INF directory of a jar.

• Any directory of a jar that contains classes with an @Name annotation.

Usually, Seam components are installed when the deployment scanner discovers a class

with a @Name annotation sitting in an archive with a seam.properties file or a META-INF/

components.xml file. (Unless the component has an @Install annotation indicating it should not

be installed by default.) The components.xml file lets us handle special cases where we need

to override the annotations.

For example, the following components.xml file installs jBPM:

<components xmlns="http://jboss.org/schema/seam/components"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:bpm="http://jboss.org/schema/seam/bpm">

 <bpm:jbpm/>

</components>

This example does the same thing:

<components>

 <component class="org.jboss.seam.bpm.Jbpm"/>

</components>

This one installs and configures two different Seam-managed persistence contexts:

<components xmlns="http://jboss.org/schema/seam/components"

 xmlns:persistence="http://jboss.org/schema/seam/persistence"

 <persistence:managed-persistence-context name="customerDatabase"

 persistence-unit-jndi-name="java:/customerEntityManagerFactory"/>

 <persistence:managed-persistence-context name="accountingDatabase"

 persistence-unit-jndi-name="java:/accountingEntityManagerFactory"/>

</components>

As does this one:

<components>

Configuring components via components.xml

117

 <component name="customerDatabase"

 class="org.jboss.seam.persistence.ManagedPersistenceContext">

 <property name="persistenceUnitJndiName">java:/customerEntityManagerFactory</

property>

 </component>

 <component name="accountingDatabase"

 class="org.jboss.seam.persistence.ManagedPersistenceContext">

 <property name="persistenceUnitJndiName">java:/accountingEntityManagerFactory</

property>

 </component>

</components>

This example creates a session-scoped Seam-managed persistence context (this is not

recommended in practice):

<components xmlns="http://jboss.org/schema/seam/components"

 xmlns:persistence="http://jboss.org/schema/seam/persistence"

 <persistence:managed-persistence-context name="productDatabase"

 scope="session"

 persistence-unit-jndi-name="java:/productEntityManagerFactory"/>

</components>

<components>

 <component name="productDatabase"

 scope="session"

 class="org.jboss.seam.persistence.ManagedPersistenceContext">

 <property name="persistenceUnitJndiName">java:/productEntityManagerFactory</property>

 </component>

</components>

It is common to use the auto-create option for infrastructural objects like persistence contexts,

which saves you from having to explicitly specify create=true when you use the @In annotation.

<components xmlns="http://jboss.org/schema/seam/components"

 xmlns:persistence="http://jboss.org/schema/seam/persistence"

Chapter 6. Configuring Seam c...

118

 <persistence:managed-persistence-context name="productDatabase"

 auto-create="true"

 persistence-unit-jndi-name="java:/productEntityManagerFactory"/>

</components>

<components>

 <component name="productDatabase"

 auto-create="true"

 class="org.jboss.seam.persistence.ManagedPersistenceContext">

 <property name="persistenceUnitJndiName">java:/productEntityManagerFactory</property>

 </component>

</components>

The <factory> declaration lets you specify a value or method binding expression that will be

evaluated to initialize the value of a context variable when it is first referenced.

<components>

 <factory name="contact" method="#{contactManager.loadContact}" scope="CONVERSATION"/

>

</components>

You can create an "alias" (a second name) for a Seam component like so:

<components>

 <factory name="user" value="#{actor}" scope="STATELESS"/>

</components>

You can even create an "alias" for a commonly used expression:

<components>

Fine-grained configuration files

119

 <factory name="contact" value="#{contactManager.contact}" scope="STATELESS"/>

</components>

It is especially common to see the use of auto-create="true" with the <factory> declaration:

<components>

 <factory name="session" value="#{entityManager.delegate}" scope="STATELESS" auto-

create="true"/>

</components>

Sometimes we want to reuse the same components.xml file with minor changes during

both deployment and testing. Seam lets you place wildcards of the form @wildcard@ in the

components.xml file which can be replaced either by your Ant build script (at deployment time) or

by providing a file named components.properties in the classpath (at development time). You'll

see this approach used in the Seam examples.

6.3. Fine-grained configuration files

If you have a large number of components that need to be configured in XML, it makes much

more sense to split up the information in components.xml into many small files. Seam lets you

put configuration for a class named, for example, com.helloworld.Hello in a resource named

com/helloworld/Hello.component.xml. (You might be familiar with this pattern, since it is the

same one we use in Hibernate.) The root element of the file may be either a <components> or

<component> element.

The first option lets you define multiple components in the file:

<components>

 <component class="com.helloworld.Hello" name="hello">

 <property name="name">#{user.name}</property>

 </component>

 <factory name="message" value="#{hello.message}"/>

</components>

The second option only lets you define or configure one component, but is less noisy:

<component name="hello">

Chapter 6. Configuring Seam c...

120

 <property name="name">#{user.name}</property>

</component>

In the second option, the class name is implied by the file in which the component definition

appears.

Alternatively, you may put configuration for all classes in the com.helloworld package in com/

helloworld/components.xml.

6.4. Configurable property types

Properties of string, primitive or primitive wrapper type may be configured just as you would expect:

org.jboss.seam.core.manager.conversationTimeout 60000

<core:manager conversation-timeout="60000"/>

<component name="org.jboss.seam.core.manager">

 <property name="conversationTimeout">60000</property>

</component>

Arrays, sets and lists of strings or primitives are also supported:

org.jboss.seam.bpm.jbpm.processDefinitions order.jpdl.xml, return.jpdl.xml, inventory.jpdl.xml

<bpm:jbpm>

 <bpm:process-definitions>

 <value>order.jpdl.xml</value>

 <value>return.jpdl.xml</value>

 <value>inventory.jpdl.xml</value>

 </bpm:process-definitions>

</bpm:jbpm>

<component name="org.jboss.seam.bpm.jbpm">

 <property name="processDefinitions">

 <value>order.jpdl.xml</value>

Configurable property types

121

 <value>return.jpdl.xml</value>

 <value>inventory.jpdl.xml</value>

 </property>

</component>

Even maps with String-valued keys and string or primitive values are supported:

<component name="issueEditor">

 <property name="issueStatuses">

 <key>open</key> <value>open issue</value>

 <key>resolved</key> <value>issue resolved by developer</value>

 <key>closed</key> <value>resolution accepted by user</value>

 </property>

</component>

When configuring multi-valued properties, by default, Seam will preserve the order in which you

place the attributes in components.xml (unless you use a SortedSet/SortedMap then Seam will

use TreeMap/TreeSet). If the property has a concrete type (for example LinkedList) Seam will

use that type.

You can also override the type by specifying a fully qualified class name:

<component name="issueEditor">

 <property name="issueStatusOptions" type="java.util.LinkedHashMap">

 <key>open</key> <value>open issue</value>

 <key>resolved</key> <value>issue resolved by developer</value>

 <key>closed</key> <value>resolution accepted by user</value>

 </property>

</component>

Finally, you may wire together components using a value-binding expression. Note that this is

quite different to injection using @In, since it happens at component instantiation time instead of

invocation time. It is therefore much more similar to the dependency injection facilities offered by

traditional IoC containers like JSF or Spring.

<drools:managed-working-memory name="policyPricingWorkingMemory"

 rule-base="#{policyPricingRules}"/>

<component name="policyPricingWorkingMemory"

Chapter 6. Configuring Seam c...

122

 class="org.jboss.seam.drools.ManagedWorkingMemory">

 <property name="ruleBase">#{policyPricingRules}</property>

</component>

Seam also resolves an EL expression string prior to assigning the initial value to the bean property

of the component. So you can inject some contextual data into your components.

<component name="greeter" class="com.example.action.Greeter">

 <property name="message">Nice to see you, #{identity.username}!</property>

</component>

However, there is one important exception. If the type of the property to which the initial value is

being assigned is either a Seam ValueExpression or MethodExpression, then the evaluation of

the EL is deferred. Instead, the appropriate expression wrapper is created and assigned to the

property. The message templates on the Home component from the Seam Application Framework

serve as an example.

<framework:entity-home name="myEntityHome"

 class="com.example.action.MyEntityHome" entity-class="com.example.model.MyEntity"

 created-message="'#{myEntityHome.instance.name}' has been successfully added."/>

Inside the component, you can access the expression string by calling getExpressionString()

on the ValueExpression or MethodExpression. If the property is a ValueExpression, you can

resolve the value using getValue() and if the property is a MethodExpression, you can invoke

the method using invoke(Object args...). Obviously, to assign a value to a MethodExpression

property, the entire initial value must be a single EL expression.

6.5. Using XML Namespaces

Throughout the examples, there have been two competing ways of declaring components: with

and without the use of XML namespaces. The following shows a typical components.xml file

without namespaces:

<?xml version="1.0" encoding="UTF-8"?>

<components xmlns="http://jboss.org/schema/seam/components"

 xsi:schemaLocation="http://jboss.org/schema/seam/components http://jboss.org/schema/

seam/components-2.3.xsd">

 <component class="org.jboss.seam.core.init">

 <property name="debug">true</property>

 <property name="jndiPattern">@jndiPattern@</property>

Using XML Namespaces

123

 </component>

</components>

As you can see, this is somewhat verbose. Even worse, the component and attribute names

cannot be validated at development time.

The version with using namespaces looks like this:

<?xml version="1.0" encoding="UTF-8"?>

<components xmlns="http://jboss.org/schema/seam/components"

 xmlns:core="http://jboss.org/schema/seam/core"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation=

 "http://jboss.org/schema/seam/core http://jboss.org/schema/seam/core-2.3.xsd

 http://jboss.org/schema/seam/components http://jboss.org/schema/seam/

components-2.3.xsd">

 <core:init debug="true" jndi-pattern="@jndiPattern@"/>

</components>

Even though the schema declarations are verbose, the actual XML content is lean and easy to

understand. The schemas provide detailed information about each component and the attributes

available, allowing XML editors to offer intelligent autocomplete. The use of namespaced elements

makes generating and maintaining correct components.xml files much simpler.

Now, this works great for the built-in Seam components, but what about user components? There

are two options. First, Seam supports mixing the two models, allowing the use of the generic

<component> declarations for user components, along with namespaced declarations for built-

in components. But even better, Seam allows you to quickly declare namespaces for your own

components.

Any Java package can be associated with an XML namespace by annotating the package with

the @Namespace annotation. (Package-level annotations are declared in a file named package-

info.java in the package directory.) Here is an example from the seampay demo:

@Namespace(value="http://jboss.org/schema/seam/examples/seampay")

package org.jboss.seam.example.seampay;

import org.jboss.seam.annotations.Namespace;

Chapter 6. Configuring Seam c...

124

That is all you need to do to use the namespaced style in components.xml! Now we can write:

<components xmlns="http://jboss.org/schema/seam/components"

 xmlns:pay="http://jboss.org/schema/seam/examples/seampay"

 ... >

 <pay:payment-home new-instance="#{newPayment}"

 created-message="Created a new payment to #{newPayment.payee}" />

 <pay:payment name="newPayment"

 payee="Somebody"

 account="#{selectedAccount}"

 payment-date="#{currentDatetime}"

 created-date="#{currentDatetime}" />

 ...

</components>

Or:

<components xmlns="http://jboss.org/schema/seam/components"

 xmlns:pay="http://jboss.org/schema/seam/examples/seampay"

 ... >

 <pay:payment-home>

 <pay:new-instance>"#{newPayment}"</pay:new-instance>

 <pay:created-message>Created a new payment to #{newPayment.payee}</pay:created-

message>

 </pay:payment-home>

 <pay:payment name="newPayment">

 <pay:payee>Somebody"</pay:payee>

 <pay:account>#{selectedAccount}</pay:account>

 <pay:payment-date>#{currentDatetime}</pay:payment-date>

 <pay:created-date>#{currentDatetime}</pay:created-date>

 </pay:payment>

 ...

</components>

These examples illustrate the two usage models of a namespaced element. In the first declaration,

the <pay:payment-home> references the paymentHome component:

Using XML Namespaces

125

package org.jboss.seam.example.seampay;

...

@Name("paymentHome")

public class PaymentController

 extends EntityHome<Payment>

{

 ...

}

The element name is the hyphenated form of the component name. The attributes of the element

are the hyphenated form of the property names.

In the second declaration, the <pay:payment> element refers to the Payment class in the

org.jboss.seam.example.seampay package. In this case Payment is an entity that is being

declared as a Seam component:

package org.jboss.seam.example.seampay;

...

@Entity

public class Payment

 implements Serializable

{

 ...

}

If we want validation and autocompletion to work for user-defined components, we will need a

schema. Seam does not yet provide a mechanism to automatically generate a schema for a set of

components, so it is necessary to generate one manually. The schema definitions for the standard

Seam packages can be used for guidance.

The following are the namespaces used by Seam:

• components — http://jboss.org/schema/seam/components

• core — http://jboss.org/schema/seam/core

• drools — http://jboss.org/schema/seam/drools

• framework — http://jboss.org/schema/seam/framework

• jms — http://jboss.org/schema/seam/jms

• remoting — http://jboss.org/schema/seam/remoting

• theme — http://jboss.org/schema/seam/theme

Chapter 6. Configuring Seam c...

126

• security — http://jboss.org/schema/seam/security

• mail — http://jboss.org/schema/seam/mail

• web — http://jboss.org/schema/seam/web

• pdf — http://jboss.org/schema/seam/pdf

• spring — http://jboss.org/schema/seam/spring

Chapter 7.

127

Events, interceptors and exception

handling
Complementing the contextual component model, there are two further basic concepts that

facilitate the extreme loose-coupling that is the distinctive feature of Seam applications. The first

is a strong event model where events may be mapped to event listeners via JSF-like method

binding expressions. The second is the pervasive use of annotations and interceptors to apply

cross-cutting concerns to components which implement business logic.

7.1. Seam events

The Seam component model was developed for use with event-driven applications, specifically to

enable the development of fine-grained, loosely-coupled components in a fine-grained eventing

model. Events in Seam come in several types, most of which we have already seen:

• JSF events

• jBPM transition events

• Seam page actions

• Seam component-driven events

• Seam contextual events

All of these various kinds of events are mapped to Seam components via JSF EL method binding

expressions. For a JSF event, this is defined in the JSF template:

<h:commandButton value="Click me!" action="#{helloWorld.sayHello}"/>

For a jBPM transition event, it is specified in the jBPM process definition or pageflow definition:

<start-page name="hello" view-id="/hello.xhtml">

 <transition to="hello">

 <action expression="#{helloWorld.sayHello}"/>

 </transition>

</start-page>

You can find out more information about JSF events and jBPM events elsewhere. Let's

concentrate for now upon the two additional kinds of events defined by Seam.

Chapter 7. Events, intercepto...

128

7.2. Page actions

A Seam page action is an event that occurs just before we render a page. We declare page actions

in WEB-INF/pages.xml. We can define a page action for either a particular JSF view id:

<pages>

 <page view-id="/hello.xhtml" action="#{helloWorld.sayHello}"/>

</pages>

Or we can use a * wildcard as a suffix to the view-id to specify an action that applies to all view

ids that match the pattern:

<pages>

 <page view-id="/hello/*" action="#{helloWorld.sayHello}"/>

</pages>

Keep in mind that if the <page> element is defined in a fine-grained page descriptor, the view-

id attribute can be left off since it is implied.

If multiple wildcarded page actions match the current view-id, Seam will call all the actions, in

order of least-specific to most-specific.

The page action method can return a JSF outcome. If the outcome is non-null, Seam will use the

defined navigation rules to navigate to a view.

Furthermore, the view id mentioned in the <page> element need not correspond to a real JSP or

Facelets page! So, we can reproduce the functionality of a traditional action-oriented framework

like Struts or WebWork using page actions. This is quite useful if you want to do complex things

in response to non-faces requests (for example, HTTP GET requests).

Multiple or conditional page actions my be specified using the <action> tag:

<pages>

 <page view-id="/hello.xhtml">

 <action execute="#{helloWorld.sayHello}" if="#{not validation.failed}"/>

 <action execute="#{hitCount.increment}"/>

 </page>

</pages>

Page actions are executed on both an initial (non-faces) request and a postback (faces) request.

If you are using the page action to load data, this operation may conflict with the standard JSF

Page parameters

129

action(s) being executed on a postback. One way to disable the page action is to setup a condition

that resolves to true only on an initial request.

<pages>

 <page view-id="/dashboard.xhtml">

 <action execute="#{dashboard.loadData}"

 if="#{not facesContext.renderKit.responseStateManager.isPostback(facesContext)}"/>

 </page>

</pages>

This condition consults the ResponseStateManager#isPostback(FacesContext) to determine

if the request is a postback. The ResponseStateManager is accessed using

FacesContext.getCurrentInstance().getRenderKit().getResponseStateManager().

To save you from the verbosity of JSF's API, Seam offers a built-in condition that allows you to

accomplish the same result with a heck of a lot less typing. You can disable a page action on

postback by simply setting the on-postback to false:

<pages>

 <page view-id="/dashboard.xhtml">

 <action execute="#{dashboard.loadData}" on-postback="false"/>

 </page>

</pages>

For backwards compatibility reasons, the default value of the on-postback attribute is true, though

likely you will end up using the opposite setting more often.

7.3. Page parameters

A JSF faces request (a form submission) encapsulates both an "action" (a method binding) and

"parameters" (input value bindings). A page action might also needs parameters!

Since GET requests are bookmarkable, page parameters are passed as human-readable request

parameters. (Unlike JSF form inputs, which are anything but!)

You can use page parameters with or without an action method.

7.3.1. Mapping request parameters to the model

Seam lets us provide a value binding that maps a named request parameter to an attribute of a

model object.

<pages>

Chapter 7. Events, intercepto...

130

 <page view-id="/hello.xhtml" action="#{helloWorld.sayHello}">

 <param name="firstName" value="#{person.firstName}"/>

 <param name="lastName" value="#{person.lastName}"/>

 </page>

 </pages>

The <param> declaration is bidirectional, just like a value binding for a JSF input:

• When a non-faces (GET) request for the view id occurs, Seam sets the value of the named

request parameter onto the model object, after performing appropriate type conversions.

• Any <s:link> or <s:button> transparently includes the request parameter. The value of the

parameter is determined by evaluating the value binding during the render phase (when the

<s:link> is rendered).

• Any navigation rule with a <redirect/> to the view id transparently includes the request

parameter. The value of the parameter is determined by evaluating the value binding at the end

of the invoke application phase.

• The value is transparently propagated with any JSF form submission for the page with the given

view id. This means that view parameters behave like PAGE-scoped context variables for faces

requests.

The essential idea behind all this is that however we get from any other page to /hello.xhtml

(or from /hello.xhtml back to /hello.xhtml), the value of the model attribute referred to in the

value binding is "remembered", without the need for a conversation (or other server-side state).

7.4. Propagating request parameters

If just the name attribute is specified then the request parameter is propagated using the PAGE

context (it isn't mapped to model property).

<pages>

 <page view-id="/hello.xhtml" action="#{helloWorld.sayHello}">

 <param name="firstName" />

 <param name="lastName" />

 </page>

 </pages>

Propagation of page parameters is especially useful if you want to build multi-layer master-detail

CRUD pages. You can use it to "remember" which view you were previously on (e.g. when

pressing the Save button), and which entity you were editing.

• Any <s:link> or <s:button> transparently propagates the request parameter if that parameter

is listed as a page parameter for the view.

URL rewriting with page parameters

131

• The value is transparently propagated with any JSF form submission for the page with the given

view id. (This means that view parameters behave like PAGE-scoped context variables for faces

requests.

This all sounds pretty complex, and you're probably wondering if such an exotic construct is really

worth the effort. Actually, the idea is very natural once you "get it". It is definitely worth taking the

time to understand this stuff. Page parameters are the most elegant way to propagate state across

a non-faces request. They are especially cool for problems like search screens with bookmarkable

results pages, where we would like to be able to write our application code to handle both POST

and GET requests with the same code. Page parameters eliminate repetitive listing of request

parameters in the view definition and make redirects much easier to code.

7.5. URL rewriting with page parameters

Rewriting occurs based on rewrite patterns found for views in pages.xml. Seam URL rewriting

does both incoming and outgoing URL rewriting based on the same pattern. Here's a simple

pattern:

<page view-id="/home.xhtml">

 <rewrite pattern="/home" />

</page>

In this case, any incoming request for /home will be sent to /home.xhtml. More interestingly,

any link generated that would normally point to /home.seam will instead be rewritten as /home.

Rewrite patterns only match the portion of the URL before the query parameters. So, /home.seam?

conversationId=13 and /home.seam?color=red will both be matched by this rewrite rule.

Rewrite rules can take these query paramters into consideration, as shown with the following rules.

<page view-id="/home.xhtml">

 <rewrite pattern="/home/{color}" />

 <rewrite pattern="/home" />

</page>

In this case, an incoming request for /home/red will be served as if it were a request for /

home.seam?color=red. Similarly, if color is a page parameter an outgoing URL that would

normally show as /home.seam?color=blue would instead be output as /home/blue. Rules are

processed in order, so it is important to list more specific rules before more general rules.

Chapter 7. Events, intercepto...

132

Default Seam query parameters can also be mapped using URL rewriting, allowing for

another option for hiding Seam's fingerprints. In the following example, /search.seam?

conversationId=13 would be written as /search-13.

<page view-id="/search.xhtml">

 <rewrite pattern="/search-{conversationId}" />

 <rewrite pattern="/search" />

</page>

Seam URL rewriting provides simple, bidirectional rewriting on a per-view basis. For more complex

rewriting rules that cover non-seam components, Seam applications can continue to use the

org.tuckey URLRewriteFilter or apply rewriting rules at the web server.

URL rewriting requires the Seam rewrite filter to be enable. Rewrite filter configuration is discussed

in Section 31.1.3.3, “URL rewriting”.

7.6. Conversion and Validation

You can specify a JSF converter for complex model properties:

<pages>

 <page view-id="/calculator.xhtml" action="#{calculator.calculate}">

 <param name="x" value="#{calculator.lhs}"/>

 <param name="y" value="#{calculator.rhs}"/>

 <param name="op" converterId="com.my.calculator.OperatorConverter" value="#{calculator.op}"/

>

 </page>

</pages>

Alternatively:

<pages>

 <page view-id="/calculator.xhtml" action="#{calculator.calculate}">

 <param name="x" value="#{calculator.lhs}"/>

 <param name="y" value="#{calculator.rhs}"/>

 <param name="op" converter="#{operatorConverter}" value="#{calculator.op}"/>

 </page>

</pages>

Navigation

133

JSF validators, and required="true" may also be used:

<pages>

 <page view-id="/blog.xhtml">

 <param name="date"

 value="#{blog.date}"

 validatorId="com.my.blog.PastDate"

 required="true"/>

 </page>

</pages>

Alternatively:

<pages>

 <page view-id="/blog.xhtml">

 <param name="date"

 value="#{blog.date}"

 validator="#{pastDateValidator}"

 required="true"/>

 </page>

</pages>

Even better, model-based Hibernate validator annotations are automatically recognized and

validated. Seam also provides a default date converter to convert a string parameter value to a

date and back.

When type conversion or validation fails, a global FacesMessage is added to the FacesContext.

7.7. Navigation

You can use standard JSF navigation rules defined in faces-config.xml in a Seam application.

However, JSF navigation rules have a number of annoying limitations:

• It is not possible to specify request parameters to be used when redirecting.

• It is not possible to begin or end conversations from a rule.

• Rules work by evaluating the return value of the action method; it is not possible to evaluate

an arbitrary EL expression.

A further problem is that "orchestration" logic gets scattered between pages.xml and faces-

config.xml. It's better to unify this logic into pages.xml.

This JSF navigation rule:

Chapter 7. Events, intercepto...

134

<navigation-rule>

 <from-view-id>/editDocument.xhtml</from-view-id>

 <navigation-case>

 <from-action>#{documentEditor.update}</from-action>

 <from-outcome>success</from-outcome>

 <to-view-id>/viewDocument.xhtml</to-view-id>

 <redirect/>

 </navigation-case>

</navigation-rule>

Can be rewritten as follows:

<page view-id="/editDocument.xhtml">

 <navigation from-action="#{documentEditor.update}">

 <rule if-outcome="success">

 <redirect view-id="/viewDocument.xhtml"/>

 </rule>

 </navigation>

</page>

But it would be even nicer if we didn't have to pollute our DocumentEditor component with string-

valued return values (the JSF outcomes). So Seam lets us write:

<page view-id="/editDocument.xhtml">

 <navigation from-action="#{documentEditor.update}"

 evaluate="#{documentEditor.errors.size}">

 <rule if-outcome="0">

 <redirect view-id="/viewDocument.xhtml"/>

 </rule>

 </navigation>

</page>

Or even:

Navigation

135

<page view-id="/editDocument.xhtml">

 <navigation from-action="#{documentEditor.update}">

 <rule if="#{documentEditor.errors.empty}">

 <redirect view-id="/viewDocument.xhtml"/>

 </rule>

 </navigation>

</page>

The first form evaluates a value binding to determine the outcome value to be used by the

subsequent rules. The second approach ignores the outcome and evaluates a value binding for

each possible rule.

Of course, when an update succeeds, we probably want to end the current conversation. We can

do that like this:

<page view-id="/editDocument.xhtml">

 <navigation from-action="#{documentEditor.update}">

 <rule if="#{documentEditor.errors.empty}">

 <end-conversation/>

 <redirect view-id="/viewDocument.xhtml"/>

 </rule>

 </navigation>

</page>

As we've ended conversation any subsequent requests won't know which document we are

interested in. We can pass the document id as a request parameter which also makes the view

bookmarkable:

<page view-id="/editDocument.xhtml">

 <navigation from-action="#{documentEditor.update}">

 <rule if="#{documentEditor.errors.empty}">

 <end-conversation/>

 <redirect view-id="/viewDocument.xhtml">

 <param name="documentId" value="#{documentEditor.documentId}"/>

 </redirect>

 </rule>

Chapter 7. Events, intercepto...

136

 </navigation>

</page>

Null outcomes are a special case in JSF. The null outcome is interpreted to mean "redisplay the

page". The following navigation rule matches any non-null outcome, but not the null outcome:

<page view-id="/editDocument.xhtml">

 <navigation from-action="#{documentEditor.update}">

 <rule>

 <render view-id="/viewDocument.xhtml"/>

 </rule>

 </navigation>

</page>

If you want to perform navigation when a null outcome occurs, use the following form instead:

<page view-id="/editDocument.xhtml">

 <navigation from-action="#{documentEditor.update}">

 <render view-id="/viewDocument.xhtml"/>

 </navigation>

</page>

The view-id may be given as a JSF EL expression:

<page view-id="/editDocument.xhtml">

 <navigation>

 <rule if-outcome="success">

 <redirect view-id="/#{userAgent}/displayDocument.xhtml"/>

 </rule>

 </navigation>

</page>

Fine-grained files for definition of navigation, page actions and parameters

137

7.8. Fine-grained files for definition of navigation, page

actions and parameters

If you have a lot of different page actions and page parameters, or even just a lot of navigation

rules, you will almost certainly want to split the declarations up over multiple files. You can define

actions and parameters for a page with the view id /calc/calculator.xhtml in a resource

named calc/calculator.page.xml. The root element in this case is the <page> element, and

the view id is implied:

<page action="#{calculator.calculate}">

 <param name="x" value="#{calculator.lhs}"/>

 <param name="y" value="#{calculator.rhs}"/>

 <param name="op" converter="#{operatorConverter}" value="#{calculator.op}"/>

</page>

7.9. Component-driven events

Seam components can interact by simply calling each others methods. Stateful components may

even implement the observer/observable pattern. But to enable components to interact in a more

loosely-coupled fashion than is possible when the components call each others methods directly,

Seam provides component-driven events.

We specify event listeners (observers) in components.xml.

<components>

 <event type="hello">

 <action execute="#{helloListener.sayHelloBack}"/>

 <action execute="#{logger.logHello}"/>

 </event>

</components>

Where the event type is just an arbitrary string.

When an event occurs, the actions registered for that event will be called in the order they appear

in components.xml. How does a component raise an event? Seam provides a built-in component

for this.

@Name("helloWorld")

public class HelloWorld {

 public void sayHello() {

 FacesMessages.instance().add("Hello World!");

Chapter 7. Events, intercepto...

138

 Events.instance().raiseEvent("hello");

 }

}

Or you can use an annotation.

@Name("helloWorld")

public class HelloWorld {

 @RaiseEvent("hello")

 public void sayHello() {

 FacesMessages.instance().add("Hello World!");

 }

}

Notice that this event producer has no dependency upon event consumers. The event listener

may now be implemented with absolutely no dependency upon the producer:

@Name("helloListener")

public class HelloListener {

 public void sayHelloBack() {

 FacesMessages.instance().add("Hello to you too!");

 }

}

The method binding defined in components.xml above takes care of mapping the event to the

consumer. If you don't like futzing about in the components.xml file, you can use an annotation

instead:

@Name("helloListener")

public class HelloListener {

 @Observer("hello")

 public void sayHelloBack() {

 FacesMessages.instance().add("Hello to you too!");

 }

}

You might wonder why I've not mentioned anything about event objects in this discussion. In

Seam, there is no need for an event object to propagate state between event producer and listener.

State is held in the Seam contexts, and is shared between components. However, if you really

want to pass an event object, you can:

Contextual events

139

@Name("helloWorld")

public class HelloWorld {

 private String name;

 public void sayHello() {

 FacesMessages.instance().add("Hello World, my name is #0.", name);

 Events.instance().raiseEvent("hello", name);

 }

}

@Name("helloListener")

public class HelloListener {

 @Observer("hello")

 public void sayHelloBack(String name) {

 FacesMessages.instance().add("Hello #0!", name);

 }

}

7.10. Contextual events

Seam defines a number of built-in events that the application can use to perform special kinds of

framework integration. The events are:

• org.jboss.seam.validationFailed — called when JSF validation fails

• org.jboss.seam.noConversation — called when there is no long running conversation and

a long running conversation is required

• org.jboss.seam.preSetVariable.<name> — called when the context variable <name> is set

• org.jboss.seam.postSetVariable.<name> — called when the context variable <name> is set

• org.jboss.seam.preRemoveVariable.<name> — called when the context variable <name> is

unset

• org.jboss.seam.postRemoveVariable.<name> — called when the context variable <name>

is unset

• org.jboss.seam.preDestroyContext.<SCOPE> — called before the <SCOPE> context is

destroyed

• org.jboss.seam.postDestroyContext.<SCOPE> — called after the <SCOPE> context is

destroyed

• org.jboss.seam.beginConversation — called whenever a long-running conversation

begins

Chapter 7. Events, intercepto...

140

• org.jboss.seam.endConversation — called whenever a long-running conversation ends

• org.jboss.seam.conversationTimeout — called when a conversation timeout occurs. The

conversation id is passed as a parameter.

• org.jboss.seam.beginPageflow — called when a pageflow begins

• org.jboss.seam.beginPageflow.<name> — called when the pageflow <name> begins

• org.jboss.seam.endPageflow — called when a pageflow ends

• org.jboss.seam.endPageflow.<name> — called when the pageflow <name> ends

• org.jboss.seam.createProcess.<name> — called when the process <name> is created

• org.jboss.seam.endProcess.<name> — called when the process <name> ends

• org.jboss.seam.initProcess.<name> — called when the process <name> is associated

with the conversation

• org.jboss.seam.initTask.<name> — called when the task <name> is associated with the

conversation

• org.jboss.seam.startTask.<name> — called when the task <name> is started

• org.jboss.seam.endTask.<name> — called when the task <name> is ended

• org.jboss.seam.postCreate.<name> — called when the component <name> is created

• org.jboss.seam.preDestroy.<name> — called when the component <name> is destroyed

• org.jboss.seam.beforePhase — called before the start of a JSF phase

• org.jboss.seam.afterPhase — called after the end of a JSF phase

• org.jboss.seam.postInitialization — called when Seam has initialized and started up

all components

• org.jboss.seam.postReInitialization — called when Seam has re-initialized and started

up all components after a redeploy

• org.jboss.seam.exceptionHandled.<type> — called when an uncaught exception is

handled by Seam

• org.jboss.seam.exceptionHandled — called when an uncaught exception is handled by

Seam

• org.jboss.seam.exceptionNotHandled — called when there was no handler for an uncaught

exception

• org.jboss.seam.afterTransactionSuccess — called when a transaction succeeds in the

Seam Application Framework

• org.jboss.seam.afterTransactionSuccess.<name> — called when a transaction succeeds

in the Seam Application Framework which manages an entity called <name>

Seam interceptors

141

• org.jboss.seam.security.loggedOut — called when a user logs out

• org.jboss.seam.security.loginFailed — called when a user authentication attempt fails

• org.jboss.seam.security.loginSuccessful — called when a user is successfully

authenticated

• org.jboss.seam.security.notAuthorized — called when an authorization check fails

• org.jboss.seam.security.notLoggedIn — called there is no authenticated user and

authentication is required

• org.jboss.seam.security.postAuthenticate. — called after a user is authenticated

• org.jboss.seam.security.preAuthenticate — called before attempting to authenticate a

user

Seam components may observe any of these events in just the same way they observe any other

component-driven events.

7.11. Seam interceptors

EJB 3.0 introduced a standard interceptor model for session bean components. To add an

interceptor to a bean, you need to write a class with a method annotated @AroundInvoke and

annotate the bean with an @Interceptors annotation that specifies the name of the interceptor

class. For example, the following interceptor checks that the user is logged in before allowing

invoking an action listener method:

public class LoggedInInterceptor {

 @AroundInvoke

 public Object checkLoggedIn(InvocationContext invocation) throws Exception {

 boolean isLoggedIn = Contexts.getSessionContext().get("loggedIn")!=null;

 if (isLoggedIn) {

 //the user is already logged in

 return invocation.proceed();

 }

 else {

 //the user is not logged in, fwd to login page

 return "login";

 }

 }

}

Chapter 7. Events, intercepto...

142

To apply this interceptor to a session bean which acts as an action listener, we must

annotate the session bean @Interceptors(LoggedInInterceptor.class). This is a somewhat

ugly annotation. Seam builds upon the interceptor framework in EJB3 by allowing you

to use @Interceptors as a meta-annotation for class level interceptors (those annotated

@Target(TYPE)). In our example, we would create an @LoggedIn annotation, as follows:

@Target(TYPE)

@Retention(RUNTIME)

@Interceptors(LoggedInInterceptor.class)

public @interface LoggedIn {}

We can now simply annotate our action listener bean with @LoggedIn to apply the interceptor.

@Stateless

@Name("changePasswordAction")

@LoggedIn

@Interceptors(SeamInterceptor.class)

public class ChangePasswordAction implements ChangePassword {

 ...

 public String changePassword() { ... }

}

If interceptor ordering is important (it usually is), you can add @Interceptor annotations to your

interceptor classes to specify a partial order of interceptors.

@Interceptor(around={BijectionInterceptor.class,

 ValidationInterceptor.class,

 ConversationInterceptor.class},

 within=RemoveInterceptor.class)

public class LoggedInInterceptor

{

 ...

}

You can even have a "client-side" interceptor, that runs around any of the built-in functionality

of EJB3:

Managing exceptions

143

@Interceptor(type=CLIENT)

public class LoggedInInterceptor

{

 ...

}

EJB interceptors are stateful, with a lifecycle that is the same as the component they intercept. For

interceptors which do not need to maintain state, Seam lets you get a performance optimization

by specifying @Interceptor(stateless=true).

Much of the functionality of Seam is implemented as a set of built-in Seam interceptors, including

the interceptors named in the previous example. You don't have to explicitly specify these

interceptors by annotating your components; they exist for all interceptable Seam components.

You can even use Seam interceptors with JavaBean components, not just EJB3 beans!

EJB defines interception not only for business methods (using @AroundInvoke), but also for

the lifecycle methods @PostConstruct, @PreDestroy, @PrePassivate and @PostActive. Seam

supports all these lifecycle methods on both component and interceptor not only for EJB3 beans,

but also for JavaBean components (except @PreDestroy which is not meaningful for JavaBean

components).

7.12. Managing exceptions

JSF is surprisingly limited when it comes to exception handling. As a partial workaround for this

problem, Seam lets you define how a particular class of exception is to be treated by annotating

the exception class, or declaring the exception class in an XML file. This facility is meant to

be combined with the EJB 3.0-standard @ApplicationException annotation which specifies

whether the exception should cause a transaction rollback.

7.12.1. Exceptions and transactions

EJB specifies well-defined rules that let us control whether an exception immediately

marks the current transaction for rollback when it is thrown by a business method of the

bean: system exceptions always cause a transaction rollback, application exceptions do not

cause a rollback by default, but they do if @ApplicationException(rollback=true) is

specified. (An application exception is any checked exception, or any unchecked exception

annotated @ApplicationException. A system exception is any unchecked exception without an

@ApplicationException annotation.)

Note that there is a difference between marking a transaction for rollback, and actually rolling it

back. The exception rules say that the transaction should be marked rollback only, but it may still

be active after the exception is thrown.

Seam applies the EJB 3.0 exception rollback rules also to Seam JavaBean components.

Chapter 7. Events, intercepto...

144

But these rules only apply in the Seam component layer. What about an exception that is uncaught

and propagates out of the Seam component layer, and out of the JSF layer? Well, it is always

wrong to leave a dangling transaction open, so Seam rolls back any active transaction when an

exception occurs and is uncaught in the Seam component layer.

7.12.2. Enabling Seam exception handling

To enable Seam's exception handling, we need to make sure we have the master servlet filter

declared in web.xml:

<filter>

 <filter-name>Seam Filter</filter-name>

 <filter-class>org.jboss.seam.servlet.SeamFilter</filter-class>

</filter>

<filter-mapping>

 <filter-name>Seam Filter</filter-name>

 <url-pattern>*.seam</url-pattern>

</filter-mapping>

As the second requirement is to add web:exception-filter configuration component into WEB-

INF/components.xml. More details are in Section 31.1.3.1, “Exception handling”

You need to disable Facelets development mode in web.xml too and Seam debug mode in

components.xml if you want your exception handlers to fire.

7.12.3. Using annotations for exception handling

The following exception results in a HTTP 404 error whenever it propagates out of the Seam

component layer. It does not roll back the current transaction immediately when thrown, but the

transaction will be rolled back if it the exception is not caught by another Seam component.

@HttpError(errorCode=404)

public class ApplicationException extends Exception { ... }

This exception results in a browser redirect whenever it propagates out of the Seam component

layer. It also ends the current conversation. It causes an immediate rollback of the current

transaction.

@Redirect(viewId="/failure.xhtml", end=true)

@ApplicationException(rollback=true)

public class UnrecoverableApplicationException extends RuntimeException { ... }

Using XML for exception handling

145

Note
It is important to note that Seam cannot handle exceptions that occur during JSF's

RENDER_RESPONSE phase, as it is not possible to perform a redirect once the

response has started being written to.

You can also use EL to specify the viewId to redirect to.

This exception results in a redirect, along with a message to the user, when it propagates out of

the Seam component layer. It also immediately rolls back the current transaction.

@Redirect(viewId="/error.xhtml", message="Unexpected error")

public class SystemException extends RuntimeException { ... }

7.12.4. Using XML for exception handling

Since we can't add annotations to all the exception classes we are interested in, Seam also lets

us specify this functionality in pages.xml.

<pages>

 <exception class="javax.persistence.EntityNotFoundException">

 <http-error error-code="404"/>

 </exception>

 <exception class="javax.persistence.PersistenceException">

 <end-conversation/>

 <redirect view-id="/error.xhtml">

 <message>Database access failed</message>

 </redirect>

 </exception>

 <exception>

 <end-conversation/>

 <redirect view-id="/error.xhtml">

 <message>Unexpected failure</message>

 </redirect>

 </exception>

</pages>

Chapter 7. Events, intercepto...

146

The last <exception> declaration does not specify a class, and is a catch-all for any exception

for which handling is not otherwise specified via annotations or in pages.xml.

You can also use EL to specify the view-id to redirect to.

You can also access the handled exception instance through EL, Seam places it in the

conversation context, e.g. to access the message of the exception:

...

throw new AuthorizationException("You are not allowed to do this!");

<pages>

 <exception class="org.jboss.seam.security.AuthorizationException">

 <end-conversation/>

 <redirect view-id="/error.xhtml">

 <message severity="WARN">#{org.jboss.seam.handledException.message}</message>

 </redirect>

 </exception>

</pages>

org.jboss.seam.handledException holds the nested exception that was actually handled

by an exception handler. The outermost (wrapper) exception is also available, as

org.jboss.seam.caughtException.

7.12.4.1. Suppressing exception logging

For the exception handlers defined in pages.xml, it is possible to declare the logging level at

which the exception will be logged, or to even suppress the exception being logged altogether. The

attributes log and log-level can be used to control exception logging. By setting log="false"

as per the following example, then no log message will be generated when the specified exception

occurs:

 <exception class="org.jboss.seam.security.NotLoggedInException" log="false">

 <redirect view-id="/register.xhtml">

 <message severity="warn">You must be a member to use this feature</message>

 </redirect>

 </exception>

If the log attribute is not specified, then it defaults to true (i.e. the exception will be logged).

Alternatively, you can specify the log-level to control at which log level the exception will be

logged:

Some common exceptions

147

 <exception class="org.jboss.seam.security.NotLoggedInException" log-level="info">

 <redirect view-id="/register.xhtml">

 <message severity="warn">You must be a member to use this feature</message>

 </redirect>

 </exception>

The acceptable values for log-level are: fatal, error, warn, info, debug or trace. If the

log-level is not specified, or if an invalid value is configured, then it will default to error.

7.12.5. Some common exceptions

If you are using JPA:

<exception class="javax.persistence.EntityNotFoundException">

 <redirect view-id="/error.xhtml">

 <message>Not found</message>

 </redirect>

</exception>

<exception class="javax.persistence.OptimisticLockException">

 <end-conversation/>

 <redirect view-id="/error.xhtml">

 <message>Another user changed the same data, please try again</message>

 </redirect>

</exception>

If you are using the Seam Application Framework:

<exception class="org.jboss.seam.framework.EntityNotFoundException">

 <redirect view-id="/error.xhtml">

 <message>Not found</message>

 </redirect>

</exception>

If you are using Seam Security:

<exception class="org.jboss.seam.security.AuthorizationException">

 <redirect>

 <message>You don't have permission to do this</message>

 </redirect>

Chapter 7. Events, intercepto...

148

</exception>

<exception class="org.jboss.seam.security.NotLoggedInException">

 <redirect view-id="/login.xhtml">

 <message>Please log in first</message>

 </redirect>

</exception>

And, for JSF:

<exception class="javax.faces.application.ViewExpiredException">

 <redirect view-id="/error.xhtml">

 <message>Your session has timed out, please try again</message>

 </redirect>

</exception>

A ViewExpiredException occurs if the user posts back to a page once their session has

expired. The conversation-required and no-conversation-view-id settings in the Seam

page descriptor, discussed in Section 8.4, “Requiring a long-running conversation”, give you finer-

grained control over session expiration if you are accessing a page used within a conversation.

Chapter 8.

149

Conversations and workspace

management
It's time to understand Seam's conversation model in more detail.

Historically, the notion of a Seam "conversation" came about as a merger of three different ideas:

• The idea of a workspace, which I encountered in a project for the Victorian government in 2002.

In this project I was forced to implement workspace management on top of Struts, an experience

I pray never to repeat.

• The idea of an application transaction with optimistic semantics, and the realization that existing

frameworks based around a stateless architecture could not provide effective management of

extended persistence contexts. (The Hibernate team is truly fed up with copping the blame for

LazyInitializationExceptions, which are not really Hibernate's fault, but rather the fault of

the extremely limiting persistence context model supported by stateless architectures such as

the Spring framework or the traditional stateless session facade (anti)pattern in J2EE.)

• The idea of a workflow task.

By unifying these ideas and providing deep support in the framework, we have a powerful construct

that lets us build richer and more efficient applications with less code than before.

8.1. Seam's conversation model

The examples we have seen so far make use of a very simple conversation model that follows

these rules:

• There is always a conversation context active during the apply request values, process

validations, update model values, invoke application and render response phases of the JSF

request lifecycle.

• At the end of the restore view phase of the JSF request lifecycle, Seam attempts to restore

any previous long-running conversation context. If none exists, Seam creates a new temporary

conversation context.

• When an @Begin method is encountered, the temporary conversation context is promoted to

a long running conversation.

• When an @End method is encountered, any long-running conversation context is demoted to

a temporary conversation.

• At the end of the render response phase of the JSF request lifecycle, Seam stores the contents

of a long running conversation context or destroys the contents of a temporary conversation

context.

Chapter 8. Conversations and ...

150

• Any faces request (a JSF postback) will propagate the conversation context. By default, non-

faces requests (GET requests, for example) do not propagate the conversation context, but see

below for more information on this.

• If the JSF request lifecycle is foreshortened by a redirect, Seam transparently stores and

restores the current conversation context — unless the conversation was already ended via

@End(beforeRedirect=true).

Seam transparently propagates the conversation context (including the temporary conversation

context) across JSF postbacks and redirects. If you don't do anything special, a non-faces request

(a GET request for example) will not propagate the conversation context and will be processed in

a new temporary conversation. This is usually - but not always - the desired behavior.

If you want to propagate a Seam conversation across a non-faces request, you need to explicitly

code the Seam conversation id as a request parameter:

Continue

Or, the more JSF-ish:

<h:outputLink value="main.jsf">

 <f:param name="#{manager.conversationIdParameter}" value="#{conversation.id}"/>

 <h:outputText value="Continue"/>

</h:outputLink>

If you use the Seam tag library, this is equivalent:

<h:outputLink value="main.jsf">

 <s:conversationId/>

 <h:outputText value="Continue"/>

</h:outputLink>

If you wish to disable propagation of the conversation context for a postback, a similar trick is used:

<h:commandLink action="main" value="Exit">

 <f:param name="conversationPropagation" value="none"/>

</h:commandLink>

If you use the Seam tag library, this is equivalent:

Seam's conversation model

151

<h:commandLink action="main" value="Exit">

 <s:conversationPropagation type="none"/>

</h:commandLink>

Note that disabling conversation context propagation is absolutely not the same thing as ending

the conversation.

The conversationPropagation request parameter, or the <s:conversationPropagation> tag

may even be used to begin a conversation, end the current conversation, destroy the entire

conversation stack, or begin a nested conversation.

<h:commandLink action="main" value="Exit">

 <s:conversationPropagation type="end"/>

</h:commandLink>

<h:commandLink action="main" value="Exit">

 <s:conversationPropagation type="endRoot"/>

</h:commandLink>

<h:commandLink action="main" value="Select Child">

 <s:conversationPropagation type="nested"/>

</h:commandLink>

<h:commandLink action="main" value="Select Hotel">

 <s:conversationPropagation type="begin"/>

</h:commandLink>

<h:commandLink action="main" value="Select Hotel">

 <s:conversationPropagation type="join"/>

</h:commandLink>

This conversation model makes it easy to build applications which behave correctly with respect

to multi-window operation. For many applications, this is all that is needed. Some complex

applications have either or both of the following additional requirements:

Chapter 8. Conversations and ...

152

• A conversation spans many smaller units of user interaction, which execute serially or even

concurrently. The smaller nested conversations have their own isolated set of conversation

state, and also have access to the state of the outer conversation.

• The user is able to switch between many conversations within the same browser window. This

feature is called workspace management.

8.2. Nested conversations

A nested conversation is created by invoking a method marked @Begin(nested=true) inside the

scope of an existing conversation. A nested conversation has its own conversation context, but

can read values from the outer conversation's context. The outer conversation's context is read-

only within a nested conversation, but because objects are obtained by reference, changes to the

objects themselves will be reflected in the outer context.

• Nesting a conversation through initializes a context that is stacked on the context of the original,

or outer, conversation. The outer conversation is considered the parent.

• Any values outjected or directly set into the nested conversation’s context do not affect the

objects accessible in the parent conversation’s context.

• Injection or a context lookup from the conversation context will first lookup the value in the

current conversation context and, if no value is found, will proceed down the conversation stack

if the conversation is nested. As you will see in moment, this behavior can be overriden.

When an @End is subsequently encountered, the nested conversation will be destroyed, and

the outer conversation will resume, by "popping" the conversation stack. Conversations may be

nested to any arbitrary depth.

Certain user activity (workspace management, or the back button) can cause the outer

conversation to be resumed before the inner conversation is ended. In this case it is possible

to have multiple concurrent nested conversations belonging to the same outer conversation.

If the outer conversation ends before a nested conversation ends, Seam destroys all nested

conversation contexts along with the outer context.

The conversation at the bottom of the conversation stack is the root conversation. Destroying

this conversation always destroy all of its descendents. You can achieve this declaratively by

specifying @End(root=true).

A conversation may be thought of as a continuable state. Nested conversations allow the

application to capture a consistent continuable state at various points in a user interaction, thus

ensuring truly correct behavior in the face of backbuttoning and workspace management.

As mentioned previously, if a component exists in a parent conversation of the current nested

conversation, the nested conversation will use the same instance. Occasionally, it is useful to

have a different instance in each nested conversation, so that the component instance that exists

Starting conversations with GET requests

153

in the parent conversation is invisible to its child conversations. You can achieve this behavior by

annotating the component @PerNestedConversation.

8.3. Starting conversations with GET requests

JSF does not define any kind of action listener that is triggered when a page is accessed via a

non-faces request (for example, a HTTP GET request). This can occur if the user bookmarks the

page, or if we navigate to the page via an <h:outputLink>.

Sometimes we want to begin a conversation immediately the page is accessed. Since there is no

JSF action method, we can't solve the problem in the usual way, by annotating the action with

@Begin.

A further problem arises if the page needs some state to be fetched into a context variable. We've

already seen two ways to solve this problem. If that state is held in a Seam component, we can

fetch the state in a @Create method. If not, we can define a @Factory method for the context

variable.

If none of these options works for you, Seam lets you define a page action in the pages.xml file.

<pages>

 <page view-id="/messageList.xhtml" action="#{messageManager.list}"/>

 ...

</pages>

This action method is called at the beginning of the render response phase, any time the page

is about to be rendered. If a page action returns a non-null outcome, Seam will process any

appropriate JSF and Seam navigation rules, possibly resulting in a completely different page being

rendered.

If all you want to do before rendering the page is begin a conversation, you could use a built-in

action method that does just that:

<pages>

 <page view-id="/messageList.xhtml" action="#{conversation.begin}"/>

 ...

</pages>

Note that you can also call this built-in action from a JSF control, and, similarly, you can use

#{conversation.end} to end conversations.

If you want more control, to join existing conversations or begin a nested conversion, to begin a

pageflow or an atomic conversation, you should use the <begin-conversation> element.

Chapter 8. Conversations and ...

154

<pages>

 <page view-id="/messageList.xhtml">

 <begin-conversation nested="true" pageflow="AddItem"/>

 <page>

 ...

</pages>

There is also an <end-conversation> element.

<pages>

 <page view-id="/home.xhtml">

 <end-conversation/>

 <page>

 ...

</pages>

To solve the first problem, we now have five options:

• Annotate the @Create method with @Begin

• Annotate the @Factory method with @Begin

• Annotate the Seam page action method with @Begin

• Use <begin-conversation> in pages.xml.

• Use #{conversation.begin} as the Seam page action method

8.4. Requiring a long-running conversation

Certain pages are only relevant in the context of a long-running conversation. One way to "protect"

such a page is to require a long-running conversation as a prerequisite to rendering the page.

Fortunately, Seam has a built-in mechanism for enforcing this requirement.

In the Seam page descriptor, you can indicate that the current conversation must be long-running

(or nested) in order for a page to be rendered using the conversation-required attribute as

follows:

<page view-id="/book.xhtml" conversation-required="true"/>

Using <s:link> and <s:button>

155

Note

The only downside is there's no built-in way to indicate which long-running

conversation is required. You can build on this basic authorization by dually

checking if a specific value is present in the conversation within a page action.

When Seam determines that this page is requested outside of a long-running conversation, the

following actions are taken:

• A contextual event named org.jboss.seam.noConversation is raised

• A warning status message is registered using the bundle key

org.jboss.seam.NoConversation

• The user is redirected to an alternate page, if defined

The alternate page is defined in the no-conversation-view-id attribute on a <pages> element

in the Seam page descriptor as follows:

<pages no-conversation-view-id="/main.xhtml"/>

At the moment, you can only define one such page for the entire application.

8.5. Using <s:link> and <s:button>

JSF command links always perform a form submission via JavaScript, which breaks the web

browser's "open in new window" or "open in new tab" feature. In plain JSF, you need to

use an <h:outputLink> if you need this functionality. But there are two major limitations to

<h:outputLink>.

• JSF provides no way to attach an action listener to an <h:outputLink>.

• JSF does not propagate the selected row of a DataModel since there is no actual form

submission.

Seam provides the notion of a page action to help solve the first problem, but this does nothing to

help us with the second problem. We could work around this by using the RESTful approach of

passing a request parameter and requerying for the selected object on the server side. In some

cases — such as the Seam blog example application — this is indeed the best approach. The

RESTful style supports bookmarking, since it does not require server-side state. In other cases,

where we don't care about bookmarks, the use of @DataModel and @DataModelSelection is just

so convenient and transparent!

Chapter 8. Conversations and ...

156

To fill in this missing functionality, and to make conversation propagation even simpler to manage,

Seam provides the <s:link> JSF tag.

The link may specify just the JSF view id:

<s:link view="/login.xhtml" value="Login"/>

Or, it may specify an action method (in which case the action outcome determines the page that

results):

<s:link action="#{login.logout}" value="Logout"/>

If you specify both a JSF view id and an action method, the 'view' will be used unless the action

method returns a non-null outcome:

<s:link view="/loggedOut.xhtml" action="#{login.logout}" value="Logout"/>

The link automatically propagates the selected row of a DataModel using inside <h:dataTable>:

<s:link view="/hotel.xhtml" action="#{hotelSearch.selectHotel}" value="#{hotel.name}"/>

You can leave the scope of an existing conversation:

<s:link view="/main.xhtml" propagation="none"/>

You can begin, end, or nest conversations:

<s:link action="#{issueEditor.viewComment}" propagation="nested"/>

If the link begins a conversation, you can even specify a pageflow to be used:

<s:link action="#{documentEditor.getDocument}" propagation="begin"

 pageflow="EditDocument"/>

The taskInstance attribute is for use in jBPM task lists:

Success messages

157

<s:link action="#{documentApproval.approveOrReject}" taskInstance="#{task}"/>

(See the DVD Store demo application for examples of this.)

Finally, if you need the "link" to be rendered as a button, use <s:button>:

<s:button action="#{login.logout}" value="Logout"/>

8.6. Success messages

It is quite common to display a message to the user indicating success or failure of an action. It is

convenient to use a JSF FacesMessage for this. Unfortunately, a successful action often requires

a browser redirect, and JSF does not propagate faces messages across redirects. This makes it

quite difficult to display success messages in plain JSF.

The built in conversation-scoped Seam component named facesMessages solves this problem.

(You must have the Seam redirect filter installed.)

@Name("editDocumentAction")

@Stateless

public class EditDocumentBean implements EditDocument {

 @In EntityManager em;

 @In Document document;

 @In FacesMessages facesMessages;

 public String update() {

 em.merge(document);

 facesMessages.add("Document updated");

 }

}

Any message added to facesMessages is used in the very next render response phase for the

current conversation. This even works when there is no long-running conversation since Seam

preserves even temporary conversation contexts across redirects.

You can even include JSF EL expressions in a faces message summary:

facesMessages.add("Document #{document.title} was updated");

You may display the messages in the usual way, for example:

Chapter 8. Conversations and ...

158

<h:messages globalOnly="true"/>

8.7. Natural conversation ids

When working with conversations that deal with persistent objects, it may be desirable to use the

natural business key of the object instead of the standard, "surrogate" conversation id:

Easy redirect to existing conversation

It can be useful to redirect to an existing conversation if the user requests the same operation

twice. Take this example: “ You are on ebay, half way through paying for an item you just won as

a Christmas present for your parents. Lets say you're sending it straight to them - you enter your

payment details but you can't remember their address. You accidentally reuse the same browser

window finding out their address. Now you need to return to the payment for the item. ”

With a natural conversation it's really easy to have the user rejoin the existing conversation, and

pick up where they left off - just have them to rejoin the payForItem conversation with the itemId

as the conversation id.

User friendly URLs

For me this consists of a navigable hierarchy (I can navigate by editing the url) and a meaningful

URL (like this Wiki uses - so don't identify things by random ids). For some applications user

friendly URLs are less important, of course.

With a natural conversation, when you are building your hotel booking system (or, of

course, whatever your app is) you can generate a URL like http://seam-hotels/book.seam?

hotel=BestWesternAntwerpen (of course, whatever parameter hotel maps to on your domain

model must be unique) and with URLRewrite easily transform this to http://seam-hotels/book/

BestWesternAntwerpen.

Much better!

8.8. Creating a natural conversation

Natural conversations are defined in pages.xml:

 <conversation name="PlaceBid"

 parameter-name="auctionId"

 parameter-value="#{auction.auctionId}"/>

The first thing to note from the above definition is that the conversation has a name, in this case

PlaceBid. This name uniquely identifies this particular named conversation, and is used by the

page definition to identify a named conversation to participate in.

Redirecting to a natural conversation

159

The next attribute, parameter-name defines the request parameter that will contain the natural

conversation id, in place of the default conversation id parameter. In this example, the parameter-

name is auctionId. This means that instead of a conversation parameter like cid=123 appearing

in the URL for your page, it will contain auctionId=765432 instead.

The last attribute in the above configuration, parameter-value, defines an EL expression used

to evaluate the value of the natural business key to use as the conversation id. In this example,

the conversation id will be the primary key value of the auction instance currently in scope.

Next, we define which pages will participate in the named conversation. This is done by specifying

the conversation attribute for a page definition:

 <page view-id="/bid.xhtml" conversation="PlaceBid" login-required="true">

 <navigation from-action="#{bidAction.confirmBid}">

 <rule if-outcome="success">

 <redirect view-id="/auction.xhtml">

 <param name="id" value="#{bidAction.bid.auction.auctionId}"/>

 </redirect>

 </rule>

 </navigation>

 </page>

8.9. Redirecting to a natural conversation

When starting, or redirecting to, a natural conversation there are a number of options for specifying

the natural conversation name. Let's start by looking at the following page definition:

 <page view-id="/auction.xhtml">

 <param name="id" value="#{auctionDetail.selectedAuctionId}"/>

 <navigation from-action="#{bidAction.placeBid}">

 <redirect view-id="/bid.xhtml"/>

 </navigation>

 </page>

From here, we can see that invoking the action #{bidAction.placeBid} from our auction view

(by the way, all these examples are taken from the seamBay example in Seam), that we will be

redirected to /bid.xhtml, which, as we saw previously, is configured with the natural conversation

PlaceBid. The declaration for our action method looks like this:

 @Begin(join = true)

Chapter 8. Conversations and ...

160

 public void placeBid()

When named conversations are specified in the <page/> element, redirection to the named

conversation occurs as part of navigation rules, after the action method has already been invoked.

This is a problem when redirecting to an existing conversation, as redirection needs to be occur

before the action method is invoked. Therefore it is necessary to specify the conversation name

when the action is invoked. One way of doing this is by using the s:conversationName tag:

 <h:commandButton id="placeBidWithAmount" styleClass="placeBid"

 action="#{bidAction.placeBid}">

 <s:conversationName value="PlaceBid"/>

 </h:commandButton>

Another alternative is to specify the conversationName attribute when using either s:link or

s:button:

 <s:link value="Place Bid" action="#{bidAction.placeBid}" conversationName="PlaceBid"/>

8.10. Workspace management

Workspace management is the ability to "switch" conversations in a single window. Seam

makes workspace management completely transparent at the level of the Java code. To enable

workspace management, all you need to do is:

• Provide description text for each view id (when using JSF or Seam navigation rules) or page

node (when using jPDL pageflows). This description text is displayed to the user by the

workspace switchers.

• Include one or more of the standard workspace switcher JSF or Facelets fragments in your

pages. The standard fragments support workspace management via a drop down menu, a list

of conversations, or breadcrumbs.

8.10.1. Workspace management and JSF navigation

When you use JSF or Seam navigation rules, Seam switches to a conversation by restoring

the current view-id for that conversation. The descriptive text for the workspace is defined in

a file called pages.xml that Seam expects to find in the WEB-INF directory, right next to faces-

config.xml:

<pages>

 <page view-id="/main.xhtml">

 <description>Search hotels: #{hotelBooking.searchString}</description>

Workspace management and jPDL pageflow

161

 </page>

 <page view-id="/hotel.xhtml">

 <description>View hotel: #{hotel.name}</description>

 </page>

 <page view-id="/book.xhtml">

 <description>Book hotel: #{hotel.name}</description>

 </page>

 <page view-id="/confirm.xhtml">

 <description>Confirm: #{booking.description}</description>

 </page>

 </pages>

Note that if this file is missing, the Seam application will continue to work perfectly! The only

missing functionality will be the ability to switch workspaces.

8.10.2. Workspace management and jPDL pageflow

When you use a jPDL pageflow definition, Seam switches to a conversation by restoring the

current jBPM process state. This is a more flexible model since it allows the same view-id to have

different descriptions depending upon the current <page> node. The description text is defined

by the <page> node:

<pageflow-definition name="shopping">

 <start-state name="start">

 <transition to="browse"/>

 </start-state>

 <page name="browse" view-id="/browse.xhtml">

 <description>DVD Search: #{search.searchPattern}</description>

 <transition to="browse"/>

 <transition name="checkout" to="checkout"/>

 </page>

 <page name="checkout" view-id="/checkout.xhtml">

 <description>Purchase: $#{cart.total}</description>

 <transition to="checkout"/>

 <transition name="complete" to="complete"/>

 </page>

 <page name="complete" view-id="/complete.xhtml">

 <end-conversation />

 </page>

Chapter 8. Conversations and ...

162

</pageflow-definition>

8.10.3. The conversation switcher

Include the following fragment in your JSF page to get a drop-down menu that lets you switch to

any current conversation, or to any other page of the application:

<h:selectOneMenu value="#{switcher.conversationIdOrOutcome}">

 <f:selectItem itemLabel="Find Issues" itemValue="findIssue"/>

 <f:selectItem itemLabel="Create Issue" itemValue="editIssue"/>

 <f:selectItems value="#{switcher.selectItems}"/>

</h:selectOneMenu>

<h:commandButton action="#{switcher.select}" value="Switch"/>

In this example, we have a menu that includes an item for each conversation, together with two

additional items that let the user begin a new conversation.

Only conversations with a description (specified in pages.xml) will be included in the drop-down

menu.

8.10.4. The conversation list

The conversation list is very similar to the conversation switcher, except that it is displayed as

a table:

<h:dataTable value="#{conversationList}" var="entry"

 rendered="#{not empty conversationList}">

 <h:column>

 <f:facet name="header">Workspace</f:facet>

 <h:commandLink action="#{entry.select}" value="#{entry.description}"/>

 <h:outputText value="[current]" rendered="#{entry.current}"/>

Breadcrumbs

163

 </h:column>

 <h:column>

 <f:facet name="header">Activity</f:facet>

 <h:outputText value="#{entry.startDatetime}">

 <f:convertDateTime type="time" pattern="hh:mm a"/>

 </h:outputText>

 <h:outputText value=" - "/>

 <h:outputText value="#{entry.lastDatetime}">

 <f:convertDateTime type="time" pattern="hh:mm a"/>

 </h:outputText>

 </h:column>

 <h:column>

 <f:facet name="header">Action</f:facet>

 <h:commandButton action="#{entry.select}" value="#{msg.Switch}"/>

 <h:commandButton action="#{entry.destroy}" value="#{msg.Destroy}"/>

 </h:column>

</h:dataTable>

We imagine that you will want to customize this for your own application.

Only conversations with a description will be included in the list.

Notice that the conversation list lets the user destroy workspaces.

8.10.5. Breadcrumbs

Breadcrumbs are useful in applications which use a nested conversation model. The breadcrumbs

are a list of links to conversations in the current conversation stack:

<ui:repeat value="#{conversationStack}" var="entry">

 <h:outputText value=" | "/>

 <h:commandLink value="#{entry.description}" action="#{entry.select}"/>

</ui:repeat

Chapter 8. Conversations and ...

164

8.11. Conversational components and JSF component

bindings

Conversational components have one minor limitation: they cannot be used to hold bindings to

JSF components. (We generally prefer not to use this feature of JSF unless absolutely necessary,

since it creates a hard dependency from application logic to the view.) On a postback request,

component bindings are updated during the Restore View phase, before the Seam conversation

context has been restored.

To work around this use an event scoped component to store the component bindings and inject

it into the conversation scoped component that requires it.

@Name("grid")

@Scope(ScopeType.EVENT)

public class Grid

{

 private HtmlPanelGrid htmlPanelGrid;

 // getters and setters

 ...

}

@Name("gridEditor")

@Scope(ScopeType.CONVERSATION)

public class GridEditor

{

 @In(required=false)

 private Grid grid;

 ...

}

Also, you can't inject a conversation scoped component into an event scoped component which

you bind a JSF control to. This includes Seam built in components like facesMessages.

Alternatively, you can access the JSF component tree through the implicit uiComponent handle.

The following example accesses getRowIndex() of the UIData component which backs the data

table during iteration, it prints the current row number:

<h:dataTable id="lineItemTable" var="lineItem" value="#{orderHome.lineItems}">

Concurrent calls to conversational components

165

 <h:column>

 Row: #{uiComponent['lineItemTable'].rowIndex}

 </h:column>

 ...

</h:dataTable>

JSF UI components are available with their client identifier in this map.

8.12. Concurrent calls to conversational components

A general discussion of concurrent calls to Seam components can be found in Section 5.1.10,

“Concurrency model”. Here we will discuss the most common situation in which you will encounter

concurrency — accessing conversational components from AJAX requests. We're going to

discuss the options that a Ajax client library should provide to control events originating at the

client — and we'll look at the options RichFaces gives you.

Conversational components don't allow real concurrent access therefore Seam queues each

request to process them serially. This allows each request to be executed in a deterministic

fashion. However, a simple queue isn't that great — firstly, if a method is, for some reason, taking a

very long time to complete, running it over and over again whenever the client generates a request

is bad idea (potential for Denial of Service attacks), and, secondly, AJAX is often to used to provide

a quick status update to the user, so continuing to run the action after a long time isn't useful.

Therefore, when you are working inside a long running conversation, Seam queues the action

event for a period of time (the concurrent request timeout); if it can't process the event in time, it

creates a temporary conversation and prints out a message to the user to let them know what's

going on. It's therefore very important not to flood the server with AJAX events!

We can set a sensible default for the concurrent request timeout (in ms) in components.xml:

<core:manager concurrent-request-timeout="500" />

We can also fine tune the concurrent request timeout on a page-by-page basis:

<page view-id="/book.xhtml"

 conversation-required="true"

 login-required="true"

 concurrent-request-timeout="2000" />

So far we've discussed AJAX requests which appear serial to the user - the client tells the server

that an event has occur, and then rerenders part of the page based on the result. This approach

is great when the AJAX request is lightweight (the methods called are simple e.g. calculating the

Chapter 8. Conversations and ...

166

sum of a column of numbers). But what if we need to do a complex computation that is going

to take a minute?

For heavy computation we should use a poll based approach — the client sends an AJAX request

to the server, which causes action to be executed asynchronously on the server (the response

to the client is immediate) and the client then polls the server for updates. This is good approach

when you have a long-running action for which it is important that every action executes (you don't

want some to timeout).

8.12.1. How should we design our conversational AJAX

application?

Well first, you need to decide whether you want to use the simpler "serial" request or whether you

want to use a polling approach.

If you go for a "serial" requests, then you need to estimate how long your request will take to

complete - is it much shorter than the concurrent request timeout? If not, you probably want to alter

the concurrent request timeout for this page (as discussed above). You probably want a queue

on the client side to prevent flooding the server with requests. If the event occurs often (e.g. a

keypress, onblur of input fields) and immediate update of the client is not a priority you should set

a request delay on the client side. When working out your request delay, factor in that the event

may also be queued on the server side.

Finally, the client library may provide an option to abort unfinished duplicate requests in favor of

the most recent.

Using a poll-style design requires less fine-tuning. You just mark your action method

@Asynchronous and decide on a polling interval:

int total;

// This method is called when an event occurs on the client

// It takes a really long time to execute

@Asynchronous

public void calculateTotal() {

 total = someReallyComplicatedCalculation();

}

// This method is called as the result of the poll

// It's very quick to execute

public int getTotal() {

 return total;

}

Dealing with errors

167

8.12.2. Dealing with errors

However carefully you design your application to queue concurrent requests to your

conversational component, there is a risk that the server will become overloaded and be unable to

process all the requests before the request will have to wait longer than the concurrent-request-

timeout. In this case Seam will throw a ConcurrentRequestTimeoutException which can be

handled in pages.xml. We recommend sending an HTTP 503 error:

 <exception class="org.jboss.seam.ConcurrentRequestTimeoutException" log-level="trace">

 <http-error error-code="503" />

 </exception>

503 Service Unavailable (HTTP/1.1 RFC)

The server is currently unable to handle the request due to a temporary overloading

or maintenance of the server. The implication is that this is a temporary condition

which will be alleviated after some delay.

Alternatively you could redirect to an error page:

<exception class="org.jboss.seam.ConcurrentRequestTimeoutException" log-level="trace">

 <end-conversation/>

 <redirect view-id="/error.xhtml">

 <message>The server is too busy to process your request, please try again later</message>

 </redirect>

</exception>

Seam Remoting and JSF 2 can both handle HTTP error codes. Seam Remoting will pop up a

dialog box showing the HTTP error. JSF 2 provides support for handling HTTP errors by providing

a user definable callback. For example, to show the error message to the user:

<script type="text/javascript">

 jsf.ajax.addOnError(function(data) {

 alert("An error occurred");

 });

</script>

Chapter 8. Conversations and ...

168

JSF 2 javascript documentation
More details about JSF 2 javascript API can be seen at http://

javaserverfaces.java.net/nonav/docs/2.0/jsdocs/symbols/jsf.ajax.html

If instead of an error code, the server reports that the view has expired, perhaps

because the session timed out, you can use a standard javax.faces.context.ExceptionHandler

[http://docs.oracle.com/javaee/6/api/javax/faces/context/ExceptionHandler.html] to handle this

scenario.

http://javaserverfaces.java.net/nonav/docs/2.0/jsdocs/symbols/jsf.ajax.html
http://javaserverfaces.java.net/nonav/docs/2.0/jsdocs/symbols/jsf.ajax.html
http://docs.oracle.com/javaee/6/api/javax/faces/context/ExceptionHandler.html
http://docs.oracle.com/javaee/6/api/javax/faces/context/ExceptionHandler.html

Chapter 9.

169

Pageflows and business processes
JBoss jBPM is a business process management engine for any Java SE or EE environment. jBPM

lets you represent a business process or user interaction as a graph of nodes representing wait

states, decisions, tasks, web pages, etc. The graph is defined using a simple, very readable, XML

dialect called jPDL, and may be edited and visualised graphically using an eclipse plugin. jPDL

is an extensible language, and is suitable for a range of problems, from defining web application

page flow, to traditional workflow management, all the way up to orchestration of services in a

SOA environment.

Seam applications use jBPM for two different problems:

• Defining the pageflow involved in complex user interactions. A jPDL process definition defines

the page flow for a single conversation. A Seam conversation is considered to be a relatively

short-running interaction with a single user.

• Defining the overarching business process. The business process may span multiple

conversations with multiple users. Its state is persistent in the jBPM database, so it is considered

long-running. Coordination of the activities of multiple users is a much more complex problem

than scripting an interaction with a single user, so jBPM offers sophisticated facilities for task

management and dealing with multiple concurrent paths of execution.

Don't get these two things confused! They operate at very different levels or granularity. Pageflow,

conversation and task all refer to a single interaction with a single user. A business process spans

many tasks. Futhermore, the two applications of jBPM are totally orthogonal. You can use them

together or independently or not at all.

You don't have to know jPDL to use Seam. If you're perfectly happy defining pageflow using JSF

or Seam navigation rules, and if your application is more data-driven that process-driven, you

probably don't need jBPM. But we're finding that thinking of user interaction in terms of a well-

defined graphical representation is helping us build more robust applications.

9.1. Pageflow in Seam

There are two ways to define pageflow in Seam:

• Using JSF or Seam navigation rules - the stateless navigation model

• Using jPDL - the stateful navigation model

Very simple applications will only need the stateless navigation model. Very complex applications

will use both models in different places. Each model has its strengths and weaknesses!

9.1.1. The two navigation models

The stateless model defines a mapping from a set of named, logical outcomes of an event directly

to the resulting page of the view. The navigation rules are entirely oblivious to any state held by the

Chapter 9. Pageflows and busi...

170

application other than what page was the source of the event. This means that your action listener

methods must sometimes make decisions about the page flow, since only they have access to

the current state of the application.

Here is an example page flow definition using JSF navigation rules:

<navigation-rule>

 <from-view-id>/numberGuess.xhtml</from-view-id>

 <navigation-case>

 <from-outcome>guess</from-outcome>

 <to-view-id>/numberGuess.xhtml</to-view-id>

 <redirect/>

 </navigation-case>

 <navigation-case>

 <from-outcome>win</from-outcome>

 <to-view-id>/win.xhtml</to-view-id>

 <redirect/>

 </navigation-case>

 <navigation-case>

 <from-outcome>lose</from-outcome>

 <to-view-id>/lose.xhtml</to-view-id>

 <redirect/>

 </navigation-case>

</navigation-rule>

Here is the same example page flow definition using Seam navigation rules:

<page view-id="/numberGuess.xhtml">

 <navigation>

 <rule if-outcome="guess">

 <redirect view-id="/numberGuess.xhtml"/>

 </rule>

 <rule if-outcome="win">

 <redirect view-id="/win.xhtml"/>

 </rule>

 <rule if-outcome="lose">

 <redirect view-id="/lose.xhtml"/>

 </rule>

The two navigation models

171

 </navigation>

</page>

If you find navigation rules overly verbose, you can return view ids directly from your action listener

methods:

public String guess() {

 if (guess==randomNumber) return "/win.xhtml";

 if (++guessCount==maxGuesses) return "/lose.xhtml";

 return null;

}

Note that this results in a redirect. You can even specify parameters to be used in the redirect:

public String search() {

 return "/searchResults.xhtml?searchPattern=#{searchAction.searchPattern}";

}

The stateful model defines a set of transitions between a set of named, logical application states.

In this model, it is possible to express the flow of any user interaction entirely in the jPDL

pageflow definition, and write action listener methods that are completely unaware of the flow of

the interaction.

Here is an example page flow definition using jPDL:

<pageflow-definition name="numberGuess">

 <start-page name="displayGuess" view-id="/numberGuess.xhtml">

 <redirect/>

 <transition name="guess" to="evaluateGuess">

 <action expression="#{numberGuess.guess}" />

 </transition>

 </start-page>

 <decision name="evaluateGuess" expression="#{numberGuess.correctGuess}">

 <transition name="true" to="win"/>

 <transition name="false" to="evaluateRemainingGuesses"/>

 </decision>

 <decision name="evaluateRemainingGuesses" expression="#{numberGuess.lastGuess}">

Chapter 9. Pageflows and busi...

172

 <transition name="true" to="lose"/>

 <transition name="false" to="displayGuess"/>

 </decision>

 <page name="win" view-id="/win.xhtml">

 <redirect/>

 <end-conversation />

 </page>

 <page name="lose" view-id="/lose.xhtml">

 <redirect/>

 <end-conversation />

 </page>

</pageflow-definition>

There are two things we notice immediately here:

• The JSF/Seam navigation rules are much simpler. (However, this obscures the fact that the

underlying Java code is more complex.)

• The jPDL makes the user interaction immediately understandable, without us needing to even

look at the facelets template or Java code.

Seam and the back button

173

In addition, the stateful model is more constrained. For each logical state (each step in the page

flow), there are a constrained set of possible transitions to other states. The stateless model is

an ad hoc model which is suitable to relatively unconstrained, freeform navigation where the user

decides where he/she wants to go next, not the application.

The stateful/stateless navigation distinction is quite similar to the traditional view of modal/

modeless interaction. Now, Seam applications are not usually modal in the simple sense of

the word - indeed, avoiding application modal behavior is one of the main reasons for having

conversations! However, Seam applications can be, and often are, modal at the level of a particular

conversation. It is well-known that modal behavior is something to avoid as much as possible; it

is very difficult to predict the order in which your users are going to want to do things! However,

there is no doubt that the stateful model has its place.

The biggest contrast between the two models is the back-button behavior.

9.1.2. Seam and the back button

When JSF or Seam navigation rules are used, Seam lets the user freely navigate via the back,

forward and refresh buttons. It is the responsibility of the application to ensure that conversational

state remains internally consistent when this occurs. Experience with the combination of web

application frameworks like Struts or WebWork - that do not support a conversational model -

and stateless component models like EJB stateless session beans or the Spring framework has

taught many developers that this is close to impossible to do! However, our experience is that

in the context of Seam, where there is a well-defined conversational model, backed by stateful

session beans, it is actually quite straightforward. Usually it is as simple as combining the use

of no-conversation-view-id with null checks at the beginning of action listener methods. We

consider support for freeform navigation to be almost always desirable.

In this case, the no-conversation-view-id declaration goes in pages.xml. It tells Seam to

redirect to a different page if a request originates from a page rendered during a conversation,

and that conversation no longer exists:

<page view-id="/checkout.xhtml"

 no-conversation-view-id="/main.xhtml"/>

On the other hand, in the stateful model, using the back button is interpreted as an undefined

transition back to a previous state. Since the stateful model enforces a defined set of transitions

from the current state, the back button is not permitted by default in the stateful model! Seam

transparently detects the use of the back button, and blocks any attempt to perform an action from

a previous, "stale" page, and simply redirects the user to the "current" page (and displays a faces

message). Whether you consider this a feature or a limitation of the stateful model depends upon

your point of view: as an application developer, it is a feature; as a user, it might be frustrating!

You can enable backbutton navigation from a particular page node by setting back="enabled".

Chapter 9. Pageflows and busi...

174

<page name="checkout"

 view-id="/checkout.xhtml"

 back="enabled">

 <redirect/>

 <transition to="checkout"/>

 <transition name="complete" to="complete"/>

</page>

This allows navigation via the back button from the checkout state to any previous state!

Note
If a page is set to redirect after a transition, it is not possible to use the back button

to return to that page even when back is enabled on a page later in the flow. The

reason is because Seam stores information about the pageflow in the page scope

and the back button must result in a POST for that information to be restored (i.e.,

a Faces request). A redirect severs this linkage.

Of course, we still need to define what happens if a request originates from a page rendered

during a pageflow, and the conversation with the pageflow no longer exists. In this case, the no-

conversation-view-id declaration goes into the pageflow definition:

<page name="checkout"

 view-id="/checkout.xhtml"

 back="enabled"

 no-conversation-view-id="/main.xhtml">

 <redirect/>

 <transition to="checkout"/>

 <transition name="complete" to="complete"/>

</page>

In practice, both navigation models have their place, and you'll quickly learn to recognize when

to prefer one model over the other.

9.2. Using jPDL pageflows

9.2.1. Installing pageflows

We need to install the Seam jBPM-related components, and place the pageflow definitions

(using the standard .jpdl.xml extension) inside a Seam archive (an archive which contains a

seam.properties file):

Starting pageflows

175

<bpm:jbpm />

We can also explicitly tell Seam where to find our pageflow definition. We specify this in

components.xml:

<bpm:jbpm>

 <bpm:pageflow-definitions>

 <value>pageflow.jpdl.xml</value>

 </bpm:pageflow-definitions>

</bpm:jbpm>

9.2.2. Starting pageflows

We "start" a jPDL-based pageflow by specifying the name of the process definition using a @Begin,

@BeginTask or @StartTask annotation:

@Begin(pageflow="numberguess")

public void begin() { ... }

Alternatively we can start a pageflow using pages.xml:

<page>

 <begin-conversation pageflow="numberguess"/>

 </page>

If we are beginning the pageflow during the RENDER_RESPONSE phase — during a @Factory or

@Create method, for example — we consider ourselves to be already at the page being rendered,

and use a <start-page> node as the first node in the pageflow, as in the example above.

But if the pageflow is begun as the result of an action listener invocation, the outcome of the action

listener determines which is the first page to be rendered. In this case, we use a <start-state>

as the first node in the pageflow, and declare a transition for each possible outcome:

<pageflow-definition name="viewEditDocument">

 <start-state name="start">

 <transition name="documentFound" to="displayDocument"/>

 <transition name="documentNotFound" to="notFound"/>

 </start-state>

Chapter 9. Pageflows and busi...

176

 <page name="displayDocument" view-id="/document.jsp">

 <transition name="edit" to="editDocument"/>

 <transition name="done" to="main"/>

 </page>

 ...

 <page name="notFound" view-id="/404.jsp">

 <end-conversation/>

 </page>

</pageflow-definition>

9.2.3. Page nodes and transitions

Each <page> node represents a state where the system is waiting for user input:

<page name="displayGuess" view-id="/numberGuess.jsp">

 <redirect/>

 <transition name="guess" to="evaluateGuess">

 <action expression="#{numberGuess.guess}" />

 </transition>

</page>

The view-id is the JSF view id. The <redirect/> element has the same effect as <redirect/

> in a JSF navigation rule: namely, a post-then-redirect behavior, to overcome problems with the

browser's refresh button. (Note that Seam propagates conversation contexts over these browser

redirects. So there is no need for a Ruby on Rails style "flash" construct in Seam!)

The transition name is the name of a JSF outcome triggered by clicking a command button or

command link in numberGuess.jsp.

<h:commandButton type="submit" value="Guess" action="guess"/>

When the transition is triggered by clicking this button, jBPM will activate the transition action

by calling the guess() method of the numberGuess component. Notice that the syntax used for

specifying actions in the jPDL is just a familiar JSF EL expression, and that the transition action

handler is just a method of a Seam component in the current Seam contexts. So we have exactly

the same event model for jBPM events that we already have for JSF events! (The One Kind of

Stuff principle.)

Controlling the flow

177

In the case of a null outcome (for example, a command button with no action defined), Seam will

signal the transition with no name if one exists, or else simply redisplay the page if all transitions

have names. So we could slightly simplify our example pageflow and this button:

<h:commandButton type="submit" value="Guess"/>

Would fire the following un-named transition:

<page name="displayGuess" view-id="/numberGuess.jsp">

 <redirect/>

 <transition to="evaluateGuess">

 <action expression="#{numberGuess.guess}" />

 </transition>

</page>

It is even possible to have the button call an action method, in which case the action outcome will

determine the transition to be taken:

<h:commandButton type="submit" value="Guess" action="#{numberGuess.guess}"/>

<page name="displayGuess" view-id="/numberGuess.jsp">

 <transition name="correctGuess" to="win"/>

 <transition name="incorrectGuess" to="evaluateGuess"/>

</page>

However, this is considered an inferior style, since it moves responsibility for controlling the flow

out of the pageflow definition and back into the other components. It is much better to centralize

this concern in the pageflow itself.

9.2.4. Controlling the flow

Usually, we don't need the more powerful features of jPDL when defining pageflows. We do need

the <decision> node, however:

<decision name="evaluateGuess" expression="#{numberGuess.correctGuess}">

 <transition name="true" to="win"/>

 <transition name="false" to="evaluateRemainingGuesses"/>

</decision>

Chapter 9. Pageflows and busi...

178

A decision is made by evaluating a JSF EL expression in the Seam contexts.

9.2.5. Ending the flow

We end the conversation using <end-conversation> or @End. (In fact, for readability, use of both

is encouraged.)

<page name="win" view-id="/win.jsp">

 <redirect/>

 <end-conversation/>

</page>

Optionally, we can end a task, specify a jBPM transition name. In this case, Seam will signal

the end of the current task in the overarching business process.

<page name="win" view-id="/win.jsp">

 <redirect/>

 <end-task transition="success"/>

</page>

9.2.6. Pageflow composition

It is possible to compose pageflows and have one pageflow pause pause while another pageflow

executes. The <process-state> node pauses the outer pageflow, and begins execution of a

named pageflow:

<process-state name="cheat">

 <sub-process name="cheat"/>

 <transition to="displayGuess"/>

</process-state>

The inner flow begins executing at a <start-state> node. When it reaches an <end-state>

node, execution of the inner flow ends, and execution of the outer flow resumes with the transition

defined by the <process-state> element.

9.3. Business process management in Seam

A business process is a well-defined set of tasks that must be performed by users or software

systems according to well-defined rules about who can perform a task, and when it should

be performed. Seam's jBPM integration makes it easy to display lists of tasks to users and

let them manage their tasks. Seam also lets the application store state associated with the

Business process management in Seam

179

business process in the BUSINESS_PROCESS context, and have that state made persistent via jBPM

variables.

A simple business process definition looks much the same as a page flow definition (One Kind

of Stuff), except that instead of <page> nodes, we have <task-node> nodes. In a long-running

business process, the wait states are where the system is waiting for some user to log in and

perform a task.

<process-definition name="todo">

 <start-state name="start">

 <transition to="todo"/>

 </start-state>

 <task-node name="todo">

 <task name="todo" description="#{todoList.description}">

 <assignment actor-id="#{actor.id}"/>

 </task>

 <transition to="done"/>

 </task-node>

 <end-state name="done"/>

</process-definition>

Chapter 9. Pageflows and busi...

180

It is perfectly possible that we might have both jPDL business process definitions and jPDL

pageflow definitions in the same project. If so, the relationship between the two is that a single

<task> in a business process corresponds to a whole pageflow <pageflow-definition>

9.4. Using jPDL business process definitions

9.4.1. Installing process definitions

We need to install jBPM, and tell it where to find the business process definitions:

<bpm:jbpm>

 <bpm:process-definitions>

 <value>todo.jpdl.xml</value>

 </bpm:process-definitions>

</bpm:jbpm>

As jBPM processes are persistent across application restarts, when using Seam in a production

environment you won't want to install the process definition every time the application starts.

Therefore, in a production environment, you'll need to deploy the process to jBPM outside of

Seam. In other words, only install process definitions from components.xml when developing your

application.

9.4.2. Initializing actor ids

We always need to know what user is currently logged in. jBPM "knows" users by their actor id and

group actor ids. We specify the current actor ids using the built in Seam component named actor:

@In Actor actor;

public String login() {

 ...

 actor.setId(user.getUserName());

 actor.getGroupActorIds().addAll(user.getGroupNames());

 ...

}

9.4.3. Initiating a business process

To initiate a business process instance, we use the @CreateProcess annotation:

@CreateProcess(definition="todo")

Task assignment

181

public void createTodo() { ... }

Alternatively we can initiate a business process using pages.xml:

<page>

 <create-process definition="todo" />

</page>

9.4.4. Task assignment

When a process reaches a task node, task instances are created. These must be assigned to

users or user groups. We can either hardcode our actor ids, or delegate to a Seam component:

<task name="todo" description="#{todoList.description}">

 <assignment actor-id="#{actor.id}"/>

</task>

In this case, we have simply assigned the task to the current user. We can also assign tasks to

a pool:

<task name="todo" description="#{todoList.description}">

 <assignment pooled-actors="employees"/>

</task>

9.4.5. Task lists

Several built-in Seam components make it easy to display task lists. The

pooledTaskInstanceList is a list of pooled tasks that users may assign to themselves:

<h:dataTable value="#{pooledTaskInstanceList}" var="task">

 <h:column>

 <f:facet name="header">Description</f:facet>

 <h:outputText value="#{task.description}"/>

 </h:column>

 <h:column>

 <s:link action="#{pooledTask.assignToCurrentActor}" value="Assign" taskInstance="#{task}"/

>

 </h:column>

Chapter 9. Pageflows and busi...

182

</h:dataTable>

Note that instead of <s:link> we could have used a plain JSF <h:commandLink>:

<h:commandLink action="#{pooledTask.assignToCurrentActor}">

 <f:param name="taskId" value="#{task.id}"/>

</h:commandLink>

The pooledTask component is a built-in component that simply assigns the task to the current

user.

The taskInstanceListForType component includes tasks of a particular type that are assigned

to the current user:

<h:dataTable value="#{taskInstanceListForType['todo']}" var="task">

 <h:column>

 <f:facet name="header">Description</f:facet>

 <h:outputText value="#{task.description}"/>

 </h:column>

 <h:column>

 <s:link action="#{todoList.start}" value="Start Work" taskInstance="#{task}"/>

 </h:column>

</h:dataTable>

9.4.6. Performing a task

To begin work on a task, we use either @StartTask or @BeginTask on the listener method:

@StartTask

public String start() { ... }

Alternatively we can begin work on a task using pages.xml:

<page>

 <start-task />

</page>

Performing a task

183

These annotations begin a special kind of conversation that has significance in terms of the

overarching business process. Work done by this conversation has access to state held in the

business process context.

If we end the conversation using @EndTask, Seam will signal the completion of the task:

@EndTask(transition="completed")

public String completed() { ... }

Alternatively we can use pages.xml:

<page>

 <end-task transition="completed" />

</page>

You can also use EL to specify the transition in pages.xml.

At this point, jBPM takes over and continues executing the business process definition. (In more

complex processes, several tasks might need to be completed before process execution can

resume.)

Please refer to the jBPM documentation for a more thorough overview of the sophisticated features

that jBPM provides for managing complex business processes.

184

Chapter 10.

185

Seam and Object/Relational Mapping
Seam provides extensive support for the two most popular persistence architectures for Java:

Hibernate, and the Java Persistence API 2.0 introduced with EJB 3.1. Seam's unique state-

management architecture allows the most sophisticated ORM integration of any web application

framework.

10.1. Introduction

Seam grew out of the frustration of the Hibernate team with the statelessness typical of

the previous generation of Java application architectures. The state management architecture

of Seam was originally designed to solve problems relating to persistence — in particular

problems associated with optimistic transaction processing. Scalable online applications always

use optimistic transactions. An atomic (database/JTA) level transaction should not span a user

interaction unless the application is designed to support only a very small number of concurrent

clients. But almost all interesting work involves first displaying data to a user, and then, slightly

later, updating the same data. So Hibernate was designed to support the idea of a persistence

context which spanned an optimistic transaction.

Unfortunately, the so-called "stateless" architectures that preceded Seam and EJB 3.0 had no

construct for representing an optimistic transaction. So, instead, these architectures provided

persistence contexts scoped to the atomic transaction. Of course, this resulted in many problems

for users, and is the cause of the number one user complaint about Hibernate: the dreaded

LazyInitializationException. What we need is a construct for representing an optimistic

transaction in the application tier.

EJB 3.0 recognizes this problem, and introduces the idea of a stateful component (a stateful

session bean) with an extended persistence context scoped to the lifetime of the component. This

is a partial solution to the problem (and is a useful construct in and of itself) however there are

two problems:

• The lifecycle of the stateful session bean must be managed manually via code in the web tier

(it turns out that this is a subtle problem and much more difficult in practice than it sounds).

• Propagation of the persistence context between stateful components in the same optimistic

transaction is possible, but tricky.

Seam solves the first problem by providing conversations, and stateful session bean components

scoped to the conversation. (Most conversations actually represent optimistic transactions in the

data layer.) This is sufficient for many simple applications (such as the Seam booking demo) where

persistence context propagation is not needed. For more complex applications, with many loosely-

interacting components in each conversation, propagation of the persistence context across

components becomes an important issue. So Seam extends the persistence context management

model of EJB 3.0, to provide conversation-scoped extended persistence contexts.

Chapter 10. Seam and Object/R...

186

10.2. Seam managed transactions

EJB session beans feature declarative transaction management. The EJB container is able to start

a transaction transparently when the bean is invoked, and end it when the invocation ends. If we

write a session bean method that acts as a JSF action listener, we can do all the work associated

with that action in one transaction, and be sure that it is committed or rolled back when we finish

processing the action. This is a great feature, and all that is needed by some Seam applications.

However, there is a problem with this approach. A Seam application may not perform all data

access for a request from a single method call to a session bean.

• The request might require processing by several loosely-coupled components, each of which

is called independently from the web layer. It is common to see several or even many calls per

request from the web layer to EJB components in Seam.

• Rendering of the view might require lazy fetching of associations.

The more transactions per request, the more likely we are to encounter atomicity and isolation

problems when our application is processing many concurrent requests. Certainly, all write

operations should occur in the same transaction!

Hibernate users developed the "open session in view" pattern to work around this problem. In

the Hibernate community, "open session in view" was historically even more important because

frameworks like Spring use transaction-scoped persistence contexts. So rendering the view would

cause LazyInitializationExceptions when unfetched associations were accessed.

This pattern is usually implemented as a single transaction which spans the entire request. There

are several problems with this implementation, the most serious being that we can never be sure

that a transaction is successful until we commit it — but by the time the "open session in view"

transaction is committed, the view is fully rendered, and the rendered response may already have

been flushed to the client. How can we notify the user that their transaction was unsuccessful?

Seam solves both the transaction isolation problem and the association fetching problem, while

working around the problems with "open session in view". The solution comes in two parts:

• use an extended persistence context that is scoped to the conversation, instead of to the

transaction

• use two transactions per request; the first spans the beginning of the restore view phase (some

transaction managers begin the transaction later at the beginning of the apply request values

phase) until the end of the invoke application phase; the second spans the render response

phase

In the next section, we'll tell you how to set up a conversation-scope persistence context. But

first we need to tell you how to enable Seam transaction management. Note that you can use

conversation-scoped persistence contexts without Seam transaction management, and there are

good reasons to use Seam transaction management even when you're not using Seam-managed

Disabling Seam-managed transactions

187

persistence contexts. However, the two facilities were designed to work together, and work best

when used together.

Seam transaction management is useful even if you're using EJB 3.0 container-managed

persistence contexts. But it is especially useful if you use Seam outside a Java EE environment,

or in any other case where you would use a Seam-managed persistence context.

10.2.1. Disabling Seam-managed transactions

Seam transaction management is enabled by default for all JSF requests. If you want to disable

this feature, you can do it in components.xml:

<core:init transaction-management-enabled="false"/>

<transaction:no-transaction />

10.2.2. Configuring a Seam transaction manager

Seam provides a transaction management abstraction for beginning, committing, rolling back,

and synchronizing with a transaction. By default Seam uses a JTA transaction component that

integrates with Container Managed and programmatic EJB transactions. If you are working in a

Java EE environment, you should install the EJB synchronization component in components.xml:

<transaction:ejb-transaction />

However, if you are working in a non EE 5 container, Seam will try auto detect the transaction

synchronization mechanism to use. However, if Seam is unable to detect the correct transaction

synchronization to use, you may find you need configure one of the following:

• JPA RESOURCE_LOCAL transactions with the javax.persistence.EntityTransaction

interface. EntityTransaction begins the transaction at the beginning of the apply request

values phase.

• Hibernate managed transactions with the org.hibernate.Transaction interface.

HibernateTransaction begins the transaction at the beginning of the apply request values

phase.

• Spring managed transactions with the

org.springframework.transaction.PlatformTransactionManager interface. The Spring

PlatformTransactionManagement manager may begin the transaction at the beginning of the

apply request values phase if the userConversationContext attribute is set.

• Explicitly disable Seam managed transactions

Chapter 10. Seam and Object/R...

188

Configure JPA RESOURCE_LOCAL transaction management by adding the following to your

components.xml where #{em} is the name of the persistence:managed-persistence-context

component. If your managed persistence context is named entityManager, you can opt to leave

out the entity-manager attribute. (see Seam-managed persistence contexts)

<transaction:entity-transaction entity-manager="#{em}"/>

To configure Hibernate managed transactions declare the following in your components.xml where

#{hibernateSession} is the name of the project's persistence:managed-hibernate-session

component. If your managed hibernate session is named session, you can opt to leave out the

session attribute. (see Seam-managed persistence contexts)

<transaction:hibernate-transaction session="#{hibernateSession}"/>

To explicitly disable Seam managed transactions declare the following in your components.xml:

<transaction:no-transaction />

For configuring Spring managed transactions see using Spring PlatformTransactionManagement .

10.2.3. Transaction synchronization

Transaction synchronization provides callbacks for transaction related events such as

beforeCompletion() and afterCompletion(). By default, Seam uses it's own transaction

synchronization component which requires explicit use of the Seam transaction component when

committing a transaction to ensure synchronization callbacks are correctly executed. If in a

Java EE environment the <transaction:ejb-transaction/> component should be declared

in components.xml to ensure that Seam synchronization callbacks are correctly called if the

container commits a transaction outside of Seam's knowledge.

10.3. Seam-managed persistence contexts

If you're using Seam outside of a Java EE environment, you can't rely upon the container to

manage the persistence context lifecycle for you. Even if you are in an EE 5 environment, you

might have a complex application with many loosly coupled components that collaborate together

in the scope of a single conversation, and in this case you might find that propagation of the

persistence context between component is tricky and error-prone.

In either case, you'll need to use a managed persistence context (for JPA) or a managed session

(for Hibernate) in your components. A Seam-managed persistence context is just a built-in Seam

component that manages an instance of EntityManager or Session in the conversation context.

You can inject it with @In.

Using a Seam-managed persistence context with JPA

189

Seam-managed persistence contexts are extremely efficient in a clustered environment. Seam

is able to perform an optimization that EJB 3.0 specification does not allow containers to use

for container-managed extended persistence contexts. Seam supports transparent failover of

extended persistence contexts, without the need to replicate any persistence context state

between nodes. (We hope to fix this oversight in the next revision of the EJB spec.)

10.3.1. Using a Seam-managed persistence context with JPA

Configuring a managed persistence context is easy. In components.xml, we can write:

<persistence:managed-persistence-context name="bookingDatabase"

 auto-create="true"

 persistence-unit-jndi-name="java:/EntityManagerFactories/bookingData"/>

This configuration creates a conversation-scoped Seam component named bookingDatabase

that manages the lifecycle of EntityManager instances for the persistence unit

(EntityManagerFactory instance) with JNDI name java:/EntityManagerFactories/

bookingData.

Of course, you need to make sure that you have bound the EntityManagerFactory into JNDI. In

JBoss, you can do this by adding the following property setting to persistence.xml.

<property name="jboss.entity.manager.factory.jndi.name"

 value="java:/EntityManagerFactories/bookingData"/>

Now we can have our EntityManager injected using:

@In EntityManager bookingDatabase;

If you are using EJB3 and mark your class or method @TransactionAttribute(REQUIRES_NEW)

then the transaction and persistence context shouldn't be propagated to method calls on this

object. However as the Seam-managed persistence context is propagated to any component

within the conversation, it will be propagated to methods marked REQUIRES_NEW. Therefore,

if you mark a method REQUIRES_NEW then you should access the entity manager using

@PersistenceContext.

10.3.2. Using a Seam-managed Hibernate session

Seam-managed Hibernate sessions are similar. In components.xml:

<persistence:hibernate-session-factory name="hibernateSessionFactory"/>

Chapter 10. Seam and Object/R...

190

<persistence:managed-hibernate-session name="bookingDatabase"

 auto-create="true"

 session-factory-jndi-name="java:/bookingSessionFactory"/>

Where java:/bookingSessionFactory is the name of the session factory specified in

hibernate.cfg.xml.

<session-factory name="java:/bookingSessionFactory">

 <property name="transaction.flush_before_completion">true</property>

 <property name="connection.release_mode">after_statement</property>

 <property name="transaction.manager_lookup_class">org.hibernate.transaction.JBossTransactionManagerLookup</

property>

 <property name="transaction.factory_class">org.hibernate.transaction.JTATransactionFactory</

property>

 <property name="connection.datasource">java:/bookingDatasource</property>

 ...

</session-factory>

Note that Seam does not flush the session, so you should always enable

hibernate.transaction.flush_before_completion to ensure that the session is automatically

flushed before the JTA transaction commits.

We can now have a managed Hibernate Session injected into our JavaBean components using

the following code:

@In Session bookingDatabase;

10.3.3. Seam-managed persistence contexts and atomic

conversations

Persistence contexts scoped to the conversation allows you to program optimistic transactions

that span multiple requests to the server without the need to use the merge() operation , without

the need to re-load data at the beginning of each request, and without the need to wrestle with

the LazyInitializationException or NonUniqueObjectException.

As with any optimistic transaction management, transaction isolation and consistency can be

achieved via use of optimistic locking. Fortunately, both Hibernate and EJB 3.0 make it very easy

to use optimistic locking, by providing the @Version annotation.

Seam-managed persistence contexts and atomic conversations

191

By default, the persistence context is flushed (synchronized with the database) at the end of

each transaction. This is sometimes the desired behavior. But very often, we would prefer

that all changes are held in memory and only written to the database when the conversation

ends successfully. This allows for truly atomic conversations. As the result of a truly stupid

and shortsighted decision by certain non-JBoss, non-Sun and non-Sybase members of the EJB

3.0 expert group, there is currently no simple, usable and portable way to implement atomic

conversations using EJB 3.0 persistence. However, Hibernate provides this feature as a vendor

extension to the FlushModeTypes defined by the specification, and it is our expectation that other

vendors will soon provide a similar extension.

Seam lets you specify FlushModeType.MANUAL when beginning a conversation. Currently, this

works only when Hibernate is the underlying persistence provider, but we plan to support other

equivalent vendor extensions.

@In EntityManager em; //a Seam-managed persistence context

@Begin(flushMode=MANUAL)

public void beginClaimWizard() {

 claim = em.find(Claim.class, claimId);

}

Now, the claim object remains managed by the persistence context for the rest ot the

conversation. We can make changes to the claim:

public void addPartyToClaim() {

 Party party =;

 claim.addParty(party);

}

But these changes will not be flushed to the database until we explicitly force the flush to occur:

@End

public void commitClaim() {

 em.flush();

}

Of course, you could set the flushMode to MANUAL from pages.xml, for example in a navigation

rule:

Chapter 10. Seam and Object/R...

192

<begin-conversation flush-mode="MANUAL" />

You can set any Seam Managed Persistence Context to use manual flush mode:

<components xmlns="http://jboss.org/schema/seam/components"

 xmlns:core="http://jboss.org/schema/seam/core">

 <core:manager conversation-timeout="120000" default-flush-mode="manual" />

</components>

Warning

if you use SMPC in your Stateful bean, manual flush mode is ignored as this mode

is specific Hibernate extension to JPA specification. Seam can’t control the flush

mode of the persistence context on an SFSB - that means no manual flushing on

SFSB!

10.4. Using the JPA "delegate"

The EntityManager interface lets you access a vendor-specific API via the getDelegate()

method. Naturally, the most interesting vendor is Hibernate, and the most powerful delegate

interface is org.hibernate.Session. You'd be nuts to use anything else. Trust me, I'm not biased

at all. If you must use a different JPA provider see Using Alternate JPA Providers.

But regardless of whether you're using Hibernate (genius!) or something else (masochist, or just

not very bright), you'll almost certainly want to use the delegate in your Seam components from

time to time. One approach would be the following:

@In EntityManager entityManager;

@Create

public void init() {

 ((Session) entityManager.getDelegate()).enableFilter("currentVersions");

}

But typecasts are unquestionably the ugliest syntax in the Java language, so most people avoid

them whenever possible. Here's a different way to get at the delegate. First, add the following

line to components.xml:

<factory name="session"

Using EL in EJB-QL/HQL

193

 scope="STATELESS"

 auto-create="true"

 value="#{entityManager.delegate}"/>

Now we can inject the session directly:

@In Session session;

@Create

public void init() {

 session.enableFilter("currentVersions");

}

10.5. Using EL in EJB-QL/HQL

Seam proxies the EntityManager or Session object whenever you use a Seam-

managed persistence context or inject a container managed persistence context using

@PersistenceContext. This lets you use EL expressions in your query strings, safely and

efficiently. For example, this:

User user = em.createQuery("from User where username=#{user.username}")

 .getSingleResult();

is equivalent to:

User user = em.createQuery("from User where username=:username")

 .setParameter("username", user.getUsername())

 .getSingleResult();

Of course, you should never, ever write it like this:

User user = em.createQuery("from User where username=" + user.getUsername()) //BAD!

 .getSingleResult();

(It is inefficient and vulnerable to SQL injection attacks.)

Chapter 10. Seam and Object/R...

194

10.6. Using Hibernate filters

The coolest, and most unique, feature of Hibernate is filters. Filters let you provide a restricted view

of the data in the database. You can find out more about filters in the Hibernate documentation.

But we thought we'd mention an easy way to incorporate filters into a Seam application, one that

works especially well with the Seam Application Framework.

Seam-managed persistence contexts may have a list of filters defined, which will be enabled

whenever an EntityManager or Hibernate Session is first created. (Of course, they may only be

used when Hibernate is the underlying persistence provider.)

<persistence:filter name="regionFilter">

 <persistence:name>region</persistence:name>

 <persistence:parameters>

 <key>regionCode</key>

 <value>#{region.code}</value>

 </persistence:parameters>

</persistence:filter>

<persistence:filter name="currentFilter">

 <persistence:name>current</persistence:name>

 <persistence:parameters>

 <key>date</key>

 <value>#{currentDate}</value>

 </persistence:parameters>

</persistence:filter>

<persistence:managed-persistence-context name="personDatabase"

 persistence-unit-jndi-name="java:/EntityManagerFactories/personDatabase">

 <persistence:filters>

 <value>#{regionFilter}</value>

 <value>#{currentFilter}</value>

 </persistence:filters>

</persistence:managed-persistence-context>

Chapter 11.

195

JSF form validation in Seam
In plain JSF, validation is defined in the view:

<h:form>

 <h:messages/>

 <div>

 Country:

 <h:inputText value="#{location.country}" required="true">

 <my:validateCountry/>

 </h:inputText>

 </div>

 <div>

 Zip code:

 <h:inputText value="#{location.zip}" required="true">

 <my:validateZip/>

 </h:inputText>

 </div>

 <h:commandButton/>

</h:form>

In practice, this approach usually violates DRY, since most "validation" actually enforces

constraints that are part of the data model, and exist all the way down to the database schema

definition. Seam provides support for model-based constraints defined using Bean Validation.

Let's start by defining our constraints, on our Location class:

public class Location {

 private String country;

 private String zip;

 @NotNull

 @Size(max=30)

 public String getCountry() { return country; }

 public void setCountry(String c) { country = c; }

 @NotNull

 @Size(max=6)

 @Pattern("^\d*$")

Chapter 11. JSF form validati...

196

 public String getZip() { return zip; }

 public void setZip(String z) { zip = z; }

}

Well, that's a decent first cut, but in practice it might be more elegant to use custom constraints

instead of the ones built into Bean Validation:

public class Location {

 private String country;

 private String zip;

 @NotNull

 @Country

 public String getCountry() { return country; }

 public void setCountry(String c) { country = c; }

 @NotNull

 @ZipCode

 public String getZip() { return zip; }

 public void setZip(String z) { zip = z; }

}

Whichever route we take, we no longer need to specify the type of validation to be used in the

JSF page. Instead, we can use <s:validate> to validate against the constraint defined on the

model object.

<h:form>

 <h:messages/>

 <div>

 Country:

 <h:inputText value="#{location.country}" required="true">

 <s:validate/>

 </h:inputText>

 </div>

 <div>

 Zip code:

 <h:inputText value="#{location.zip}" required="true">

 <s:validate/>

 </h:inputText>

 </div>

197

 <h:commandButton/>

</h:form>

Note: specifying @NotNull on the model does not eliminate the requirement for required="true"

to appear on the control! This is due to a limitation of the JSF validation architecture.

This approach defines constraints on the model, and presents constraint violations in the view —

a significantly better design.

However, it is not much less verbose than what we started with, so let's try <s:validateAll>:

<h:form>

 <h:messages/>

 <s:validateAll>

 <div>

 Country:

 <h:inputText value="#{location.country}" required="true"/>

 </div>

 <div>

 Zip code:

 <h:inputText value="#{location.zip}" required="true"/>

 </div>

 <h:commandButton/>

 </s:validateAll>

</h:form>

This tag simply adds an <s:validate> to every input in the form. For a large form, it can save

a lot of typing!

Now we need to do something about displaying feedback to the user when validation fails.

Currently we are displaying all messages at the top of the form. In order for the user to correlate

the message with an input, you need to define a label using the standard label attribute on the

input component.

Chapter 11. JSF form validati...

198

<h:inputText value="#{location.zip}" required="true" label="Zip:">

 <s:validate/>

</h:inputText>

You can then inject this value into the message string using the placeholder {0} (the first and only

parameter passed to a JSF message for a Bean Validation restriction). See the internationalization

section for more information regarding where to define these messages.

validator.length={0} length must be between {min} and {max}

What we would really like to do, though, is display the message next to the field with the error (this

is possible in plain JSF), highlight the field and label (this is not possible) and, for good measure,

display some image next to the field (also not possible). We also want to display a little colored

asterisk next to the label for each required form field. Using this approach, the identifying label

is not necessary.

That's quite a lot of functionality we need for each field of our form. We wouldn't want to have to

specify highlighting and the layout of the image, message and input field for every field on the

form. So, instead, we'll specify the common layout in a facelets template:

<ui:composition xmlns="http://www.w3.org/1999/xhtml"

 xmlns:ui="http://java.sun.com/jsf/facelets"

 xmlns:h="http://java.sun.com/jsf/html"

 xmlns:f="http://java.sun.com/jsf/core"

 xmlns:s="http://jboss.org/schema/seam/taglib">

 <div>

 <s:label styleClass="#{invalid?'error':''}">

 <ui:insert name="label"/>

 <s:span styleClass="required" rendered="#{required}">*</s:span>

 </s:label>

 <h:graphicImage value="/img/error.gif" rendered="#{invalid}"/>

 <s:validateAll>

 <ui:insert/>

 </s:validateAll>

 <s:message styleClass="error"/>

199

 </div>

</ui:composition>

We can include this template for each of our form fields using <s:decorate>.

<h:form>

 <h:messages globalOnly="true"/>

 <s:decorate template="edit.xhtml">

 <ui:define name="label">Country:</ui:define>

 <h:inputText value="#{location.country}" required="true"/>

 </s:decorate>

 <s:decorate template="edit.xhtml">

 <ui:define name="label">Zip code:</ui:define>

 <h:inputText value="#{location.zip}" required="true"/>

 </s:decorate>

 <h:commandButton/>

</h:form>

Finally, we can use RichFaces Ajax to display validation messages as the user is navigating

around the form:

<h:form>

 <h:messages globalOnly="true"/>

 <s:decorate id="countryDecoration" template="edit.xhtml">

 <ui:define name="label">Country:</ui:define>

 <h:inputText value="#{location.country}" required="true">

 <a:ajax event="blur" render="countryDecoration" bypassUpdates="true"/>

 </h:inputText>

 </s:decorate>

 <s:decorate id="zipDecoration" template="edit.xhtml">

 <ui:define name="label">Zip code:</ui:define>

 <h:inputText value="#{location.zip}" required="true">

Chapter 11. JSF form validati...

200

 <a:ajax event="blur" render="zipDecoration" bypassUpdates="true"/>

 </h:inputText>

 </s:decorate>

 <h:commandButton/>

</h:form>

It's better style to define explicit ids for important controls on the page, especially if you want to

do automated testing for the UI, using some toolkit like Selenium. If you don't provide explicit ids,

JSF will generate them, but the generated values will change if you change anything on the page.

<h:form id="form">

 <h:messages globalOnly="true"/>

 <s:decorate id="countryDecoration" template="edit.xhtml">

 <ui:define name="label">Country:</ui:define>

 <h:inputText id="country" value="#{location.country}" required="true">

 <a:ajax event="blur" render="countryDecoration" bypassUpdates="true"/>

 </h:inputText>

 </s:decorate>

 <s:decorate id="zipDecoration" template="edit.xhtml">

 <ui:define name="label">Zip code:</ui:define>

 <h:inputText id="zip" value="#{location.zip}" required="true">

 <a:ajax event="blur" render="zipDecoration" bypassUpdates="true"/>

 </h:inputText>

 </s:decorate>

 <h:commandButton/>

</h:form>

And what if you want to specify a different message to be displayed when validation fails? You

can use the Seam message bundle (and all it's goodies like el expressions inside the message,

and per-view message bundles) with the Bean Validation:

public class Location {

 private String name;

 private String zip;

201

 // Getters and setters for name

 @NotNull

 @Size(max=6)

 @ZipCode(message="#{messages['location.zipCode.invalid']}")

 public String getZip() { return zip; }

 public void setZip(String z) { zip = z; }

}

location.zipCode.invalid = The zip code is not valid for #{location.name}

202

Chapter 12.

203

Groovy integration
One aspect of JBoss Seam is its RAD (Rapid Application Development) capability. While not

synonymous with RAD, one interesting tool in this space is dynamic languages. Until recently,

choosing a dynamic language was required choosing a completely different development platform

(a development platform with a set of APIs and a runtime so great that you would no longer want to

use you old legacy Java [sic] APIs anymore, which would be lucky because you would be forced to

use those proprietary APIs anyway). Dynamic languages built on top of the Java Virtual Machine,

and Groovy [http://groovy.codehaus.org] in particular broke this approach in silos.

JBoss Seam now unites the dynamic language world with the Java EE world by seamlessly

integrating both static and dynamic languages. JBoss Seam lets the application developer use

the best tool for the task, without context switching. Writing dynamic Seam components is exactly

like writing regular Seam components. You use the same annotations, the same APIs, the same

everything.

12.1. Groovy introduction

Groovy is an agile dynamic language based on the Java language but with additional features

inspired by Python, Ruby and Smalltalk. The strengths of Groovy are twofold:

• Java syntax is supported in Groovy: Java code is Groovy code, making the learning curve very

smooth

• Groovy objects are Java objects, and Groovy classes are Java classes: Groovy integrates

smoothly with existing Java libraries and frameworks.

12.2. Writing Seam applications in Groovy

There is not much to say about it. Since a Groovy object is a Java object, you can virtually write

any Seam component, or any class for what it worth, in Groovy and deploy it. You can also mix

Groovy classes and Java classes in the same application.

12.2.1. Writing Groovy components

As you should have noticed by now, Seam uses annotations heavily. Be sure to use Groovy 1.1 or

above for annotation support. Here are some example of groovy code used in a Seam application.

12.2.1.1. Entity

 @Entity

 @Name("hotel")

 class Hotel implements Serializable

http://groovy.codehaus.org
http://groovy.codehaus.org

Chapter 12. Groovy integration

204

 {

 @Id @GeneratedValue

 Long id

 @Size(max=50) @NotNull

 String name

 @Size(max=100) @NotNull

 String address

 @Size(max=40) @NotNull

 String city

 @Size(min=2, max=10) @NotNull

 String state

 @Size(min=4, max=6) @NotNull

 String zip

 @Size(min=2, max=40) @NotNull

 String country

 @Column(precision=6, scale=2)

 BigDecimal price

 @Override

 String toString()

 {

 return "Hotel(${name},${address},${city},${zip})"

 }

 }

Groovy natively support the notion of properties (getter/setter), so there is no need to explicitly

write verbose getters and setters: in the previous example, the hotel class can be accessed from

Java as hotel.getCity(), the getters and setters being generated by the Groovy compiler. This

type of syntactic sugar makes the entity code very concise.

12.2.1.2. Seam component

Writing Seam components in Groovy is in no way different than in Java: annotations are used to

mark the class as a Seam component.

@Scope(ScopeType.SESSION)

@Name("bookingList")

seam-gen

205

class BookingListAction implements Serializable

{

 @In EntityManager em

 @In User user

 @DataModel List<Booking> bookings

 @DataModelSelection Booking booking

 @Logger Log log

 @Factory public void getBookings()

 {

 bookings = em.createQuery('''

 select b from Booking b

 where b.user.username = :username

 order by b.checkinDate''')

 .setParameter("username", user.username)

 .getResultList()

 }

 public void cancel()

 {

 log.info("Cancel booking: #{bookingList.booking.id} for #{user.username}")

 Booking cancelled = em.find(Booking.class, booking.id)

 if (cancelled != null) em.remove(cancelled)

 getBookings()

 FacesMessages.instance().add("Booking cancelled for confirmation number

 #{bookingList.booking.id}", new Object[0])

 }

}

12.2.2. seam-gen

Seam gen has a transparent integration with Groovy. You can write Groovy code in seam-gen

backed projects without any additional infrastructure requirement. When writing a Groovy entity,

simply place your .groovy files in src/main. Unsurprisingly, when writing an action, simply place

your .groovy files in src/hot.

12.3. Deployment

Deploying Groovy classes is very much like deploying Java classes (surprisingly, no need to

write nor comply with a 3-letter composite specification to support a multi-language component

framework).

Beyond standard deployments, JBoss Seam has the ability, at development time, to redeploy

JavaBeans Seam component classes without having to restart the application, saving a lot of time

Chapter 12. Groovy integration

206

in the development / test cycle. The same support is provided for GroovyBeans Seam components

when the .groovy files are deployed.

12.3.1. Deploying Groovy code

A Groovy class is a Java class, with a bytecode representation just like a Java class. To deploy,

a Groovy entity, a Groovy Session bean or a Groovy Seam component, a compilation step is

necessary. A common approach is to use the gmaven-plugin [http://docs.codehaus.org/display/

GMAVEN/Home] maven plugin. Once compiles, a Groovy class is in no way different than a Java

class and the application server will treat them equally. Note that this allow a seamless mix of

Groovy and Java code.

12.3.2. Native .groovy file deployment at development time

JBoss Seam natively supports the deployment of .groovy files (ie without compilation) in

incremental hotdeployment mode (development only). This enables a very fast edit/test cycle. To

set up .groovy deployments, follow the configuration at Section 2.8, “Seam and incremental hot

deployment” and deploy your Groovy code (.groovy files) into the WEB-INF/dev directory. The

GroovyBean components will be picked up incrementally with no need to restart the application

(and obviously not the application server either).

Be aware that the native .groovy file deployment suffers the same limitations as the regular Seam

hotdeployment:

• The components must be JavaBeans or GroovyBeans. They cannot be EJB3 bean

• Entities cannot be hotdeployed

• The hot-deployable components will not be visible to any classes deployed outside of WEB-INF/

dev

• Seam debug mode must be enabled

12.3.3. seam-gen

Seam-gen transparently supports Groovy files deployment and compilation. This includes the

native .groovy file deployment in development mode (compilation-less). If you create a seam-

gen project of type WAR, Java and Groovy classes in src/hot will automatically be candidate

for the incremental hot deployment. If you are in production mode, the Groovy files will simply be

compiled before deployment.

You will find a live example of the Booking demo written completely in Groovy and supporting

incremental hot deployment in examples/groovybooking.

http://docs.codehaus.org/display/GMAVEN/Home
http://docs.codehaus.org/display/GMAVEN/Home
http://docs.codehaus.org/display/GMAVEN/Home

Chapter 13.

207

Writing your presentation layer

using Apache Wicket
Seam supports Wicket as an alternative presentation layer to JSF. Take a look at the wicket

example in Seam which shows the Booking Example ported to Wicket.

Note

Wicket support is new to Seam, so some features which are available in JSF are

not yet available when you use Wicket (e.g. pageflow). You'll also notice that the

documentation is very JSF-centric and needs reorganization to reflect the first class

support for Wicket.

13.1. Adding Seam to your wicket application

The features added to your Wicket application can be split into two categories: bijection and

orchestration; these are discussed in detail below.

Extensive use of inner classes is common when building Wicket applications, with the component

tree being built in the constructor. Seam fully supports the use of annotation based control in inner

classes and constructors (unlike regular Seam components).

Annotations are processed after any call to a superclass. This mean's that any injected attributes

cannot be passed as an argument in a call to this() or super() .

When a method is called in an inner class, bijection occurs for any class which encloses it. This

allows you to place your bijected variables in the outer class, and refer to them in any inner class.

13.1.1. Bijection

A Seam enabled Wicket application has full access to the all the standard Seam contexts (EVENT

, CONVERSATION , SESSION , APPLICATION and BUSINESS_PROCESS).

To access Seam component's from Wicket, you just need to inject it using @In :

@In(create=true)

private HotelBooking hotelBooking;

Chapter 13. Writing your pres...

208

Tip

As your Wicket class isn't a full Seam component, there is no need to annotate

it @Name .

You can also outject an object into the Seam contexts from a Wicket component:

@Out(scope=ScopeType.EVENT, required=false)

private String verify;

TODO Make this more use case driven

13.1.2. Orchestration

You can secure a Wicket component by using the @Restrict annotation. This can be placed

on the outer component or any inner components. If @Restrict is specified, the component will

automatically be restricted to logged in users. You can optionally use an EL expression in the

value attribute to specify a restriction to be applied. For more refer to the Chapter 16, Security .

For example:

@Restrict

public class Main extends WebPage

{

 ...

Tip

Seam will automatically apply the restriction to any nested classes.

You can demarcate conversations from within a Wicket component through the use of @Begin and

@End . The semantics for these annotations are the same as when used in a Seam component.

You can place @Begin and @End on any method.

Note

The deprecated ifOutcome attribute is not supported.

For example:

Setting up your project

209

item.add(new Link("viewHotel") {

 @Override

 @Begin

 public void onClick() {

 hotelBooking.selectHotel(hotel);

 setResponsePage(org.jboss.seam.example.wicket.Hotel.class);

 }

};

You may have pages in your application which can only be accessed when the user has a long-

running conversation active. To enforce this you can use the @NoConversationPage annotation:

@Restrict

@NoConversationPage(Main.class)

public class Hotel extends WebPage

{

If you want to further decouple your application classes, you can use Seam events. Of course,

you can raise an event using Events.instance().raiseEvent("foo") . Alternatively, you can

annotate a method @RaiseEvent("foo") ; if the method returns a non-null outcome without

exception, the event will be raised.

You can also control tasks and processes in Wicket classes through the use of @CreateProcess

, @ResumeTask , @BeginTask , @EndTask , @StartTask and @Transition .

13.2. Setting up your project

Seam needs to instrument the bytecode of your Wicket classes to be able to intercept the

annotations you use. The first decision to make is: do you want your code instrumented at

runtime as your app is running, or at compile time? The former requires no integration with your

build environment, but has a performance penalty when loading each instrumented class for the

first time. The latter is faster, but requires you to integrate this instrumentation into your build

environment.

13.2.1. Runtime instrumentation

There are two ways to achieve runtime instrumentation. One relies on placing wicket components

to be instrumented in a special folder in your WAR deployment. If this is not acceptable or possible,

you can also use an instrumentation "agent," which you specify in the command line for launching

your container.

Chapter 13. Writing your pres...

210

13.2.1.1. Location-specific instrumentation

Any classes placed in the WEB-INF/wicket folder within your WAR deployment will be

automatically instrumented by the seam-wicket runtime. You can arrange to place your wicket

pages and components here by specifying a separate output folder for those classes in your IDE,

or through the use of ant scripts.

13.2.1.2. Runtime instrumentation agent

The jar file jboss-seam-wicket.jar can be used as an instrumentation agent through the Java

Instrumentation api. This is accomplished through the following steps:

• Arrange for the jboss-seam-wicket.jar file to live in a location for which you have an absolute

path, as the Java Instrumentation API does not allow relative paths when specifying the location

of an agent lib.

• Add javaagent:/path/to/jboss-seam-wicket.jar to the command line options when

launching your webapp container:

• In addition, you will need to add an environment variable that specifies packages that the agent

should instrument. This is accomplished by a comma separated list of package names:

-Dorg.jboss.seam.wicket.instrumented-packages=my.package.one,my.other.package

Note that if a package A is specified, classes in subpackages of A are also examined. The

classes chosen for instrumentation can be further limited by specifying:

-Dorg.jboss.seam.wicket.scanAnnotations=true

and then marking instrumentable classes with the @SeamWicketComponent annotation, see

Section 13.2.3, “ The @SeamWicketComponent annotation ” .

13.2.2. Compile-time instrumentation

Seam supports instrumentation at compile time through either Apache Ant or Apache Maven.

13.2.2.1. Instrumenting with ant

Seam provides an ant task in the jboss-seam-wicket-ant.jar . This is used in the following

manner:

<taskdef name="instrumentWicket"

 classname="org.jboss.seam.wicket.ioc.WicketInstrumentationTask">

 <classpath>

Compile-time instrumentation

211

 <pathelement location="lib/jboss-seam-wicket-ant.jar"/>

 <pathelement location="web/WEB-INF/lib/jboss-seam-wicket.jar"/>

 <pathelement location="lib/javassist.jar"/>

 <pathelement location="lib/jboss-seam.jar"/>

 </classpath>

</taskdef>

<instrumentWicket outputDirectory="${build.instrumented}" useAnnotations="true">

 <classpath refid="build.classpath"/>

 <fileset dir="${build.classes}" includes="**/*.class"/>

</instrumentWicket>

This results in the instrumented classes being placed in the directory specified by

${build.instrumented} . You will then need to instruct ant to copy these classes into WEB-

INF/classes . If you want to hot deploy the Wicket components, you can copy the instrumented

classes to WEB-INF/dev ; if you use hot deploy, make sure that your WicketApplication class is

also hot-deployed. Upon a reload of hot-deployed classes, the entire WicketApplication instance

has to be re-initialized, in order to pick up new references to the classes of mounted pages.

The useAnnotations attribute is used to make the ant task only include classes that

have been marked with the @SeamWicketComponent annotation, see Section 13.2.3, “ The

@SeamWicketComponent annotation ” .

13.2.2.2. Instrumenting with maven

The jboss maven repository repository.jboss.org provides a plugin named seam-

instrument-wicket with a process-classes mojo. An example configuration in your pom.xml

might look like:

<build>

 <plugins>

 <plugin>

 <groupId>org.jboss.seam</groupId>

 <artifactId>seam-instrument-wicket</artifactId>

 <version>2.2.0</version>

 <configuration>

 <scanAnnotations>true</scanAnnotations>

 <includes>

 <include>your.package.name</include>

 </includes>

 </configuration>

 <executions>

 <execution>

 <id>instrument</id>

Chapter 13. Writing your pres...

212

 <phase>process-classes</phase>

 <goals>

 <goal>instrument</goal>

 </goals>

 </execution>

 </executions>

 </plugin>

 </plugins>

</build>

The above example illustrates that the instrumentation is limited to classes specified by the

includes element. In this example, the scanAnnotations is specified, see Section 13.2.3, “ The

@SeamWicketComponent annotation ” .

13.2.3. The @SeamWicketComponent annotation

Classes placed in WEB-INF/wicket will unconditionally be instrumented. The other instrumentation

mechanisms all allow you to specify that instrumentation should only be applied to classes

annotated with the @SeamWicketComponent annotation. This annotation is inherited, which means

all subclasses of an annotated class will also be instrumented. An example usage is:

import org.jboss.seam.wicket.ioc.SeamWicketComponent;

@SeamWicketComponent

public class MyPage extends WebPage

{

 ...

}

13.2.4. Defining the Application

A Wicket web application which uses Seam should use SeamWebApplication as the base

class; this creates hooks into the Wicket lifecycle allowing Seam to automagically propagate the

conversation as needed. It also adds status messages to the page.

For example:

The SeamAuthorizationStrategy delegates authorization to Seam Security, allowing the use of

@Restrict on Wicket components. SeamWebApplication installs the authorization strategy for

you. You can specify the login page by implementing the getLoginPage() method.

You'll also need to set the home page of the application by implementing the getHomePage()

method.

Defining the Application

213

public class WicketBookingApplication extends SeamWebApplication

{

 @Override

 public Class getHomePage()

 {

 return Home.class;

 }

 @Override

 protected Class getLoginPage()

 {

 return Home.class;

 }

}

Seam automatically installs the Wicket filter for you (ensuring that it is inserted in the correct place

for you). But you still need to tell Wicket which WebApplication class to use.

<components xmlns="http://jboss.org/schema/seam/components"

 xmlns:wicket="http://jboss.org/schema/seam/wicket"

 xsi:schemaLocation=

 "http://jboss.org/schema/seam/wicket

 http://jboss.org/schema/seam/wicket-2.3.xsd">

 <wicket:web-application

 application-class="org.jboss.seam.example.wicket.WicketBookingApplication" />

</components

In addition, if you plan to use JSF-based pages in the same application as wicket pages, you'll

need to ensure that the jsf exception filter is only enabled for jsf urls:

<components xmlns="http://jboss.org/schema/seam/components"

 xmlns:web="http://jboss.org/schema/seam/web"

 xmlns:wicket="http://jboss.org/schema/seam/wicket"

 xsi:schemaLocation=

 "http://jboss.org/schema/seam/web

 http://jboss.org/schema/seam/web-2.3.xsd">

 <!-- Only map the seam jsf exception filter to jsf paths, which we identify with the *.seam path -->

 <web:exception-filter url-pattern="*.seam"/>

Chapter 13. Writing your pres...

214

</components

Tip

Take a look at the Wicket documentation for more on authorization strategies and

other methods you can override on the Application class.

Chapter 14.

215

The Seam Application Framework
Seam makes it really easy to create applications by writing plain Java classes with annotations,

which don't need to extend any special interfaces or superclasses. But we can simplify some

common programming tasks even further, by providing a set of pre-built components which can

be re-used either by configuration in components.xml (for very simple cases) or extension.

The Seam Application Framework can reduce the amount of code you need to write when doing

basic database access in a web application, using either Hibernate or JPA.

We should emphasize that the framework is extremely simple, just a handful of simple classes

that are easy to understand and extend. The "magic" is in Seam itself — the same magic you use

when creating any Seam application even without using this framework.

14.1. Introduction

The components provided by the Seam application framework may be used in one of two

different approaches. The first way is to install and configure an instance of the component

in components.xml, just like we have done with other kinds of built-in Seam components. For

example, the following fragment from components.xml installs a component which can perform

basic CRUD operations for a Person entity:

<framework:entity-home name="personHome"

 entity-class="eg.Person"

 entity-manager="#{personDatabase}">

 <framework:id>#{param.personId}</framework:id>

</framework:entity-home>

If that looks a bit too much like "programming in XML" for your taste, you can use extension instead:

@Name("personHome")

public class PersonHome extends EntityHome<Person> {

 @In EntityManager personDatabase;

 public EntityManager getEntityManager() {

 return personDatabase;

 }

}

Chapter 14. The Seam Applicat...

216

The second approach has one huge advantage: you can easily add extra functionality, and

override the built-in functionality (the framework classes were carefully designed for extension

and customization).

A second advantage is that your classes may be EJB stateful session beans, if you like. (They

do not have to be, they can be plain JavaBean components if you prefer.) If you are using JBoss

AS, you'll need 4.2.2.GA or later:

@Stateful

@Name("personHome")

public class PersonHome extends EntityHome<Person> implements LocalPersonHome {

}

You can also make your classes stateless session beans. In this case you must use injection to

provide the persistence context, even if it is called entityManager:

@Stateless

@Name("personHome")

public class PersonHome extends EntityHome<Person> implements LocalPersonHome {

 @In EntityManager entityManager;

 public EntityManager getPersistenceContext() {

 entityManager;

 }

}

At this time, the Seam Application Framework provides four main built-in components:

EntityHome and HibernateEntityHome for CRUD, along with EntityQuery and

HibernateEntityQuery for queries.

The Home and Query components are written so that they can function with a scope of session,

event or conversation. Which scope you use depends upon the state model you wish to use in

your application.

The Seam Application Framework only works with Seam-managed persistence contexts. By

default, the components will look for a persistence context named entityManager.

Home objects

217

14.2. Home objects

A Home object provides persistence operations for a particular entity class. Suppose we have our

trusty Person class:

@Entity

public class Person {

 @Id private Long id;

 private String firstName;

 private String lastName;

 private Country nationality;

 //getters and setters...

}

We can define a personHome component either via configuration:

<framework:entity-home name="personHome" entity-class="eg.Person" />

Or via extension:

@Name("personHome")

public class PersonHome extends EntityHome<Person> {}

A Home object provides the following operations: persist(), remove(), update() and

getInstance(). Before you can call the remove(), or update() operations, you must first set the

identifier of the object you are interested in, using the setId() method.

We can use a Home directly from a JSF page, for example:

<h1>Create Person</h1>

<h:form>

 <div>First name: <h:inputText value="#{personHome.instance.firstName}"/></div>

 <div>Last name: <h:inputText value="#{personHome.instance.lastName}"/></div>

 <div>

 <h:commandButton value="Create Person" action="#{personHome.persist}"/>

 </div>

</h:form>

Chapter 14. The Seam Applicat...

218

Usually, it is much nicer to be able to refer to the Person merely as person, so let's make that

possible by adding a line to components.xml:

<factory name="person"

 value="#{personHome.instance}"/>

<framework:entity-home name="personHome"

 entity-class="eg.Person" />

(If we are using configuration.) Or by adding a @Factory method to PersonHome:

@Name("personHome")

public class PersonHome extends EntityHome<Person> {

 @Factory("person")

 public Person initPerson() { return getInstance(); }

}

(If we are using extension.) This change simplifies our JSF page to the following:

<h1>Create Person</h1>

<h:form>

 <div>First name: <h:inputText value="#{person.firstName}"/></div>

 <div>Last name: <h:inputText value="#{person.lastName}"/></div>

 <div>

 <h:commandButton value="Create Person" action="#{personHome.persist}"/>

 </div>

</h:form>

Well, that lets us create new Person entries. Yes, that is all the code that is required! Now, if we

want to be able to display, update and delete pre-existing Person entries in the database, we

need to be able to pass the entry identifier to the PersonHome. Page parameters are a great way

to do that:

<pages>

 <page view-id="/editPerson.xhtml">

 <param name="personId" value="#{personHome.id}"/>

 </page>

Home objects

219

</pages>

Now we can add the extra operations to our JSF page:

<h1>

 <h:outputText rendered="#{!personHome.managed}" value="Create Person"/>

 <h:outputText rendered="#{personHome.managed}" value="Edit Person"/>

</h1>

<h:form>

 <div>First name: <h:inputText value="#{person.firstName}"/></div>

 <div>Last name: <h:inputText value="#{person.lastName}"/></div>

 <div>

 <h:commandButton value="Create Person" action="#{personHome.persist}" rendered="#{!

personHome.managed}"/>

 <h:commandButton value="Update Person" action="#{personHome.update}"

 rendered="#{personHome.managed}"/>

 <h:commandButton value="Delete Person" action="#{personHome.remove}"

 rendered="#{personHome.managed}"/>

 </div>

</h:form>

When we link to the page with no request parameters, the page will be displayed as a "Create

Person" page. When we provide a value for the personId request parameter, it will be an "Edit

Person" page.

Suppose we need to create Person entries with their nationality initialized. We can do that easily,

via configuration:

<factory name="person"

 value="#{personHome.instance}"/>

<framework:entity-home name="personHome"

 entity-class="eg.Person"

 new-instance="#{newPerson}"/>

<component name="newPerson"

 class="eg.Person">

 <property name="nationality">#{country}</property>

</component>

Or by extension:

Chapter 14. The Seam Applicat...

220

@Name("personHome")

public class PersonHome extends EntityHome<Person> {

 @In Country country;

 @Factory("person")

 public Person initPerson() { return getInstance(); }

 protected Person createInstance() {

 return new Person(country);

 }

}

Of course, the Country could be an object managed by another Home object, for example,

CountryHome.

To add more sophisticated operations (association management, etc), we can just add methods

to PersonHome.

@Name("personHome")

public class PersonHome extends EntityHome<Person> {

 @In Country country;

 @Factory("person")

 public Person initPerson() { return getInstance(); }

 protected Person createInstance() {

 return new Person(country);

 }

 public void migrate()

 {

 getInstance().setCountry(country);

 update();

 }

}

The Home object raises an org.jboss.seam.afterTransactionSuccess event when a

transaction succeeds (a call to persist(), update() or remove() succeeds). By observing this

Home objects

221

event we can refresh our queries when the underlying entities are changed. If we only want to

refresh certain queries when a particular entity is persisted, updated or removed we can observe

the org.jboss.seam.afterTransactionSuccess.<name> event (where <name> is the simple

name of the entity, e.g. an entity called "org.foo.myEntity" has "myEntity" as simple name).

The Home object automatically displays faces messages when an operation is successful. To

customize these messages we can, again, use configuration:

<factory name="person"

 value="#{personHome.instance}"/>

<framework:entity-home name="personHome"

 entity-class="eg.Person"

 new-instance="#{newPerson}">

 <framework:created-message>New person #{person.firstName} #{person.lastName} created</

framework:created-message>

 <framework:deleted-message>Person #{person.firstName} #{person.lastName} deleted</

framework:deleted-message>

 <framework:updated-message>Person #{person.firstName} #{person.lastName} updated</

framework:updated-message>

</framework:entity-home>

<component name="newPerson"

 class="eg.Person">

 <property name="nationality">#{country}</property>

</component>

Or extension:

@Name("personHome")

public class PersonHome extends EntityHome<Person> {

 @In Country country;

 @Factory("person")

 public Person initPerson() { return getInstance(); }

 protected Person createInstance() {

 return new Person(country);

 }

 protected String getCreatedMessage() { return createValueExpression("New person

 #{person.firstName} #{person.lastName} created"); }

Chapter 14. The Seam Applicat...

222

 protected String getUpdatedMessage() { return createValueExpression("Person

 #{person.firstName} #{person.lastName} updated"); }

 protected String getDeletedMessage() { return createValueExpression("Person

 #{person.firstName} #{person.lastName} deleted"); }

}

But the best way to specify the messages is to put them in a resource bundle known to Seam (the

bundle named messages, by default).

Person_created=New person #{person.firstName} #{person.lastName} created

Person_deleted=Person #{person.firstName} #{person.lastName} deleted

Person_updated=Person #{person.firstName} #{person.lastName} updated

This enables internationalization, and keeps your code and configuration clean of presentation

concerns.

The final step is to add validation functionality to the page, using <s:validateAll> and

<s:decorate>, but I'll leave that for you to figure out.

14.3. Query objects

If we need a list of all Person instance in the database, we can use a Query object. For example:

<framework:entity-query name="people"

 ejbql="select p from Person p"/>

We can use it from a JSF page:

<h1>List of people</h1>

<h:dataTable value="#{people.resultList}" var="person">

 <h:column>

 <s:link view="/editPerson.xhtml" value="#{person.firstName} #{person.lastName}">

 <f:param name="personId" value="#{person.id}"/>

 </s:link>

 </h:column>

</h:dataTable>

We probably need to support pagination:

Query objects

223

<framework:entity-query name="people"

 ejbql="select p from Person p"

 order="lastName"

 max-results="20"/>

We'll use a page parameter to determine the page to display:

<pages>

 <page view-id="/searchPerson.xhtml">

 <param name="firstResult" value="#{people.firstResult}"/>

 </page>

</pages>

The JSF code for a pagination control is a bit verbose, but manageable:

<h1>Search for people</h1>

<h:dataTable value="#{people.resultList}" var="person">

 <h:column>

 <s:link view="/editPerson.xhtml" value="#{person.firstName} #{person.lastName}">

 <f:param name="personId" value="#{person.id}"/>

 </s:link>

 </h:column>

</h:dataTable>

<s:link view="/search.xhtml" rendered="#{people.previousExists}" value="First Page">

 <f:param name="firstResult" value="0"/>

</s:link>

<s:link view="/search.xhtml" rendered="#{people.previousExists}" value="Previous Page">

 <f:param name="firstResult" value="#{people.previousFirstResult}"/>

</s:link>

<s:link view="/search.xhtml" rendered="#{people.nextExists}" value="Next Page">

 <f:param name="firstResult" value="#{people.nextFirstResult}"/>

</s:link>

<s:link view="/search.xhtml" rendered="#{people.nextExists}" value="Last Page">

 <f:param name="firstResult" value="#{people.lastFirstResult}"/>

</s:link>

Chapter 14. The Seam Applicat...

224

Real search screens let the user enter a bunch of optional search criteria to narrow the list of

results returned. The Query object lets you specify optional "restrictions" to support this important

usecase:

<component name="examplePerson" class="Person"/>

<framework:entity-query name="people"

 ejbql="select p from Person p"

 order="lastName"

 max-results="20">

 <framework:restrictions>

 <value>lower(firstName) like lower(concat(#{examplePerson.firstName},'%'))</value>

 <value>lower(lastName) like lower(concat(#{examplePerson.lastName},'%'))</value>

 </framework:restrictions>

</framework:entity-query>

Notice the use of an "example" object.

<h1>Search for people</h1>

<h:form>

 <div>First name: <h:inputText value="#{examplePerson.firstName}"/></div>

 <div>Last name: <h:inputText value="#{examplePerson.lastName}"/></div>

 <div><h:commandButton value="Search" action="/search.xhtml"/></div>

</h:form>

<h:dataTable value="#{people.resultList}" var="person">

 <h:column>

 <s:link view="/editPerson.xhtml" value="#{person.firstName} #{person.lastName}">

 <f:param name="personId" value="#{person.id}"/>

 </s:link>

 </h:column>

</h:dataTable>

To refresh the query when the underlying entities change we observe the

org.jboss.seam.afterTransactionSuccess event:

<event type="org.jboss.seam.afterTransactionSuccess">

 <action execute="#{people.refresh}" />

</event>

Controller objects

225

Or, to just refresh the query when the person entity is persisted, updated or removed through

PersonHome:

<event type="org.jboss.seam.afterTransactionSuccess.Person">

 <action execute="#{people.refresh}" />

 </event>

Unfortunately Query objects don't work well with join fetch queries - the use of pagination with

these queries is not recommended, and you'll have to implement your own method of calculating

the total number of results (by overriding getCountEjbql().

The examples in this section have all shown reuse by configuration. However, reuse by extension

is equally possible for Query objects.

14.4. Controller objects

A totally optional part of the Seam Application Framework is the class

Controller and its subclasses EntityController HibernateEntityController and

BusinessProcessController. These classes provide nothing more than some convenience

methods for access to commonly used built-in components and methods of built-in components.

They help save a few keystrokes (characters can add up!) and provide a great launchpad for new

users to explore the rich functionality built in to Seam.

For example, here is what RegisterAction from the Seam registration example would look like:

@Stateless

@Name("register")

public class RegisterAction extends EntityController implements Register

{

 @In private User user;

 public String register()

 {

 List existing = createQuery("select u.username from User u where u.username=:username")

 .setParameter("username", user.getUsername())

 .getResultList();

 if (existing.size()==0)

 {

 persist(user);

 info("Registered new user #{user.username}");

 return "/registered.xhtmlx";

 }

Chapter 14. The Seam Applicat...

226

 else

 {

 addFacesMessage("User #{user.username} already exists");

 return null;

 }

 }

}

As you can see, its not an earthshattering improvement...

Chapter 15.

227

Seam and JBoss Rules
Seam makes it easy to call JBoss Rules (Drools) rulebases from Seam components or jBPM

process definitions.

15.1. Installing rules

The first step is to make an instance of org.drools.RuleBase available in a Seam context

variable. For testing purposes, Seam provides a built-in component that compiles a static set of

rules from the classpath. You can install this component via components.xml:

<drools:rule-base name="policyPricingRules">

 <drools:rule-files>

 <value>policyPricingRules.drl</value>

 </drools:rule-files>

</drools:rule-base>

This component compiles rules from a set of DRL (.drl) or decision table (.xls) files and caches

an instance of org.drools.RuleBase in the Seam APPLICATION context. Note that it is quite likely

that you will need to install multiple rule bases in a rule-driven application.

If you want to use a Drools DSL, you also need to specify the DSL definition:

<drools:rule-base name="policyPricingRules" dsl-file="policyPricing.dsl">

 <drools:rule-files>

 <value>policyPricingRules.drl</value>

 </drools:rule-files>

</drools:rule-base>

Support for Drools RuleFlow is also available and you can simply add a .rf or a .rfm as part

of your rule files as:

 <drools:rule-base name="policyPricingRules" rule-files="policyPricingRules.drl,

 policyPricingRulesFlow.rf"/>

Note that when using the Drools 4.x RuleFlow (.rfm) format, you need to specify the -

Ddrools.ruleflow.port=true system property on server startup. This is however still an experimental

feature and we advise to use the Drools5 (.rf) format if possible.

Chapter 15. Seam and JBoss Rules

228

If you want to register a custom consequence exception handler through the

RuleBaseConfiguration, you need to write the handler, for example:

@Scope(ScopeType.APPLICATION)

@Startup

@Name("myConsequenceExceptionHandler")

public class MyConsequenceExceptionHandler implements ConsequenceExceptionHandler, Externalizable {

 public void readExternal(ObjectInput in) throws IOException, ClassNotFoundException {

 }

 public void writeExternal(ObjectOutput out) throws IOException {

 }

 public void handleException(Activation activation,

 WorkingMemory workingMemory,

 Exception exception) {

 throw new ConsequenceException(exception,

 activation.getRule());

 }

}

and register it:

<drools:rule-base name="policyPricingRules" dsl-file="policyPricing.dsl" consequence-

exception-handler="#{myConsequenceExceptionHandler}">

 <drools:rule-files>

 <value>policyPricingRules.drl</value>

 </drools:rule-files>

</drools:rule-base>

In most rules-driven applications, rules need to be dynamically deployable, so a production

application will want to use a Drools RuleAgent to manage the RuleBase. The RuleAgent can

connect to a Drools rule server (BRMS) or hot deploy rules packages from a local file repository.

The RulesAgent-managed RuleBase is also configurable in components.xml:

<drools:rule-agent name="insuranceRules"

 configurationFile="/WEB-INF/deployedrules.properties" />

Installing rules

229

The properties file contains properties specific to the RulesAgent. Here is an example

configuration file from the Drools example distribution.

newInstance=true

url=http://localhost:8080/drools-jbrms/org.drools.brms.JBRMS/package/org.acme.insurance/

fmeyer

localCacheDir=/Users/fernandomeyer/projects/jbossrules/drools-examples/drools-examples-

brms/cache

poll=30

name=insuranceconfig

It is also possible to configure the options on the component directly, bypassing the configuration

file.

<drools:rule-agent name="insuranceRules"

 url="http://localhost:8080/drools-jbrms/org.drools.brms.JBRMS/package/org.acme.insurance/

fmeyer"

 local-cache-dir="/Users/fernandomeyer/projects/jbossrules/drools-examples/drools-

examples-brms/cache"

 poll="30"

 configuration-name="insuranceconfig" />

Next, we need to make an instance of org.drools.WorkingMemory available to each

conversation. (Each WorkingMemory accumulates facts relating to the current conversation.)

<drools:managed-working-memory name="policyPricingWorkingMemory" auto-

create="true" rule-base="#{policyPricingRules}"/>

Notice that we gave the policyPricingWorkingMemory a reference back to our rule base via the

ruleBase configuration property.

We can also add means to be notified of rule engine events, including rules firing, objects being

asserted, etc. by adding event listeners to WorkingMemory.

<drools:managed-working-memory name="policyPricingWorkingMemory" auto-

create="true" rule-base="#{policyPricingRules}">

 <drools:event-listeners>

 <value>org.drools.event.DebugWorkingMemoryEventListener</value>

 <value>org.drools.event.DebugAgendaEventListener</value>

 </drools:event-listeners>

Chapter 15. Seam and JBoss Rules

230

</drools:managed-working-memory>

15.2. Using rules from a Seam component

We can now inject our WorkingMemory into any Seam component, assert facts, and fire rules:

@In WorkingMemory policyPricingWorkingMemory;

@In Policy policy;

@In Customer customer;

public void pricePolicy() throws FactException

{

 policyPricingWorkingMemory.insert(policy);

 policyPricingWorkingMemory.insert(customer);

 // if we have a ruleflow, start the process

 policyPricingWorkingMemory.startProcess(startProcessId)

 policyPricingWorkingMemory.fireAllRules();

}

15.3. Using rules from a jBPM process definition

You can even allow a rule base to act as a jBPM action handler, decision handler, or assignment

handler — in either a pageflow or business process definition.

<decision name="approval">

 <handler class="org.jboss.seam.drools.DroolsDecisionHandler">

 <workingMemoryName>orderApprovalRulesWorkingMemory</workingMemoryName>

 <!-- if a ruleflow was added -->

 <startProcessId>approvalruleflowid</startProcessId>

 <assertObjects>

 <element>#{customer}</element>

 <element>#{order}</element>

 <element>#{order.lineItems}</element>

 </assertObjects>

 </handler>

 <transition name="approved" to="ship">

 <action class="org.jboss.seam.drools.DroolsActionHandler">

 <workingMemoryName>shippingRulesWorkingMemory</workingMemoryName>

Using rules from a jBPM process definition

231

 <assertObjects>

 <element>#{customer}</element>

 <element>#{order}</element>

 <element>#{order.lineItems}</element>

 </assertObjects>

 </action>

 </transition>

 <transition name="rejected" to="cancelled"/>

</decision>

The <assertObjects> element specifies EL expressions that return an object or collection of

objects to be asserted as facts into the WorkingMemory.

The <retractObjects> element on the other hand specifies EL expressions that return an object

or collection of objects to be retracted from the WorkingMemory.

There is also support for using Drools for jBPM task assignments:

<task-node name="review">

 <task name="review" description="Review Order">

 <assignment handler="org.jboss.seam.drools.DroolsAssignmentHandler">

 <workingMemoryName>orderApprovalRulesWorkingMemory</workingMemoryName>

 <assertObjects>

 <element>#{actor}</element>

 <element>#{customer}</element>

 <element>#{order}</element>

 <element>#{order.lineItems}</element>

 </assertObjects>

 </assignment>

 </task>

 <transition name="rejected" to="cancelled"/>

 <transition name="approved" to="approved"/>

</task-node>

Certain objects are available to the rules as Drools globals, namely the jBPM Assignable, as

assignable and a Seam Decision object, as decision. Rules which handle decisions should call

decision.setOutcome("result") to determine the result of the decision. Rules which perform

assignments should set the actor id using the Assignable.

package org.jboss.seam.examples.shop

Chapter 15. Seam and JBoss Rules

232

import org.jboss.seam.drools.Decision

global Decision decision

rule "Approve Order For Loyal Customer"

 when

 Customer(loyaltyStatus == "GOLD")

 Order(totalAmount <= 10000)

 then

 decision.setOutcome("approved");

end

package org.jboss.seam.examples.shop

import org.jbpm.taskmgmt.exe.Assignable

global Assignable assignable

rule "Assign Review For Small Order"

 when

 Order(totalAmount <= 100)

 then

 assignable.setPooledActors(new String[] {"reviewers"});

end

Note

You can find out more about Drools at http://www.drools.org

Caution

Seam comes with enough of Drools' dependencies to implement some simple

rules. If you want to add extra capabilities to Drools you should download the full

distribution and add in extra dependencies as needed.

http://www.drools.org

Chapter 16.

233

Security

16.1. Overview

The Seam Security API provides a multitude of security-related features for your Seam-based

application, covering such areas as:

• Authentication - an extensible, JAAS-based authentication layer that allows users to

authenticate against any security provider.

• Identity Management - an API for managing a Seam application's users and roles at runtime.

• Authorization - an extremely comprehensive authorization framework, supporting user roles,

persistent and rule-based permissions, and a pluggable permission resolver for easily

implementing customised security logic.

• Permission Management - a set of built-in Seam components to allow easy management of an

application's security policy.

• CAPTCHA support - to assist in the prevention of automated software/scripts abusing your

Seam-based site.

• And much more

This chapter will cover each of these features in detail.

16.2. Disabling Security

In some situations it may be necessary to disable Seam Security, for instances during unit tests

or because you are using a different approach to security, such as native JAAS. Simply call the

static method Identity.setSecurityEnabled(false) to disable the security infrastructure. Of

course, it's not very convenient to have to call a static method when you want to configure the

application, so as an alternative you can control this setting in components.xml:

• Entity Security

• Hibernate Security Interceptor

• Seam Security Interceptor

• Page restrictions

• Servlet API security integration

Assuming you are planning to take advantage of what Seam Security has to offer, the rest of this

chapter documents the plethora of options you have for giving your user an identity in the eyes of

the security model (authentication) and locking down the application by establishing constraints

(authorization). Let's begin with the task of authentication since that's the foundation of any security

model.

Chapter 16. Security

234

16.3. Authentication

The authentication features provided by Seam Security are built upon JAAS (Java Authentication

and Authorization Service), and as such provide a robust and highly configurable API for handling

user authentication. However, for less complex authentication requirements Seam offers a much

more simplified method of authentication that hides the complexity of JAAS.

16.3.1. Configuring an Authenticator component

Note

If you use Seam's Identity Management features (discussed later in this chapter)

then it is not necessary to create an authenticator component (and you can skip

this section).

The simplified authentication method provided by Seam uses a built-in JAAS login module,

SeamLoginModule, which delegates authentication to one of your own Seam components. This

login module is already configured inside Seam as part of a default application policy and as such

does not require any additional configuration files. It allows you to write an authentication method

using the entity classes that are provided by your own application, or alternatively to authenticate

with some other third party provider. Configuring this simplified form of authentication requires the

identity component to be configured in components.xml:

<components xmlns="http://jboss.org/schema/seam/components"

 xmlns:core="http://jboss.org/schema/seam/core"

 xmlns:security="http://jboss.org/schema/seam/security"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation=

 "http://jboss.org/schema/seam/components http://jboss.org/schema/seam/

components-2.3.xsd

 http://jboss.org/schema/seam/security http://jboss.org/schema/seam/security-2.3.xsd">

 <security:identity authenticate-method="#{authenticator.authenticate}"/>

</components>

The EL expression #{authenticator.authenticate} is a method binding that indicates the

authenticate method of the authenticator component will be used to authenticate the user.

16.3.2. Writing an authentication method

The authenticate-method property specified for identity in components.xml specifies

which method will be used by SeamLoginModule to authenticate users. This method

Writing an authentication method

235

takes no parameters, and is expected to return a boolean, which indicates whether

authentication is successful or not. The user's username and password can be obtained from

Credentials.getUsername() and Credentials.getPassword(), respectively (you can get a

reference to the credentials component via Identity.instance().getCredentials()). Any

roles that the user is a member of should be assigned using Identity.addRole(). Here's a

complete example of an authentication method inside a POJO component:

@Name("authenticator")

public class Authenticator {

 @In EntityManager entityManager;

 @In Credentials credentials;

 @In Identity identity;

 public boolean authenticate() {

 try {

 User user = (User) entityManager.createQuery(

 "from User where username = :username and password = :password")

 .setParameter("username", credentials.getUsername())

 .setParameter("password", credentials.getPassword())

 .getSingleResult();

 if (user.getRoles() != null) {

 for (UserRole mr : user.getRoles())

 identity.addRole(mr.getName());

 }

 return true;

 }

 catch (NoResultException ex) {

 return false;

 }

 }

}

In the above example, both User and UserRole are application-specific entity beans. The roles

parameter is populated with the roles that the user is a member of, which should be added

to the Set as literal string values, e.g. "admin", "user". In this case, if the user record is not

found and a NoResultException thrown, the authentication method returns false to indicate the

authentication failed.

Chapter 16. Security

236

Tip

When writing an authenticator method, it is important that it is kept minimal and free

from any side-effects. This is because there is no guarantee as to how many times

the authenticator method will be called by the security API, and as such it may be

invoked multiple times during a single request. Because of this, any special code

that should execute upon a successful or failed authentication should be written

by implementing an event observer. See the section on Security Events further

down in this chapter for more information about which events are raised by Seam

Security.

16.3.2.1. Identity.addRole()

The Identity.addRole() method behaves differently depending on whether the current session

is authenticated or not. If the session is not authenticated, then addRole() should only be called

during the authentication process. When called here, the role name is placed into a temporary

list of pre-authenticated roles. Once authentication is successful, the pre-authenticated roles then

become "real" roles, and calling Identity.hasRole() for those roles will then return true. The

following sequence diagram represents the list of pre-authenticated roles as a first class object to

show more clearly how it fits in to the authentication process.

Writing a login form

237

If the current session is already authenticated, then calling Identity.addRole() will have the

expected effect of immediately granting the specified role to the current user.

16.3.2.2. Writing an event observer for security-related events

Say for example, that upon a successful login that some user statistics must

be updated. This would be done by writing an event observer for the

org.jboss.seam.security.loginSuccessful event, like this:

 @In UserStats userStats;

 @Observer("org.jboss.seam.security.loginSuccessful")

 public void updateUserStats()

 {

 userStats.setLastLoginDate(new Date());

 userStats.incrementLoginCount();

 }

This observer method can be placed anywhere, even in the Authenticator component itself. You

can find more information about security-related events later in this chapter.

16.3.3. Writing a login form

The credentials component provides both username and password properties, catering for the

most common authentication scenario. These properties can be bound directly to the username

and password fields on a login form. Once these properties are set, calling identity.login()

will authenticate the user using the provided credentials. Here's an example of a simple login form:

<div>

 <h:outputLabel for="name" value="Username"/>

 <h:inputText id="name" value="#{credentials.username}"/>

</div>

<div>

 <h:outputLabel for="password" value="Password"/>

 <h:inputSecret id="password" value="#{credentials.password}"/>

</div>

<div>

 <h:commandButton value="Login" action="#{identity.login}"/>

</div>

Chapter 16. Security

238

Similarly, logging out the user is done by calling #{identity.logout}. Calling this action will

clear the security state of the currently authenticated user, and invalidate the user's session.

16.3.4. Configuration Summary

So to sum up, there are the three easy steps to configure authentication:

• Configure an authentication method in components.xml.

• Write an authentication method.

• Write a login form so that the user can authenticate.

16.3.5. Remember Me

Seam Security supports the same kind of "Remember Me" functionality that is commonly

encountered in many online web-based applications. It is actually supported in two different

"flavours", or modes - the first mode allows the username to be stored in the user's browser as a

cookie, and leaves the entering of the password up to the browser (many modern browsers are

capable of remembering passwords).

The second mode supports the storing of a unique token in a cookie, and allows a user to

authenticate automatically upon returning to the site, without having to provide a password.

Warning

Automatic client authentication with a persistent cookie stored on the client

machine is dangerous. While convenient for users, any cross-site scripting security

hole in your website would have dramatically more serious effects than usual.

Without the authentication cookie, the only cookie to steal for an attacker with XSS

is the cookie of the current session of a user. This means the attack only works

when the user has an open session - which should be a short timespan. However,

it is much more attractive and dangerous if an attacker has the possibility to steal a

persistent Remember Me cookie that allows him to login without authentication, at

any time. Note that this all depends on how well you protect your website against

XSS attacks - it's up to you to make sure that your website is 100% XSS safe - a

non-trivial achievement for any website that allows user input to be rendered on

a page.

Browser vendors recognized this issue and introduced a "Remember Passwords"

feature - today almost all browsers support this. Here, the browser remembers the

login username and password for a particular website and domain, and fills out the

login form automatically when you don't have an active session with the website.

If you as a website designer then offer a convenient login keyboard shortcut,

this approach is almost as convenient as a "Remember Me" cookie and much

Remember Me

239

safer. Some browsers (e.g. Safari on OS X) even store the login form data in

the encrypted global operation system keychain. Or, in a networked environment,

the keychain can be transported with the user (between laptop and desktop for

example), while browser cookies are usually not synchronized.

To summarize: While everyone is doing it, persistent "Remember Me" cookies with

automatic authentication are a bad practice and should not be used. Cookies that

"remember" only the users login name, and fill out the login form with that username

as a convenience, are not an issue.

To enable the remember me feature for the default (safe, username only) mode, no special

configuration is required. In your login form, simply bind the remember me checkbox to

rememberMe.enabled, like in the following example:

 <div>

 <h:outputLabel for="name" value="User name"/>

 <h:inputText id="name" value="#{credentials.username}"/>

 </div>

 <div>

 <h:outputLabel for="password" value="Password"/>

 <h:inputSecret id="password" value="#{credentials.password}" redisplay="true"/>

 </div>

 <div class="loginRow">

 <h:outputLabel for="rememberMe" value="Remember me"/>

 <h:selectBooleanCheckbox id="rememberMe" value="#{rememberMe.enabled}"/>

 </div>

16.3.5.1. Token-based Remember-me Authentication

To use the automatic, token-based mode of the remember me feature, you must first configure a

token store. The most common scenario is to store these authentication tokens within a database

(which Seam supports), however it is possible to implement your own token store by implementing

the org.jboss.seam.security.TokenStore interface. This section will assume you will be using

the provided JpaTokenStore implementation to store authentication tokens inside a database

table.

The first step is to create a new Entity which will contain the tokens. The following example shows

a possible structure that you may use:

@Entity

public class AuthenticationToken implements Serializable {

Chapter 16. Security

240

 private Integer tokenId;

 private String username;

 private String value;

 @Id @GeneratedValue

 public Integer getTokenId() {

 return tokenId;

 }

 public void setTokenId(Integer tokenId) {

 this.tokenId = tokenId;

 }

 @TokenUsername

 public String getUsername() {

 return username;

 }

 public void setUsername(String username) {

 this.username = username;

 }

 @TokenValue

 public String getValue() {

 return value;

 }

 public void setValue(String value) {

 this.value = value;

 }

}

As you can see from this listing, a couple of special annotations, @TokenUsername and

@TokenValue are used to configure the username and token properties of the entity. These

annotations are required for the entity that will contain the authentication tokens.

The next step is to configure JpaTokenStore to use this entity bean to store and retrieve

authentication tokens. This is done in components.xml by specifying the token-class attribute:

<security:jpa-token-store token-

class="org.jboss.seam.example.seamspace.AuthenticationToken" />

Handling Security Exceptions

241

Once this is done, the last thing to do is to configure the RememberMe component in

components.xml also. Its mode should be set to autoLogin:

<security:remember-me mode="autoLogin"/>

That is all that is required - automatic authentication will now occur for users revisiting your site

(as long as they check the "remember me" checkbox).

To ensure that users are automatically authenticated when returning to the site, the following

section should be placed in components.xml:

 <event type="org.jboss.seam.security.notLoggedIn">

 <action execute="#{redirect.captureCurrentView}"/>

 <action execute="#{identity.tryLogin()}"/>

 </event>

 <event type="org.jboss.seam.security.loginSuccessful">

 <action execute="#{redirect.returnToCapturedView}"/>

 </event>

16.3.6. Handling Security Exceptions

To prevent users from receiving the default error page in response to a security error, it's

recommended that pages.xml is configured to redirect security errors to a more "pretty" page.

The two main types of exceptions thrown by the security API are:

• NotLoggedInException - This exception is thrown if the user attempts to access a restricted

action or page when they are not logged in.

• AuthorizationException - This exception is only thrown if the user is already logged in, and

they have attempted to access a restricted action or page for which they do not have the

necessary privileges.

In the case of a NotLoggedInException, it is recommended that the user is redirected to either

a login or registration page so that they can log in. For an AuthorizationException, it may be

useful to redirect the user to an error page. Here's an example of a pages.xml file that redirects

both of these security exceptions:

<pages>

Chapter 16. Security

242

 ...

 <exception class="org.jboss.seam.security.NotLoggedInException">

 <redirect view-id="/login.xhtml">

 <message>You must be logged in to perform this action</message>

 </redirect>

 </exception>

 <exception class="org.jboss.seam.security.AuthorizationException">

 <end-conversation/>

 <redirect view-id="/security_error.xhtml">

 <message>You do not have the necessary security privileges to perform this action.</

message>

 </redirect>

 </exception>

</pages>

Most web applications require even more sophisticated handling of login redirection, so Seam

includes some special functionality for handling this problem.

16.3.7. Login Redirection

You can ask Seam to redirect the user to a login screen when an unauthenticated user tries to

access a particular view (or wildcarded view id) as follows:

<pages login-view-id="/login.xhtml">

 <page view-id="/members/*" login-required="true"/>

 ...

</pages>

Tip

This is less of a blunt instrument than the exception handler shown above, but

should probably be used in conjunction with it.

After the user logs in, we want to automatically send them back where they came from, so they can

retry the action that required logging in. If you add the following event listeners to components.xml,

HTTP Authentication

243

attempts to access a restricted view while not logged in will be remembered, so that upon the

user successfully logging in they will be redirected to the originally requested view, with any page

parameters that existed in the original request.

<event type="org.jboss.seam.security.notLoggedIn">

 <action execute="#{redirect.captureCurrentView}"/>

</event>

<event type="org.jboss.seam.security.postAuthenticate">

 <action execute="#{redirect.returnToCapturedView}"/>

</event>

Note that login redirection is implemented as a conversation-scoped mechanism, so don't end the

conversation in your authenticate() method.

16.3.8. HTTP Authentication

Although not recommended for use unless absolutely necessary, Seam provides means for

authenticating using either HTTP Basic or HTTP Digest (RFC 2617) methods. To use either form

of authentication, the authentication-filter component must be enabled in components.xml:

 <web:authentication-filter url-pattern="*.seam" auth-type="basic"/>

To enable the filter for basic authentication, set auth-type to basic, or for digest authentication,

set it to digest. If using digest authentication, the key and realm must also be set:

 <web:authentication-filter url-pattern="*.seam" auth-

type="digest" key="AA3JK34aSDlkj" realm="My App"/>

The key can be any String value. The realm is the name of the authentication realm that is

presented to the user when they authenticate.

16.3.8.1. Writing a Digest Authenticator

If using digest authentication, your authenticator class should extend the abstract class

org.jboss.seam.security.digest.DigestAuthenticator, and use the validatePassword()

method to validate the user's plain text password against the digest request. Here is an example:

Chapter 16. Security

244

 public boolean authenticate()

 {

 try

 {

 User user = (User) entityManager.createQuery(

 "from User where username = :username")

 .setParameter("username", identity.getUsername())

 .getSingleResult();

 return validatePassword(user.getPassword());

 }

 catch (NoResultException ex)

 {

 return false;

 }

 }

16.3.9. Advanced Authentication Features

This section explores some of the advanced features provided by the security API for addressing

more complex security requirements.

16.3.9.1. Using your container's JAAS configuration

If you would rather not use the simplified JAAS configuration provided by the Seam Security API,

you may instead delegate to the default system JAAS configuration by providing a jaas-config-

name property in components.xml. For example, if you are using JBoss AS and wish to use the

other policy (which uses the UsersRolesLoginModule login module provided by JBoss AS), then

the entry in components.xml would look like this:

<security:identity jaas-config-name="other"/>

Please keep in mind that doing this does not mean that your user will be authenticated in whichever

container your Seam application is deployed in. It merely instructs Seam Security to authenticate

itself using the configured JAAS security policy.

16.4. Identity Management

Identity Management provides a standard API for the management of a Seam application's users

and roles, regardless of which identity store (database, LDAP, etc) is used on the backend. At

Configuring IdentityManager

245

the center of the Identity Management API is the identityManager component, which provides

all the methods for creating, modifying and deleting users, granting and revoking roles, changing

passwords, enabling and disabling user accounts, authenticating users and listing users and roles.

Before it may be used, the identityManager must first be configured with one or more

IdentityStores. These components do the actual work of interacting with the backend security

provider, whether it be a database, LDAP server, or something else.

16.4.1. Configuring IdentityManager

The identityManager component allows for separate identity stores to be configured for

authentication and authorization operations. This means that it is possible for users to be

authenticated against one identity store, for example an LDAP directory, yet have their roles

loaded from another identity store, such as a relational database.

Seam provides two IdentityStore implementations out of the box; JpaIdentityStore uses a

relational database to store user and role information, and is the default identity store that is used

if nothing is explicitly configured in the identityManager component. The other implementation

that is provided is LdapIdentityStore, which uses an LDAP directory to store users and roles.

There are two configurable properties for the identityManager component - identityStore

and roleIdentityStore. The value for these properties must be an EL expression referring

to a Seam component implementing the IdentityStore interface. As already mentioned, if left

unconfigured then JpaIdentityStore will be assumed by default. If only the identityStore

property is configured, then the same value will be used for roleIdentityStore also. For

example, the following entry in components.xml will configure identityManager to use an

LdapIdentityStore for both user-related and role-related operations:

 <security:identity-manager identity-store="#{ldapIdentityStore}"/>

The following example configures identityManager to use an LdapIdentityStore for user-

related operations, and JpaIdentityStore for role-related operations:

Chapter 16. Security

246

 <security:identity-manager

 identity-store="#{ldapIdentityStore}"

 role-identity-store="#{jpaIdentityStore}"/>

The following sections explain both of these identity store implementations in greater detail.

16.4.2. JpaIdentityStore

This identity store allows for users and roles to be stored inside a relational database. It is designed

to be as unrestrictive as possible in regards to database schema design, allowing a great deal

of flexibility in the underlying table structure. This is achieved through the use of a set of special

annotations, allowing entity beans to be configured to store user and role records.

16.4.2.1. Configuring JpaIdentityStore

JpaIdentityStore requires that both the user-class and role-class properties are configured.

These properties should refer to the entity classes that are to be used to store both user and role

records, respectively. The following example shows the configuration from components.xml in

the SeamSpace example:

 <security:jpa-identity-store

 user-class="org.jboss.seam.example.seamspace.MemberAccount"

 role-class="org.jboss.seam.example.seamspace.MemberRole"/>

16.4.2.2. Configuring the Entities

As already mentioned, a set of special annotations are used to configure entity beans for storing

users and roles. The following table lists each of the annotations, and their descriptions.

Table 16.1. User Entity Annotations

Annotation Status Description

@UserPrincipal Required This annotation marks the field or method containing the

user's username.

@UserPassword Required This annotation marks the field or method containing

the user's password. It allows a hash algorithm to be

specified for password hashing. Possible values for hash

are md5, sha and none. E.g:

JpaIdentityStore

247

Annotation Status Description

@UserPassword (hash="md5")

public String getPasswordHash() {

 return passwordHash;

}

If an application requires a hash algorithm that isn't

supported natively by Seam, it is possible to extend the

PasswordHash component to implement other hashing

algorithms.

@UserFirstName Optional This annotation marks the field or method containing the

user's first name.

@UserLastName Optional This annotation marks the field or method containing the

user's last name.

@UserEnabled Optional This annotation marks the field or method containing the

enabled status of the user. This should be a boolean

property, and if not present then all user accounts are

assumed to be enabled.

@UserRoles Required This annotation marks the field or method containing the

roles of the user. This property will be described in more

detail further down.

Table 16.2. Role Entity Annotations

Annotation Status Description

@RoleName Required This annotation marks the field or method

containing the name of the role.

@RoleGroups Optional This annotation marks the field or method

containing the group memberships of the role.

@RoleConditional Optional This annotation marks the field or method

indicating whether the role is conditional or

not. Conditional roles are explained later in this

chapter.

16.4.2.3. Entity Bean Examples

As mentioned previously, JpaIdentityStore is designed to be as flexible as possible when it

comes to the database schema design of your user and role tables. This section looks at a number

of possible database schemas that can be used to store user and role records.

Chapter 16. Security

248

16.4.2.3.1. Minimal schema example

In this bare minimal example, a simple user and role table are linked via a many-to-many

relationship using a cross-reference table named UserRoles.

@Entity

public class User {

 private Integer userId;

 private String username;

 private String passwordHash;

 private Set<Role> roles;

 @Id @GeneratedValue

 public Integer getUserId() { return userId; }

 public void setUserId(Integer userId) { this.userId = userId; }

 @UserPrincipal

 public String getUsername() { return username; }

 public void setUsername(String username) { this.username = username; }

 @UserPassword(hash = "md5")

 public String getPasswordHash() { return passwordHash; }

 public void setPasswordHash(String passwordHash) { this.passwordHash = passwordHash; }

 @UserRoles

 @ManyToMany(targetEntity = Role.class)

 @JoinTable(name = "UserRoles",

 joinColumns = @JoinColumn(name = "UserId"),

 inverseJoinColumns = @JoinColumn(name = "RoleId"))

 public Set<Role> getRoles() { return roles; }

 public void setRoles(Set<Role> roles) { this.roles = roles; }

}

JpaIdentityStore

249

@Entity

public class Role {

 private Integer roleId;

 private String rolename;

 @Id @Generated

 public Integer getRoleId() { return roleId; }

 public void setRoleId(Integer roleId) { this.roleId = roleId; }

 @RoleName

 public String getRolename() { return rolename; }

 public void setRolename(String rolename) { this.rolename = rolename; }

}

16.4.2.3.2. Complex Schema Example

This example builds on the above minimal example by including all of the optional fields, and

allowing group memberships for roles.

@Entity

public class User {

 private Integer userId;

 private String username;

 private String passwordHash;

 private Set<Role> roles;

 private String firstname;

 private String lastname;

 private boolean enabled;

 @Id @GeneratedValue

Chapter 16. Security

250

 public Integer getUserId() { return userId; }

 public void setUserId(Integer userId) { this.userId = userId; }

 @UserPrincipal

 public String getUsername() { return username; }

 public void setUsername(String username) { this.username = username; }

 @UserPassword(hash = "md5")

 public String getPasswordHash() { return passwordHash; }

 public void setPasswordHash(String passwordHash) { this.passwordHash = passwordHash; }

 @UserFirstName

 public String getFirstname() { return firstname; }

 public void setFirstname(String firstname) { this.firstname = firstname; }

 @UserLastName

 public String getLastname() { return lastname; }

 public void setLastname(String lastname) { this.lastname = lastname; }

 @UserEnabled

 public boolean isEnabled() { return enabled; }

 public void setEnabled(boolean enabled) { this.enabled = enabled; }

 @UserRoles

 @ManyToMany(targetEntity = Role.class)

 @JoinTable(name = "UserRoles",

 joinColumns = @JoinColumn(name = "UserId"),

 inverseJoinColumns = @JoinColumn(name = "RoleId"))

 public Set<Role> getRoles() { return roles; }

 public void setRoles(Set<Role> roles) { this.roles = roles; }

}

@Entity

public class Role {

 private Integer roleId;

 private String rolename;

 private boolean conditional;

 @Id @Generated

 public Integer getRoleId() { return roleId; }

 public void setRoleId(Integer roleId) { this.roleId = roleId; }

 @RoleName

JpaIdentityStore

251

 public String getRolename() { return rolename; }

 public void setRolename(String rolename) { this.rolename = rolename; }

 @RoleConditional

 public boolean isConditional() { return conditional; }

 public void setConditional(boolean conditional) { this.conditional = conditional; }

 @RoleGroups

 @ManyToMany(targetEntity = Role.class)

 @JoinTable(name = "RoleGroups",

 joinColumns = @JoinColumn(name = "RoleId"),

 inverseJoinColumns = @JoinColumn(name = "GroupId"))

 public Set<Role> getGroups() { return groups; }

 public void setGroups(Set<Role> groups) { this.groups = groups; }

}

16.4.2.4. JpaIdentityStore Events

When using JpaIdentityStore as the identity store implementation with IdentityManager, a

few events are raised as a result of invoking certain IdentityManager methods.

16.4.2.4.1. JpaIdentityStore.EVENT_PRE_PERSIST_USER

This event is raised in response to calling IdentityManager.createUser(). Just before the user

entity is persisted to the database, this event will be raised passing the entity instance as an event

parameter. The entity will be an instance of the user-class configured for JpaIdentityStore.

Writing an observer for this event may be useful for setting additional field values on the entity,

which aren't set as part of the standard createUser() functionality.

16.4.2.4.2. JpaIdentityStore.EVENT_USER_CREATED

This event is also raised in response to calling IdentityManager.createUser(). However,

it is raised after the user entity has already been persisted to the database. Like the

EVENT_PRE_PERSIST_USER event, it also passes the entity instance as an event parameter. It may

be useful to observe this event if you also need to persist other entities that reference the user

entity, for example contact detail records or other user-specific data.

16.4.2.4.3. JpaIdentityStore.EVENT_USER_AUTHENTICATED

This event is raised when calling IdentityManager.authenticate(). It passes the user entity

instance as the event parameter, and is useful for reading additional properties from the user

entity that is being authenticated.

Chapter 16. Security

252

16.4.3. LdapIdentityStore

This identity store implementation is designed for working with user records stored in an LDAP

directory. It is very highly configurable, allowing great flexibility in how both users and roles are

stored in the directory. The following sections describe the configuration options for this identity

store, and provide some configuration examples.

16.4.3.1. Configuring LdapIdentityStore

The following table describes the available properties that can be configured in components.xml

for LdapIdentityStore.

Table 16.3. LdapIdentityStore Configuration Properties

Property Default Value Description

server-

address

localhost The address of the LDAP server.

server-port 389 The port number that the LDAP server is

listening on.

user-

context-DN

ou=Person,dc=acme,dc=com The Distinguished Name (DN) of the context

containing user records.

user-DN-

prefix

uid= This value is prefixed to the front of the

username to locate the user's record.

user-DN-

suffix

,ou=Person,dc=acme,dc=com This value is appended to the end of the

username to locate the user's record.

role-

context-DN

ou=Role,dc=acme,dc=com The DN of the context containing role records.

role-DN-

prefix

cn= This value is prefixed to the front of the role

name to form the DN for locating the role

record.

role-DN-

suffix

,ou=Roles,dc=acme,dc=com This value is appended to the role name to form

the DN for locating the role record.

bind-DN cn=Manager,dc=acme,dc=com This is the context used to bind to the LDAP

server.

bind-

credentials

secret These are the credentials (the password) used

to bind to the LDAP server.

user-role-

attribute

roles This is the name of the attribute of the user

record that contains the list of roles that the

user is a member of.

role-

attribute-

is-DN

true This boolean property indicates whether the

role attribute of the user record is itself a

distinguished name.

LdapIdentityStore

253

Property Default Value Description

user-name-

attribute

uid Indicates which attribute of the user record

contains the username.

user-

password-

attribute

userPassword Indicates which attribute of the user record

contains the user's password.

first-name-

attribute

null Indicates which attribute of the user record

contains the user's first name.

last-name-

attribute

sn Indicates which attribute of the user record

contains the user's last name.

full-name-

attribute

cn Indicates which attribute of the user record

contains the user's full (common) name.

enabled-

attribute

null Indicates which attribute of the user record

determines whether the user is enabled.

role-name-

attribute

cn Indicates which attribute of the role record

contains the name of the role.

object-

class-

attribute

objectClass Indicates which attribute determines the class

of an object in the directory.

role-

object-

classes

organizationalRole An array of the object classes that new role

records should be created as.

user-

object-

classes

person,uidObject An array of the object classes that new user

records should be created as.

security-

authentication-

type

simple The security level to use. Possible values are

"none", "simple" and "strong".

16.4.3.2. LdapIdentityStore Configuration Example

The following configuration example shows how LdapIdentityStore may be configured for

an LDAP directory running on fictional host directory.mycompany.com. The users are stored

within this directory under the context ou=Person,dc=mycompany,dc=com, and are identified using

the uid attribute (which corresponds to their username). Roles are stored in their own context,

ou=Roles,dc=mycompany,dc=com and referenced from the user's entry via the roles attribute.

Role entries are identified by their common name (the cn attribute) , which corresponds to the

role name. In this example, users may be disabled by setting the value of their enabled attribute

to false.

Chapter 16. Security

254

 <security:ldap-identity-store

 server-address="directory.mycompany.com"

 bind-DN="cn=Manager,dc=mycompany,dc=com"

 bind-credentials="secret"

 user-DN-prefix="uid="

 user-DN-suffix=",ou=Person,dc=mycompany,dc=com"

 role-DN-prefix="cn="

 role-DN-suffix=",ou=Roles,dc=mycompany,dc=com"

 user-context-DN="ou=Person,dc=mycompany,dc=com"

 role-context-DN="ou=Roles,dc=mycompany,dc=com"

 user-role-attribute="roles"

 role-name-attribute="cn"

 user-object-classes="person,uidObject"

 enabled-attribute="enabled"

 />

16.4.4. Writing your own IdentityStore

Writing your own identity store implementation allows you to authenticate and perform

identity management operations against security providers that aren't supported out of the

box by Seam. Only a single class is required to achieve this, and it must implement the

org.jboss.seam.security.management.IdentityStore interface.

Please refer to the JavaDoc for IdentityStore for a description of the methods that must be

implemented.

16.4.5. Authentication with Identity Management

If you are using the Identity Management features in your Seam application, then it is not

required to provide an authenticator component (see previous Authentication section) to enable

authentication. Simply omit the authenticate-method from the identity configuration in

components.xml, and the SeamLoginModule will by default use IdentityManager to authenticate

your application's users, without any special configuration required.

16.4.6. Using IdentityManager

The IdentityManager can be accessed either by injecting it into your Seam component as

follows:

 @In IdentityManager identityManager;

or by accessing it through its static instance() method:

Using IdentityManager

255

 IdentityManager identityManager = IdentityManager.instance();

The following table describes IdentityManager's API methods:

Table 16.4. Identity Management API

Method Returns Description

createUser(String name, String

password)

boolean Creates a new user

account, with the

specified name and

password. Returns

true if successful, or

false if not.

deleteUser(String name) boolean Deletes the user

account with the

specified name.

Returns true if

successful, or false if

not.

createRole(String role) boolean Creates a new role,

with the specified

name. Returns true if

successful, or false if

not.

deleteRole(String name) boolean Deletes the role

with the specified

name. Returns true if

successful, or false if

not.

enableUser(String name) boolean Enables the user

account with the

specified name.

Accounts that are

not enabled are not

able to authenticate.

Returns true if

successful, or false if

not.

disableUser(String name) boolean Disables the user

account with the

specified name.

Returns true if

Chapter 16. Security

256

Method Returns Description

successful, or false if

not.

changePassword(String name, String

password)

boolean Changes the

password for the

user account with

the specified name.

Returns true if

successful, or false if

not.

isUserEnabled(String name) boolean Returns true if the

specified user account

is enabled, or false if

it isn't.

grantRole(String name, String role) boolean Grants the specified

role to the specified

user or role. The

role must already exist

for it to be granted.

Returns true if the

role is successfully

granted, or false if it

is already granted to

the user.

revokeRole(String name, String role) boolean Revokes the specified

role from the specified

user or role. Returns

true if the specified

user is a member of

the role and it is

successfully revoked,

or false if the user is

not a member of the

role.

userExists(String name) boolean Returns true if the

specified user exists,

or false if it doesn't.

listUsers() List Returns a list of all

user names, sorted in

alpha-numeric order.

listUsers(String filter) List Returns a list of all

user names filtered

Using IdentityManager

257

Method Returns Description

by the specified filter

parameter, sorted in

alpha-numeric order.

listRoles() List Returns a list of all role

names.

getGrantedRoles(String name) List Returns a list of the

names of all the

roles explicitly granted

to the specified user

name.

getImpliedRoles(String name) List Returns a list of the

names of all the

roles implicitly granted

to the specified

user name. Implicitly

granted roles include

those that are not

directly granted to

a user, rather they

are granted to the

roles that the user

is a member of. For

example, is the admin

role is a member of

the user role, and

a user is a member

of the admin role,

then the implied roles

for the user are both

the admin, and user

roles.

authenticate(String name, String

password)

boolean Authenticates the

specified username

and password using

the configured Identity

Store. Returns true

if successful or false

if authentication

failed. Successful

authentication implies

nothing beyond the

return value of the

Chapter 16. Security

258

Method Returns Description

method. It does not

change the state

of the Identity

component - to

perform a proper

Seam login the

Identity.login()

must be used instead.

addRoleToGroup(String role, String

group)

boolean Adds the specified

role as a member

of the specified

group. Returns true

if the operation is

successful.

removeRoleFromGroup(String role,

String group)

boolean Removes the

specified role from

the specified group.

Returns true if

the operation is

successful.

listRoles() List Lists the names of all

roles.

Using the Identity Management API requires that the calling user has the appropriate authorization

to invoke its methods. The following table describes the permission requirements for each of the

methods in IdentityManager. The permission targets listed below are literal String values.

Table 16.5. Identity Management Security Permissions

Method Permission Target Permission

Action

createUser() seam.user create

deleteUser() seam.user delete

createRole() seam.role create

deleteRole() seam.role delete

enableUser() seam.user update

disableUser() seam.user update

changePassword() seam.user update

isUserEnabled() seam.user read

grantRole() seam.user update

Error Messages

259

Method Permission Target Permission

Action

revokeRole() seam.user update

userExists() seam.user read

listUsers() seam.user read

listRoles() seam.role read

addRoleToGroup() seam.role update

removeRoleFromGroup() seam.role update

The following code listing provides an example set of security rules that grants access to all Identity

Management-related methods to members of the admin role:

rule ManageUsers

 no-loop

 activation-group "permissions"

when

 check: PermissionCheck(name == "seam.user", granted == false)

 Role(name == "admin")

then

 check.grant();

end

rule ManageRoles

 no-loop

 activation-group "permissions"

when

 check: PermissionCheck(name == "seam.role", granted == false)

 Role(name == "admin")

then

 check.grant();

end

16.5. Error Messages

The security API produces a number of default faces messages for various security-related events.

The following table lists the message keys that can be used to override these messages by

specifying them in a message.properties resource file. To suppress the message, just put the

key with an empty value in the resource file.

Chapter 16. Security

260

Table 16.6. Security Message Keys

Message Key Description

org.jboss.seam.loginSuccessful This message is produced when a user successfully logs

in via the security API.

org.jboss.seam.loginFailed This message is produced when the login process fails,

either because the user provided an incorrect username

or password, or because authentication failed in some

other way.

org.jboss.seam.NotLoggedIn This message is produced when a user attempts to

perform an action or access a page that requires

a security check, and the user is not currently

authenticated.

org.jboss.seam.AlreadyLoggedIn This message is produced when a user that is already

authenticated attempts to log in again.

16.6. Authorization

There are a number of authorization mechanisms provided by the Seam Security API for securing

access to components, component methods, and pages. This section describes each of these.

An important thing to note is that if you wish to use any of the advanced features (such as rule-

based permissions) then your components.xml may need to be configured to support this - see

the Configuration section above.

16.6.1. Core concepts

Seam Security is built around the premise of users being granted roles and/or permissions,

allowing them to perform operations that may not otherwise be permissible for users without

the necessary security privileges. Each of the authorization mechanisms provided by the Seam

Security API are built upon this core concept of roles and permissions, with an extensible

framework providing multiple ways to secure application resources.

16.6.1.1. What is a role?

A role is a group, or type, of user that may have been granted certain privileges for performing

one or more specific actions within an application. They are simple constructs, consisting of just

a name such as "admin", "user", "customer", etc. They can be granted either to users (or in some

cases to other roles), and are used to create logical groups of users for the convenient assignment

of specific application privileges.

Securing components

261

16.6.1.2. What is a permission?

A permission is a privilege (sometimes once-off) for performing a single, specific action. It is

entirely possible to build an application using nothing but permissions, however roles offer a higher

level of convenience when granting privileges to groups of users. They are slightly more complex

in structure than roles, essentially consisting of three "aspects"; a target, an action, and a recipient.

The target of a permission is the object (or an arbitrary name or class) for which a particular action

is allowed to be performed by a specific recipient (or user). For example, the user "Bob" may have

permission to delete customer objects. In this case, the permission target may be "customer", the

permission action would be "delete" and the recipient would be "Bob".

Within this documentation, permissions are generally represented in the form target:action

(omitting the recipient, although in reality one is always required).

16.6.2. Securing components

Let's start by examining the simplest form of authorization, component security, starting with the

@Restrict annotation.

@Restrict vs Typesafe security annotations

While using the @Restrict annotation provides a powerful and flexible method

for security component methods due to its ability to support EL expressions, it is

recommended that the typesafe equivalent (described later) be used, at least for

the compile-time safety it provides.

16.6.2.1. The @Restrict annotation

Seam components may be secured either at the method or the class level, using the @Restrict

annotation. If both a method and it's declaring class are annotated with @Restrict, the

method restriction will take precedence (and the class restriction will not apply). If a method

invocation fails a security check, then an exception will be thrown as per the contract for

Identity.checkRestriction() (see Inline Restrictions). A @Restrict on just the component

class itself is equivalent to adding @Restrict to each of its methods.

An empty @Restrict implies a permission check of componentName:methodName. Take for

example the following component method:

Chapter 16. Security

262

@Name("account")

public class AccountAction {

 @Restrict public void delete() {

 ...

 }

}

In this example, the implied permission required to call the delete()

method is account:delete. The equivalent of this would be to write

@Restrict("#{s:hasPermission('account','delete')}"). Now let's look at another

example:

@Restrict @Name("account")

public class AccountAction {

 public void insert() {

 ...

 }

 @Restrict("#{s:hasRole('admin')}")

 public void delete() {

 ...

 }

}

This time, the component class itself is annotated with @Restrict. This means that any methods

without an overriding @Restrict annotation require an implicit permission check. In the case

of this example, the insert() method requires a permission of account:insert, while the

delete() method requires that the user is a member of the admin role.

Before we go any further, let's address the #{s:hasRole()} expression seen in the above

example. Both s:hasRole and s:hasPermission are EL functions, which delegate to the

correspondingly named methods of the Identity class. These functions can be used within any

EL expression throughout the entirety of the security API.

Being an EL expression, the value of the @Restrict annotation may reference any objects that

exist within a Seam context. This is extremely useful when performing permission checks for a

specific object instance. Look at this example:

@Name("account")

public class AccountAction {

 @In Account selectedAccount;

 @Restrict("#{s:hasPermission(selectedAccount,'modify')}")

 public void modify() {

Security in the user interface

263

 selectedAccount.modify();

 }

}

The interesting thing to note from this example is the reference to selectedAccount seen within

the hasPermission() function call. The value of this variable will be looked up from within the

Seam context, and passed to the hasPermission() method in Identity, which in this case can

then determine if the user has the required permission for modifying the specified Account object.

16.6.2.2. Inline restrictions

Sometimes it might be desirable to perform a security check in code, without using the @Restrict

annotation. In this situation, simply use Identity.checkRestriction() to evaluate a security

expression, like this:

public void deleteCustomer() {

 Identity.instance().checkRestriction("#{s:hasPermission(selectedCustomer,'delete')}");

}

If the expression specified doesn't evaluate to true, either

• if the user is not logged in, a NotLoggedInException exception is thrown or

• if the user is logged in, an AuthorizationException exception is thrown.

It is also possible to call the hasRole() and hasPermission() methods directly from Java code:

if (!Identity.instance().hasRole("admin"))

 throw new AuthorizationException("Must be admin to perform this action");

if (!Identity.instance().hasPermission("customer", "create"))

 throw new AuthorizationException("You may not create new customers");

16.6.3. Security in the user interface

One indication of a well designed user interface is that the user is not presented with options for

which they don't have the necessary privileges to use. Seam Security allows conditional rendering

of either 1) sections of a page or 2) individual controls, based upon the privileges of the user,

using the very same EL expressions that are used for component security.

Let's take a look at some examples of interface security. First of all, let's pretend that we

have a login form that should only be rendered if the user is not already logged in. Using the

identity.isLoggedIn() property, we can write this:

Chapter 16. Security

264

<h:form class="loginForm" rendered="#{not identity.loggedIn}">

If the user isn't logged in, then the login form will be rendered - very straight forward so far. Now let's

pretend there is a menu on the page that contains some actions which should only be accessible

to users in the manager role. Here's one way that these could be written:

<h:outputLink action="#{reports.listManagerReports}" rendered="#{s:hasRole('manager')}">

 Manager Reports

</h:outputLink>

This is also quite straight forward. If the user is not a member of the manager role, then the

outputLink will not be rendered. The rendered attribute can generally be used on the control itself,

or on a surrounding <s:div> or <s:span> control.

Now for something more complex. Let's say you have a h:dataTable control on a page listing

records for which you may or may not wish to render action links depending on the user's

privileges. The s:hasPermission EL function allows us to pass in an object parameter which can

be used to determine whether the user has the requested permission for that object or not. Here's

how a dataTable with secured links might look:

<h:dataTable value="#{clients}" var="cl">

 <h:column>

 <f:facet name="header">Name</f:facet>

 #{cl.name}

 </h:column>

 <h:column>

 <f:facet name="header">City</f:facet>

 #{cl.city}

 </h:column>

 <h:column>

 <f:facet name="header">Action</f:facet>

 <s:link value="Modify Client" action="#{clientAction.modify}"

 rendered="#{s:hasPermission(cl,'modify')}"/>

 <s:link value="Delete Client" action="#{clientAction.delete}"

 rendered="#{s:hasPermission(cl,'delete')}"/>

 </h:column>

</h:dataTable>

Securing pages

265

16.6.4. Securing pages

Page security requires that the application is using a pages.xml file, however is extremely simple

to configure. Simply include a <restrict/> element within the page elements that you wish to

secure. If no explicit restriction is specified by the restrict element, an implied permission of /

viewId.xhtml:render will be checked when the page is accessed via a non-faces (GET) request,

and a permission of /viewId.xhtml:restore will be required when any JSF postback (form

submission) originates from the page. Otherwise, the specified restriction will be evaluated as a

standard security expression. Here's a couple of examples:

<page view-id="/settings.xhtml">

 <restrict/>

</page>

This page has an implied permission of /settings.xhtml:render required for non-faces

requests and an implied permission of /settings.xhtml:restore for faces requests.

<page view-id="/reports.xhtml">

 <restrict>#{s:hasRole('admin')}</restrict>

</page>

Both faces and non-faces requests to this page require that the user is a member of the admin role.

16.6.5. Securing Entities

Seam security also makes it possible to apply security restrictions to read, insert, update and

delete actions for entities.

To secure all actions for an entity class, add a @Restrict annotation on the class itself:

@Entity

@Name("customer")

@Restrict

public class Customer {

 ...

}

If no expression is specified in the @Restrict annotation, the default security check that is

performed is a permission check of entity:action, where the permission target is the entity

instance, and the action is either read, insert, update or delete.

Chapter 16. Security

266

It is also possible to only restrict certain actions, by placing a @Restrict annotation on the relevant

entity lifecycle method (annotated as follows):

• @PostLoad - Called after an entity instance is loaded from the database. Use this method to

configure a read permission.

• @PrePersist - Called before a new instance of the entity is inserted. Use this method to

configure an insert permission.

• @PreUpdate - Called before an entity is updated. Use this method to configure an update

permission.

• @PreRemove - Called before an entity is deleted. Use this method to configure a delete

permission.

Here's an example of how an entity would be configured to perform a security check for any insert

operations. Please note that the method is not required to do anything, the only important thing

in regard to security is how it is annotated:

 @PrePersist @Restrict

 public void prePersist() {}

Using /META-INF/orm.xml

You can also specify the call back method in /META-INF/orm.xml:

<?xml version="1.0" encoding="UTF-8"?>

<entity-mappings xmlns="http://java.sun.com/xml/ns/persistence/orm"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence/orm http://

java.sun.com/xml/ns/persistence/orm_1_0.xsd"

 version="1.0">

 <entity class="Customer">

 <pre-persist method-name="prePersist" />

 </entity>

</entity-mappings>

Securing Entities

267

Of course, you still need to annotate the prePersist() method on Customer with

@Restrict

And here's an example of an entity permission rule that checks if the authenticated user is allowed

to insert a new MemberBlog record (from the seamspace example). The entity for which the

security check is being made is automatically inserted into the working memory (in this case

MemberBlog):

rule InsertMemberBlog

 no-loop

 activation-group "permissions"

when

 principal: Principal()

 memberBlog: MemberBlog(member : member ->

 (member.getUsername().equals(principal.getName())))

 check: PermissionCheck(target == memberBlog, action == "insert", granted == false)

then

 check.grant();

end;

This rule will grant the permission memberBlog:insert if the currently authenticated user

(indicated by the Principal fact) has the same name as the member for which the blog entry is

being created. The "principal: Principal()" structure that can be seen in the example code is

a variable binding - it binds the instance of the Principal object from the working memory (placed

there during authentication) and assigns it to a variable called principal. Variable bindings

allow the value to be referred to in other places, such as the following line which compares the

member's username to the Principal name. For more details, please refer to the JBoss Rules

documentation.

Finally, we need to install a listener class that integrates Seam security with your JPA provider.

16.6.5.1. Entity security with JPA

Security checks for EJB3 entity beans are performed with an EntityListener. You can install

this listener by using the following META-INF/orm.xml file:

<?xml version="1.0" encoding="UTF-8"?>

<entity-mappings xmlns="http://java.sun.com/xml/ns/persistence/orm"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence/orm http://java.sun.com/

xml/ns/persistence/orm_1_0.xsd"

 version="1.0">

Chapter 16. Security

268

 <persistence-unit-metadata>

 <persistence-unit-defaults>

 <entity-listeners>

 <entity-listener class="org.jboss.seam.security.EntitySecurityListener"/>

 </entity-listeners>

 </persistence-unit-defaults>

 </persistence-unit-metadata>

</entity-mappings>

16.6.5.2. Entity security with a Managed Hibernate Session

If you are using a Hibernate SessionFactory configured via Seam, and are using annotations,

or orm.xml, then you don't need to do anything special to use entity security.

16.6.6. Typesafe Permission Annotations

Seam provides a number of annotations that may be used as an alternative to @Restrict, which

have the added advantage of providing compile-time safety as they don't support arbitrary EL

expressions in the same way that @Restrict does.

Out of the box, Seam comes with annotations for standard CRUD-based permissions, however

it is a simple matter to add your own. The following annotations are provided in the

org.jboss.seam.annotations.security package:

• @Insert

• @Read

• @Update

• @Delete

To use these annotations, simply place them on the method or parameter for which you wish to

perform a security check. If placed on a method, then they should specify a target class for which

the permission will be checked. Take the following example:

 @Insert(Customer.class)

 public void createCustomer() {

 ...

 }

In this example, a permission check will be performed for the user to ensure that they have the

rights to create new Customer objects. The target of the permission check will be Customer.class

Typesafe Role Annotations

269

(the actual java.lang.Class instance itself), and the action is the lower case representation of

the annotation name, which in this example is insert.

It is also possible to annotate the parameters of a component method in the same way. If this is

done, then it is not required to specify a permission target (as the parameter value itself will be

the target of the permission check):

 public void updateCustomer(@Update Customer customer) {

 ...

 }

To create your own security annotation, you simply need to annotate it with @PermissionCheck,

for example:

@Target({METHOD, PARAMETER})

@Documented

@Retention(RUNTIME)

@Inherited

@PermissionCheck

public @interface Promote {

 Class value() default void.class;

}

If you wish to override the default permission action name (which is the lower case version of the

annotation name) with another value, you can specify it within the @PermissionCheck annotation:

@PermissionCheck("upgrade")

16.6.7. Typesafe Role Annotations

In addition to supporting typesafe permission annotation, Seam Security also provides typesafe

role annotations that allow you to restrict access to component methods based on the role

memberships of the currently authenticated user. Seam provides one such annotation out

of the box, org.jboss.seam.annotations.security.Admin, used to restrict access to a

method to users that are a member of the admin role (so long as your own application

supports such a role). To create your own role annotations, simply meta-annotate them with

org.jboss.seam.annotations.security.RoleCheck, like in the following example:

@Target({METHOD})

@Documented

Chapter 16. Security

270

@Retention(RUNTIME)

@Inherited

@RoleCheck

public @interface User {

}

Any methods subsequently annotated with the @User annotation as shown in the above example

will be automatically intercepted and the user checked for the membership of the corresponding

role name (which is the lower case version of the annotation name, in this case user).

16.6.8. The Permission Authorization Model

Seam Security provides an extensible framework for resolving application permissions. The

following class diagram shows an overview of the main components of the permission framework:

The Permission Authorization Model

271

The relevant classes are explained in more detail in the following sections.

16.6.8.1. PermissionResolver

This is actually an interface, which provides methods for resolving individual object permissions.

Seam provides the following built-in PermissionResolver implementations, which are described

in more detail later in the chapter:

• RuleBasedPermissionResolver - This permission resolver uses Drools to resolve rule-based

permission checks.

• PersistentPermissionResolver - This permission resolver stores object permissions in a

persistent store, such as a relational database.

Chapter 16. Security

272

16.6.8.1.1. Writing your own PermissionResolver

It is very simple to implement your own permission resolver. The PermissionResolver interface

defines only two methods that must be implemented, as shown by the following table. By deploying

your own PermissionResolver implementation in your Seam project, it will be automatically

scanned during deployment and registered with the default ResolverChain.

Table 16.7. PermissionResolver interface

Return

type

Method Description

boolean hasPermission(Object target,

String action)

This method must resolve

whether the currently authenticated

user (obtained via a call to

Identity.getPrincipal()) has the

permission specified by the target and

action parameters. It should return

true if the user has the permission, or

false if they don't.

void filterSetByAction(Set<Object>

targets, String action)

This method should remove any

objects from the specified set, that

would return true if passed to the

hasPermission() method with the

same action parameter value.

Note

As they are cached in the user's session, any custom PermissionResolver

implementations must adhere to a couple of restrictions. Firstly, they may not

contain any state that is finer-grained than session scope (and the scope of the

component itself should either be application or session). Secondly, they must

not use dependency injection as they may be accessed from multiple threads

simultaneously. In fact, for performance reasons it is recommended that they

are annotated with @BypassInterceptors to bypass Seam's interceptor stack

altogether.

16.6.8.2. ResolverChain

A ResolverChain contains an ordered list of PermissionResolvers, for the purpose of resolving

object permissions for a particular object class or permission target.

The default ResolverChain consists of all permission resolvers discovered during application

deployment. The org.jboss.seam.security.defaultResolverChainCreated event is raised

(and the ResolverChain instance passed as an event parameter) when the default

RuleBasedPermissionResolver

273

ResolverChain is created. This allows additional resolvers that for some reason were not

discovered during deployment to be added, or for resolvers that are in the chain to be re-ordered

or removed.

The following sequence diagram shows the interaction between the components of the permission

framework during a permission check (explanation follows). A permission check can originate from

a number of possible sources, for example - the security interceptor, the s:hasPermission EL

function, or via an API call to Identity.checkPermission:

• 1. A permission check is initiated somewhere (either in code or via an EL expression) resulting

in a call to Identity.hasPermission().

• 1.1. Identity invokes PermissionMapper.resolvePermission(), passing in the permission

to be resolved.

• 1.1.1. PermissionMapper maintains a Map of ResolverChain instances, keyed by class. It uses

this map to locate the correct ResolverChain for the permission's target object. Once it has

the correct ResolverChain, it retrieves the list of PermissionResolvers it contains via a call

to ResolverChain.getResolvers().

• 1.1.2. For each PermissionResolver in the ResolverChain, the PermissionMapper invokes

its hasPermission() method, passing in the permission instance to be checked. If any of

the PermissionResolvers return true, then the permission check has succeeded and the

PermissionMapper also returns true to Identity. If none of the PermissionResolvers return

true, then the permission check has failed.

16.6.9. RuleBasedPermissionResolver

One of the built-in permission resolvers provided by Seam, RuleBasedPermissionResolver

allows permissions to be evaluated based on a set of Drools (JBoss Rules) security rules. A couple

of the advantages of using a rule engine are 1) a centralized location for the business logic that

Chapter 16. Security

274

is used to evaluate user permissions, and 2) speed - Drools uses very efficient algorithms for

evaluating large numbers of complex rules involving multiple conditions.

16.6.9.1. Requirements

If using the rule-based permission features provided by Seam Security, the following jar files are

required by Drools to be distributed with your project:

• knowledge-api.jar

• drools-compiler.jar

• drools-core.jar

• drools-decisiontables.jar

• drools-templates.jar

• janino.jar

• antlr-runtime.jar

• mvel2.jar

16.6.9.2. Configuration

The configuration for RuleBasedPermissionResolver requires that a Drools rule base is first

configured in components.xml. By default, it expects that the rule base is named securityRules,

as per the following example:

<components xmlns="http://jboss.org/schema/seam/components"

 xmlns:core="http://jboss.org/schema/seam/core"

 xmlns:security="http://jboss.org/schema/seam/security"

 xmlns:drools="http://jboss.org/schema/seam/drools"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation=

 "http://jboss.org/schema/seam/core http://jboss.org/schema/seam/core-2.3.xsd

 http://jboss.org/schema/seam/components http://jboss.org/schema/seam/

components-2.3.xsd

 http://jboss.org/schema/seam/drools http://jboss.org/schema/seam/drools-2.3.xsd

 http://jboss.org/schema/seam/security http://jboss.org/schema/seam/security-2.3.xsd">

 <drools:rule-base name="securityRules">

 <drools:rule-files>

 <value>/META-INF/security.drl</value>

 </drools:rule-files>

 </drools:rule-base>

RuleBasedPermissionResolver

275

 </components>

The default rule base name can be overridden by specifying the security-rules property for

RuleBasedPermissionResolver:

 <security:rule-based-permission-resolver security-rules="#{prodSecurityRules}"/>

Once the RuleBase component is configured, it's time to write the security rules.

16.6.9.3. Writing Security Rules

The first step to writing security rules is to create a new rule file in the /META-INF directory of your

application's jar file. Usually this file would be named something like security.drl, however you

can name it whatever you like as long as it is configured correspondingly in components.xml.

So what should the security rules file contain? At this stage it might be a good idea to at least skim

through the Drools documentation, however to get started here's an extremely simple example:

package MyApplicationPermissions;

 import org.jboss.seam.security.permission.PermissionCheck;

 import org.jboss.seam.security.Role;

 rule CanUserDeleteCustomers

 when

 c: PermissionCheck(target == "customer", action == "delete")

 Role(name == "admin")

 then

 c.grant();

 end

Let's break this down step by step. The first thing we see is the package declaration. A package in

Drools is essentially a collection of rules. The package name can be anything you want - it doesn't

relate to anything else outside the scope of the rule base.

The next thing we can notice is a couple of import statements for the PermissionCheck and Role

classes. These imports inform the rules engine that we'll be referencing these classes within our

rules.

Finally we have the code for the rule. Each rule within a package should be given a

unique name (usually describing the purpose of the rule). In this case our rule is called

Chapter 16. Security

276

CanUserDeleteCustomers and will be used to check whether a user is allowed to delete a

customer record.

Looking at the body of the rule definition we can notice two distinct sections. Rules have what is

known as a left hand side (LHS) and a right hand side (RHS). The LHS consists of the conditional

part of the rule, i.e. a list of conditions which must be satisfied for the rule to fire. The LHS is

represented by the when section. The RHS is the consequence, or action section of the rule that

will only be fired if all of the conditions in the LHS are met. The RHS is represented by the then

section. The end of the rule is denoted by the end line.

If we look at the LHS of the rule, we see two conditions listed there. Let's examine the first condition:

c: PermissionCheck(target == "customer", action == "delete")

In plain english, this condition is stating that there must exist a PermissionCheck object with a

target property equal to "customer", and an action property equal to "delete" within the working

memory.

So what is the working memory? Also known as a "stateful session" in Drools terminology,

the working memory is a session-scoped object that contains the contextual information that

is required by the rules engine to make a decision about a permission check. Each time the

hasPermission() method is called, a temporary PermissionCheck object, or Fact, is inserted

into the working memory. This PermissionCheck corresponds exactly to the permission that

is being checked, so for example if you call hasPermission("account", "create") then a

PermissionCheck object with a target equal to "account" and action equal to "create" will be

inserted into the working memory for the duration of the permission check.

Besides the PermissionCheck facts, there is also a org.jboss.seam.security.Role fact for

each of the roles that the authenticated user is a member of. These Role facts are synchronized

with the user's authenticated roles at the beginning of every permission check. As a consequence,

any Role object that is inserted into the working memory during the course of a permission check

will be removed before the next permission check occurs, if the authenticated user is not actually

a member of that role. Besides the PermissionCheck and Role facts, the working memory also

contains the java.security.Principal object that was created as a result of the authentication

process.

It is also possible to insert additional long-lived facts into the working memory by calling

RuleBasedPermissionResolver.instance().getSecurityContext().insert(), passing the

object as a parameter. The exception to this is Role objects, which as already discussed are

synchronized at the start of each permission check.

Getting back to our simple example, we can also notice that the first line of our LHS is prefixed with

c:. This is a variable binding, and is used to refer back to the object that is matched by the condition

(in this case, the PermissionCheck). Moving on to the second line of our LHS, we see this:

RuleBasedPermissionResolver

277

Role(name == "admin")

This condition simply states that there must be a Role object with a name of "admin" within the

working memory. As already mentioned, user roles are inserted into the working memory at the

beginning of each permission check. So, putting both conditions together, this rule is essentially

saying "I will fire if you are checking for the customer:delete permission and the user is a member

of the admin role".

So what is the consequence of the rule firing? Let's take a look at the RHS of the rule:

c.grant()

The RHS consists of Java code, and in this case is invoking the grant() method of the c object,

which as already mentioned is a variable binding for the PermissionCheck object. Besides the

name and action properties of the PermissionCheck object, there is also a granted property

which is initially set to false. Calling grant() on a PermissionCheck sets the granted property

to true, which means that the permission check was successful, allowing the user to carry out

whatever action the permission check was intended for.

16.6.9.4. Non-String permission targets

So far we have only seen permission checks for String-literal permission targets. It is of course

also possible to write security rules for permission targets of more complex types. For example,

let's say that you wish to write a security rule to allow your users to create blog comments. The

following rule demonstrates how this may be expressed, by requiring the target of the permission

check to be an instance of MemberBlog, and also requiring that the currently authenticated user

is a member of the user role:

rule CanCreateBlogComment

 no-loop

 activation-group "permissions"

when

 blog: MemberBlog()

 check: PermissionCheck(target == blog, action == "create", granted == false)

 Role(name == "user")

then

 check.grant();

end

Chapter 16. Security

278

16.6.9.5. Wildcard permission checks

It is possible to implement a wildcard permission check (which allows all actions for a given

permission target), by omitting the action constraint for the PermissionCheck in your rule, like

this:

rule CanDoAnythingToCustomersIfYouAreAnAdmin

when

 c: PermissionCheck(target == "customer")

 Role(name == "admin")

then

 c.grant();

end;

This rule allows users with the admin role to perform any action for any customer permission

check.

16.6.10. PersistentPermissionResolver

Another built-in permission resolver provided by Seam, PersistentPermissionResolver allows

permissions to be loaded from persistent storage, such as a relational database. This permission

resolver provides ACL style instance-based security, allowing for specific object permissions to be

assigned to individual users and roles. It also allows for persistent, arbitrarily-named permission

targets (not necessarily object/class based) to be assigned in the same way.

16.6.10.1. Configuration

Before it can be used, PersistentPermissionResolver must be configured with a valid

PermissionStore in components.xml. If not configured, it will attempt to use the default

permission store, JpaIdentityStore (see section further down for details). To use a permission

store other than the default, configure the permission-store property as follows:

 <security:persistent-permission-resolver permission-store="#{myCustomPermissionStore}"/>

16.6.10.2. Permission Stores

A permission store is required for PersistentPermissionResolver to connect to the backend

storage where permissions are persisted. Seam provides one PermissionStore implementation

out of the box, JpaPermissionStore, which is used to store permissions inside a relational

database. It is possible to write your own permission store by implementing the PermissionStore

interface, which defines the following methods:

PersistentPermissionResolver

279

Table 16.8. PermissionStore interface

Return type Method Description

List<Permission> listPermissions(Object target) This method should

return a List of

Permission objects

representing all the

permissions granted for

the specified target

object.

List<Permission> listPermissions(Object target,

String action)

This method should

return a List of

Permission objects

representing all the

permissions with the

specified action, granted

for the specified target

object.

List<Permission> listPermissions(Set<Object>

targets, String action)

This method should

return a List of

Permission objects

representing all the

permissions with the

specified action, granted

for the specified set of

target objects.

boolean grantPermission(Permission) This method should

persist the specified

Permission object to

the backend storage,

returning true if

successful.

boolean grantPermissions(List<Permission>

permissions)

This method should

persist all of the

Permission objects

contained in the specified

List, returning true if

successful.

boolean revokePermission(Permission

permission)

This method should

remove the specified

Permission object from

persistent storage.

Chapter 16. Security

280

Return type Method Description

boolean revokePermissions(List<Permission>

permissions)

This method should

remove all of the

Permission objects in

the specified list from

persistent storage.

List<String> listAvailableActions(Object

target)

This method should

return a list of all

the available actions

(as Strings) for the

class of the specified

target object. It is

used in conjunction with

permission management

to build the user interface

for granting specific class

permissions (see section

further down).

16.6.10.3. JpaPermissionStore

This is the default PermissionStore implementation (and the only one provided by Seam), which

uses a relational database to store permissions. Before it can be used it must be configured with

either one or two entity classes for storing user and role permissions. These entity classes must

be annotated with a special set of security annotations to configure which properties of the entity

correspond to various aspects of the permissions being stored.

If you wish to use the same entity (i.e. a single database table) to store both user and role

permissions, then only the user-permission-class property is required to be configured. If you

wish to use separate tables for storing user and role permissions, then in addition to the user-

permission-class property you must also configure the role-permission-class property.

For example, to configure a single entity class to store both user and role permissions:

<security:jpa-permission-store user-permission-class="com.acme.model.AccountPermission" /

>

To configure separate entity classes for storing user and role permissions:

<security:jpa-permission-store user-permission-class="com.acme.model.UserPermission"

 role-permission-class="com.acme.model.RolePermission" />

PersistentPermissionResolver

281

16.6.10.3.1. Permission annotations

As mentioned, the entity classes that contain the user and role permissions

must be configured with a special set of annotations, contained within the

org.jboss.seam.annotations.security.permission package. The following table lists each

of these annotations along with a description of how they are used:

Table 16.9. Entity Permission annotations

Annotation Target Description

@PermissionTarget FIELD,METHOD This annotation identifies the property of

the entity that will contain the permission

target. The property should be of type

java.lang.String.

@PermissionAction FIELD,METHOD This annotation identifies the property of

the entity that will contain the permission

action. The property should be of type

java.lang.String.

@PermissionUser FIELD,METHOD This annotation identifies the property of the

entity that will contain the recipient user

for the permission. It should be of type

java.lang.String and contain the user's

username.

@PermissionRole FIELD,METHOD This annotation identifies the property of

the entity that will contain the recipient role

for the permission. It should be of type

java.lang.String and contain the role name.

@PermissionDiscriminator FIELD,METHOD This annotation should be used when the same

entity/table is used to store both user and role

permissions. It identifies the property of the

entity that is used to discriminate between user

and role permissions. By default, if the column

value contains the string literal user, then the

record will be treated as a user permission. If

it contains the string literal role, then it will be

treated as a role permission. It is also possible

to override these defaults by specifying the

userValue and roleValue properties within

the annotation. For example, to use u and r

instead of user and role, the annotation would

be written like this:

@PermissionDiscriminator

Chapter 16. Security

282

Annotation Target Description

(userValue="u", roleValue="r")

16.6.10.3.2. Example Entity

Here is an example of an entity class that is used to store both user and role permissions. The

following class can be found inside the SeamSpace example:

@Entity

public class AccountPermission implements Serializable {

 private Integer permissionId;

 private String recipient;

 private String target;

 private String action;

 private String discriminator;

 @Id @GeneratedValue

 public Integer getPermissionId() {

 return permissionId;

 }

 public void setPermissionId(Integer permissionId) {

 this.permissionId = permissionId;

 }

 @PermissionUser @PermissionRole

 public String getRecipient() {

 return recipient;

 }

 public void setRecipient(String recipient) {

 this.recipient = recipient;

 }

 @PermissionTarget

 public String getTarget() {

 return target;

 }

 public void setTarget(String target) {

 this.target = target;

 }

PersistentPermissionResolver

283

 @PermissionAction

 public String getAction() {

 return action;

 }

 public void setAction(String action) {

 this.action = action;

 }

 @PermissionDiscriminator

 public String getDiscriminator() {

 return discriminator;

 }

 public void setDiscriminator(String discriminator) {

 this.discriminator = discriminator;

 }

}

As can be seen in the above example, the getDiscriminator() method has been annotated

with the @PermissionDiscriminator annotation, to allow JpaPermissionStore to determine

which records represent user permissions and which represent role permissions. In addition, it

can also be seen that the getRecipient() method is annotated with both @PermissionUser

and @PermissionRole annotations. This is perfectly valid, and simply means that the recipient

property of the entity will either contain the name of the user or the name of the role, depending

on the value of the discriminator property.

16.6.10.3.3. Class-specific Permission Configuration

A further set of class-specific annotations can be used to configure a specific set

of allowable permissions for a target class. These permissions can be found in the

org.jboss.seam.annotation.security.permission package:

Table 16.10. Class Permission Annotations

Annotation Target Description

@Permissions TYPE A container annotation, this annotation may contain an

array of @Permission annotations.

@Permission TYPE This annotation defines a single allowable permission

action for the target class. Its action property must be

specified, and an optional mask property may also be

Chapter 16. Security

284

Annotation Target Description

specified if permission actions are to be persisted as

bitmasked values (see next section).

Here's an example of the above annotations in action. The following class can also be found in

the SeamSpace example:

@Permissions({

 @Permission(action = "view"),

 @Permission(action = "comment")

})

@Entity

public class MemberImage implements Serializable {

This example demonstrates how two allowable permission actions, view and comment can be

declared for the entity class MemberImage.

16.6.10.3.4. Permission masks

By default, multiple permissions for the same target object and recipient will be persisted as a

single database record, with the action property/column containing a comma-separated list of

the granted actions. To reduce the amount of physical storage required to persist a large number

of permissions, it is possible to use a bitmasked integer value (instead of a comma-separated list)

to store the list of permission actions.

For example, if recipient "Bob" is granted both the view and comment permissions for a particular

MemberImage (an entity bean) instance, then by default the action property of the permission

entity will contain "view,comment", representing the two granted permission actions. Alternatively,

if using bitmasked values for the permission actions, as defined like so:

@Permissions({

 @Permission(action = "view", mask = 1),

 @Permission(action = "comment", mask = 2)

})

@Entity

public class MemberImage implements Serializable {

The action property will instead simply contain "3" (with both the 1 bit and 2 bit switched on).

Obviously for a large number of allowable actions for any particular target class, the storage

required for the permission records is greatly reduced by using bitmasked actions.

Obviously, it is very important that the mask values specified are powers of 2.

PersistentPermissionResolver

285

16.6.10.3.5. Identifier Policy

When storing or looking up permissions, JpaPermissionStore must be able to uniquely identify

specific object instances to effectively operate on its permissions. To achieve this, an identifier

strategy may be assigned to each target class for the generation of unique identifier values. Each

identifier strategy implementation knows how to generate unique identifiers for a particular type

of class, and it is a simple matter to create new identifier strategies.

The IdentifierStrategy interface is very simple, declaring only two methods:

public interface IdentifierStrategy {

 boolean canIdentify(Class targetClass);

 String getIdentifier(Object target);

}

The first method, canIdentify() simply returns true if the identifier strategy is capable

of generating a unique identifier for the specified target class. The second method,

getIdentifier() returns the unique identifier value for the specified target object.

Seam provides two IdentifierStrategy implementations, ClassIdentifierStrategy and

EntityIdentifierStrategy (see next sections for details).

To explicitly configure a specific identifier strategy to use for a particular class, it should be

annotated with org.jboss.seam.annotations.security.permission.Identifier, and the

value should be set to a concrete implementation of the IdentifierStrategy interface. An

optional name property can also be specified, the effect of which is dependent upon the actual

IdentifierStrategy implementation used.

16.6.10.3.6. ClassIdentifierStrategy

This identifier strategy is used to generate unique identifiers for classes, and will use the value

of the name (if specified) in the @Identifier annotation. If there is no name property provided,

then it will attempt to use the component name of the class (if the class is a Seam component), or

as a last resort it will create an identifier based on the name of the class (excluding the package

name). For example, the identifier for the following class will be "customer":

@Identifier(name = "customer")

public class Customer {

The identifier for the following class will be "customerAction":

@Name("customerAction")

public class CustomerAction {

Chapter 16. Security

286

Finally, the identifier for the following class will be "Customer":

public class Customer {

16.6.10.3.7. EntityIdentifierStrategy

This identifier strategy is used to generate unique identifiers for entity beans. It does so by

concatenating the entity name (or otherwise configured name) with a string representation of the

primary key value of the entity. The rules for generating the name section of the identifier are similar

to ClassIdentifierStrategy. The primary key value (i.e. the id of the entity) is obtained using the

PersistenceProvider component, which is able to correctly determine the value regardless of

which persistence implementation is used within the Seam application. For entities not annotated

with @Entity, it is necessary to explicitly configure the identifier strategy on the entity class itself,

for example:

@Identifier(value = EntityIdentifierStrategy.class)

public class Customer {

For an example of the type of identifier values generated, assume we have the following entity

class:

@Entity

public class Customer {

 private Integer id;

 private String firstName;

 private String lastName;

 @Id

 public Integer getId() { return id; }

 public void setId(Integer id) { this.id = id; }

 public String getFirstName() { return firstName; }

 public void setFirstName(String firstName) { this.firstName = firstName; }

 public String getLastName() { return lastName; }

 public void setLastName(String lastName) { this.lastName = lastName; }

}

For a Customer instance with an id value of 1, the value of the identifier would be "Customer:1".

If the entity class is annotated with an explicit identifier name, like so:

Permission Management

287

@Entity

@Identifier(name = "cust")

public class Customer {

Then a Customer with an id value of 123 would have an identifier value of "cust:123".

16.7. Permission Management

In much the same way that Seam Security provides an Identity Management API for the

management of users and roles, it also provides a Permissions Management API for the

management of persistent user permissions, via the PermissionManager component.

16.7.1. PermissionManager

The PermissionManager component is an application-scoped Seam component that provides a

number of methods for managing permissions. Before it can be used, it must be configured with a

permission store (although by default it will attempt to use JpaPermissionStore if it is available).

To explicitly configure a custom permission store, specify the permission-store property in

components.xml:

<security:permission-manager permission-store="#{ldapPermissionStore}"/>

The following table describes each of the available methods provided by PermissionManager:

Table 16.11. PermissionManager API methods

Return type Method Description

List<Permission> listPermissions(Object

target, String action)

Returns a list of Permission

objects representing all of the

permissions that have been

granted for the specified target and

action.

List<Permission> listPermissions(Object

target)

Returns a list of Permission

objects representing all of the

permissions that have been

granted for the specified target and

action.

boolean grantPermission(Permission

permission)

Persists (grants) the specified

Permission to the backend

Chapter 16. Security

288

Return type Method Description

permission store. Returns true if

the operation was successful.

boolean grantPermissions(List<Permission>

permissions)

Persists (grants) the specified list

of Permissions to the backend

permission store. Returns true if

the operation was successful.

boolean revokePermission(Permission

permission)

Removes (revokes) the specified

Permission from the backend

permission store. Returns true if

the operation was successful.

boolean revokePermissions(List<Permission>

permissions)

Removes (revokes) the specified

list of Permissions from

the backend permission store.

Returns true if the operation was

successful.

List<String> listAvailableActions(Object

target)

Returns a list of the available

actions for the specified target

object. The actions that this

method returns are dependent

on the @Permission annotations

configured on the target object's

class.

16.7.2. Permission checks for PermissionManager operations

Invoking the methods of PermissionManager requires that the currently-authenticated user has

the appropriate authorization to perform that management operation. The following table lists the

required permissions that the current user must have.

Table 16.12. Permission Management Security Permissions

Method Permission Target Permission

Action

listPermissions() The specified target seam.read-

permissions

grantPermission() The target of the specified Permission, or

each of the targets for the specified list of

Permissions (depending on which method is

called).

seam.grant-

permission

grantPermission() The target of the specified Permission. seam.grant-

permission

SSL Security

289

Method Permission Target Permission

Action

grantPermissions() Each of the targets of the specified list of

Permissions.

seam.grant-

permission

revokePermission() The target of the specified Permission. seam.revoke-

permission

revokePermissions() Each of the targets of the specified list of

Permissions.

seam.revoke-

permission

16.8. SSL Security

Seam includes basic support for serving sensitive pages via the HTTPS protocol. This is easily

configured by specifying a scheme for the page in pages.xml. The following example shows how

the view /login.xhtml is configured to use HTTPS:

<page view-id="/login.xhtml" scheme="https"/>

This configuration is automatically extended to both s:link and s:button JSF controls, which

(when specifying the view) will also render the link using the correct protocol. Based on the

previous example, the following link will use the HTTPS protocol because /login.xhtml is

configured to use it:

<s:link view="/login.xhtml" value="Login"/>

Browsing directly to a view when using the incorrect protocol will cause a redirect to the same

view using the correct protocol. For example, browsing to a page that has scheme="https" using

HTTP will cause a redirect to the same page using HTTPS.

It is also possible to configure a default scheme for all pages. This is useful if you wish to use

HTTPS for a only few pages. If no default scheme is specified then the normal behavior is to

continue use the current scheme. So once the user accessed a page that required HTTPS, then

HTTPS would continue to be used after the user navigated away to other non-HTTPS pages.

(While this is good for security, it is not so great for performance!). To define HTTP as the default

scheme, add this line to pages.xml:

<page view-id="*" scheme="http" />

Of course, if none of the pages in your application use HTTPS then it is not required to specify

a default scheme.

Chapter 16. Security

290

You may configure Seam to automatically invalidate the current HTTP session each time the

scheme changes. Just add this line to components.xml:

<web:session invalidate-on-scheme-change="true"/>

This option helps make your system less vulnerable to sniffing of the session id or leakage of

sensitive data from pages using HTTPS to other pages using HTTP.

16.8.1. Overriding the default ports

If you wish to configure the HTTP and HTTPS ports manually, they may be configured in

pages.xml by specifying the http-port and https-port attributes on the pages element:

<pages xmlns="http://jboss.org/schema/seam/pages"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://jboss.org/schema/seam/pages http://jboss.org/schema/seam/

pages-2.3.xsd"

 no-conversation-view-id="/home.xhtml"

 login-view-id="/login.xhtml"

 http-port="8080"

 https-port="8443">

16.9. CAPTCHA

Though strictly not part of the security API, Seam provides a built-in CAPTCHA (Completely

Automated Public Turing test to tell Computers and Humans Apart) algorithm to prevent

automated processes from interacting with your application.

16.9.1. Configuring the CAPTCHA Servlet

To get up and running, it is necessary to configure the Seam Resource Servlet, which will provide

the Captcha challenge images to your pages. This requires the following entry in web.xml:

<servlet>

 <servlet-name>Seam Resource Servlet</servlet-name>

 <servlet-class>org.jboss.seam.servlet.SeamResourceServlet</servlet-class>

</servlet>

<servlet-mapping>

 <servlet-name>Seam Resource Servlet</servlet-name>

Adding a CAPTCHA to a form

291

 <url-pattern>/seam/resource/*</url-pattern>

</servlet-mapping>

16.9.2. Adding a CAPTCHA to a form

Adding a CAPTCHA challenge to a form is extremely easy. Here's an example:

<h:graphicImage value="/seam/resource/captcha"/>

<h:inputText id="verifyCaptcha" value="#{captcha.response}" required="true">

 <s:validate />

</h:inputText>

<h:message for="verifyCaptcha"/>

That's all there is to it. The graphicImage control displays the CAPTCHA challenge, and the

inputText receives the user's response. The response is automatically validated against the

CAPTCHA when the form is submitted.

16.9.3. Customising the CAPTCHA algorithm

You may customize the CAPTCHA algorithm by overriding the built-in component:

@Name("org.jboss.seam.captcha.captcha")

@Scope(SESSION)

public class HitchhikersCaptcha extends Captcha

{

 @Override @Create

 public void init()

 {

 setChallenge("What is the answer to life, the universe and everything?");

 setCorrectResponse("42");

 }

 @Override

 public BufferedImage renderChallenge()

 {

 BufferedImage img = super.renderChallenge();

 img.getGraphics().drawOval(5, 3, 60, 14); //add an obscuring decoration

 return img;

 }

}

Chapter 16. Security

292

16.10. Security Events

The following table describes a number of events (see Chapter 7, Events, interceptors and

exception handling) raised by Seam Security in response to certain security-related events.

Table 16.13. Security Events

Event Key Description

org.jboss.seam.security.loginSuccessful Raised when a login attempt is

successful.

org.jboss.seam.security.loginFailed Raised when a login attempt fails.

org.jboss.seam.security.alreadyLoggedIn Raised when a user that is already

authenticated attempts to log in

again.

org.jboss.seam.security.notLoggedIn Raised when a security check fails

when the user is not logged in.

org.jboss.seam.security.notAuthorized Raised when a security check fails

when the user is logged in however

doesn't have sufficient privileges.

org.jboss.seam.security.preAuthenticate Raised just prior to user

authentication.

org.jboss.seam.security.postAuthenticate Raised just after user authentication.

org.jboss.seam.security.loggedOut Raised after the user has logged out.

org.jboss.seam.security.credentialsUpdated Raised when the user's credentials

have been changed.

org.jboss.seam.security.rememberMe Raised when the Identity's

rememberMe property is changed.

16.11. Run As

Sometimes it may be necessary to perform certain operations with elevated privileges, such

as creating a new user account as an unauthenticated user. Seam Security supports such a

mechanism via the RunAsOperation class. This class allows either the Principal or Subject,

or the user's roles to be overridden for a single set of operations.

The following code example demonstrates how RunAsOperation is used, by calling its addRole()

method to provide a set of roles to masquerade as for the duration of the operation. The execute()

method contains the code that will be executed with the elevated privileges.

 new RunAsOperation() {

 public void execute() {

Extending the Identity component

293

 executePrivilegedOperation();

 }

 }.addRole("admin")

 .run();

In a similar way, the getPrincipal() or getSubject() methods can also be overriden to specify

the Principal and Subject instances to use for the duration of the operation. Finally, the run()

method is used to carry out the RunAsOperation.

16.12. Extending the Identity component

Sometimes it might be necessary to extend the Identity component if your application has

special security requirements. The following example (contrived, as credentials would normally be

handled by the Credentials component instead) shows an extended Identity component with an

additional companyCode field. The install precedence of APPLICATION ensures that this extended

Identity gets installed in preference to the built-in Identity.

@Name("org.jboss.seam.security.identity")

@Scope(SESSION)

@Install(precedence = APPLICATION)

@BypassInterceptors

@Startup

public class CustomIdentity extends Identity

{

 private static final LogProvider log = Logging.getLogProvider(CustomIdentity.class);

 private String companyCode;

 public String getCompanyCode()

 {

 return companyCode;

 }

 public void setCompanyCode(String companyCode)

 {

 this.companyCode = companyCode;

 }

 @Override

 public String login()

 {

 log.info("###### CUSTOM LOGIN CALLED ######");

 return super.login();

Chapter 16. Security

294

 }

}

Warning

Note that an Identity component must be marked @Startup, so that it is available

immediately after the SESSION context begins. Failing to do this may render certain

Seam functionality inoperable in your application.

16.13. OpenID

OpenID is a community standard for external web-based authentication. The basic idea is that

any web application can supplement (or replace) its local handling of authentication by delegating

responsibility to an external OpenID server of the user's choose. This benefits the user, who

no longer has to remember a name and password for every web application he uses, and the

developer, who is relieved of some of the burden of maintaining a complex authentication system.

When using OpenID, the user selects an OpenID provider, and the provider assigns the user an

OpenID. The id will take the form of a URL, for example http://maximoburrito.myopenid.com

however, it's acceptable to leave off the http:// part of the identifier when logging into a site. The

web application (known as a relying party in OpenID-speak) determines which OpenID server to

contact and redirects the user to the remote site for authentication. Upon successful authentication

the user is given the (cryptographically secure) token proving his identity and is redirected back

to the original web application.The local web application can then be sure the user accessing the

application controls the OpenID he presented.

It's important to realize at this point that authentication does not imply authorization. The web

application still needs to make a determination of how to use that information. The web application

could treat the user as instantly logged in and give full access to the system or it could try and map

the presented OpenID to a local user account, prompting the user to register if he hasn't already.

The choice of how to handle the OpenID is left as a design decision for the local application.

16.13.1. Configuring OpenID

Seam uses the openid4java package and requires four additional JARs to make use of the

Seam integration. These are: htmlparser.jar, openid4java.jar, openxri-client.jar and

openxri-syntax.jar.

OpenID processing requires the use of the OpenIdPhaseListener, which should be added to

your faces-config.xml file. The phase listener processes the callback from the OpenID provider,

allowing re-entry into the local application.

<lifecycle>

Presenting an OpenIdDLogin form

295

 <phase-listener>org.jboss.seam.security.openid.OpenIdPhaseListener</phase-listener>

</lifecycle>

With this configuration, OpenID support is available to your application. The OpenID

support component, org.jboss.seam.security.openid.openid, is installed automatically if the

openid4java classes are on the classpath.

16.13.2. Presenting an OpenIdDLogin form

To initiate an OpenID login, you can present a simply form to the user asking for the user's OpenID.

The #{openid.id} value accepts the user's OpenID and the #{openid.login} action initiates

an authentication request.

<h:form>

 <h:inputText value="#{openid.id}" />

 <h:commandButton action="#{openid.login}" value="OpenID Login"/>

</h:form>

When the user submits the login form, he will be redirected to his OpenID provider. The user

will eventually return to your application through the Seam pseudo-view /openid.xhtml, which

is provided by the OpenIdPhaseListener. Your application can handle the OpenID response by

means of a pages.xml navigation from that view, just as if the user had never left your application.

16.13.3. Logging in immediately

The simplest strategy is to simply login the user immediately. The following navigation rule shows

how to handle this using the #{openid.loginImmediately()} action.

<page view-id="/openid.xhtml">

 <navigation evaluate="#{openid.loginImmediately()}">

 <rule if-outcome="true">

 <redirect view-id="/main.xhtml">

 <message>OpenID login successful...</message>

 </redirect>

 </rule>

 <rule if-outcome="false">

 <redirect view-id="/main.xhtml">

 <message>OpenID login rejected...</message>

 </redirect>

 </rule>

 </navigation>

</page>

Chapter 16. Security

296

This loginImmediately() action checks to see if the OpenID is valid. If it is valid, it

adds an OpenIDPrincipal to the identity component, marks the user as logged in (i.e.

#{identity.loggedIn} will be true) and returns true. If the OpenID was not validated, the method

returns false, and the user re-enters the application un-authenticated. If the user's OpenID is valid,

it will be accessible using the expression #{openid.validatedId} and #{openid.valid} will

be true.

16.13.4. Deferring login

You may not want the user to be immediately logged in to your application. In that case,

your navigation should check the #{openid.valid} property and redirect the user to a

local registration or processing page. Actions you might take would be asking for more

information and creating a local user account or presenting a captcha to avoid programmatic

registrations. When you are done processing, if you want to log the user in, you can call the

loginImmediately method, either through EL as shown previously or by directly interaction with

the org.jboss.seam.security.openid.OpenId component. Of course, nothing prevents you

from writing custom code to interact with the Seam identity component on your own for even more

customized behaviour.

16.13.5. Logging out

Logging out (forgetting an OpenID association) is done by calling #{openid.logout}. If you are

not using Seam security, you can call this method directly. If you are using Seam security, you

should continue to use #{identity.logout} and install an event handler to capture the logout

event, calling the OpenID logout method.

<event type="org.jboss.seam.security.loggedOut">

 <action execute="#{openid.logout}" />

</event>

It's important that you do not leave this out or the user will not be able to login again in the same

session.

Chapter 17.

297

Internationalization, localization and

themes
Seam makes it easy to build internationalized applications. First, let's walk through all the stages

needed to internationalize and localize your app. Then we'll take a look at the components Seam

bundles.

17.1. Internationalizing your app

A JEE application consists of many components and all of them must be configured properly for

your application to be localized.

Note

Note that all i18n features in Seam work only in JSF context.

Starting at the bottom, the first step is to ensure that your database server and client is using the

correct character encoding for your locale. Normally you'll want to use UTF-8. How to do this is

outside the scope of this tutorial.

17.1.1. Application server configuration

To ensure that the application server receives the request parameters in the correct

encoding from client requests you have to configure the tomcat connector. If you use

JBoss AS, add the system properties org.apache.catalina.connector.URI_ENCODING and

org.apache.catalina.connector.USE_BODY_ENCODING_FOR_QUERY_STRING to the server

configuration. For JBoss AS 7.1.1 change ${JBOSS_HOME}/standalone/configuration/

standalone.xml:

<system-properties>

 <property name="org.apache.catalina.connector.URI_ENCODING" value="UTF-8"/>

 <property name="org.apache.catalina.connector.USE_BODY_ENCODING_FOR_QUERY_STRING" value="true"/

>

</system-properties>

Chapter 17. Internationalizat...

298

17.1.2. Translated application strings

You'll also need localized strings for all the messages in your application (for example field labels

on your views). First you need to ensure that your resource bundle is encoded using the desired

character encoding. By default ASCII is used. Although ASCII is enough for many languages, it

doesn't provide characters for all languages.

Resource bundles must be created in ASCII, or use Unicode escape codes to represent Unicode

characters. Since you don't compile a property file to byte code, there is no way to tell the JVM

which character set to use. So you must use either ASCII characters or escape characters not in

the ASCII character set. You can represent a Unicode character in any Java file using \uXXXX,

where XXXX is the hexadecimal representation of the character.

You can write your translation of labels (Section 17.3, “Labels”) to your messages resource bundle

in the native encoding and then convert the content of the file into the escaped format through the

tool native2ascii provided in the JDK. This tool will convert a file written in your native encoding

to one that represents non-ASCII characters as Unicode escape sequences.

Usage of this tool is described here for Java 5 [http://java.sun.com/j2se/1.5.0/docs/tooldocs/

index.html#intl] or here for Java 6 [http://java.sun.com/javase/6/docs/technotes/tools/#intl]. For

example, to convert a file from UTF-8:

$ native2ascii -encoding UTF-8 messages_cs.properties >

 messages_cs_escaped.properties

17.1.3. Other encoding settings

We need to make sure that the view displays your localized data and messages using the correct

character set and also any data submitted uses the correct encoding.

To set the display character encoding, you need to use the <f:view locale="cs_CZ"/> tag (here

we tell JSF to use the Czech locale). You may want to change the encoding of the xml document

itself if you want to embed localized strings in the xml. To do this alter the encoding attribute in

xml declaration <?xml version="1.0" encoding="UTF-8"?> as required.

Also JSF/Facelets should submit any requests using the specified character encoding, but to

make sure any requests that don't specify an encoding you can force the request encoding using

a servlet filter. Configure this in components.xml:

<web:character-encoding-filter encoding="UTF-8"

 override-client="true"

 url-pattern="*.seam" />

http://java.sun.com/j2se/1.5.0/docs/tooldocs/index.html#intl
http://java.sun.com/j2se/1.5.0/docs/tooldocs/index.html#intl
http://java.sun.com/j2se/1.5.0/docs/tooldocs/index.html#intl
http://java.sun.com/javase/6/docs/technotes/tools/#intl
http://java.sun.com/javase/6/docs/technotes/tools/#intl

Locales

299

17.2. Locales

Each user login session has an associated instance of java.util.Locale (available to the

application as a component named locale). Under normal circumstances, you won't need to do

any special configuration to set the locale. Seam just delegates to JSF to determine the active

locale:

• If there is a locale associated with the HTTP request (the browser locale), and that locale is in

the list of supported locales from faces-config.xml, use that locale for the rest of the session.

• Otherwise, if a default locale was specified in the faces-config.xml, use that locale for the

rest of the session.

• Otherwise, use the default locale of the server.

It is possible to set the locale manually via the Seam

configuration properties org.jboss.seam.international.localeSelector.language,

org.jboss.seam.international.localeSelector.country and

org.jboss.seam.international.localeSelector.variant, but we can't think of any good

reason to ever do this.

It is, however, useful to allow the user to set the locale manually via the application user interface.

Seam provides built-in functionality for overriding the locale determined by the algorithm above.

All you have to do is add the following fragment to a form in your JSP or Facelets page:

<h:selectOneMenu value="#{localeSelector.language}">

 <f:selectItem itemLabel="English" itemValue="en"/>

 <f:selectItem itemLabel="Deutsch" itemValue="de"/>

 <f:selectItem itemLabel="Francais" itemValue="fr"/>

</h:selectOneMenu>

<h:commandButton action="#{localeSelector.select}"

 value="#{messages['ChangeLanguage']}"/>

Or, if you want a list of all supported locales from faces-config.xml, just use:

<h:selectOneMenu value="#{localeSelector.localeString}">

 <f:selectItems value="#{localeSelector.supportedLocales}"/>

</h:selectOneMenu>

<h:commandButton action="#{localeSelector.select}"

 value="#{messages['ChangeLanguage']}"/>

When the user selects an item from the drop-down, then clicks the command button, the Seam

and JSF locales will be overridden for the rest of the session.

Chapter 17. Internationalizat...

300

The brings us to the question of where the supported locales are defined. Typically, you provide a

list of locales for which you have matching resource bundles in the <locale-config> element of

the JSF configuration file (/META-INF/faces-config.xml). However, you have learned to appreciate

that Seam's component configuration mechanism is more powerful than what is provided in Java

EE. For that reason, you can configure the supported locales, and the default locale of the server,

using the built-in component named org.jboss.seam.international.localeConfig. To use

it, you first declare an XML namespace for Seam's international package in the Seam component

descriptor. You then define the default locale and supported locales as follows:

<international:locale-config default-locale="fr_CA" supported-locales="en fr_CA fr_FR"/>

Naturally, if you pronounce that you support a locale, you better provide a resource bundle to

match it! Up next, you'll learn how to define the language-specific labels.

17.3. Labels

JSF supports internationalization of user interface labels and descriptive text via the use of

<f:loadBundle />. You can use this approach in Seam applications. Alternatively, you can take

advantage of the Seam messages component to display templated labels with embedded EL

expressions.

17.3.1. Defining labels

Seam provides a java.util.ResourceBundle (available to the application as a

org.jboss.seam.core.resourceBundle). You'll need to make your internationalized labels

available via this special resource bundle. By default, the resource bundle used by Seam is

named messages and so you'll need to define your labels in files named messages.properties,

messages_en.properties, messages_en_AU.properties, etc. These files usually belong in the

WEB-INF/classes directory.

So, in messages_en.properties:

Hello=Hello

And in messages_en_AU.properties:

Hello=G'day

You can select a different name for the resource bundle by setting the Seam configuration property

named org.jboss.seam.core.resourceLoader.bundleNames. You can even specify a list of

resource bundle names to be searched (depth first) for messages.

Displaying labels

301

<core:resource-loader>

 <core:bundle-names>

 <value>mycompany_messages</value>

 <value>standard_messages</value>

 </core:bundle-names>

</core:resource-loader>

If you want to define a message just for a particular page, you can specify it in a resource bundle

with the same name as the JSF view id, with the leading / and trailing file extension removed.

So we could put our message in welcome/hello_en.properties if we only needed to display

the message on /welcome/hello.jsp.

You can even specify an explicit bundle name in pages.xml:

<page view-id="/welcome/hello.jsp" bundle="HelloMessages"/>

Then we could use messages defined in HelloMessages.properties on /welcome/

hello.jsp.

17.3.2. Displaying labels

If you define your labels using the Seam resource bundle, you'll be able to use them without having

to type <f:loadBundle ... /> on every page. Instead, you can simply type:

<h:outputText value="#{messages['Hello']}"/>

or:

<h:outputText value="#{messages.Hello}"/>

Even better, the messages themselves may contain EL expressions:

Hello=Hello, #{user.firstName} #{user.lastName}

Hello=G'day, #{user.firstName}

You can even use the messages in your code:

Chapter 17. Internationalizat...

302

@In private Map<String, String> messages;

@In("#{messages['Hello']}") private String helloMessage;

17.3.3. Faces messages

The facesMessages component is a super-convenient way to display success or failure messages

to the user. The functionality we just described also works for faces messages:

@Name("hello")

@Stateless

public class HelloBean implements Hello {

 @In FacesMessages facesMessages;

 public String sayIt() {

 facesMessages.addFromResourceBundle("Hello");

 }

}

This will display Hello, Gavin King or G'day, Gavin, depending upon the user's locale.

17.4. Timezones

There is also a session-scoped instance of java.util.Timezone, named

org.jboss.seam.international.timezone, and a Seam component for changing the timezone

named org.jboss.seam.international.timezoneSelector. By default, the timezone is the

default timezone of the server. Unfortunately, the JSF specification says that all dates and times

should be assumed to be UTC, and displayed as UTC, unless a timezone is explicitly specified

using <f:convertDateTime>. This is an extremely inconvenient default behavior.

Note

You can use application parameter to set up different default time zone for JSF

2 in web.xml.

<context-param>

 <param-

name>javax.faces.DATETIMECONVERTER_DEFAULT_TIMEZONE_IS_SYSTEM_TIMEZONE</

param-name>

Themes

303

 <param-value>true</param-value>

</context-param>

Seam overrides this behavior, and defaults all dates and times to the Seam timezone.

Seam also provides a default date converter to convert a string value to a date. This saves you

from having to specify a converter on input fields that are simply capturing a date. The pattern is

selected according the the user's locale and the time zone is selected as described above.

17.5. Themes

Seam applications are also very easily skinnable. The theme API is very similar to the localization

API, but of course these two concerns are orthogonal, and some applications support both

localization and themes.

First, configure the set of supported themes:

<theme:theme-selector cookie-enabled="true">

 <theme:available-themes>

 <value>default</value>

 <value>accessible</value>

 <value>printable</value>

 </theme:available-themes>

</theme:theme-selector>

Note that the first theme listed is the default theme.

Themes are defined in a properties file with the same name as the theme. For example,

the default theme is defined as a set of entries in default.properties. For example,

default.properties might define:

css ../screen.css

template /template.xhtml

Usually the entries in a theme resource bundle will be paths to CSS styles or images and names

of facelets templates (unlike localization resource bundles which are usually text).

Now we can use these entries in our JSP or facelets pages. For example, to theme the stylesheet

in a facelets page:

<link href="#{theme.css}" rel="stylesheet" type="text/css" />

Chapter 17. Internationalizat...

304

Or, when the page definition resides in a subdirectory:

<link href="#{facesContext.externalContext.requestContextPath}#{theme.css}"

 rel="stylesheet" type="text/css" />

Most powerfully, facelets lets us theme the template used by a <ui:composition>:

<ui:composition xmlns="http://www.w3.org/1999/xhtml"

 xmlns:ui="http://java.sun.com/jsf/facelets"

 xmlns:h="http://java.sun.com/jsf/html"

 xmlns:f="http://java.sun.com/jsf/core"

 template="#{theme.template}">

Just like the locale selector, there is a built-in theme selector to allow the user to freely switch

themes:

<h:selectOneMenu value="#{themeSelector.theme}">

 <f:selectItems value="#{themeSelector.themes}"/>

</h:selectOneMenu>

<h:commandButton action="#{themeSelector.select}" value="Select Theme"/>

17.6. Persisting locale and theme preferences via

cookies

The locale selector, theme selector and timezone selector all support persistence of locale and

theme preference to a cookie. Simply set the cookie-enabled property in components.xml:

<theme:theme-selector cookie-enabled="true">

 <theme:available-themes>

 <value>default</value>

 <value>accessible</value>

 <value>printable</value>

 </theme:available-themes>

</theme:theme-selector>

<international:locale-selector cookie-enabled="true"/>

Chapter 18.

305

Seam Text
Collaboration-oriented websites require a human-friendly markup language for easy entry

of formatted text in forum posts, wiki pages, blogs, comments, etc. Seam provides the

<s:formattedText/> control for display of formatted text that conforms to the Seam Text

language. Seam Text is implemented using an ANTLR-based parser. You don't need to know

anything about ANTLR to use it, however.

18.1. Basic fomatting

Here is a simple example:

It's easy to make *emphasis*, |monospace|,

~deleted text~, super^scripts^ or _underlines_.

If we display this using <s:formattedText/>, we will get the following HTML produced:

<p>

It's easy to make <i>emphasis</i>, <tt>monospace</tt>

deleted text, super^{scripts} or <u>underlines</u>.

</p>

We can use a blank line to indicate a new paragraph, and + to indicate a heading:

+This is a big heading

You /must/ have some text following a heading!

++This is a smaller heading

This is the first paragraph. We can split it across multiple

lines, but we must end it with a blank line.

This is the second paragraph.

(Note that a simple newline is ignored, you need an additional blank line to wrap text into a new

paragraph.) This is the HTML that results:

<h1>This is a big heading</h1>

<p>

You <i>must</i> have some text following a heading!

Chapter 18. Seam Text

306

</p>

<h2>This is a smaller heading</h2>

<p>

This is the first paragraph. We can split it across multiple

lines, but we must end it with a blank line.

</p>

<p>

This is the second paragraph.

</p>

Ordered lists are created using the # character. Unordered lists use the = character:

An ordered list:

#first item

#second item

#and even the /third/ item

An unordered list:

=an item

=another item

<p>

An ordered list:

</p>

first item

second item

and even the <i>third</i> item

<p>

An unordered list:

</p>

an item

Entering code and text with special characters

307

another item

Quoted sections should be surrounded in double quotes:

The other guy said:

"Nyeah nyeah-nee

/nyeah/ nyeah!"

But what do you think he means by "nyeah-nee"?

<p>

The other guy said:

</p>

<q>Nyeah nyeah-nee

<i>nyeah</i> nyeah!</q>

<p>

But what do you think he means by <q>nyeah-nee</q>?

</p>

18.2. Entering code and text with special characters

Special characters such as *, | and #, along with HTML characters such as <, > and & may be

escaped using \:

You can write down equations like 2*3\=6 and HTML tags

like \<body\> using the escape character: \\.

<p>

You can write down equations like 2*3=6 and HTML tags

like <body> using the escape character: \.

</p>

And we can quote code blocks using backticks:

Chapter 18. Seam Text

308

My code doesn't work:

`for (int i=0; i<100; i--)

{

 doSomething();

}`

Any ideas?

<p>

My code doesn't work:

</p>

<pre>for (int i=0; i<100; i--)

{

 doSomething();

}</pre>

<p>

Any ideas?

</p>

Note that inline monospace formatting always escapes (most monospace formatted text is in fact

code or tags with many special characters). So you can, for example, write:

This is a |<tag attribute="value"/>| example.

without escaping any of the characters inside the monospace bars. The downside is that you can't

format inline monospace text in any other way (italics, underscore, and so on).

18.3. Links

A link may be created using the following syntax:

Go to the Seam website at [=>http://jboss.org/schema/seam].

Or, if you want to specify the text of the link:

Entering HTML

309

Go to [the Seam website=>http://jboss.org/schema/seam].

For advanced users, it is even possible to customize the Seam Text parser to understand wikiword

links written using this syntax.

18.4. Entering HTML

Text may even include a certain limited subset of HTML (don't worry, the subset is chosen to be

safe from cross-site scripting attacks). This is useful for creating links:

You might want to link to something

cool, or even include an image:

And for creating tables:

<table>

 <tr><td>First name:</td><td>Gavin</td></tr>

 <tr><td>Last name:</td><td>King</td></tr>

</table>

But you can do much more if you want!

18.5. Using the SeamTextParser

The <s:formattedText/> JSF component internally uses the

org.jboss.seam.text.SeamTextParser. You can use that class directly and implement your

own text parsing, rendering, or HTML sanitation procedure. This is especially useful if you have

a custom frontend for entering rich text, such as a Javascript-based HTML editor, and you want

to validate user input to protect your website against Cross-Site Scripting (XSS) attacks. Another

usecase are custom wiki text parsing and rendering engines.

The following example defines a custom text parser that overrides the default HTML sanitizer:

public class MyTextParser extends SeamTextParser {

 public MyTextParser(String myText) {

 super(new SeamTextLexer(new StringReader(myText)));

 setSanitizer(

 new DefaultSanitizer() {

Chapter 18. Seam Text

310

 @Override

 public void validateHtmlElement(Token element) throws SemanticException {

 // TODO: I want to validate HTML elements myself!

 }

 }

);

 }

 // Customizes rendering of Seam text links such as [Some Text=>http://example.com]

 @Override

 protected String linkTag(String descriptionText, String linkText) {

 return "My Custom Link: " + descriptionText + "";

 }

 // Renders a <p> or equivalent tag

 @Override

 protected String paragraphOpenTag() {

 return "<p class=\"myCustomStyle\">";

 }

 public void parse() throws ANTLRException {

 startRule();

 }

}

The linkTag() and paragraphOpenTag() methods are just some of many you can override to

customize rendered output. These methods generally return String. See the Javadoc for more

details.

Also consult the Javadoc of org.jboss.seam.text.SeamTextParser.DefaultSanitizer for

more information on what HTML elements, attributes, and attribute values or filtered by default.

Chapter 19.

311

iText PDF generation
Seam now includes a component set for generating documents using iText. The primary focus

of Seam's iText document support is for the generation of PDF documents, but Seam also offers

basic support for RTF document generation.

19.1. Using PDF Support

iText support is provided by jboss-seam-pdf.jar. This JAR contains the iText JSF controls,

which are used to construct views that can render to PDF, and the DocumentStore component,

which serves the rendered documents to the user. To include PDF support in your application,

put jboss-seam-pdf.jar in your WEB-INF/lib directory along with the iText JAR file. There is

no further configuration needed to use Seam's iText support.

The Seam iText module requires the use of Facelets as the view technology. Future versions of the

library may also support the use of JSP. Additionally, it requires the use of the seam-ui package.

The examples/itext project contains an example of the PDF support in action. It demonstrates

proper deployment packaging, and it contains a number examples that demonstrate the key PDF

generation features current supported.

19.1.1. Creating a document

<p:document> Description

Documents are generated by facelet XHTML files using tags in

the http://jboss.org/schema/seam/pdf namespace. Documents

should always have the document tag at the root of the document.

The document tag prepares Seam to generate a document into the

DocumentStore and renders an HTML redirect to that stored content.

Attributes

• type — The type of the document to be produced. Valid values

are PDF, RTF and HTML modes. Seam defaults to PDF generation,

and many of the features only work correctly when generating PDF

documents.

• pageSize — The size of the page to be generate. The

most commonly used values would be LETTER and A4.

A full list of supported pages sizes can be found in

com.lowagie.text.PageSize class. Alternatively, pageSize can

provide the width and height of the page directly. The value "612 792",

for example, is equivalent to the LETTER page size.

Chapter 19. iText PDF generation

312

• orientation — The orientation of the page. Valid values are

portrait and landscape. In landscape mode, the height and width

page size values are reversed.

• margins — The left, right, top and bottom margin values.

• marginMirroring — Indicates that margin settings should be

reversed an alternating pages.

• disposition — When generating PDFs in a web browser, this

determines the HTTP Content-Disposition of the document.

Valid values are inline, which indicates the document should be

displayed in the browser window if possible, and attachment, which

indicates that the document should be treated as a download. The

default value is inline.

• fileName — For attachments, this value overrides the downloaded

file name.

Metadata Attributes

• title

• subject

• keywords

• author

• creator

Usage

<p:document xmlns:p="http://jboss.org/schema/seam/pdf">

 The document goes here.

</p:document>

19.1.2. Basic Text Elements

Useful documents will need to contain more than just text; however, the standard UI components

are geared towards HTML generation and are not useful for generating PDF content. Instead,

Seam provides a special UI components for generating suitable PDF content. Tags like <p:image>

and <p:paragraph> are the basic foundations of simple documents. Tags like <p:font> provide

style information to all the content surrounding them.

Basic Text Elements

313

<p:paragraph> Description

Most uses of text should be sectioned into paragraphs so that text

fragments can be flowed, formatted and styled in logical groups.

Attributes

• firstLineIndent

• extraParagraphSpace

• leading

• multipliedLeading

• spacingBefore — The blank space to be inserted before the

element.

• spacingAfter — The blank space to be inserted after the element.

• indentationLeft

• indentationRight

• keepTogether

Usage

<p:paragraph alignment="justify">

 This is a simple document. It isn't very fancy.

</p:paragraph>

<p:text> Description

The text tag allows text fragments to be produced from application

data using normal JSF converter mechanisms. It is very similar to the

outputText tag used when rendering HTML documents.

Attributes

• value — The value to be displayed. This will typically be a value

binding expression.

Usage

<p:paragraph>

 The item costs <p:text value="#{product.price}">

Chapter 19. iText PDF generation

314

 <f:convertNumber type="currency" currencySymbol="$"/>

 </p:text>

</p:paragraph>

<p:html> Description

The html tag renders HTML content into the PDF.

Attributes

• value — The text to be displayed.

Usage

<p:html value="This is HTML with some markup." />

<p:html>

 <h1>This is more complex HTML</h1>

 one

 two

 three

</p:html>

<p:html>

 <s:formattedText value="*This* is |Seam Text| as HTML. It's

 very^cool^." />

</p:html>

<p:font> Description

The font tag defines the default font to be used for all text inside of it.

Attributes

• name — The font name, for example: COURIER, HELVETICA, TIMES-

ROMAN, SYMBOL or ZAPFDINGBATS.

• size — The point size of the font.

• style — The font styles. Any combination of : NORMAL, BOLD, ITALIC,

OBLIQUE, UNDERLINE, LINE-THROUGH

Basic Text Elements

315

• color — The font color. (see Section 19.1.7.1, “Color Values” for

color values)

• encoding — The character set encoding.

Usage

<p:font name="courier" style="bold" size="24">

 <p:paragraph>My Title</p:paragraph>

</p:font>

<p:textcolumn> Description

p:textcolumn inserts a text column that can be used to control the flow

of text. The most common case is to support right to left direction fonts.

Attributes

• left — The left bounds of the text column

• right — The right bounds of the text column

• direction — The run direction of the text in the column: RTL, LTR,

NO-BIDI, DEFAULT

Usage

<p:textcolumn left="400" right="600" direction="rtl">

 <p:font name="/Library/Fonts/Arial Unicode.ttf"

 encoding="Identity-H"

 embedded="true">#{phrases.arabic}</p:font>

</p:textcolumn>

<p:newPage> Description

p:newPage inserts a page break.

Usage

<p:newPage />

<p:image> Description

Chapter 19. iText PDF generation

316

p:image inserts an image into the document. Images can be loaded

from the classpath or from the web application context using the value

attribute.

Resources can also be dynamically generated by application code.

The imageData attribute can specify a value binding expression whose

value is a java.awt.Image object.

Attributes

• value — A resource name or a method expression binding to an

application-generated image.

• rotation — The rotation of the image in degrees.

• height — The height of the image.

• width — The width of the image.

• alignment— The alignment of the image. (see Section 19.1.7.2,

“Alignment Values” for possible values)

• alt — Alternative text representation for the image.

• indentationLeft

• indentationRight

• spacingBefore — The blank space to be inserted before the

element.

• spacingAfter — The blank space to be inserted after the element.

• widthPercentage

• initialRotation

• dpi

• scalePercent — The scaling factor (as a percentage) to use for

the image. This can be expressed as a single percentage value or

as two percentage values representing separate x and y scaling

percentages.

• scaleToFit — Specifies the X any Y size to scale the image to. The

image will be scale to fit those dimensions as closely as possible

while preserving the XY ratio of the image.

• wrap

Headers and Footers

317

• underlying

Usage

<p:image value="/jboss.jpg" />

<p:image value="#{images.chart}" />

<p:anchor> Description

p:anchor defines clickable links from a document. It supports the

following attributes:

Attributes

• name — The name of an in-document anchor destination.

• reference — The destination the link refers to. Links to other points

in the document should begin with a "#". For example, "#link1" to refer

to an anchor position with a name of link1. Links may also be a full

URL to point to a resource outside of the document.

Usage

<p:listItem><p:anchor reference="#reason1">Reason 1</p:anchor></

p:listItem>

...

<p:paragraph>

 <p:anchor name="reason1">It's the quickest way to get "rich"</

p:anchor>

 ...

</p:paragraph>

19.1.3. Headers and Footers

<p:header>

<p:footer>

Description

The p:header and p:footer components provide the ability to place

header and footer text on each page of a generated document. Header

and footer declarations should appear at the beginning of a document.

Attributes

Chapter 19. iText PDF generation

318

• alignment — The alignment of the header/footer box section. (see

Section 19.1.7.2, “Alignment Values” for alignment values)

• backgroundColor — The background color of the header/footer box.

(see Section 19.1.7.1, “Color Values” for color values)

• borderColor — The border color of the header/footer box.

Individual border sides can be set using borderColorLeft,

borderColorRight, borderColorTop and borderColorBottom.

(see Section 19.1.7.1, “Color Values” for color values)

• borderWidth — The width of the border. Individual border sides

can be specified using borderWidthLeft, borderWidthRight,

borderWidthTop and borderWidthBottom.

Usage

<f:facet name="header">

 <p:font size="12">

 <p:footer borderWidthTop="1" borderColorTop="blue"

 borderWidthBottom="0" alignment="center">

 Why Seam? [<p:pageNumber />]

 </p:footer>

 </p:font>

</f:facet>

<p:pageNumber> Description

The current page number can be placed inside of a header or footer

using the p:pageNumber tag. The page number tag can only be used

in the context of a header or footer and can only be used once.

Usage

<p:footer borderWidthTop="1" borderColorTop="blue"

 borderWidthBottom="0" alignment="center">

 Why Seam? [<p:pageNumber />]

</p:footer>

19.1.4. Chapters and Sections

<p:chapter>

<p:section>

Description

If the generated document follows a book/article structure, the

p:chapter and p:section tags can be used to provide the necessary

Chapters and Sections

319

structure. Sections can only be used inside of chapters, but they may

be nested arbitrarily deep. Most PDF viewers provide easy navigation

between chapters and sections in a document.

Note

You cannot include a chapter into another chapter, this

can be done only with section(s).

Attributes

• alignment — The alignment of the header/footer box section. (see

Section 19.1.7.2, “Alignment Values” for alignment values)

• number — The chapter/section number. Every chapter/section should

be assigned a number.

• numberDepth — The depth of numbering for chapter/section. All

sections are numbered relative to their surrounding chapter/sections.

The fourth section of the first section of chapter three would be section

3.1.4, if displayed at the default number depth of three. To omit the

chapter number, a number depth of 2 should be used. In that case,

the section number would be displayed as 1.4.

Note

Chapter(s) can have a number or without it by setting

numberDepth to 0.

Usage

<p:document xmlns:p="http://jboss.org/schema/seam/pdf"

 title="Hello">

 <p:chapter number="1">

 <p:title><p:paragraph>Hello</p:paragraph></p:title>

 <p:paragraph>Hello #{user.name}!</p:paragraph>

 </p:chapter>

 <p:chapter number="2">

 <p:title><p:paragraph>Goodbye</p:paragraph></p:title>

 <p:paragraph>Goodbye #{user.name}.</p:paragraph>

Chapter 19. iText PDF generation

320

 </p:chapter>

</p:document>

<p:header> Description

Any chapter or section can contain a p:title. The title will be displayed

next to the chapter/section number. The body of the title may contain

raw text or may be a p:paragraph.

19.1.5. Lists

List structures can be displayed using the p:list and p:listItem tags. Lists may contain

arbitrarily-nested sublists. List items may not be used outside of a list. The following document

uses the ui:repeat tag to display a list of values retrieved from a Seam component.

<p:document xmlns:p="http://jboss.org/schema/seam/pdf"

 xmlns:ui="http://java.sun.com/jsf/facelets"

 title="Hello">

 <p:list style="numbered">

 <ui:repeat value="#{documents}" var="doc">

 <p:listItem>#{doc.name}</p:listItem>

 </ui:repeat>

 </p:list>

</p:document>

<p:list> Attributes

• style — The ordering/bulleting style of list. One of: NUMBERED,

LETTERED, GREEK, ROMAN, ZAPFDINGBATS, ZAPFDINGBATS_NUMBER. If

no style is given, the list items are bulleted.

• listSymbol — For bulleted lists, specifies the bullet symbol.

• indent — The indentation level of the list.

• lowerCase — For list styles using letters, indicates whether the letters

should be lower case.

• charNumber — For ZAPFDINGBATS, indicates the character code

of the bullet character.

• numberType — For ZAPFDINGBATS_NUMBER, indicates the

numbering style.

Tables

321

Usage

<p:list style="numbered">

 <ui:repeat value="#{documents}" var="doc">

 <p:listItem>#{doc.name}</p:listItem>

 </ui:repeat>

</p:list>

<p:listItem> Description

p:listItem supports the following attributes:

Attributes

• alignment — The alignment of the list item. (See Section 19.1.7.2,

“Alignment Values” for possible values)

• indentationLeft — The left indentation amount.

• indentationRight — The right indentation amount.

• listSymbol — Overrides the default list symbol for this list item.

Usage

...

19.1.6. Tables

Table structures can be created using the p:table and p:cell tags. Unlike many table structures,

there is no explicit row declaration. If a table has 3 columns, then every 3 cells will automatically

form a row. Header and footer rows can be declared, and the headers and footers will be repeated

in the event a table structure spans multiple pages.

<p:table> Description

p:table supports the following attributes.

Attributes

• columns — The number of columns (cells) that make up a table row.

• widths — The relative widths of each column. There should be one

value for each column. For example: widths="2 1 1" would indicate

Chapter 19. iText PDF generation

322

that there are 3 columns and the first column should be twice the size

of the second and third column.

• headerRows — The initial number of rows which are considered to

be headers or footer rows and should be repeated if the table spans

multiple pages.

• footerRows — The number of rows that are considered to be

footer rows. This value is subtracted from the headerRows value. If

document has 2 rows which make up the header and one row that

makes up the footer, headerRows should be set to 3 and footerRows

should be set to 1

• widthPercentage — The percentage of the page width that the table

spans.

• horizontalAlignment — The horizontal alignment of the table. (See

Section 19.1.7.2, “Alignment Values” for possible values)

• skipFirstHeader

• runDirection

• lockedWidth

• splitRows

• spacingBefore — The blank space to be inserted before the

element.

• spacingAfter — The blank space to be inserted after the element.

• extendLastRow

• headersInEvent

• splitLate

• keepTogether

Usage

<p:table columns="3" headerRows="1">

 <p:cell>name</p:cell>

 <p:cell>owner</p:cell>

 <p:cell>size</p:cell>

 <ui:repeat value="#{documents}" var="doc">

 <p:cell>#{doc.name}</p:cell>

 <p:cell>#{doc.user.name}</p:cell>

Tables

323

 <p:cell>#{doc.size}</p:cell>

 </ui:repeat>

</p:table>

<p:cell> Description

p:cell supports the following attributes.

Attributes

• colspan — Cells can span more than one column by declaring a

colspan greater than 1. Tables do not have the ability to span across

multiple rows.

• horizontalAlignment — The horizontal alignment of the cell. (see

Section 19.1.7.2, “Alignment Values” for possible values)

• verticalAlignment — The vertical alignment of the cell. (see

Section 19.1.7.2, “Alignment Values” for possible values)

• padding — Padding on a given side can also be specified using

paddingLeft, paddingRight, paddingTop and paddingBottom.

• useBorderPadding

• leading

• multipliedLeading

• indent

• verticalAlignment

• extraParagraphSpace

• fixedHeight

• noWrap

• minimumHeight

• followingIndent

• rightIndent

• spaceCharRatio

• runDirection

• arabicOptions

Chapter 19. iText PDF generation

324

• useAscender

• grayFill

• rotation

Usage

<p:cell>...</p:cell>

19.1.7. Document Constants

This section documents some of the constants shared by attributes on multiple tags.

19.1.7.1. Color Values

Several ways of specifying colors are provided. A limited number of colors are supported by name.

They are: white, gray, lightgray, darkgray, black, red, pink, yellow, green, magenta, cyan

and blue. Colors can be specified as an integer value, as defined by java.awt.Color. Finally

a color value may be specified as rgb(r,g,b) or rgb(r,g,b,a) with the red, green, blue alpha

values specified as an integer between 0 and 255 or as a floating point percentages followed by

a '%' sign.

19.1.7.2. Alignment Values

Where alignment values are used, the Seam PDF supports the following horizontal alignment

values: left, right, center, justify and justifyall. The vertical alignment values are top,

middle, bottom, and baseline.

19.2. Charting

Charting support is also provided with jboss-seam-pdf.jar. Charts can be used in PDF

documents or can be used as images in an HTML page. Charting requires the JFreeChart library

(jfreechart.jar and jcommon.jar) to be added to the WEB-INF/lib directory. Four types of

charts are currently supported: pie charts, bar charts and line charts. Where greater variety or

control is needed, it is possible to construct charts using Java code.

<p:chart> Description

Displays a chart created in Java by a Seam component.

Attributes

• chart — The chart object to display.

• height — The height of the chart.

Charting

325

• width — The width of the chart.

Usage

<p:chart chart="#{mycomponent.chart}" width="500" height="500" />

<p:barchart> Description

Displays a bar chart.

Attributes

• chart — The chart object to display, if programmatic chart creation

is being used.

• dataset — The dataset to be displayed, if programmatic dataset is

being used.

• borderVisible — Controls whether or not a border is displayed

around the entire chart.

• borderPaint — The color of the border, if visible;

• borderBackgroundPaint — The default background color of the

chart.

• borderStroke —

• domainAxisLabel — The text label for the domain axis.

• domainLabelPosition — The angle of the domain axis category

labels. Valid values are STANDARD, UP_45, UP_90, DOWN_45 and

DOWN_90. Alternatively, the value can the positive or negative angle

in radians.

• domainAxisPaint — The color of the domain axis label.

• domainGridlinesVisible— Controls whether or not gridlines for the

domain axis are shown on the chart.

• domainGridlinePaint— The color of the domain gridlines, if visible.

• domainGridlineStroke — The stroke style of the domain gridlines,

if visible.

• height — The height of the chart.

Chapter 19. iText PDF generation

326

• width — The width of the chart.

• is3D — A boolean value indicating that the chart should be rendered

in 3D instead of 2D.

• legend — A boolean value indicating whether or not the chart should

include a legend.

• legendItemPaint— The default color of the text labels in the legend.

• legendItemBackgoundPaint— The background color for the legend,

if different from the chart background color.

• legendOutlinePaint— The color of the border around the legend.

• orientation — The orientation of the plot, either vertical (the

default) or horizontal.

• plotBackgroundPaint— The color of the plot background.

• plotBackgroundAlpha— The alpha (transparency) level of the

plot background. It should be a number between 0 (completely

transparent) and 1 (completely opaque).

• plotForegroundAlpha— The alpha (transparency) level of the plot.

It should be a number between 0 (completely transparent) and 1

(completely opaque).

• plotOutlinePaint— The color of the range gridlines, if visible.

• plotOutlineStroke — The stroke style of the range gridlines, if

visible.

• rangeAxisLabel — The text label for the range axis.

• rangeAxisPaint — The color of the range axis label.

• rangeGridlinesVisible— Controls whether or not gridlines for the

range axis are shown on the chart.

• rangeGridlinePaint— The color of the range gridlines, if visible.

• rangeGridlineStroke — The stroke style of the range gridlines, if

visible.

• title — The chart title text.

• titlePaint— The color of the chart title text.

• titleBackgroundPaint— The background color around the chart

title.

Charting

327

• width — The width of the chart.

Usage

<p:barchart title="Bar Chart" legend="true"

 width="500" height="500">

 <p:series key="Last Year">

 <p:data columnKey="Joe" value="100" />

 <p:data columnKey="Bob" value="120" />

 </p:series> <p:series key="This Year">

 <p:data columnKey="Joe" value="125" />

 <p:data columnKey="Bob" value="115" />

 </p:series>

</p:barchart>

<p:linechart> Description

Displays a line chart.

Attributes

• chart — The chart object to display, if programmatic chart creation

is being used.

• dataset — The dataset to be displayed, if programmatic dataset is

being used.

• borderVisible — Controls whether or not a border is displayed

around the entire chart.

• borderPaint — The color of the border, if visible;

• borderBackgroundPaint — The default background color of the

chart.

• borderStroke —

• domainAxisLabel — The text label for the domain axis.

• domainLabelPosition — The angle of the domain axis category

labels. Valid values are STANDARD, UP_45, UP_90, DOWN_45 and

DOWN_90. Alternatively, the value can the positive or negative angle

in radians.

• domainAxisPaint — The color of the domain axis label.

Chapter 19. iText PDF generation

328

• domainGridlinesVisible— Controls whether or not gridlines for the

domain axis are shown on the chart.

• domainGridlinePaint— The color of the domain gridlines, if visible.

• domainGridlineStroke — The stroke style of the domain gridlines,

if visible.

• height — The height of the chart.

• width — The width of the chart.

• is3D — A boolean value indicating that the chart should be rendered

in 3D instead of 2D.

• legend — A boolean value indicating whether or not the chart should

include a legend.

• legendItemPaint — The default color of the text labels in the legend.

• legendItemBackgoundPaint — The background color for the

legend, if different from the chart background color.

• legendOutlinePaint — The color of the border around the legend.

• orientation — The orientation of the plot, either vertical (the

default) or horizontal.

• plotBackgroundPaint — The color of the plot background.

• plotBackgroundAlpha — The alpha (transparency) level of the

plot background. It should be a number between 0 (completely

transparent) and 1 (completely opaque).

• plotForegroundAlpha — The alpha (transparency) level of the plot.

It should be a number between 0 (completely transparent) and 1

(completely opaque).

• plotOutlinePaint — The color of the range gridlines, if visible.

• plotOutlineStroke — The stroke style of the range gridlines, if

visible.

• rangeAxisLabel — The text label for the range axis.

• rangeAxisPaint — The color of the range axis label.

• rangeGridlinesVisible — Controls whether or not gridlines for the

range axis are shown on the chart.

• rangeGridlinePaint — The color of the range gridlines, if visible.

Charting

329

• rangeGridlineStroke — The stroke style of the range gridlines, if

visible.

• title — The chart title text.

• titlePaint — The color of the chart title text.

• titleBackgroundPaint — The background color around the chart

title.

• width — The width of the chart.

Usage

<p:linechart title="Line Chart"

 width="500" height="500">

 <p:series key="Prices">

 <p:data columnKey="2003" value="7.36" />

 <p:data columnKey="2004" value="11.50" />

 <p:data columnKey="2005" value="34.625" />

 <p:data columnKey="2006" value="76.30" />

 <p:data columnKey="2007" value="85.05" />

 </p:series>

</p:linechart>

<p:piechart> Description

Displays a pie chart.

Attributes

• title — The chart title text.

• chart — The chart object to display, if programmatic chart creation

is being used.

• dataset — The dataset to be displayed, if programmatic dataset is

being used.

• label — The default label text for pie sections.

• legend — A boolean value indicating whether or not the chart should

include a legend. Default value is true

• is3D —A boolean value indicating that the chart should be rendered

in 3D instead of 2D.

Chapter 19. iText PDF generation

330

• labelLinkMargin — The link margin for labels.

• labelLinkPaint — The paint used for the label linking lines.

• labelLinkStroke — he stroke used for the label linking lines.

• labelLinksVisible — A flag that controls whether or not the label

links are drawn.

• labelOutlinePaint — The paint used to draw the outline of the

section labels.

• labelOutlineStroke — The stroke used to draw the outline of the

section labels.

• labelShadowPaint — The paint used to draw the shadow for the

section labels.

• labelPaint — The color used to draw the section labels

• labelGap — The gap between the labels and the plot as a percentage

of the plot width.

• labelBackgroundPaint — The color used to draw the background

of the section labels. If this is null, the background is not filled.

• startAngle — The starting angle of the first section.

• circular — A boolean value indicating that the chart should be

drawn as a circle. If false, the chart is drawn as an ellipse. The default

is true.

• direction — The direction the pie section are drawn. One of:

clockwise or anticlockwise. The default is clockwise.

• sectionOutlinePaint — The outline paint for all sections.

• sectionOutlineStroke — The outline stroke for all sections

• sectionOutlinesVisible — Indicates whether an outline is drawn

for each section in the plot.

• baseSectionOutlinePaint — The base section outline paint.

• baseSectionPaint — The base section paint.

• baseSectionOutlineStroke — The base section outline stroke.

Usage

Charting

331

<p:piechart title="Pie Chart" circular="false" direction="anticlockwise"

 startAngle="30" labelGap="0.1" labelLinkPaint="red">

 <p:series key="Prices">

 <p:data key="2003" columnKey="2003" value="7.36" />

 <p:data key="2004" columnKey="2004" value="11.50" />

 <p:data key="2005" columnKey="2005" value="34.625" />

 <p:data key="2006" columnKey="2006" value="76.30" />

 <p:data key="2007" columnKey="2007" value="85.05" />

 </p:series>

</p:piechart>

<p:series> Description

Category data can be broken down into series. The series tag is used

to categorize a set of data with a series and apply styling to the entire

series.

Attributes

• key — The series name.

• seriesPaint — The color of each item in the series

• seriesOutlinePaint — The outline color for each item in the series.

• seriesOutlineStroke — The stroke used to draw each item in the

series.

• seriesVisible — A boolean indicating if the series should be

displayed.

• seriesVisibleInLegend — A boolean indicating if the series should

be listed in the legend.

Usage

<p:series key="data1">

 <ui:repeat value="#{data.pieData1}" var="item">

 <p:data columnKey="#{item.name}" value="#{item.value}" />

 </ui:repeat>

</p:series>

<p:data> Description

The data tag describes each data point to be displayed in the graph.

Chapter 19. iText PDF generation

332

Attributes

• key — The name of the data item.

• series — The series name, when not embedded inside a

<p:series>.

• value — The numeric data value.

• explodedPercent — For pie charts, indicates how exploded a from

the pie a piece is.

• sectionOutlinePaint — For bar charts, the color of the section

outline.

• sectionOutlineStroke — For bar charts, the stroke type for the

section outline.

• sectionPaint — For bar charts, the color of the section.

Usage

<p:data key="foo" value="20" sectionPaint="#111111"

 explodedPercent=".2" />

<p:data key="bar" value="30" sectionPaint="#333333" />

<p:data key="baz" value="40" sectionPaint="#555555"

 sectionOutlineStroke="my-dot-style" />

<p:color> Description

The color component declares a color or gradient than can be

referenced when drawing filled shapes.

Attributes

• color — The color value. For gradient colors, this the starting color.

Section 19.1.7.1, “Color Values”

• color2 — For gradient colors, this is the color that ends the gradient.

• point — The co-ordinates where the gradient color begins.

• point2 — The co-ordinates where the gradient color ends.

Usage

Bar codes

333

<p:color id="foo" color="#0ff00f"/>

<p:color id="bar" color="#ff00ff" color2="#00ff00"

 point="50 50" point2="300 300"/>

<p:stroke> Description

Describes a stroke used to draw lines in a chart.

Attributes

• width — The width of the stroke.

• cap — The line cap type. Valid values are butt, round and square

• join — The line join type. Valid values are miter, round and bevel

• miterLimit — For miter joins, this value is the limit of the size of

the join.

• dash — The dash value sets the dash pattern to be used to draw

the line. The space separated integers indicate the length of each

alternating drawn and undrawn segments.

• dashPhase — The dash phase indicates the offset into the dash

pattern that the line should be drawn with.

Usage

<p:stroke id="dot2" width="2" cap="round" join="bevel" dash="2 3" />

19.3. Bar codes

Seam can use iText to generate barcodes in a wide variety of formats. These barcodes can be

embedded in a PDF document or displayed as an image on a web page. Note that when used

with HTML images, barcodes can not currently display barcode text in the barcode.

<p:barCode> Description

Displays a barcode image.

Attributes

• type — A barcode type supported by iText. Valid values include:

EAN13, EAN8, UPCA, UPCE, SUPP2, SUPP5, POSTNET, PLANET, CODE128,

CODE128_UCC, CODE128_RAW and CODABAR.

Chapter 19. iText PDF generation

334

• code — The value to be encoded by the barcode.

• xpos — For PDFs, the absolute y position of the barcode on the page.

• ypos — For PDFs, the absolute y position of the barcode on the page.

• rotDegrees — For PDFs, the rotation factor of the barcode in

degrees.

• barHeight — The height of the bars in the barCode

• minBarWidth — The minimum bar width.

• barMultiplier — The bar multiplier for wide bars or the distance

between bars for POSTNET and PLANET code.

• barColor — The color to draw the bars.

• textColor — The color of any text on the barcode.

• textSize — The size of the barcode text, if any.

• altText — The alt text for HTML image links.

Usage

<p:barCode type="code128"

 barHeight="80"

 textSize="20"

 code="(10)45566(17)040301"

 codeType="code128_ucc"

 altText="My BarCode" />

19.4. Fill-in-forms

If you have a complex, pre-generated PDF with named fields, you can easily fill in the values from

your application and present it to the user.

<p:form> Description

Defines a form template to populate

Attributes

• URL — An URL pointing to the PDF file to use as a template. If the

value has no protocol part (://), the file is read locally.

• filename — The filename to use for the generated PDF file.

Rendering Swing/AWT components

335

• exportKey — Place the generated PDF file in a DocumentData

object under the specified key in the event context. If set, no redirect

will occur.

<p:field> Description

Connects a field name to its value

Attributes

• name — The name of the field

• value — The value of the field

• readOnly — Should the field be read-only? Defaults to true.

 <p:form

 xmlns:p="http://jboss.org/schema/seam/pdf"

 URL="http://localhost/Concept/form.pdf">

 <p:field name="person.name" value="Me, myself and I"/>

 </p:form>

19.5. Rendering Swing/AWT components

Seam now provides experimental support for rendering Swing components into a PDF image.

Some Swing look and feels supports, notably ones that use native widgets, will not render

correctly.

<p:swing> Description

Renders a Swing component into a PDF document.

Attributes

• width — The width of the component to be rendered.

• height — The height of the component to be rendered.

• component — An expression whose value is a Swing or AWT

component.

Usage

Chapter 19. iText PDF generation

336

<p:swing width="310" height="120" component="#{aButton}" />

19.6. Configuring iText

Document generation works out of the box with no additional configuration needed. However,

there are a few points of configuration that are needed for more serious applications.

The default implementation serves PDF documents from a generic URL, /seam-doc.seam.

Many browsers (and users) would prefer to see URLs that contain the actual PDF name like

/myDocument.pdf. This capability requires some configuration. To serve PDF files, all *.pdf

resources should be mapped to the DocumentStoreServlet:

<servlet>

 <servlet-name>Document Store Servlet</servlet-name>

 <servlet-class>org.jboss.seam.document.DocumentStoreServlet</servlet-class>

</servlet>

<servlet-mapping>

 <servlet-name>Document Store Servlet</servlet-name>

 <url-pattern>*.pdf</url-pattern>

</servlet-mapping>

The use-extensions option on the document store component completes the functionality by

instructing the document store to generate URLs with the correct filename extension for the

document type being generated.

<components xmlns="http://jboss.org/schema/seam/components"

 xmlns:document="http://jboss.org/schema/seam/document"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="

 http://jboss.org/schema/seam/document http://jboss.org/schema/seam/document-2.3.xsd

 http://jboss.org/schema/seam/components http://jboss.org/schema/seam/

components-2.3.xsd">

 <document:document-store use-extensions="true"/>

</components>

The document store stores documents in conversation scope, and documents will expire when

the conversation ends. At that point, references to the document will be invalid. You can specify

a default view to be shown when a document does not exist using the error-page property of

the documentStore.

Further documentation

337

<document:document-store use-extensions="true" error-page="/documentMissing.seam" />

19.7. Further documentation

For further information on iText, see:

• iText Home Page [http://www.lowagie.com/iText/]

• iText in Action [http://www.manning.com/lowagie/]

http://www.lowagie.com/iText/
http://www.lowagie.com/iText/
http://www.manning.com/lowagie/
http://www.manning.com/lowagie/

338

Chapter 20.

339

The Microsoft® Excel® spreadsheet

application
Seam also supports generation of the Microsoft® Excel® spreadsheet application spreadsheets

through the excellent JExcelAPI [http://jexcelapi.sourceforge.net/] library. The generated

document is compatible with the Microsoft® Excel® spreadsheet application versions 95, 97,

2000, XP and 2003. Currently a limited subset of the library functionality is exposed but the

ultimate goal is to be able to do everything the library allows for. Please refer to the JExcelAPI

documentation for more information on capabilities and limitations.

20.1. The Microsoft® Excel® spreadsheet application

support

The Microsoft® Excel® spreadsheet application jboss-seam-excel.jar. This JAR contains the

the Microsoft® Excel® spreadsheet application JSF controls, which are used to construct views

that can render the document, and the DocumentStore component, which serves the rendered

document to the user. To include the Microsoft® Excel® spreadsheet application support in

your application, include jboss-seam-excel.jar in your WEB-INF/lib directory along with the

jxl.jar JAR file. Furthermore, you need to configure the DocumentStore servlet in your web.xml

The Microsoft® Excel® spreadsheet application Seam module requires the use of Facelets as the

view technology. Additionally, it requires the use of the seam-ui package.

The examples/excel project contains an example of the Microsoft® Excel® spreadsheet

application support in action. It demonstrates proper deployment packaging, and it shows the

exposed functionality.

Customizing the module to support other kinds of the Microsoft® Excel® spreadsheet application

spreadsheet API's has been made very easy. Implement the ExcelWorkbook interface, and

register in components.xml.

<excel:excelFactory>

 <property name="implementations">

 <key>myExcelExporter</key>

 <value>my.excel.exporter.ExcelExport</value>

 </property>

</excel:excelFactory>

and register the excel namespace in the components tag with

http://jexcelapi.sourceforge.net/
http://jexcelapi.sourceforge.net/

Chapter 20. The Microsoft® Ex...

340

xmlns:excel="http://jboss.org/schema/seam/excel"

Then set the UIWorkbook type to myExcelExporter and your own exporter will be used. Default

is "jxl", but support for CSV has also been added, using the type "csv".

See Section 19.6, “Configuring iText” for information on how to configure the document servlet for

serving the documents with an .xls extension.

If you are having problems accessing the generated file under IE (especially with https), make

sure you are not using too strict restrictions in the browser, too strict security constraint in web.xml

or a combination of both.

20.2. Creating a simple workbook

Basic usage of the worksheet support is simple; it is used like a familiar <h:dataTable> and you

can bind to a List, Set, Map, Array or DataModel.

 <e:workbook xmlns:e="http://jboss.org/schema/seam/excel">

 <e:worksheet>

 <e:cell column="0" row="0" value="Hello world!"/>

 </e:worksheet>

 </e:workbook>

That's not terribly useful, so lets have a look at a more common case:

 <e:workbook xmlns:e="http://jboss.org/schema/seam/excel">

 <e:worksheet value="#{data}" var="item">

 <e:column>

 <e:cell value="#{item.value}"/>

 </e:column>

 </e:worksheet>

 </e:workbook>

Workbooks

341

First we have the top-level workbook element which serves as the container and it doesn't have

any attributes. The child-element worksheet has two attributes; value="#{data}" is the EL-binding

to the data and var="item" is the name of the current item. Nested inside the worksheet is a single

column and within it you see the cell which is the final bind to the data within the currently iterated

item

This is all you know to get started dumping your data to worksheets!

20.3. Workbooks

Workbooks are the top-level parents of worksheets and stylesheet links.

<e:workbook> Attributes

• type — Defines which export module to be used. The value is a string

and can be either "jxl" or "csv". The default is "jxl".

• templateURI — A template that should be used as a basis for the

workbook. The value is a string (URI).

• arrayGrowSize — The amount of memory by which to increase

the amount of memory allocated to storing the workbook data. For

processes reading many small workbooks inside a WAS it might be

necessary to reduce the default size. Default value is 1 megabyte.

The value is a number (bytes).

• autoFilterDisabled — Should autofiltering be disabled?. The

value is a boolean.

• cellValidationDisabled — Should cell validation be ignored? The

value is a boolean.

• characterSet — The character set. This is only used when the

spreadsheet is read, and has no effect when the spreadsheet is

written. The value is a string (character set encoding).

• drawingsDisabled — Should drawings be disabled? The value is a

boolean.

• excelDisplayLanguage — The language in which the generated file

will display. The value is a string (two character ISO 3166 country

code).

• excelRegionalSettings — The regional settings for the generated

excel file. The value is a string (two character ISO 3166 country code).

• formulaAdjust — Should formulas be adjusted? The value is a

boolean.

Chapter 20. The Microsoft® Ex...

342

• gcDisabled — Should garbage collection be disabled? The value is

a boolean.

• ignoreBlanks — Should blanks be ignored? The value is a boolean.

• initialFileSize — The initial amount of memory allocated to store

the workbook data when reading a worksheet. For processes reading

many small workbooks inside a WAS it might be necessary to reduce

the default size. Default value is 5 megabytes. The value is a number

(bytes).

• locale — The locale used by JExcelApi to generate the spreadsheet.

Setting this value has no effect on the language or region of the

generated excel file. The value is a string.

• mergedCellCheckingDisabled — Should merged cell checking be

disabled? The value is a boolean.

• namesDisabled — Should handling of names be disabled? The value

is a boolean.

• propertySets — Should any property sets be enabled (such as

macros) to be copied along with the workbook? Leaving this feature

enabled will result in the JXL process using more memory. The value

is a boolean.

• rationalization — Should the cell formats be rationalized before

writing out the sheet? The value is a boolean. Default is true.

• supressWarnings — Should warnings be suppressed?. Due to the

change in logging in version 2.4, this will now set the warning

behaviour across the JVM (depending on the type of logger used).

The value is a boolean.

• temporaryFileDuringWriteDirectory — Used in conjunction

with the useTemporaryFileDuringWrite setting to set the target

directory for the temporary files. This value can be NULL, in which

case the normal system default temporary directory is used instead.

The value is a string (the directory to which temporary files should

be written).

• useTemporaryFileDuringWrite — Should a temporary file is used

during the generation of the workbook. If not set, the workbook

will take place entirely in memory. Setting this flag involves

an assessment of the trade-offs between memory usage and

performance. The value is a boolean.

Worksheets

343

• workbookProtected — Should the workbook be protected? The

value is a boolean.

• filename — The filename to use for the download. The value is a

string. Please note that if you map the DocumentServlet to some

pattern, this file extension must also match.

• exportKey — A key under which to store the resulting data in a

DocumentData object under the event scope. If used, there is no

redirection.

Child elements

• <e:link/> — Zero or more stylesheet links (see Section 20.14.1,

“Stylesheet links”).

• <e:worksheet/> — Zero or more worksheets (see Section 20.4,

“Worksheets”).

Facets

• none

 <e:workbook>

 <e:worksheet>

 <e:cell value="Hello World" row="0" column="0"/>

 </e:worksheet>

 <e:workbook>

defines a workbook with a worksheet and a greeting at A1

20.4. Worksheets

Worksheets are the children of workbooks and the parent of columns and worksheet commands.

They can also contain explicitly placed cells, formulas, images and hyperlinks. They are the pages

that make up the workbook.

<e:worksheet> • value — An EL-expression to the backing data. The value is a

string. The target of this expression is examined for an Iterable. Note

that if the target is a Map, the iteration is done over the Map.Entry

Chapter 20. The Microsoft® Ex...

344

entrySet(), so you should use a .key or .value to target in your

references.

• var — The current row iterator variable name that can later be

referenced in cell value attributes. The value is a string.

• name — The name of the worksheet. The value is a string. Defaults to

Sheet# where # is the worksheet index. If the given worksheet name

exists, that sheet is selected. This can be used for merging several

data sets into a single worksheet, just define the same name for them

(using startRow and startCol to make sure that they don't occupy

the same space).

• startRow — Defines the starting row for the data. The value is a

number. Used for placing the data in other places than the upper-

left corner (especially useful if having multiple data sets for a single

worksheet). The defaults is 0.

• startColumn — Defines the starting column for the data. The value

is a number. Used for placing the data in other places than the upper-

left corner (especially useful if having multiple data sets for a single

worksheet). The default is 0.

• automaticFormulaCalculation — Should formulas be

automatically calculated? The value is a boolean.

• bottomMargin — The bottom margin. The value is a number

(inches).

• copies — The number of copies. The value is a number.

• defaultColumnWidth — The default column width. The value is a

number (characters * 256).

• defaultRowHeight — The default row height. The value is a number

(1/20 of a point).

• displayZeroValues — Should zero-values be displayed? The value

is a boolean.

• fitHeight — The number of pages vertically that this sheet will be

printed into. The value is a number.

• fitToPages — Should printing be fit to pages? The value is a

boolean.

• fitWidth — The number of pages widthwise which this sheet should

be printed into. The value is a number.

Worksheets

345

• footerMargin — The margin for any page footer. The value is a

number (inches).

• headerMargin — The margin for any page headers. The value is a

number (inches).

• hidden — Should the worksheet be hidden? The value is a boolean.

• horizontalCentre — Should the worksheet be centered

horizontally? The value is a boolean.

• horizontalFreeze — The row at which the pane is frozen vertically.

The value is a number.

• horizontalPrintResolution — The horizontal print resolution. The

value is a number.

• leftMargin — The left margin. The value is a number (inches).

• normalMagnification — The normal magnification factor (not zoom

or scale factor). The value is a number (percentage).

• orientation — The paper orientation for printing this sheet. The

value is a string that can be either "landscape" or "portrait".

• pageBreakPreviewMagnification — The page break preview

magnification factor (not zoom or scale factors). The value is a

number (percentage).

• pageBreakPreviewMode — Show page in preview mode? The value

is a boolean.

• pageStart — The page number at which to commence printing. The

value is a number.

• paperSize — The paper size to be used when printing this sheet.

The value is a string that can be one of "a4", "a3", "letter", "legal"

etc (see jxl.format.PaperSize [http://jexcelapi.sourceforge.net/

resources/javadocs/current/docs/jxl/format/PaperSize.html]).

• password — The password for this sheet. The value is a string.

• passwordHash — The password hash - used only when copying

sheets. The value is a string.

• printGridLines — Should grid lines be printed? The value is a

boolean.

• printHeaders — Should headers be printed? The value is a boolean.

http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/format/PaperSize.html
http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/format/PaperSize.html
http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/format/PaperSize.html

Chapter 20. The Microsoft® Ex...

346

• sheetProtected — Should the sheet be protected (read-only)? The

value is a boolean.

• recalculateFormulasBeforeSave — Should the formulas be re-

calculated when the sheet is saved? The value is a boolean. Default

value is false.

• rightMargin — The right margin. The value is a number (inches).

• scaleFactor — The scale factor for this sheet to be used when

printing. The value is a number (percent).

• selected — Should the sheet be selected when the workbook

opens? The value is a boolean.

• showGridLines — Should gridlines be shown? The value is a

boolean.

• topMargin — The top margin. The value is a number (inches).

• verticalCentre — Center vertically? The value is a boolean.

• verticalFreeze — The row at which the pane is frozen vertically.

The value is a number.

• verticalPrintResolution — The vertical print resolution. The

value is a number.

• zoomFactor — The zoom factor. Do not confuse zoom factor (which

relates to the on screen view) with scale factor (which refers to the

scale factor when printing). The value is a number (percentage).

Child elemenents

• <e:printArea/> — Zero or more print area definitions (see

Section 20.11, “Print areas and titles”).

• <e:printTitle/> — Zero or more print title definitions (see

Section 20.11, “Print areas and titles”).

• <e:headerFooter/> — Zero or more header/footer definitions (see

Section 20.10, “Headers and footers”).

• Zero or more worksheet commands (see Section 20.12, “Worksheet

Commands”).

Facets

Columns

347

• header— Contents that will be placed at the top of the data block,

above the column headers (if any).

• footer— Contents that will be placed at the bottom of the data block,

below the column footers (if any).

 <e:workbook>

 <e:worksheet name="foo" startColumn="1" startRow="1">

 <e:column value="#{personList}" var="person">

 <f:facet name="header">

 <e:cell value="Last name"/>

 </f:facet>

 <e:cell value="#{person.lastName}"/>

 </e:column>

 </e:worksheet>

 <e:workbook>

defines a worksheet with the name "foo", starting at B2.

20.5. Columns

Columns are the children of worksheets and the parents of cells, images, formulas and hyperlinks.

They are the structure that control the iteration of the worksheet data. See Section 20.14.5,

“Column settings” for formatting.

<e:column> Attributes

• none

Child elemenents

• <e:cell/> — Zero or more cells (see Section 20.6, “Cells”).

• <e:formula/> — Zero or more formulas (see Section 20.7,

“Formulas”).

• <e:image/> — Zero or more images (see Section 20.8, “Images”).

• <e:hyperLink/> — Zero or more hyperlinks (see Section 20.9,

“Hyperlinks”).

Chapter 20. The Microsoft® Ex...

348

Facets

• header — This facet can/will contain one <e:cell> , <e:formula>

, <e:image> or <e:hyperLink> that will be used as header for the

column.

• footer — This facet can/will contain one <e:cell> , <e:formula>

, <e:image> or <e:hyperLink> that will be used as footer for the

column.

 <e:workbook>

 <e:worksheet value="#{personList}" var="person">

 <e:column>

 <f:facet name="header">

 <e:cell value="Last name"/>

 </f:facet>

 <e:cell value="#{person.lastName}"/>

 </e:column>

 </e:worksheet>

 <e:workbook>

defines a column with a header and an iterated output

20.6. Cells

Cells are nested within columns (for iteration) or inside worksheets (for direct placement using the

column and row attributes) and are responsible for outputting the value (usually through an EL-

expression involving the var-attribute of the datatable. See ???

<e:cell> Attributes

• column — The column where to place the cell. The default is the

internal counter. The value is a number. Note that the value is 0-

based.

• row — The row where to place the cell. The default is the internal

counter. The value is number. Note that the value is 0-based.

• value — The value to display. Usually an EL-expression referencing

the var-attribute of the containing datatable. The value is a string.

Validation

349

• comment — A comment to add to the cell. The value is a string.

• commentHeight — The height of the comment. The value is a number

(in pixels).

• commentWidth — A width of the comment. The value is a number

(in pixels).

Child elemenents

• Zero or more validation conditions (see Section 20.6.1, “Validation”).

Facets

• none

 <e:workbook>

 <e:worksheet>

 <e:column value="#{personList}" var="person">

 <f:facet name="header">

 <e:cell value="Last name"/>

 </f:facet>

 <e:cell value="#{person.lastName}"/>

 </e:column>

 </e:worksheet>

 </e:workbook>

defines a column with a header and an iterated output

20.6.1. Validation

Validations are nested inside cells or formulas. They add constrains for the cell data.

<e:numericValidation>Attributes

• value — The limit (or lower limit where applicable) of the validation.

The value is a number.

• value2 — The upper limit (where applicable) of the validation. The

value is a number.

Chapter 20. The Microsoft® Ex...

350

• condition — The validation condition. The value is a string.

• "equal" - requires the cell value to match the one defined in the

value-attribute

• "greater_equal" - requires the cell value to be greater than or equal

to the value defined in the value-attribute

• "less_equal" - requires the cell value to be less than or equal to the

value defined in the value-attribute

• "less_than" - requires the cell value to be less than the value

defined in the value-attribute

• "not_equal" - requires the cell value to not match the one defined

in the value-attribute

• "between" - requires the cell value to be between the values

defined in the value- and value2 attributes

• "not_between" - requires the cell value not to be between the

values defined in the value- and value2 attributes

Child elemenents

• none

Facets

• none

 <e:workbook>

 <e:worksheet>

 <e:column value="#{personList}" var="person">

 <e:cell value="#{person.age">

 <e:numericValidation condition="between" value="4"

 value2="18"/>

 </e:cell>

 </e:column>

 </e:worksheet>

 </e:workbook>

Validation

351

adds numeric validation to a cell specifying that the value must be between 4 and 18.

<e:rangeValidation> Attributes

• startColumn — The starting column of the range of values to validate

against. The value is a number.

• startRow — The starting row of the range of values to validate

against. The value is a number.

• endColumn — The ending column of the range of values to validate

against. The value is a number.

• endRow — The ending row of the range of values to validate against.

The value is a number.

Child elemenents

• none

Facets

• none

 <e:workbook>

 <e:worksheet>

 <e:column value="#{personList}" var="person">

 <e:cell value="#{person.position">

 <e:rangeValidation startColumn="0" startRow="0"

 endColumn="0" endRow="10"/>

 </e:cell>

 </e:column>

 </e:worksheet>

 </e:workbook>

adds validation to a cell specifying that the value must be in the values specified in range A1:A10.

<e:listValidation> Attributes

• none

Chapter 20. The Microsoft® Ex...

352

Child elemenents

• Zero or more list validation items.

Facets

• none

e:listValidation is a just a container for holding multiple e:listValidationItem tags.

<e:listValidationItem>Attributes

• value — A values to validate against.

Child elemenents

• none

Facets

• none

 <e:workbook>

 <e:worksheet>

 <e:column value="#{personList}" var="person">

 <e:cell value="#{person.position">

 <e:listValidation>

 <e:listValidationItem value="manager"/>

 <e:listValidationItem value="employee"/>

 </e:listValidation>

 </e:cell>

 </e:column>

 </e:worksheet>

 </e:workbook>

adds validation to a cell specifying that the value must be "manager" or "employee".

Format masks

353

20.6.2. Format masks

Format masks are defined in the mask attribute in cells or formulas. There are two types of format

masks, one for numbers and one for dates

20.6.2.1. Number masks

When encountering a format mask, first it is checked if it is in internal form, e.g "format1",

"accounting_float" and so on (see jxl.write.NumberFormats [http://jexcelapi.sourceforge.net/

resources/javadocs/current/docs/jxl/write/NumberFormats.html]).

if the mask is not in the list, it is treated as a custom mask (see java.text.DecimalFormat [http://

java.sun.com/javase/6/docs/api/java/text/DecimalFormat.html]). e.g "0.00" and automatically

converted to the closest match.

20.6.2.2. Date masks

When encountering a format mask, first it is checked if it is in internal form, e.g "format1",

"format2" and so on (see jxl.write.DateFormats [http://jexcelapi.sourceforge.net/resources/

javadocs/current/docs/jxl/write/DateFormats.html]).

if the mask is not in the list, it is treated as a custom mask (see java.text.DateFormat

[http://java.sun.com/javase/6/docs/api/java/text/DateFormat.html])., e.g "dd.MM.yyyy" and

automatically converted to the closest match.

20.7. Formulas

Formulas are nested within columns (for iteration) or inside worksheets (for direct placement

using the column and row attributes) and add calculations or functions to ranges of cells. They

are essentially cells, see Section 20.6, “Cells” for available attributes. Note that they can apply

templates and have own font definitions etc just as normal cells.

The formula of the cell is placed in the value -attribute as a normal the Microsoft® Excel®

spreadsheet application notation. Note that when doing cross-sheet formulas, the worksheets

must exist before referencing a formula against them. The value is a string.

 <e:workbook>

 <e:worksheet name="fooSheet">

 <e:cell column="0" row="0" value="1"/>

 </e:worksheet>

 <e:worksheet name="barSheet">

 <e:cell column="0" row="0" value="2"/>

 <e:formula column="0" row="1"

 value="fooSheet!A1+barSheet1!A1">

http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/write/NumberFormats.html
http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/write/NumberFormats.html
http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/write/NumberFormats.html
http://java.sun.com/javase/6/docs/api/java/text/DecimalFormat.html
http://java.sun.com/javase/6/docs/api/java/text/DecimalFormat.html
http://java.sun.com/javase/6/docs/api/java/text/DecimalFormat.html
http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/write/DateFormats.html
http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/write/DateFormats.html
http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/write/DateFormats.html
http://java.sun.com/javase/6/docs/api/java/text/DateFormat.html
http://java.sun.com/javase/6/docs/api/java/text/DateFormat.html

Chapter 20. The Microsoft® Ex...

354

 <e:font fontSize="12"/>

 </e:formula>

 </e:worksheet>

 </e:workbook>

defines an formula in B2 summing cells A1 in worksheets FooSheet and BarSheet

20.8. Images

Images are nested within columns (for iteration) or inside worksheets (for direct placement using

the startColumn/startRow and rowSpan/columnSpan attributes). The spans are optional and if

omitted, the image will be inserted without resizing.

<e:image> Attributes

• startColumn — The starting column of the image. The default is the

internal counter. The value is a number. Note that the value is 0-

based.

• startRow — The starting row of the image. The default is the internal

counter. The value is a number. Note that the value is 0-based.

• columnSpan — The column span of the image. The default is one

resulting in the default width of the image. The value is a float.

• rowSpan — The row span of the image. The default is the one

resulting in the default height of the image. The value is a float.

• URI — The URI to the image. The value is a string.

Child elemenents

• none

Facets

• none

 <e:workbook>

 <e:worksheet>

Hyperlinks

355

 <e:image startRow="0" startColumn="0" rowSpan="4"

 columnSpan="4" URI="http://foo.org/logo.jpg"/>

 </e:worksheet>

 </e:workbook>

defines an image in A1:E5 based on the given data

20.9. Hyperlinks

Hyperlinks are nested within columns (for iteration) or inside worksheets (for direct placement

using the startColumn/startRow and endColumn/endRow attributes). They add link navigation

to URIs

<e:hyperlink> Attributes

• startColumn — The starting column of the hyperlink. The default is

the internal counter. The value is a number. Note that the value is

0-based.

• startRow — The starting row of the hyperlink. The default is the

internal counter. The value is a number. Note that the value is 0-

based.

• endColumn — The ending column of the hyperlink. The default is the

internal counter. The value is a number. Note that the value is 0-

based.

• endRow — The ending row of the hyperlink. The default is the internal

counter. The value is a number. Note that the value is 0-based.

• URL — The URL to link. The value is a string.

• description — The description of the link. The value is a string.

Child elemenents

• none

Facets

• none

Chapter 20. The Microsoft® Ex...

356

 <e:workbook>

 <e:worksheet>

 <e:hyperLink startRow="0" startColumn="0" endRow="4"

 endColumn="4" URL="http://seamframework.org"

 description="The Seam Framework"/>

 </e:worksheet>

 </e:workbook>

defines a described hyperlink pointing to SFWK in the area A1:E5

20.10. Headers and footers

Headers and footers are children of worksheets and contain facets which in turn contains a string

with commands that are parsed.

<e:header> Attributes

• none

Child elemenents

• none

Facets

• left — The contents of the left header/footer part.

• center — The contents of the center header/footer part.

• right — The contents of the right header/footer part.

<e:footer> Attributes

• none

Child elemenents

• none

Facets

• left — The contents of the left header/footer part.

Headers and footers

357

• center — The contents of the center header/footer part.

• right — The contents of the right header/footer part.

The content of the facets is a string that can contain various #-delimited commands as follows:

#date# Inserts the current date

#page_number# Inserts the current page number

#time# Inserts the current time

#total_pages# Inserts the total page count

#worksheet_name# Inserts the worksheet name

#workbook_name# Inserts the workbook name

#bold# Toggles bold font, use another #bold# to turn it off

#italics# Toggles italic font, use another #italic# to turn it off

#underline# Toggles underlining, use another #underline# to turn it off

#double_underline# Toggles double underlining, use another #double_underline# to turn it

off

#outline# Toggles outlined font, use another #outline# to turn it off

#shadow# Toggles shadowed font, use another #shadow# to turn it off

#strikethrough# Toggles strikethrough font, use another #strikethrough# to turn it off

#subscript# Toggles subscripted font, use another #subscript# to turn it off

#superscript# Toggles superscript font, use another #superscript# to turn it off

#font_name# Sets font name, used like #font_name=Verdana"

#font_size# Sets font size, use like #font_size=12#

 <e:workbook>

 <e:worksheet>

 <e:header>

 <f:facet name="left">

 This document was made on #date# and has #total_pages# pages

 </f:facet>

 <f:facet name="right">

 #time#

 </f:facet>

 </e:header>

 <e:worksheet>

 </e:workbook>

Chapter 20. The Microsoft® Ex...

358

20.11. Print areas and titles

Print areas and titles childrens of worksheets and worksheet templates and provide... print areas

and titles.

<e:printArea> Attributes

• firstColumn — The column of the top-left corner of the area. The

parameter is a number. Note that the value is 0-based.

• firstRow — The row of the top-left corner of the area. The parameter

is a number. Note that the value is 0-based.

• lastColumn — The column of the bottom-right corner of the area.

The parameter is a number. Note that the value is 0-based.

• lastRow — The row of the bottom-right corner of the area. The

parameter is a number. Note that the value is 0-based.

Child elemenents

• none

Facets

• none

 <e:workbook>

 <e:worksheet>

 <e:printTitles firstRow="0" firstColumn="0"

 lastRow="0" lastColumn="9"/>

 <e:printArea firstRow="1" firstColumn="0"

 lastRow="9" lastColumn="9"/>

 </e:worksheet>

 </e:workbook>

defines a print title between A1:A10 and a print area between B2:J10.

Worksheet Commands

359

20.12. Worksheet Commands

Worksheet commands are children of workbooks and are usually executed only once.

20.12.1. Grouping

Provides grouping of columns and rows.

<e:groupRows> Attributes

• startRow — The row to start the grouping at. The value is a number.

Note that the value is 0-based.

• endRow — The row to end the grouping at. The value is a number.

Note that the value is 0-based.

• collapse — Should the grouping be collapsed initially? The value

is a boolean.

Child elements

• none

Facets

• none

<e:groupColumns> Attributes

• startColumn — The column to start the grouping at. The value is a

number. Note that the value is 0-based.

• endColumn — The column to end the grouping at. The value is a

number. Note that the value is 0-based.

• collapse — Should the grouping be collapsed initially? The value

is a boolean.

Child elements

• none

Facets

• none

Chapter 20. The Microsoft® Ex...

360

 <e:workbook>

 <e:worksheet>

 <e:groupRows startRow="4" endRow="9" collapse="true"/>

 <e:groupColumns startColumn="0" endColumn="9" collapse="false"/>

 </e:worksheet>

 </e:workbook>

groups rows 5 through 10 and columns 5 through 10 so that the rows are initially collapsed (but

not the columns).

20.12.2. Page breaks

Provides page breaks

<e:rowPageBreak> Attributes

• row — The row to break at. The value is a number. Note that the

value is 0-based.

Child elements

• none

Facets

• none

 <e:workbook>

 <e:worksheet>

 <e:rowPageBreak row="4"/>

 </e:worksheet>

 </e:workbook>

breaks page at row 5.

Merging

361

20.12.3. Merging

Provides cell merging

<e:mergeCells> Attributes

• startRow — The row to start the merging from. The value is a

number. Note that the value is 0-based.

• startColumn — The column to start the merging from. The value is

a number. Note that the value is 0-based.

• endRow — The row to end the merging at. The value is a number.

Note that the value is 0-based.

• endColumn — The column to end the merging at. The value is a

number. Note that the value is 0-based.

Child elements

• none

Facets

• none

 <e:workbook>

 <e:worksheet>

 <e:mergeCells startRow="0" startColumn="0" endRow="9" endColumn="9"/>

 </e:worksheet>

 </e:workbook>

merges the cells in the range A1:J10

20.13. Datatable exporter

If you prefer to export an existing JSF datatable instead of writing a

dedicated XHTML document, this can also be achieved easily by executing the

org.jboss.seam.excel.excelExporter.export component, passing in the id of the datatable

as an Seam EL parameter. Consider you have a data table

Chapter 20. The Microsoft® Ex...

362

 <h:form id="theForm">

 <h:dataTable id="theDataTable" value="#{personList.personList}"

 var="person">

 ...

 </h:dataTable>

 </h:form>

that you want to view as an Microsoft® Excel® spreadsheet. Place a

 <h:commandLink

 value="Export"

 action="#{excelExporter.export('theForm:theDataTable')}"

 />

in the form and you're done. You can of course execute the exporter with a button, s:link or other

preferred method. There are also plans for a dedicated export tag that can be placed inside the

datatable tag so you won't have to refer to the datatable by ID.

See Section 20.14, “Fonts and layout” for formatting.

20.14. Fonts and layout

Controlling how the output look is done with a combination of CSSish style attributes and tag

attributes. The most common ones (fonts, borders, backgrounds etc) are CSS and some more

general settings are in tag attributes.

The CSS attributes cascade down from parent to children and within one tag cascades over the

CSS classes referenced in the styleClass attributes and finally over the CSS attributes defined

in the style attribute. You can place them pretty much anywhere but e.g. placing a column width

setting in a cell nested within that column makes little sense.

If you have format masks or fonts that use special characters, such as spaces and semicolons,

you can escape the css string with '' characters like xls-format-mask:'$;$'

Stylesheet links

363

20.14.1. Stylesheet links

External stylesheets are references with the e:link tag. They are placed as children of the

workbook.

<e:link> Attributes

• URL — The URL to the stylesheet

Child elemenents

• none

Facets

• none

 <e:workbook>

 <e:link URL="/css/excel.css"/>

 </e:workbook>

References a stylesheet that can be found at /css/excel.css

20.14.2. Fonts

This group of XLS-CSS attributes define a font and its attributes

xls-font-family The name of the font. Make sure that it's one that is supported by your

system.

xls-font-size The font size. Use a plain number

xls-font-color The color of the font (see jxl.format.Colour [http://

jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/format/

Colour.html]).

xls-font-bold Should the font be bold? Valid values are "true" and "false"

xls-font-italic Should the font be italic? Valid values are "true" and "false"

xls-font-script-style The script style of the font (see jxl.format.ScriptStyle [http://

jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/format/

ScriptStyle.html]).

http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/format/Colour.html
http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/format/Colour.html
http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/format/Colour.html
http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/format/Colour.html
http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/format/ScriptStyle.html
http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/format/ScriptStyle.html
http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/format/ScriptStyle.html
http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/format/ScriptStyle.html

Chapter 20. The Microsoft® Ex...

364

xls-font-underline-

style

The underline style of the font (see

jxl.format.UnderlineStyle [http://jexcelapi.sourceforge.net/resources/

javadocs/current/docs/jxl/format/UnderlineStyle.html]).

xls-font-struck-out Should the font be struck out? Valid values are "true" and "false"

xls-font A shorthand notation for setting all the values. Place the font name

last and use tick marks for fonts with spaces in them, e.g. 'Times New

Roman'. Use "italic", "bold" and "struckout".

Example style="xls-font: red bold italic 22 Verdana"

20.14.3. Borders

This group of XLS-CSS attributes defines the borders of the cell

xls-border-left-color The border color of the left edge of the cell (see

jxl.format.Colour [http://jexcelapi.sourceforge.net/resources/javadocs/

current/docs/jxl/format/Colour.html]).

xls-border-left-line-

style

The border line style of the left edge of the cell (see

jxl.format.BorderLineStyle [http://jexcelapi.sourceforge.net/resources/

javadocs/current/docs/jxl/format/BorderLineStyle.html]).

xls-border-left A shorthand for setting line style and color of the left edge of the cell,

e.g style="xls-border-left: thick red"

xls-border-top-color The border color of the top edge of the cell (see

jxl.format.Colour [http://jexcelapi.sourceforge.net/resources/javadocs/

current/docs/jxl/format/Colour.html]).

xls-border-top-line-

style

The border line style of the top edge of the cell (see

jxl.format.BorderLineStyle [http://jexcelapi.sourceforge.net/resources/

javadocs/current/docs/jxl/format/BorderLineStyle.html]).

xls-border-top A shorthand for setting line style and color of the top edge of the cell,

e.g style="xls-border-top: red thick"

xls-border-right-color The border color of the right edge of the cell (see

jxl.format.Colour [http://jexcelapi.sourceforge.net/resources/javadocs/

current/docs/jxl/format/Colour.html]).

xls-border-right-line-

style

The border line style of the right edge of the cell (see

jxl.format.BorderLineStyle [http://jexcelapi.sourceforge.net/resources/

javadocs/current/docs/jxl/format/BorderLineStyle.html]).

xls-border-right A shorthand for setting line style and color of the right edge of the cell,

e.g style="xls-border-right: thick red"

xls-border-bottom-

color

The border color of the bottom edge of the cell (see

jxl.format.Colour [http://jexcelapi.sourceforge.net/resources/javadocs/

current/docs/jxl/format/Colour.html]).

http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/format/UnderlineStyle.html
http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/format/UnderlineStyle.html
http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/format/UnderlineStyle.html
http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/format/Colour.html
http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/format/Colour.html
http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/format/Colour.html
http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/format/BorderLineStyle.html
http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/format/BorderLineStyle.html
http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/format/BorderLineStyle.html
http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/format/Colour.html
http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/format/Colour.html
http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/format/Colour.html
http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/format/BorderLineStyle.html
http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/format/BorderLineStyle.html
http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/format/BorderLineStyle.html
http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/format/Colour.html
http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/format/Colour.html
http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/format/Colour.html
http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/format/BorderLineStyle.html
http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/format/BorderLineStyle.html
http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/format/BorderLineStyle.html
http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/format/Colour.html
http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/format/Colour.html
http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/format/Colour.html

Background

365

xls-border-bottom-

line-style

The border line style of the bottom edge of the cell (see

jxl.format.BorderLineStyle [http://jexcelapi.sourceforge.net/resources/

javadocs/current/docs/jxl/format/BorderLineStyle.html]).

xls-border-bottom A shorthand for setting line style and color of the bottom edge of the

cell, e.g style="xls-border-bottom: thick red"

xls-border A shorthand for setting line style and color for all edges of the cell, e.g

style="xls-border: thick red"

20.14.4. Background

This group of XLS-CSS attributes defines the background of the cell

xls-background-color The color of the background (see jxl.format.BorderLineStyle [http://

jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/format/

BorderLineStyle.html]).

xls-background-

pattern

The pattern of the background (see jxl.format.Pattern [http://

jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/format/

Pattern.html]).

xls-background A shorthand for setting the background color and pattern. See above

for rules.

20.14.5. Column settings

This group of XLS-CSS attributes defines the column widths etc.

xls-column-width The width of the column. Use largeish values (~5000) to start with. Used

by the e:column in xhtml mode.

xls-column-widths The width of the column. Use largeish values (~5000) to start with.

Used by the excel exporter, placed in the datatable style attribute. Use

numerical values or * to bypass a column.

Example style="xls-column-widths: 5000, 5000, *, 10000"

xls-column-autosize Should an attempt be made to autosize the column? Valid values are

"true" and "false".

xls-column-hidden Should the column be hidden? Valid values are "true" and "false".

xls-column-export Should the column be shown in export? Valid values are "true" and

"false". Default is "true".

20.14.6. Cell settings

This group of XLS-CSS attributes defines the cell properties

xls-alignment The alignment of the cell value (see

jxl.format.Alignment [http://jexcelapi.sourceforge.net/resources/

javadocs/current/docs/jxl/format/Alignment.html]).

http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/format/BorderLineStyle.html
http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/format/BorderLineStyle.html
http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/format/BorderLineStyle.html
http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/format/BorderLineStyle.html
http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/format/BorderLineStyle.html
http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/format/BorderLineStyle.html
http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/format/BorderLineStyle.html
http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/format/Pattern.html
http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/format/Pattern.html
http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/format/Pattern.html
http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/format/Pattern.html
http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/format/Alignment.html
http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/format/Alignment.html
http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/format/Alignment.html

Chapter 20. The Microsoft® Ex...

366

xls-force-type The forced type of the cell data. The value is a string that can be one

of "general", "number", "text", "date", "formula" or "bool". The type is

automatically detected so there is rarely any use for this attribute.

xls-format-mask The format mask of the cell, see Section 20.6.2, “Format masks”

xls-indentation The indentation of the cell value. The value is numeric.

xls-locked Should the cell be locked. Use with workbook level locked. Valid values

are "true" and "false".

xls-orientation The orientation of the cell value (see

jxl.format.Orientation [http://jexcelapi.sourceforge.net/resources/

javadocs/current/docs/jxl/format/Orientation.html]).

xls-vertical-alignment The vertical alignment of the cell value (see

jxl.format.VerticalAlignment [http://jexcelapi.sourceforge.net/

resources/javadocs/current/docs/jxl/format/VerticalAlignment.html]).

xls-shrink-to-fit Should the cell values shrink to fit? Valid values are "true" and "false".

xls-wrap Should the cell wrap with newlines? Valid values are "true" and "false".

20.14.7. The datatable exporter

The datatable exporter uses the same xls-css attributes as the xhtml document with the exception

that column widths are defined with the xls-column-widths attribute on the datatable (since the

UIColumn doesn't support the style or styleClass attributes).

20.14.8. Layout examples

TODO

20.14.9. Limitations

In the current version there are some known limitations regarding CSS support

• When using .xhtml documents, stylesheets must be referenced through the <e:link> tag

• When using the datatable exporter, CSS must be entered through style-attributes, external

stylesheets are not supported

20.15. Internationalization

There are only two resources bundle keys used, both for invalid data format and both take a

parameter (the invalid value)

• org.jboss.seam.excel.not_a_number — When a value thought to be a number could not be

treated as such

http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/format/Orientation.html
http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/format/Orientation.html
http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/format/Orientation.html
http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/format/VerticalAlignment.html
http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/format/VerticalAlignment.html
http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/format/VerticalAlignment.html

Links and further documentation

367

• org.jboss.seam.excel.not_a_date — When a value thought to be a date could not be treated

as such

20.16. Links and further documentation

The core of the the Microsoft® Excel® spreadsheet application functionality is based on

the excellent JExcelAPI library which can be found on http://jexcelapi.sourceforge.net/ [http://

jexcelapi.sourceforge.net] and most features and possible limitations are inherited from here.

If you use the forum or mailing list, please remember that they don't know anything about Seam

and the usage of their library, any issues are best reported in the JBoss Seam JIRA under the

"excel" module.

http://jexcelapi.sourceforge.net
http://jexcelapi.sourceforge.net
http://jexcelapi.sourceforge.net

368

Chapter 21.

369

RSS support
It is now easy to integrate RSS feeds in Seam through the YARFRAW [http://

yarfraw.sourceforge.net/] library. The RSS support is currently in the state of "tech preview" in

the current release.

21.1. Installation

To enable RSS support, include the jboss-seam-rss.jar in your applications WEB-INF/lib

directory. The RSS library also has some dependent libraries that should be placed in the same

directory. See Section 39.2.6, “Seam RSS support” for a list of libraries to include.

The Seam RSS support requires the use of Facelets as the view technology.

21.2. Generating feeds

The examples/rss project contains an example of RSS support in action. It demonstrates proper

deployment packaging, and it shows the exposed functionality.

A feed is a xhtml-page that consist of a feed and a list of nested entry items.

 <r:feed

 xmlns="http://www.w3.org/1999/xhtml"

 xmlns:ui="http://java.sun.com/jsf/facelets"

 xmlns:r="http://jboss.org/schema/seam/rss"

 title="#{rss.feed.title}"

 uid="#{rss.feed.uid}"

 subtitle="#{rss.feed.subtitle}"

 updated="#{rss.feed.updated}"

 link="#{rss.feed.link}">

 <ui:repeat value="#{rss.feed.entries}" var="entry">

 <r:entry

 uid="#{entry.uid}"

 title="#{entry.title}"

 link="#{entry.link}"

 author="#{entry.author}"

 summary="#{entry.summary}"

 published="#{entry.published}"

 updated="#{entry.updated}"

 />

 </ui:repeat>

 </r:feed>

http://yarfraw.sourceforge.net/
http://yarfraw.sourceforge.net/
http://yarfraw.sourceforge.net/

Chapter 21. RSS support

370

21.3. Feeds

Feeds are the top-level entities that describe the properties of the information source. It contains

zero or more nested entries.

<r:feed> Attributes

• uid — An optional unique feed id. The value is a string.

• title — The title of the feed. The value is a string.

• subtitle — The subtitle of the feed. The value is a string.

• updated — When was the feed updated? The value is a date.

• link — The link to the source of the information. The value is a string.

• feedFormat — The feed format. The value is a string and defaults to

ATOM1. Valid values are RSS10, RSS20, ATOM03 and ATOM10.

Child elements

• Zero or more feed entries

Facets

• none

21.4. Entries

Entries are the "headlines" in the feed.

<r:feed> Attributes

• uid — An optional unique entry id. The value is a string.

• title — The title of the entry. The value is a string.

• link — A link to the item. The value is a string.

• author — The author of the story. The value is a string.

• summary — The body of the story. The value is a string.

Links and further documentation

371

• textFormat — The format of the body and title of the story. The value

is a string and valid values are "text" and "html". Defaults to "html".

• published — When was the story first published? The value is a

date.

• updated — When was the story updated? The value is a date.

Child elements

• none

Facets

• none

21.5. Links and further documentation

The core of the RSs functionality is based on the YARFRAW library which can be found on http://

yarfraw.sourceforge.net/ and most features and possible limitations are inherited from here.

For details on the ATOM 1.0 format, have a look at the specs [http://atompub.org/2005/07/11/

draft-ietf-atompub-format-10.html]

For details on the RSS 2.0 format, have a look at the specs [http://cyber.law.harvard.edu/rss/

rss.html]

http://yarfraw.sourceforge.net/
http://yarfraw.sourceforge.net/
http://atompub.org/2005/07/11/draft-ietf-atompub-format-10.html
http://atompub.org/2005/07/11/draft-ietf-atompub-format-10.html
http://atompub.org/2005/07/11/draft-ietf-atompub-format-10.html
http://cyber.law.harvard.edu/rss/rss.html
http://cyber.law.harvard.edu/rss/rss.html
http://cyber.law.harvard.edu/rss/rss.html

372

Chapter 22.

373

Email
Seam now includes an optional components for templating and sending emails.

Email support is provided by jboss-seam-mail.jar. This JAR contains the mail JSF controls,

which are used to construct emails, and the mailSession manager component.

The examples/mail project contains an example of the email support in action. It demonstrates

proper packaging, and it contains a number of example that demonstrate the key features currently

supported.

You can also test your mail's using Seam's integration testing environment. See Section 38.2.3.4,

“Integration Testing Seam Mail”.

22.1. Creating a message

You don't need to learn a whole new templating language to use Seam Mail — an email is just

facelet!

<m:message xmlns="http://www.w3.org/1999/xhtml"

 xmlns:m="http://jboss.org/schema/seam/mail"

 xmlns:h="http://java.sun.com/jsf/html">

 <m:from name="Peter" address="peter@example.com" />

 <m:to name="#{person.firstname} #{person.lastname}">#{person.address}</m:to>

 <m:subject>Try out Seam!</m:subject>

 <m:body>

 <p><h:outputText value="Dear #{person.firstname}" />,</p>

 <p>You can try out Seam by visiting

 http://labs.jboss.com/jbossseam.</p>

 <p>Regards,</p>

 <p>Pete</p>

 </m:body>

</m:message>

The <m:message> tag wraps the whole message, and tells Seam to start rendering an email. Inside

the <m:message> tag we use an <m:from> tag to set who the message is from, a <m:to> tag to

specify a sender (notice how we use EL as we would in a normal facelet), and a <m:subject> tag.

The <m:body> tag wraps the body of the email. You can use regular HTML tags inside the body

as well as JSF components.

Chapter 22. Email

374

So, now you have your email template, how do you go about sending it? Well, at the end of

rendering the m:message the mailSession is called to send the email, so all you have to do is

ask Seam to render the view:

@In(create=true)

private Renderer renderer;

public void send() {

 try {

 renderer.render("/simple.xhtml");

 facesMessages.add("Email sent successfully");

 }

 catch (Exception e) {

 facesMessages.add("Email sending failed: " + e.getMessage());

 }

}

If, for example, you entered an invalid email address, then an exception would be thrown, which

is caught and then displayed to the user.

22.1.1. Attachments

Seam makes it easy to attach files to an email. It supports most of the standard java types used

when working with files.

If you wanted to email the jboss-seam-mail.jar:

<m:attachment value="/WEB-INF/lib/jboss-seam-mail.jar"/>

Seam will load the file from the classpath, and attach it to the email. By default it would be attached

as jboss-seam-mail.jar; if you wanted it to have another name you would just add the fileName

attribute:

<m:attachment value="/WEB-INF/lib/jboss-seam-mail.jar" fileName="this-is-so-cool.jar"/>

You could also attach a java.io.File, a java.net.URL:

<m:attachment value="#{numbers}"/>

Or a byte[] or a java.io.InputStream:

Attachments

375

<m:attachment value="#{person.photo}" contentType="image/png"/>

You'll notice that for a byte[] and a java.io.InputStream you need to specify the MIME type

of the attachment (as that information is not carried as part of the file).

And it gets even better, you can attach a Seam generated PDF, or any standard JSF view, just

by wrapping a <m:attachment> around the normal tags you would use:

<m:attachment fileName="tiny.pdf">

 <p:document>

 A very tiny PDF

 </p:document>

</m:attachment>

If you had a set of files you wanted to attach (for example a set of pictures loaded from a database)

you can just use a <ui:repeat>:

<ui:repeat value="#{people}" var="person">

 <m:attachment value="#{person.photo}" contentType="image/jpeg"

 fileName="#{person.firstname}_#{person.lastname}.jpg"/>

</ui:repeat>

And if you want to display an attached image inline:

<m:attachment

 value="#{person.photo}"

 contentType="image/jpeg"

 fileName="#{person.firstname}_#{person.lastname}.jpg"

 status="personPhoto"

 disposition="inline" />

You may be wondering what cid:#{...} does. Well, the IETF specified that by putting this as

the src for your image, the attachments will be looked at when trying to locate the image (the

Content-ID's must match) — magic!

You must declare the attachment before trying to access the status object.

Chapter 22. Email

376

22.1.2. HTML/Text alternative part

Whilst most mail readers nowadays support HTML, some don't, so you can add a plain text

alternative to your email body:

<m:body>

 <f:facet name="alternative">Sorry, your email reader can't show our fancy email,

please go to http://labs.jboss.com/jbossseam to explore Seam.</f:facet>

</m:body>

22.1.3. Multiple recipients

Often you'll want to send an email to a group of recipients (for example your users). All of the

recipient mail tags can be placed inside a <ui:repeat>:

<ui:repeat value="#{allUsers} var="user">

 <m:to name="#{user.firstname} #{user.lastname}" address="#{user.emailAddress}" />

</ui:repeat>

22.1.4. Multiple messages

Sometimes, however, you need to send a slightly different message to each recipient (e.g. a

password reset). The best way to do this is to place the whole message inside a <ui:repeat>:

<ui:repeat value="#{people}" var="p">

 <m:message>

 <m:from name="#{person.firstname} #{person.lastname}">#{person.address}</m:from>

 <m:to name="#{p.firstname}">#{p.address}</m:to>

 ...

 </m:message>

</ui:repeat>

22.1.5. Templating

The mail templating example shows that facelets templating just works with the Seam mail tags.

Our template.xhtml contains:

<m:message>

 <m:from name="Seam" address="do-not-reply@jboss.com" />

Internationalisation

377

 <m:to name="#{person.firstname} #{person.lastname}">#{person.address}</m:to>

 <m:subject>#{subject}</m:subject>

 <m:body>

 <html>

 <body>

 <ui:insert name="body">This is the default body, specified by the template.</ui:insert>

 </body>

 </html>

 </m:body>

</m:message>

Our templating.xhtml contains:

<ui:param name="subject" value="Templating with Seam Mail"/>

<ui:define name="body">

 <p>This example demonstrates that you can easily use <i>facelets templating</i> in email!</p>

</ui:define>

You can also use facelets source tags in your email, but you must place them in a jar in WEB-INF/

lib - referencing the .taglib.xml from web.xml isn't reliable when using Seam Mail (if you send

your mail asynchronously Seam Mail doesn't have access to the full JSF or Servlet context, and

so doesn't know about web.xml configuration parameters).

If you do need more configure Facelets or JSF when sending mail, you'll need to override the

Renderer component and do the configuration programmatically - only for advanced users!

22.1.6. Internationalisation

Seam supports sending internationalised messages. By default, the encoding provided by JSF is

used, but this can be overridden on the template:

<m:message charset="UTF-8">

 ...

</m:message>

The body, subject and recipient (and from) name will be encoded. You'll need to make sure facelets

uses the correct charset for parsing your pages by setting encoding of the template:

<?xml version="1.0" encoding="UTF-8"?>

Chapter 22. Email

378

22.1.7. Other Headers

Sometimes you'll want to add other headers to your email. Seam provides support for some (see

Section 22.4, “Tags”). For example, we can set the importance of the email, and ask for a read

receipt:

<m:message xmlns:m="http://jboss.org/schema/seam/mail"

 importance="low"

 requestReadReceipt="true"/>

Otherwise you can add any header to the message using the <m:header> tag:

<m:header name="X-Sent-From" value="JBoss Seam"/>

22.2. Receiving emails

Warning
Please be reminded that this section is not updated for JBoss AS 7.x!

If you are using EJB then you can use a MDB (Message Driven Bean) to receive email. JBoss

provides a JCA adaptor — mail-ra.rar — but the version distributed with JBoss AS 4.x has

a number of limitations (and isn't bundled in some versions) therefore we recommend using the

mail-ra.rar distributed with Seam (it's in the extras/ directory in the Seam bundle). mail-

ra.rar should be placed in $JBOSS_HOME/server/default/deploy; if the version of JBoss AS

you use already has this file, replace it.

Note

JBoss AS 5.x and newer has mail-ra.rar applied the patches, so there is no need

to copy the mail-ra.rar from Seam distribution.

You can configure it like this:

@MessageDriven(activationConfig={

 @ActivationConfigProperty(propertyName="mailServer", propertyValue="localhost"),

 @ActivationConfigProperty(propertyName="mailFolder", propertyValue="INBOX"),

 @ActivationConfigProperty(propertyName="storeProtocol", propertyValue="pop3"),

 @ActivationConfigProperty(propertyName="userName", propertyValue="seam"),

 @ActivationConfigProperty(propertyName="password", propertyValue="seam")

Configuration

379

})

@ResourceAdapter("mail-ra.rar")

@Name("mailListener")

public class MailListenerMDB implements MailListener {

 @In(create=true)

 private OrderProcessor orderProcessor;

 public void onMessage(Message message) {

 // Process the message

 orderProcessor.process(message.getSubject());

 }

}

Each message received will cause onMessage(Message message) to be called. Most Seam

annotations will work inside a MDB but you must not access the persistence context.

You can find more information on mail-ra.rar at http://www.jboss.org/community/wiki/

InboundJavaMail.

If you aren't using JBoss AS you can still use mail-ra.rar or you may find your application server

includes a similar adapter.

22.3. Configuration

To include Email support in your application, include jboss-seam-mail.jar in your WEB-INF/

lib directory. If you are using JBoss AS there is no further configuration needed to use Seam's

email support. Otherwise you need to make sure you have the JavaMail API, an implementation

of the JavaMail API present (the API and impl used in JBoss AS are distributed with seam as

lib/mail.jar), and a copy of the Java Activation Framework (distributed with Seam as lib/

activation.jar.

Note

The Seam Mail module requires the use of Facelets as the view technology. This is

the default View technology in JSF 2. Additionally, it requires the use of the jboss-

seam-ui module.

The mailSession component uses JavaMail to talk to a 'real' SMTP server.

22.3.1. mailSession

A JavaMail Session may be available via a JNDI lookup if you are working in an JEE environment

or you can use a Seam configured Session.

http://www.jboss.org/community/wiki/InboundJavaMail
http://www.jboss.org/community/wiki/InboundJavaMail

Chapter 22. Email

380

The mailSession component's properties are described in more detail in Section 33.9, “Mail-

related components”.

22.3.1.1. JNDI lookup in JBoss AS

The JBoss AS 7 Mail service is defined in standalone/configuration/standalone.xml

file. It configures a JavaMail session binding into JNDI. The default service configuration

will need altering for your network. Full article how to configure Mail system in

JBoss AS 7 [http://www.mastertheboss.com/jboss-application-server/379-jboss-mail-service-

configuration.html] describes the service in more detail.

<components xmlns="http://jboss.org/schema/seam/components"

 xmlns:core="http://jboss.org/schema/seam/core"

 xmlns:mail="http://jboss.org/schema/seam/mail">

 <mail:mail-session session-jndi-name="java:jboss/mail/Default"/>

</components>

Here we tell Seam to get the mail session bound to java:jboss/mail/Default from JNDI.

22.3.1.2. Seam configured Session

A mail session can be configured via components.xml. Here we tell Seam to use

smtp.example.com as the smtp server:

<components xmlns="http://jboss.org/schema/seam/components"

 xmlns:core="http://jboss.org/schema/seam/core"

 xmlns:mail="http://jboss.org/schema/seam/mail">

 <mail:mail-session host="smtp.example.com"/>

</components>

22.4. Tags

Emails are generated using tags in the http://jboss.org/schema/seam/mail namespace.

Documents should always have the message tag at the root of the message. The message tag

prepares Seam to generate an email.

The standard templating tags of facelets can be used as normal. Inside the body you can use

any JSF tag; if it requires access to external resources (stylesheets, javascript) then be sure to

set the urlBase.

http://www.mastertheboss.com/jboss-application-server/379-jboss-mail-service-configuration.html
http://www.mastertheboss.com/jboss-application-server/379-jboss-mail-service-configuration.html
http://www.mastertheboss.com/jboss-application-server/379-jboss-mail-service-configuration.html
http://www.mastertheboss.com/jboss-application-server/379-jboss-mail-service-configuration.html

Tags

381

<m:message>

Root tag of a mail message

• importance — low, normal or high. By default normal, this sets the importance of the mail

message.

• precedence — sets the precedence of the message (e.g. bulk).

• requestReadReceipt — by default false, if set, a read receipt request will be will be added,

with the read receipt being sent to the From: address.

• urlBase — If set, the value is prepended to the requestContextPath allowing you to use

components such as <h:graphicImage> in your emails.

• messageId — Sets the Message-ID explicitly

<m:from>

Set's the From: address for the email. You can only have one of these per email.

• name — the name the email should come from.

• address — the email address the email should come from.

<m:replyTo>

Set's the Reply-to: address for the email. You can only have one of these per email.

• address — the email address the email should come from.

<m:to>

Add a recipient to the email. Use multiple <m:to> tags for multiple recipients. This tag can be

safely placed inside a repeat tag such as <ui:repeat>.

• name — the name of the recipient.

• address — the email address of the recipient.

<m:cc>

Add a cc recipient to the email. Use multiple <m:cc> tags for multiple ccs. This tag can be

safely placed inside a iterator tag such as <ui:repeat>.

• name — the name of the recipient.

• address — the email address of the recipient.

<m:bcc>

Add a bcc recipient to the email. Use multiple <m:bcc> tags for multiple bccs. This tag can be

safely placed inside a repeat tag such as <ui:repeat>.

• name — the name of the recipient.

• address — the email address of the recipient.

Chapter 22. Email

382

<m:header>

Add a header to the email (e.g. X-Sent-From: JBoss Seam)

• name — The name of the header to add (e.g. X-Sent-From).

• value — The value of the header to add (e.g. JBoss Seam).

<m:attachment>

Add an attachment to the email.

• value — The file to attach:

• String — A String is interpreted as a path to file within the classpath

• java.io.File — An EL expression can reference a File object

• java.net.URL — An EL expression can reference a URL object

• java.io.InputStream — An EL expression can reference an InputStream. In this case

both a fileName and a contentType must be specified.

• byte[] — An EL expression can reference an byte[]. In this case both a fileName and

a contentType must be specified.

If the value attribute is ommitted:

• If this tag contains a <p:document> tag, the document described will be generated and

attached to the email. A fileName should be specified.

• If this tag contains other JSF tags a HTML document will be generated from them and

attached to the email. A fileName should be specified.

• fileName — Specify the file name to use for the attached file.

• contentType — Specify the MIME type of the attached file

<m:subject>

Set's the subject for the email.

<m:body>

Set's the body for the email. Supports an alternative facet which, if an HTML email is

generated can contain alternative text for a mail reader which doesn't support html.

• type — If set to plain then a plain text email will be generated otherwise an HTML email

is generated.

Chapter 23.

383

Asynchronicity and messaging
Seam makes it very easy to perform work asynchronously from a web request. When most people

think of asynchronicity in Java EE, they think of using JMS. This is certainly one way to approach

the problem in Seam, and is the right way when you have strict and well-defined quality of service

requirements. Seam makes it easy to send and receive JMS messages using Seam components.

But for cases when you are simply want to use a worker thread, JMS is overkill. Seam layers a

simple asynchronous method and event facility over your choice of dispatchers:

• java.util.concurrent.ScheduledThreadPoolExecutor (by default)

• the EJB timer service (for EJB 3.0 environments)

• Quartz

This chapter first covers how to leverage Seam to simplify JMS and then explains how to use the

simpler asynchronous method and event facility.

23.1. Messaging in Seam

Seam makes it easy to send and receive JMS messages to and from Seam components. Both

the message publisher and the message receiver can be Seam components.

You'll first learn to setup a queue and topic message publisher and then look at an example that

illustrates how to perform the message exchange.

23.1.1. Configuration

To configure Seam's infrastructure for sending JMS messages, you need to tell Seam about

any topics and queues you want to send messages to, and also tell Seam where to find the

QueueConnectionFactory and/or TopicConnectionFactory.

Seam defaults to using UIL2ConnectionFactory which is the usual connection

factory for use with JBossMQ. If you are using some other JMS provider, you

need to set one or both of queueConnection.queueConnectionFactoryJndiName and

topicConnection.topicConnectionFactoryJndiName in seam.properties, web.xml or

components.xml.

You also need to list topics and queues in components.xml to install Seam managed

TopicPublishers and QueueSenders:

<jms:managed-topic-publisher name="stockTickerPublisher"

 auto-create="true"

 topic-jndi-name="topic/stockTickerTopic"/>

<jms:managed-queue-sender name="paymentQueueSender"

Chapter 23. Asynchronicity an...

384

 auto-create="true"

 queue-jndi-name="queue/paymentQueue"/>

23.1.2. Sending messages

Now, you can inject a JMS TopicPublisher and TopicSession into any Seam component to

publish an object to a topic:

@Name("stockPriceChangeNotifier")

public class StockPriceChangeNotifier

{

 @In private TopicPublisher stockTickerPublisher;

 @In private TopicSession topicSession;

 public void publish(StockPrice price)

 {

 try

 {

 stockTickerPublisher.publish(topicSession.createObjectMessage(price));

 }

 catch (Exception ex)

 {

 throw new RuntimeException(ex);

 }

 }

}

or to a queue:

@Name("paymentDispatcher")

public class PaymentDispatcher

{

 @In private QueueSender paymentQueueSender;

 @In private QueueSession queueSession;

 public void publish(Payment payment)

 {

 try

 {

 paymentQueueSender.send(queueSession.createObjectMessage(payment));

Receiving messages using a message-driven bean

385

 }

 catch (Exception ex)

 {

 throw new RuntimeException(ex);

 }

 }

}

23.1.3. Receiving messages using a message-driven bean

You can process messages using any EJB 3 message-driven bean. The MDB can even be

a Seam component, in which case it's possible to inject other event- and application- scoped

Seam components. Here's an example of the payment receiver, which delegates to a payment

processor.

Note

You'll likely need to set the create attribute on the @In annotation to true (i.e. create

= true) to have Seam create an instance of the component being injected. This

isn't necessary if the component supports auto-creation (e.g., it's annotated with

@Autocreate).

First, create an MDB to receive the message.

@MessageDriven(activationConfig = {

 @ActivationConfigProperty(

 propertyName = "destinationType",

 propertyValue = "javax.jms.Queue"

),

 @ActivationConfigProperty(

 propertyName = "destination",

 propertyValue = "queue/paymentQueue"

)

})

@Name("paymentReceiver")

public class PaymentReceiver implements MessageListener

{

 @Logger private Log log;

 @In(create = true) private PaymentProcessor paymentProcessor;

 @Override

Chapter 23. Asynchronicity an...

386

 public void onMessage(Message message)

 {

 try

 {

 paymentProcessor.processPayment((Payment) ((ObjectMessage) message).getObject());

 }

 catch (JMSException ex)

 {

 log.error("Message payload did not contain a Payment object", ex);

 }

 }

}

Then, implement the Seam component to which the receiver delegates processing of the payment.

@Name("paymentProcessor")

public class PaymentProcessor

{

 @In private EntityManager entityManager;

 public void processPayment(Payment payment)

 {

 // perhaps do something more fancy

 entityManager.persist(payment);

 }

}

If you are going to be performing transaction operations in your MDB, you should ensure that you

are working with an XA datasource. Otherwise, it won't be possible to rollback database changes

if the database transaction commits and a subsequent operation being performed by the message

fails.

23.1.4. Receiving messages in the client

Seam Remoting lets you subscribe to a JMS topic from client-side JavaScript. This is described

in Chapter 26, Remoting.

23.2. Asynchronicity

Asynchronous events and method calls have the same quality of service expectations

as the underlying dispatcher mechanism. The default dispatcher, based upon a

ScheduledThreadPoolExecutor performs efficiently but provides no support for persistent

Asynchronous methods

387

asynchronous tasks, and hence no guarantee that a task will ever actually be executed. If you're

working in an environment that supports EJB 3.0, and add the following line to components.xml:

<async:timer-service-dispatcher/>

then your asynchronous tasks will be processed by the container's EJB timer service. If you're not

familiar with the Timer service, don't worry, you don't need to interact with it directly if you want

to use asynchronous methods in Seam. The important thing to know is that any good EJB 3.0

implementation will have the option of using persistent timers, which gives some guarantee that

the tasks will eventually be processed.

Another alternative is to use the open source Quartz library to manage asynchronous method.

You need to bundle the Quartz library JAR (found in the lib directory) in your EAR and declare

it as a Java module in application.xml. The Quartz dispatcher may be configured by adding

a Quartz property file to the classpath. It must be named seam.quartz.properties. In addition,

you need to add the following line to components.xml to install the Quartz dispatcher.

<async:quartz-dispatcher/>

The Seam API for the default ScheduledThreadPoolExecutor, the EJB3 Timer, and the

Quartz Scheduler are largely the same. They can just "plug and play" by adding a line to

components.xml.

23.2.1. Asynchronous methods

In simplest form, an asynchronous call just lets a method call be processed asynchronously (in a

different thread) from the caller. We usually use an asynchronous call when we want to return an

immediate response to the client, and let some expensive work be processed in the background.

This pattern works very well in applications which use AJAX, where the client can automatically

poll the server for the result of the work.

For EJB components, we annotate the local interface to specify that a method is processed

asynchronously.

@Local

public interface PaymentHandler

{

 @Asynchronous

 public void processPayment(Payment payment);

}

(For JavaBean components we have to annotate the component implementation class.)

Chapter 23. Asynchronicity an...

388

The use of asynchronicity is transparent to the bean class:

@Stateless

@Name("paymentHandler")

public class PaymentHandlerBean implements PaymentHandler

{

 public void processPayment(Payment payment)

 {

 //do some work!

 }

}

And also transparent to the client:

@Stateful

@Name("paymentAction")

public class CreatePaymentAction

{

 @In(create=true) PaymentHandler paymentHandler;

 @In Bill bill;

 public String pay()

 {

 paymentHandler.processPayment(new Payment(bill));

 return "success";

 }

}

Note

Please distinguish between EJB 3.1 annotation

javax.ejb.Asynchronous [http://java.sun.com/developer/technicalArticles/

JavaEE/JavaEE6Overview_Part3.html#asynejb] and Seam annotation

org.jboss.seam.annotations.async.Asynchronous. While first is designated

for session beans only, the latter works in non-EJB environment too.

The asynchronous method is processed in a completely new event context and does not have

access to the session or conversation context state of the caller. However, the business process

context is propagated.

http://java.sun.com/developer/technicalArticles/JavaEE/JavaEE6Overview_Part3.html#asynejb
http://java.sun.com/developer/technicalArticles/JavaEE/JavaEE6Overview_Part3.html#asynejb
http://java.sun.com/developer/technicalArticles/JavaEE/JavaEE6Overview_Part3.html#asynejb
http://java.sun.com/developer/technicalArticles/JavaEE/JavaEE6Overview_Part3.html#asynejb

Asynchronous methods

389

Asynchronous method calls may be scheduled for later execution using the @Duration,

@Expiration and @IntervalDuration annotations.

@Local

public interface PaymentHandler

{

 @Asynchronous

 public void processScheduledPayment(Payment payment, @Expiration Date date);

 @Asynchronous

 public void processRecurringPayment(Payment payment,

 @Expiration Date date,

 @IntervalDuration Long interval)'

}

@Stateful

@Name("paymentAction")

public class CreatePaymentAction

{

 @In(create=true) PaymentHandler paymentHandler;

 @In Bill bill;

 public String schedulePayment()

 {

 paymentHandler.processScheduledPayment(new Payment(bill), bill.getDueDate());

 return "success";

 }

 public String scheduleRecurringPayment()

 {

 paymentHandler.processRecurringPayment(new Payment(bill), bill.getDueDate(),

 ONE_MONTH);

 return "success";

 }

}

Both client and server may access the Timer object associated with the invocation. The Timer

object shown below is the EJB3 timer when you use the EJB3 dispatcher. For the default

ScheduledThreadPoolExecutor, the returned object is Future from the JDK. For the Quartz

dispatcher, it returns QuartzTriggerHandle, which we will discuss in the next section.

Chapter 23. Asynchronicity an...

390

@Local

public interface PaymentHandler

{

 @Asynchronous

 public Timer processScheduledPayment(Payment payment, @Expiration Date date);

}

@Stateless

@Name("paymentHandler")

public class PaymentHandlerBean implements PaymentHandler

{

 @In Timer timer;

 public Timer processScheduledPayment(Payment payment, @Expiration Date date)

 {

 //do some work!

 return timer; //note that return value is completely ignored

 }

}

@Stateful

@Name("paymentAction")

public class CreatePaymentAction

{

 @In(create=true) PaymentHandler paymentHandler;

 @In Bill bill;

 public String schedulePayment()

 {

 Timer timer = paymentHandler.processScheduledPayment(new Payment(bill),

 bill.getDueDate());

 return "success";

 }

}

Asynchronous methods cannot return any other value to the caller.

Asynchronous methods with the Quartz Dispatcher

391

23.2.2. Asynchronous methods with the Quartz Dispatcher

The Quartz dispatcher (see earlier on how to install it) allows you to use the @Asynchronous,

@Duration, @Expiration, and @IntervalDuration annotations as above. But it has some

powerful additional features. The Quartz dispatcher supports three new annotations.

The @FinalExpiration annotation specifies an end date for the recurring task. Note that you can

inject the QuartzTriggerHandle.

 @In QuartzTriggerHandle timer;

 // Defines the method in the "processor" component

 @Asynchronous

 public QuartzTriggerHandle schedulePayment(@Expiration Date when,

 @IntervalDuration Long interval,

 @FinalExpiration Date endDate,

 Payment payment)

 {

 // do the repeating or long running task until endDate

 }

 // Schedule the task in the business logic processing code

 // Starts now, repeats every hour, and ends on May 10th, 2010

 Calendar cal = Calendar.getInstance ();

 cal.set (2010, Calendar.MAY, 10);

 processor.schedulePayment(new Date(), 60*60*1000, cal.getTime(), payment);

Note that the method returns the QuartzTriggerHandle object, which you can use later to stop,

pause, and resume the scheduler. The QuartzTriggerHandle object is serializable, so you can

save it into the database if you need to keep it around for extended period of time.

QuartzTriggerHandle handle =

 processor.schedulePayment(payment.getPaymentDate(),

 payment.getPaymentCron(),

 payment);

 payment.setQuartzTriggerHandle(handle);

 // Save payment to DB

 // later ...

Chapter 23. Asynchronicity an...

392

 // Retrieve payment from DB

 // Cancel the remaining scheduled tasks

 payment.getQuartzTriggerHandle().cancel();

The @IntervalCron annotation supports Unix cron job syntax for task scheduling. For instance,

the following asynchronous method runs at 2:10pm and at 2:44pm every Wednesday in the month

of March.

 // Define the method

 @Asynchronous

 public QuartzTriggerHandle schedulePayment(@Expiration Date when,

 @IntervalCron String cron,

 Payment payment)

 {

 // do the repeating or long running task

 }

 // Schedule the task in the business logic processing code

 QuartzTriggerHandle handle =

 processor.schedulePayment(new Date(), "0 10,44 14 ? 3 WED", payment);

The @IntervalBusinessDay annotation supports invocation on the "nth Business Day" scenario.

For instance, the following asynchronous method runs at 14:00 on the 2nd business day of each

month. By default, it excludes all weekends and US federal holidays until 2010 from the business

days.

 // Define the method

 @Asynchronous

 public QuartzTriggerHandle schedulePayment(@Expiration Date when,

 @IntervalBusinessDay NthBusinessDay nth,

 Payment payment)

 {

 // do the repeating or long running task

 }

 // Schedule the task in the business logic processing code

Asynchronous events

393

 QuartzTriggerHandle handle =

 processor.schedulePayment(new Date(),

 new NthBusinessDay(2, "14:00", WEEKLY), payment);

The NthBusinessDay object contains the configuration of the invocation trigger. You can specify

more holidays (e.g., company holidays, non-US holidays etc.) via the additionalHolidays

property.

public class NthBusinessDay implements Serializable

{

 int n;

 String fireAtTime;

 List <Date> additionalHolidays;

 BusinessDayIntervalType interval;

 boolean excludeWeekends;

 boolean excludeUsFederalHolidays;

 public enum BusinessDayIntervalType { WEEKLY, MONTHLY, YEARLY }

 public NthBusinessDay ()

 {

 n = 1;

 fireAtTime = "12:00";

 additionalHolidays = new ArrayList <Date> ();

 interval = BusinessDayIntervalType.WEEKLY;

 excludeWeekends = true;

 excludeUsFederalHolidays = true;

 }

}

The @IntervalDuration, @IntervalCron, and @IntervalNthBusinessDay annotations are

mutually exclusive. If they are used in the same method, a RuntimeException will be thrown.

23.2.3. Asynchronous events

Component-driven events may also be asynchronous. To raise an event for asynchronous

processing, simply call the raiseAsynchronousEvent() method of the Events class. To

schedule a timed event, call the raiseTimedEvent() method, passing a schedule object (for the

default dispatcher or timer service dispatcher, use TimerSchedule). Components may observe

asynchronous events in the usual way, but remember that only the business process context is

propagated to the asynchronous thread.

Chapter 23. Asynchronicity an...

394

23.2.4. Handling exceptions from asynchronous calls

Each asynchronous dispatcher behaves differently when an exception propagates through it. For

example, the java.util.concurrent dispatcher will suspend further executions of a call which

repeats, and the EJB3 timer service will swallow the exception. Seam therefore catches any

exception which propagates out of the asynchronous call before it reaches the dispatcher.

By default, any exception which propagates out from an asynchronous execution will be

caught and logged at error level. You can customize this behavior globally by overriding the

org.jboss.seam.async.asynchronousExceptionHandler component:

@Scope(ScopeType.STATELESS)

@Name("org.jboss.seam.async.asynchronousExceptionHandler")

public class MyAsynchronousExceptionHandler extends AsynchronousExceptionHandler {

 @Logger Log log;

 @In Future timer;

 @Override

 public void handleException(Exception exception) {

 log.debug(exception);

 timer.cancel(false);

 }

}

Here, for example, using java.util.concurrent dispatcher, we inject its control object and

cancel all future invocations when an exception is encountered

You can also alter this behavior for an individual component by implementing the method

public void handleAsynchronousException(Exception exception); on the component.

For example:

 public void handleAsynchronousException(Exception exception) {

 log.fatal(exception);

 }

Chapter 24.

395

Caching
In almost all enterprise applications, the database is the primary bottleneck, and the least scalable

tier of the runtime environment. People from a PHP/Ruby environment will try to tell you that so-

called "shared nothing" architectures scale well. While that may be literally true, I don't know of

many interesting multi-user applications which can be implemented with no sharing of resources

between different nodes of the cluster. What these silly people are really thinking of is a "share

nothing except for the database" architecture. Of course, sharing the database is the primary

problem with scaling a multi-user application — so the claim that this architecture is highly scalable

is absurd, and tells you a lot about the kind of applications that these folks spend most of their

time working on.

Almost anything we can possibly do to share the database less often is worth doing.

This calls for a cache. Well, not just one cache. A well designed Seam application will feature a

rich, multi-layered caching strategy that impacts every layer of the application:

• The database, of course, has its own cache. This is super-important, but can't scale like a cache

in the application tier.

• Your ORM solution (Hibernate, or some other JPA implementation) has a second-level cache

of data from the database. This is a very powerful capability, but is often misused. In a clustered

environment, keeping the data in the cache transactionally consistent across the whole cluster,

and with the database, is quite expensive. It makes most sense for data which is shared between

many users, and is updated rarely. In traditional stateless architectures, people often try to use

the second-level cache for conversational state. This is always bad, and is especially wrong

in Seam.

• The Seam conversation context is a cache of conversational state. Components you put into

the conversation context can hold and cache state relating to the current user interaction.

• In particular, the Seam-managed persistence context (or an extended EJB container-managed

persistence context associated with a conversation-scoped stateful session bean) acts as a

cache of data that has been read in the current conversation. This cache tends to have a

pretty high hitrate! Seam optimizes the replication of Seam-managed persistence contexts

in a clustered environment, and there is no requirement for transactional consistency with

the database (optimistic locking is sufficient) so you don't need to worry too much about the

performance implications of this cache, unless you read thousands of objects into a single

persistence context.

• The application can cache non-transactional state in the Seam application context. State kept

in the application context is of course not visible to other nodes in the cluster.

• The application can cache transactional state using the Seam cacheProvider component,

which integrates JBossCache, JBoss POJO Cache, Infinispan or EHCache into the Seam

Chapter 24. Caching

396

environment. This state will be visible to other nodes if your cache supports running in a

clustered mode.

• Finally, Seam lets you cache rendered fragments of a JSF page. Unlike the ORM second-level

cache, this cache is not automatically invalidated when data changes, so you need to write

application code to perform explicit invalidation, or set appropriate expiration policies.

For more information about the second-level cache, you'll need to refer to the documentation of

your ORM solution, since this is an extremely complex topic. In this section we'll discuss the use

of caching directly, via the cacheProvider component, or as the page fragment cache, via the

<s:cache> control.

24.1. Using Caching in Seam

The built-in cacheProvider component manages an instance of:

Infinispan 5.x (suitable for use in JBoss AS 7.1.x or later and other containers)

org.infninispan.tree.TreeCache

JBoss Cache 1.x (suitable for use in JBoss 4.2.x or later and other containers)

org.jboss.cache.TreeCache

JBoss Cache 2.x (suitable for use in JBoss 5.x and other containers)

org.jboss.cache.Cache

JBoss POJO Cache 1.x (suitable for use in JBoss 4.2.x or later and other containers)

org.jboss.cache.aop.PojoCache

EHCache (suitable for use in any container)

net.sf.ehcache.CacheManager

You can safely put any immutable Java object in the cache, and it will be stored in the cache and

replicated across the cluster (assuming that replication is supported and enabled). If you want

to keep mutable objects in the cache read the documentation of the underling caching project

documentation to discover how to notify the cache of changes to the cache.

To use cacheProvider, you need to include the jars of the cache implementation in your project:

Infinispan 5.x

• infinispan-core.jar - Infinispan Core 5.1.x.Final

infinispan-tree.jar - Infinispan TreeCache 5.1.x.Final

• jgroups.jar - JGroups 3.0

JBoss Cache 1.x

• jboss-cache.jar - JBoss Cache 1.4.1

• jgroups.jar - JGroups 2.4.1

Using Caching in Seam

397

JBoss Cache 2.x

• jboss-cache.jar - JBoss Cache 2.2.0

• jgroups.jar - JGroups 2.6.2

JBoss POJO Cache 1.x

• jboss-cache.jar - JBoss Cache 1.4.1

• jgroups.jar - JGroups 2.4.1

• jboss-aop.jar - JBoss AOP 1.5.0

EHCache

• ehcache.jar - EHCache 1.2.3

Tip

If you would like to know more details about Infinispan, look at the Infinispan

Documentation [https://docs.jboss.org/author/display/ISPN/Home] page.

For an EAR deployment of Seam, we recommend that the infinispan jars and configuration go

directly into the EAR.

Note

JBoss AS7 already provides Infinispan and JGroups jars, so you need to turn

on that dependencies in your JBoss AS 7 deployment file or modify META-INF/

Manifest.mf to have this dependencies. Check the Blog example or JBoss AS7

documentation how to do that.

You'll also need to provide a configuration file for Infinispan. Place infinispan.xml with an

appropriate cache configuration into the Web applicaiton classpath (e.g. the ejb jar or WEB-INF/

classes). Infinispan has many configuration settings, so we won't discuss them here. Please refer

to the Infinispan documentation for more information.

You can find a sample configuration file infinispan.xml in examples-ee6/blog/blog-web/

src/main/resources/infinispan.xml.

EHCache will run in it's default configuration without a configuration file

To alter the configuration file in use, configure your cache in components.xml:

<components xmlns="http://jboss.org/schema/seam/components"

 xmlns:cache="http://jboss.org/schema/seam/cache">

https://docs.jboss.org/author/display/ISPN/Home
https://docs.jboss.org/author/display/ISPN/Home

Chapter 24. Caching

398

 <cache:infinispan-cache-provider configuration="infinispan.xml" />

</components>

Now you can inject the cache into any Seam component:

@Name("chatroomUsers")

@Scope(ScopeType.STATELESS)

public class ChatroomUsers

{

 @In CacheProvider cacheProvider;

 @Unwrap

 public Set<String> getUsers() throws CacheException {

 Set<String> userList = (Set<String>) cacheProvider.get("chatroom", "userList");

 if (userList==null) {

 userList = new HashSet<String>();

 cacheProvider.put("chatroom", "userList", userList);

 }

 return userList;

 }

}

If you want to have multiple cache configurations in your application, use components.xml to

configure multiple cache providers:

<components xmlns="http://jboss.org/schema/seam/components"

 xmlns:cache="http://jboss.org/schema/seam/cache">

 <cache:infinispan-cache-provider name="myCache" configuration="myown/cache.xml"/>

 <cache:infinispan-cache-provider name="myOtherCache" configuration="myother/

cache.xml"/>

</components>

24.2. Page fragment caching

The most interesting use of caching in Seam is the <s:cache> tag, Seam's solution to the problem

of page fragment caching in JSF. <s:cache> uses pojoCache internally, so you need to follow

the steps listed above before you can use it. (Put the jars in the EAR, wade through the scary

configuration options, etc.)

<s:cache> is used for caching some rendered content which changes rarely. For example, the

welcome page of our blog displays the recent blog entries:

Page fragment caching

399

<s:cache key="recentEntries-#{blog.id}" region="welcomePageFragments">

 <h:dataTable value="#{blog.recentEntries}" var="blogEntry">

 <h:column>

 <h3>#{blogEntry.title}</h3>

 <div>

 <s:formattedText value="#{blogEntry.body}"/>

 </div>

 </h:column>

 </h:dataTable>

</s:cache>

The key let's you have multiple cached versions of each page fragment. In this case, there is one

cached version per blog. The region determines the cache or region node that all version will be

stored in. Different nodes may have different expiry policies. (That's the stuff you set up using the

aforementioned scary configuration options.)

Of course, the big problem with <s:cache> is that it is too stupid to know when the underlying

data changes (for example, when the blogger posts a new entry). So you need to evict the cached

fragment manually:

public void post() {

 ...

 entityManager.persist(blogEntry);

 cacheProvider.remove("welcomePageFragments", "recentEntries-" + blog.getId());

}

Alternatively, if it is not critical that changes are immediately visible to the user, you could set a

short expiry time on the cache node.

400

Chapter 25.

401

Web Services
Seam integrates with JBossWS to allow standard Java EE web services to take full advantage

of Seam's contextual framework, including support for conversational web services. This chapter

walks through the steps required to allow web services to run within a Seam environment.

25.1. Configuration and Packaging

To allow Seam to intercept web service requests so that the necessary Seam

contexts can be created for the request, a special SOAP handler must be configured;

org.jboss.seam.webservice.SOAPRequestHandler is a SOAPHandler implementation that

does the work of managing Seam's lifecycle during the scope of a web service request.

A special configuration file, soap-handlers.xml should be placed into the META-INF directory of

the jar file that contains the web service classes. This file contains the following SOAP handler

configuration:

<?xml version="1.0" encoding="UTF-8"?>

<handler-chains xmlns="http://java.sun.com/xml/ns/javaee">

 <handler-chain>

 <handler>

 <handler-name>SOAP Request Handler</handler-name>

 <handler-class>org.jboss.seam.webservice.SOAPRequestHandler</handler-class>

 </handler>

 </handler-chain>

</handler-chains>

25.2. Conversational Web Services

So how are conversations propagated between web service requests? Seam uses a SOAP header

element present in both the SOAP request and response messages to carry the conversation ID

from the consumer to the service, and back again. Here's an example of a web service request

that contains a conversation ID:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:sb="http://seambay.example.seam.jboss.org/">

 <soapenv:Header>

 <seam:conversationId xmlns:seam='http://www.jboss.org/seam/webservice'>4</

seam:conversationId>

 </soapenv:Header>

 <soapenv:Body>

 <sb:setAuctionPrice>

Chapter 25. Web Services

402

 <arg0>100</arg0>

 </sb:setAuctionPrice>

 </soapenv:Body>

</soapenv:Envelope>

As you can see in the above SOAP message, there is a conversationId element within the

SOAP header that contains the conversation ID for the request, in this case 4. Unfortunately,

because web services may be consumed by a variety of web service clients written in a variety of

languages, it is up to the developer to implement conversation ID propagation between individual

web services that are intended to be used within the scope of a single conversation.

An important thing to note is that the conversationId header element must be qualified with a

namespace of http://www.jboss.org/seam/webservice, otherwise Seam will not be able to

read the conversation ID from the request. Here's an example of a response to the above request

message:

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

 <soap:Header>

 <seam:conversationId xmlns:seam="http://www.jboss.org/seam/webservice">4</

seam:conversationId>

 </soap:Header>

 <soap:Body>

 <ns2:setAuctionPriceResponse xmlns:ns2="http://seambay.example.seam.jboss.org/"/>

 </soap:Body>

 </soap:Envelope>

As you can see, the response message contains the same conversationId element as the

request.

25.2.1. A Recommended Strategy

As web services must be implemented as either a stateless session bean or POJO, it is

recommended that for conversational web services, the web service acts as a facade to a

conversational Seam component.

An example web service

403

If the web service is written as a stateless session bean, then it is also possible to make it a Seam

component by giving it a @Name. Doing this allows Seam's bijection (and other) features to be used

in the web service class itself.

25.3. An example web service

Let's walk through an example web service. The code in this section all comes from the seamBay

example application in Seam's /examples directory, and follows the recommended strategy as

described in the previous section. Let's first take a look at the web service class and one of its

web service methods:

@Stateless

@Name("auctionService")

@WebService(name = "AuctionService")

@HandlerChain(file = "soap-handlers.xml")

public class AuctionService implements AuctionServiceRemote

{

 @WebMethod

 public boolean login(String username, String password)

 {

 Identity.instance().setUsername(username);

 Identity.instance().setPassword(password);

 Identity.instance().login();

 return Identity.instance().isLoggedIn();

 }

 // snip

Chapter 25. Web Services

404

}

As you can see, our web service is a stateless session bean, and is annotated using the JWS

annotations from the javax.jws package, as defined by JSR-181. The @WebService annotation

tells the container that this class implements a web service, and the @WebMethod annotation on

the login() method identifies the method as a web service method. The name and serviceName

attributes in the @WebService annotation are optional.

As is required by the specification, each method that is to be exposed as a web service method

must also be declared in the remote interface of the web service class (when the web service

is a stateless session bean). In the above example, the AuctionServiceRemote interface must

declare the login() method as it is annotated as a @WebMethod.

As you can see in the above code, the web service implements a login() method that delegates

to Seam's built-in Identity component. In keeping with our recommended strategy, the web

service is written as a simple facade, passing off the real work to a Seam component. This allows

for the greatest reuse of business logic between web services and other clients.

Let's look at another example. This web service method begins a new conversation by delegating

to the AuctionAction.createAuction() method:

 @WebMethod

 public void createAuction(String title, String description, int categoryId)

 {

 AuctionAction action = (AuctionAction) Component.getInstance(AuctionAction.class, true);

 action.createAuction();

 action.setDetails(title, description, categoryId);

 }

And here's the code from AuctionAction:

 @Begin

 public void createAuction()

 {

 auction = new Auction();

 auction.setAccount(authenticatedAccount);

 auction.setStatus(Auction.STATUS_UNLISTED);

 durationDays = DEFAULT_AUCTION_DURATION;

 }

From this we can see how web services can participate in long running conversations, by acting

as a facade and delegating the real work to a conversational Seam component.

RESTful HTTP webservices with RESTEasy

405

25.4. RESTful HTTP webservices with RESTEasy

Seam integrates the RESTEasy implementation of the JAX-RS specification (JSR 311). You can

decide how "deep" the integration into your Seam application is going to be:

• Seamless integration of RESTEasy bootstrap and configuration, automatic detection of

resources and providers.

• Serving HTTP/REST requests with the SeamResourceServlet, no external servlet or

configuration in web.xml required.

• Writing resources as Seam components, with full Seam lifecycle management and interception

(bijection).

25.4.1. RESTEasy configuration and request serving

First, get the RESTEasy libraries and the jaxrs-api.jar, deploy them with the other libraries of

your application. Also deploy the integration library, jboss-seam-resteasy.jar.

In seam-gen based projects, this can be done by appending jaxrs-api.jar, resteasy-

jaxrs.jar and jboss-seam-resteasy.jar to the deployed-jars.list (war deployment) or

deployed-jars-ear.list (ear deployment) file. For a JBoss Tools based project, copy the

libraries mentioned above to the EarContent/lib (ear deployment) or WebContent/WEB-INF/

lib (war deployment) folder and reload the project in the IDE.

On startup, all classes annotated @javax.ws.rs.Path will be discovered automatically and

registered as HTTP resources. Seam automatically accepts and serves HTTP requests with its

built-in SeamResourceServlet. The URI of a resource is build as follows:

• The URI starts with the host and context path of your application, e.g. http://your.hostname/

myapp.

• Then the pattern mapped in web.xml for the SeamResourceServlet, e.g /seam/resource if

you follow the common examples, is appended. Change this setting to expose your RESTful

resources under a different base. Note that this is a global change and other Seam resources

(e.g. s:graphicImage and s:captcha) are then also served under that base path.

• The RESTEasy integration for Seam then appends a configurable string to the base path, by

default this is /rest. Hence, the full base path of your resources would e.g. be /myapp/seam/

resource/rest. We recommend that you change this string in your application (details below).

You could for example add a version number to prepare for a future REST API upgrade of your

services (old clients would keep the old URI base): /myapp/seam/resource/restv1.

• Finally, the actual resource is available under the defined @Path, e.g. a resource mapped with

@Path("/customer") would be available under /myapp/seam/resource/rest/customer.

Chapter 25. Web Services

406

As an example, the following resource definition would return a plaintext representation

for any GET requests using the URI http://your.hostname/myapp/seam/resource/rest/

customer/123:

@Path("/customer")

public class MyCustomerResource {

 @GET

 @Path("/{customerId}")

 @Produces("text/plain")

 public String getCustomer(@PathParam("customerId") int id) {

 return ...;

 }

}

No additional configuration is required; you do not have to edit web.xml or any other setting if

these defaults are acceptable. However, you can configure RESTEasy in your Seam application.

First import the resteasy namespace into your XML configuration (components.xml) file header:

<components

 xmlns="http://jboss.org/schema/seam/components"

 xmlns:resteasy="http://jboss.org/schema/seam/resteasy"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation=

 http://jboss.org/schema/seam/resteasy

 http://jboss.org/schema/seam/resteasy-2.3.xsd

 http://jboss.org/schema/seam/components

 http://jboss.org/schema/seam/components-2.3.xsd">

You can then change the /rest prefix as mentioned earlier:

<resteasy:application resource-path-prefix="/restv1"/>

The full base path to your resources is now /myapp/seam/resource/restv1/{resource} - note

that your @Path definitions and mappings do NOT change. This is an application-wide switch

usually used for versioning of the HTTP interface.

Seam will scan your classpath for any deployed @javax.ws.rs.Path resources and any

@javax.ws.rs.ext.Provider classes. You can disable scanning and configure these classes

manually:

RESTEasy configuration and request serving

407

<resteasy:application

 scan-providers="false"

 scan-resources="false"

 use-builtin-providers="true">

 <resteasy:resource-class-names>

 <value>org.foo.MyCustomerResource</value>

 <value>org.foo.MyOrderResource</value>

 <value>org.foo.MyStatelessEJBImplementation</value>

 </resteasy:resource-class-names>

 <resteasy:provider-class-names>

 <value>org.foo.MyFancyProvider</value>

 </resteasy:provider-class-names>

 </resteasy:application>

The use-built-in-providers switch enables (default) or disables the RESTEasy built-in

providers. We recommend you leave them enabled, as they provide plaintext, JSON, and JAXB

marshalling out of the box.

RESTEasy supports plain EJBs (EJBs that are not Seam components) as resources. Instead

of configuring the JNDI names in a non-portable fashion in web.xml (see RESTEasy

documentation), you can simply list the EJB implementation classes, not the business interfaces,

in components.xml as shown above. Note that you have to annotate the @Local interface of the

EJB with @Path, @GET, and so on - not the bean implementation class. This allows you to keep

your application deployment-portable with the global Seam jndi-pattern switch on <core:init/

>. Note that plain (non-Seam component) EJB resources will not be found even if scanning of

resources is enabled, you always have to list them manually. Again, this whole paragraph is only

relevant for EJB resources that are not also Seam components and that do not have an @Name

annotation.

Finally, you can configure media type and language URI extensions:

<resteasy:application>

 <resteasy:media-type-mappings>

 <key>txt</key><value>text/plain</value>

 </resteasy:media-type-mappings>

 <resteasy:language-mappings>

 <key>deutsch</key><value>de-DE</value>

 </resteasy:language-mappings>

Chapter 25. Web Services

408

</resteasy:application>

This definition would map the URI suffix of .txt.deutsch to additional Accept and Accept-

Language header values text/plain and de-DE.

25.4.2. Resources as Seam components

Any resource and provider instances are managed by RESTEasy by default. That means a

resource class will be instantiated by RESTEasy and serve a single request, after which it will

be destroyed. This is the default JAX-RS lifecycle. Providers are instantiated once for the whole

application and are effectively singletons and supposed to be stateless.

You can write resources as Seam components and benefit from the richer lifecycle management

of Seam, and interception for bijection, security, and so on. Simply make your resource class a

Seam component:

@Name("customerResource")

@Path("/customer")

public class MyCustomerResource {

 @In

 CustomerDAO customerDAO;

 @GET

 @Path("/{customerId}")

 @Produces("text/plain")

 public String getCustomer(@PathParam("customerId") int id) {

 return customerDAO.find(id).getName();

 }

}

An instance of customerResource is now handled by Seam when a request hits the server. This is

a Seam JavaBean component that is EVENT-scoped, hence no different than the default JAX-RS

lifecycle. You get full Seam injection and interception support, and all other Seam components and

contexts are available to you. Currently also supported are APPLICATION and STATELESS resource

Seam components. These three scopes allow you to create an effectively stateless Seam middle-

tier HTTP request-processing application.

You can annotate an interface and keep the implementation free from JAX-RS annotations:

@Path("/customer")

Resources as Seam components

409

public interface MyCustomerResource {

 @GET

 @Path("/{customerId}")

 @Produces("text/plain")

 public String getCustomer(@PathParam("customerId") int id);

}

@Name("customerResource")

@Scope(ScopeType.STATELESS)

public class MyCustomerResourceBean implements MyCustomerResource {

 @In

 CustomerDAO customerDAO;

 public String getCustomer(int id) {

 return customerDAO.find(id).getName();

 }

}

You can use SESSION-scoped Seam components. By default, the session will however be

shortened to a single request. In other words, when an HTTP request is being processed by the

RESTEasy integration code, an HTTP session will be created so that Seam components can

utilize that context. When the request has been processed, Seam will look at the session and

decide if the session was created only to serve that single request (no session identifier has been

provided with the request, or no session existed for the request). If the session has been created

only to serve this request, the session will be destroyed after the request!

Assuming that your Seam application only uses event, application, or stateless components,

this procedure prevents exhaustion of available HTTP sessions on the server. The RESTEasy

integration with Seam assumes by default that sessions are not used, hence anemic sessions

would add up as every REST request would start a session that will only be removed when timed

out.

If your RESTful Seam application has to preserve session state across REST HTTP requests,

disable this behavior in your configuration file:

<resteasy:application destroy-session-after-request="false"/>

Chapter 25. Web Services

410

Every REST HTTP request will now create a new session that will only be removed by timeout

or explicit invalidation in your code through Session.instance().invalidate(). It is your

responsibility to pass a valid session identifier along with your HTTP requests, if you want to utilize

the session context across requests.

CONVERSATION-scoped resource components and mapping of conversations to temporary HTTP

resources and paths is planned but currently not supported.

EJB Seam components are supported as REST resources. Always annotate the local business

interface, not the EJB implementation class, with JAX-RS annotations. The EJB has to be

STATELESS.

Sub-resources as defined in the JAX RS specification, section 3.4.1, can also be Seam component

instances:

@Path("/garage")

@Name("garage")

public class GarageService

{

 ...

 @Path("/vehicles")

 public VehicleService getVehicles() {

 return (VehicleService) Component.getInstance(VehicleService.class);

 }

}

Note

RESTEasy components do not support hot redeployment. As a result, the

components should never be placed in the src/hot folder. The src/main folder

should be used instead.

Note

Provider classes can currently not be Seam components. Although you can

configure an @Provider annotated class as a Seam component, it will at runtime

be managed by RESTEasy as a singleton with no Seam interception, bijection, etc.

The instance will not be a Seam component instance. We plan to support Seam

component lifecycle for JAX-RS providers in the future.

Securing resources

411

25.4.3. Securing resources

You can enable the Seam authentication filter for HTTP Basic and Digest authentication in

components.xml:

<web:authentication-filter url-pattern="/seam/resource/rest/*" auth-type="basic"/>

See the Seam security chapter on how to write an authentication routine.

After successful authentication, authorization rules with the common @Restrict and

@PermissionCheck annotations are in effect. You can also access the client Identity, work with

permission mapping, and so on. All regular Seam security features for authorization are available.

25.4.4. Mapping exceptions to HTTP responses

Section 3.3.4 of the JAX-RS specification defines how checked or unchecked exceptions are

handled by the JAX RS implementation. In addition to using an exception mapping provider as

defined by JAX-RS, the integration of RESTEasy with Seam allows you to map exceptions to

HTTP response codes within Seam's pages.xml facility. If you are already using pages.xml

declarations, this is easier to maintain than potentially many JAX RS exception mapper classes.

Exception handling within Seam requires that the Seam filter is executed for your HTTP request.

Ensure that you do filter all requests in your web.xml, not - as some Seam examples might show - a

request URI pattern that doesn't cover your REST request paths. The following example intercepts

all HTTP requests and enables Seam exception handling:

<filter>

 <filter-name>Seam Filter</filter-name>

 <filter-class>org.jboss.seam.servlet.SeamFilter</filter-class>

</filter>

<filter-mapping>

 <filter-name>Seam Filter</filter-name>

 <url-pattern>/*</url-pattern>

</filter-mapping>

To convert the unchecked UnsupportedOperationException thrown by your resource methods

to a 501 Not Implemented HTTP status response, add the following to your pages.xml descriptor:

<exception class="java.lang.UnsupportedOperationException">

 <http-error error-code="501">

 <message>The requested operation is not supported</message>

 </http-error>

Chapter 25. Web Services

412

</exception>

Custom or checked exceptions are handled the same:

<exception class="my.CustomException" log="false">

 <http-error error-code="503">

 <message>Service not available: #{org.jboss.seam.handledException.message}</message>

 </http-error>

</exception>

You do not have to send an HTTP error to the client if an exception occurs. Seam allows you to

map the exception as a redirect to a view of your Seam application. As this feature is typically

used for human clients (web browsers) and not for REST API remote clients, you should pay extra

attention to conflicting exception mappings in pages.xml.

Note that the HTTP response still passes through the servlet container, so an additional mapping

might apply if you have <error-page> mappings in your web.xml configuration. The HTTP status

code would then be mapped to a rendered HTML error page with status 200 OK!

25.4.5. Exposing entities via RESTful API

Seam makes it really easy to use a RESTful approach for accessing application data. One of

the improvements that Seam introduces is the ability to expose parts of your SQL database

for remote access via plain HTTP calls. For this purpose, the Seam/RESTEasy integration

module provides two components: ResourceHome and ResourceQuery, which benefit from the API

provided by the Seam Application Framework (Chapter 14, The Seam Application Framework).

These components allow you to bind domain model entity classes to an HTTP API.

25.4.5.1. ResourceQuery

ResourceQuery exposes entity querying capabilities as a RESTful web service. By default, a

simple underlying Query component, which returns a list of instances of a given entity class, is

created automatically. Alternatively, the ResourceQuery component can be attached to an existing

Query component in more sophisticated cases. The following example demonstrates how easily

ResourceQuery can be configured:

<resteasy:resource-query

 path="/user"

 name="userResourceQuery"

 entity-class="com.example.User"/>

With this single XML element, a ResourceQuery component is set up. The configuration is

straightforward:

Exposing entities via RESTful API

413

• The component will return a list of com.example.User instances.

• The component will handle HTTP requests on the URI path /user.

• The component will by default transform the data into XML or JSON (based on client's

preference). The set of supported mime types can be altered by using the media-types

attribute, for example:

<resteasy:resource-query

 path="/user"

 name="userResourceQuery"

 entity-class="com.example.User"

 media-types="application/fastinfoset"/>

Alternatively, if you do not like configuring components using XML, you can set up the component

by extension:

@Name("userResourceQuery")

@Path("user")

public class UserResourceQuery extends ResourceQuery<User>

{

}

Queries are read-only operations, the resource only responds to GET requests. Furthermore,

ResourceQuery allows clients of a web service to manipulate the resultset of a query using the

following path parameters:

Parameter name Example Description

start /user?start=20 Returns a subset of a

database query result starting

with the 20th entry.

show /user?show=10 Returns a subset of the

database query result limited

to 10 entries.

For example, you can send an HTTP GET request to /user?start=30&show=10 to get a list of

entries representing 10 rows starting with row 30.

Chapter 25. Web Services

414

Note

RESTEasy uses JAXB to marshall entities. Thus, in order to be able to transfer

them over the wire, you need to annotate entity classes with @XMLRootElement.

Consult the JAXB and RESTEasy documentation for more information.

25.4.5.2. ResourceHome

Just as ResourceQuery makes Query's API available for remote access, so does ResourceHome

for the Home component. The following table describes how the two APIs (HTTP and Home) are

bound together.

Table 25.1.

HTTP method Path Function ResourceHome

method

GET {path}/{id} Read getResource()

POST {path} Create postResource()

PUT {path}/{id} Update putResource()

DELETE {path}/{id} Delete deleteResource()

• You can GET, PUT, and DELETE a particular user instance by sending HTTP requests to /

user/{userId}

• Sending a POST request to /user creates a new user entity instance and persists it. Usually,

you leave it up to the persistence layer to provide the entity instance with an identifier value

and thus an URI. Therefore, the URI is sent back to the client in the Location header of the

HTTP response.

The configuration of ResourceHome is very similar to ResourceQuery except that you need to

explicitly specify the underlying Home component and the Java type of the entity identifier property.

<resteasy:resource-home

 path="/user"

 name="userResourceHome"

 entity-home="#{userHome}"

 entity-id-class="java.lang.Integer"/>

Again, you can write a subclass of ResourceHome instead of XML:

@Name("userResourceHome")

Testing resources and providers

415

@Path("user")

public class UserResourceHome extends ResourceHome<User, Integer>

{

 @In

 private EntityHome<User> userHome;

 @Override

 public Home<?, User> getEntityHome()

 {

 return userHome;

 }

}

For more examples of ResourceHome and ResourceQuery components, take a look at the Seam

Tasks example application, which demonstrates how Seam/RESTEasy integration can be used

together with a jQuery web client. In addition, you can find more code example in the Restbay

example, which is used mainly for testing purposes.

25.4.6. Testing resources and providers

Seam includes a unit testing utility class that helps you create unit tests

for a RESTful architecture. Extend the SeamTest class as usual and use the

ResourceRequestEnvironment.ResourceRequest to emulate HTTP requests/response cycles:

import org.jboss.seam.mock.ResourceRequestEnvironment;

import org.jboss.seam.mock.EnhancedMockHttpServletRequest;

import org.jboss.seam.mock.EnhancedMockHttpServletResponse;

import static org.jboss.seam.mock.ResourceRequestEnvironment.ResourceRequest;

import static org.jboss.seam.mock.ResourceRequestEnvironment.Method;

public class MyTest extends SeamTest {

 ResourceRequestEnvironment sharedEnvironment;

 @BeforeClass

 public void prepareSharedEnvironment() throws Exception {

 sharedEnvironment = new ResourceRequestEnvironment(this) {

 @Override

 public Map<String, Object> getDefaultHeaders() {

 return new HashMap<String, Object>() {{

 put("Accept", "text/plain");

 }};

 }

Chapter 25. Web Services

416

 };

 }

 @Test

 public void test() throws Exception

 {

 //Not shared: new ResourceRequest(new ResourceRequestEnvironment(this), Method.GET,

 "/my/relative/uri)

 new ResourceRequest(sharedEnvironment, Method.GET, "/my/relative/uri)

 {

 @Override

 protected void prepareRequest(EnhancedMockHttpServletRequest request)

 {

 request.addQueryParameter("foo", "123");

 request.addHeader("Accept-Language", "en_US, de");

 }

 @Override

 protected void onResponse(EnhancedMockHttpServletResponse response)

 {

 assert response.getStatus() == 200;

 assert response.getContentAsString().equals("foobar");

 }

 }.run();

 }

}

This test only executes local calls, it does not communicate with the SeamResourceServlet

through TCP. The mock request is passed through the Seam servlet and filters and the response

is then available for test assertions. Overriding the getDefaultHeaders() method in a shared

instance of ResourceRequestEnvironment allows you to set request headers for every test

method in the test class.

Note that a ResourceRequest has to be executed in a @Test method or in a @BeforeMethod

callback. You can not execute it in any other callback, such as @BeforeClass.

Chapter 26.

417

Remoting
Seam provides a convenient method of remotely accessing components from a web page, using

AJAX (Asynchronous Javascript and XML). The framework for this functionality is provided with

almost no up-front development effort - your components only require simple annotating to

become accessible via AJAX. This chapter describes the steps required to build an AJAX-enabled

web page, then goes on to explain the features of the Seam Remoting framework in more detail.

26.1. Configuration

To use remoting, the Seam Resource servlet must first be configured in your web.xml file:

<servlet>

 <servlet-name>Seam Resource Servlet</servlet-name>

 <servlet-class>org.jboss.seam.servlet.SeamResourceServlet</servlet-class>

</servlet>

<servlet-mapping>

 <servlet-name>Seam Resource Servlet</servlet-name>

 <url-pattern>/seam/resource/*</url-pattern>

</servlet-mapping>

The next step is to import the necessary Javascript into your web page. There are a minimum of

two scripts that must be imported. The first one contains all the client-side framework code that

enables remoting functionality:

<script type="text/javascript" src="seam/resource/remoting/resource/remote.js"></script>

The second script contains the stubs and type definitions for the components you wish to call.

It is generated dynamically based on the local interface of your components, and includes type

definitions for all of the classes that can be used to call the remotable methods of the interface.

The name of the script reflects the name of your component. For example, if you have a stateless

session bean annotated with @Name("customerAction"), then your script tag should look like

this:

<script type="text/javascript"

 src="seam/resource/remoting/interface.js?customerAction"></script>

If you wish to access more than one component from the same page, then include them all as

parameters of your script tag:

Chapter 26. Remoting

418

<script type="text/javascript"

 src="seam/resource/remoting/interface.js?customerAction&accountAction"></script>

Alternatively, you may use the s:remote tag to import the required Javascript. Separate each

component or class name you wish to import with a comma:

 <s:remote include="customerAction,accountAction"/>

26.2. The "Seam" object

Client-side interaction with your components is all performed via the Seam Javascript object.

This object is defined in remote.js, and you'll be using it to make asynchronous calls against

your component. It is split into two areas of functionality; Seam.Component contains methods for

working with components and Seam.Remoting contains methods for executing remote requests.

The easiest way to become familiar with this object is to start with a simple example.

26.2.1. A Hello World example

Let's step through a simple example to see how the Seam object works. First of all, let's create a

new Seam component called helloAction.

@Stateless

@Name("helloAction")

public class HelloAction {

 @WebRemote

 public String sayHello(String name) {

 return "Hello, " + name;

 }

}

Take special note of the @WebRemote annotation, as it's required to make our method accessible

via remoting:

That's all the server-side code we need to write.

Note

If you are performing a persistence operation in the method marked @WebRemote

you will also need to add a @Transactional annotation to the method. Otherwise,

A Hello World example

419

your method would execute outside of a transaction without this extra hint.That's

because unlike a JSF request, Seam does not wrap the remoting request in a

transaction automatically.

Now for our web page - create a new page and import the helloAction component:

<s:remote include="helloAction"/>

To make this a fully interactive user experience, let's add a button to our page:

<button onclick="javascript:sayHello()">Say Hello</button>

We'll also need to add some more script to make our button actually do something when it's clicked:

<script type="text/javascript">

 //<![CDATA[

 function sayHello() {

 var name = prompt("What is your name?");

 Seam.Component.getInstance("helloAction").sayHello(name, sayHelloCallback);

 }

 function sayHelloCallback(result) {

 alert(result);

 }

 //]]>

</script>

We're done! Deploy your application and browse to your page. Click the button, and enter a

name when prompted. A message box will display the hello message confirming that the call was

successful. If you want to save some time, you'll find the full source code for this Hello World

example in Seam's /examples/remoting/helloworld directory.

So what does the code of our script actually do? Let's break it down into smaller pieces. To start

with, you can see from the Javascript code listing that we have implemented two methods - the first

method is responsible for prompting the user for their name and then making a remote request.

Take a look at the following line:

Chapter 26. Remoting

420

Seam.Component.getInstance("helloAction").sayHello(name, sayHelloCallback);

The first section of this line, Seam.Component.getInstance("helloAction") returns a proxy,

or "stub" for our helloAction component. We can invoke the methods of our component

against this stub, which is exactly what happens with the remainder of the line: sayHello(name,

sayHelloCallback);.

What this line of code in its completeness does, is invoke the sayHello method of our component,

passing in name as a parameter. The second parameter, sayHelloCallback isn't a parameter

of our component's sayHello method, instead it tells the Seam Remoting framework that once

it receives the response to our request, it should pass it to the sayHelloCallback Javascript

method. This callback parameter is entirely optional, so feel free to leave it out if you're calling a

method with a void return type or if you don't care about the result.

The sayHelloCallback method, once receiving the response to our remote request then pops

up an alert message displaying the result of our method call.

26.2.2. Seam.Component

The Seam.Component Javascript object provides a number of client-side methods for working

with your Seam components. The two main methods, newInstance() and getInstance() are

documented in the following sections however their main difference is that newInstance() will

always create a new instance of a component type, and getInstance() will return a singleton

instance.

26.2.2.1. Seam.Component.newInstance()

Use this method to create a new instance of an entity or Javabean component. The object

returned by this method will have the same getter/setter methods as its server-side counterpart,

or alternatively if you wish you can access its fields directly. Take the following Seam entity

component for example:

@Name("customer")

@Entity

public class Customer implements Serializable

{

 private Integer customerId;

 private String firstName;

 private String lastName;

 @Column public Integer getCustomerId() {

 return customerId;

 }

Seam.Component

421

 public void setCustomerId(Integer customerId} {

 this.customerId = customerId;

 }

 @Column public String getFirstName() {

 return firstName;

 }

 public void setFirstName(String firstName) {

 this.firstName = firstName;

 }

 @Column public String getLastName() {

 return lastName;

 }

 public void setLastName(String lastName) {

 this.lastName = lastName;

 }

}

To create a client-side Customer you would write the following code:

var customer = Seam.Component.newInstance("customer");

Then from here you can set the fields of the customer object:

customer.setFirstName("John");

// Or you can set the fields directly

customer.lastName = "Smith";

26.2.2.2. Seam.Component.getInstance()

The getInstance() method is used to get a reference to a Seam session bean component stub,

which can then be used to remotely execute methods against your component. This method

returns a singleton for the specified component, so calling it twice in a row with the same

component name will return the same instance of the component.

To continue our example from before, if we have created a new customer and we now wish to

save it, we would pass it to the saveCustomer() method of our customerAction component:

Chapter 26. Remoting

422

Seam.Component.getInstance("customerAction").saveCustomer(customer);

26.2.2.3. Seam.Component.getComponentName()

Passing an object into this method will return its component name if it is a component, or null

if it is not.

if (Seam.Component.getComponentName(instance) == "customer")

 alert("Customer");

else if (Seam.Component.getComponentName(instance) == "staff")

 alert("Staff member");

26.2.3. Seam.Remoting

Most of the client side functionality for Seam Remoting is contained within the Seam.Remoting

object. While you shouldn't need to directly call most of its methods, there are a couple of important

ones worth mentioning.

26.2.3.1. Seam.Remoting.createType()

If your application contains or uses Javabean classes that aren't Seam components, you may

need to create these types on the client side to pass as parameters into your component method.

Use the createType() method to create an instance of your type. Pass in the fully qualified Java

class name as a parameter:

var widget = Seam.Remoting.createType("com.acme.widgets.MyWidget");

26.2.3.2. Seam.Remoting.getTypeName()

This method is the equivalent of Seam.Component.getComponentName() but for non-component

types. It will return the name of the type for an object instance, or null if the type is not known.

The name is the fully qualified name of the type's Java class.

26.3. Client Interfaces

In the configuration section above, the interface, or "stub" for our component is imported into our

page either via seam/resource/remoting/interface.js: or using the s:remote tag:

<script type="text/javascript"

 src="seam/resource/remoting/interface.js?customerAction"></script>

The Context

423

<s:remote include="customerAction"/>

By including this script in our page, the interface definitions for our component, plus any other

components or types that are required to execute the methods of our component are generated

and made available for the remoting framework to use.

There are two types of client stub that can be generated, "executable" stubs and "type" stubs.

Executable stubs are behavioural, and are used to execute methods against your session bean

components, while type stubs contain state and represent the types that can be passed in as

parameters or returned as a result.

The type of client stub that is generated depends on the type of your Seam component. If the

component is a session bean, then an executable stub will be generated, otherwise if it's an

entity or JavaBean, then a type stub will be generated. There is one exception to this rule; if your

component is a JavaBean (ie it is not a session bean nor an entity bean) and any of its methods

are annotated with @WebRemote, then an executable stub will be generated for it instead of a

type stub. This allows you to use remoting to call methods of your JavaBean components in a

non-EJB environment where you don't have access to session beans.

26.4. The Context

The Seam Remoting Context contains additional information which is sent and received as part

of a remoting request/response cycle. At this stage it only contains the conversation ID but may

be expanded in the future.

26.4.1. Setting and reading the Conversation ID

If you intend on using remote calls within the scope of a conversation then

you need to be able to read or set the conversation ID in the Seam

Remoting Context. To read the conversation ID after making a remote request call

Seam.Remoting.getContext().getConversationId(). To set the conversation ID before

making a request, call Seam.Remoting.getContext().setConversationId().

If the conversation ID hasn't been explicitly set with

Seam.Remoting.getContext().setConversationId(), then it will be automatically assigned

the first valid conversation ID that is returned by any remoting call. If you are working with multiple

conversations within your page, then you may need to explicitly set the conversation ID before

each call. If you are working with just a single conversation, then you don't need to do anything

special.

26.4.2. Remote calls within the current conversation scope

In some circumstances it may be required to make a remote call within the scope of the current

view's conversation. To do this, you must explicitly set the conversation ID to that of the view

Chapter 26. Remoting

424

before making the remote call. This small snippet of JavaScript will set the conversation ID that

is used for remoting calls to the current view's conversation ID:

Seam.Remoting.getContext().setConversationId(#{conversation.id});

26.5. Batch Requests

Seam Remoting allows multiple component calls to be executed within a single request. It is

recommended that this feature is used wherever it is appropriate to reduce network traffic.

The method Seam.Remoting.startBatch() will start a new batch, and any component calls

executed after starting a batch are queued, rather than being sent immediately. When all the

desired component calls have been added to the batch, the Seam.Remoting.executeBatch()

method will send a single request containing all of the queued calls to the server, where they will

be executed in order. After the calls have been executed, a single response containning all return

values will be returned to the client and the callback functions (if provided) triggered in the same

order as execution.

If you start a new batch via the startBatch() method but then decide you don't want to send

it, the Seam.Remoting.cancelBatch() method will discard any calls that were queued and exit

the batch mode.

To see an example of a batch being used, take a look at /examples/remoting/chatroom.

26.6. Working with Data types

26.6.1. Primitives / Basic Types

This section describes the support for basic data types. On the server side these values are

generally compatible with either their primitive type or their corresponding wrapper class.

26.6.1.1. String

Simply use Javascript String objects when setting String parameter values.

26.6.1.2. Number

There is support for all number types supported by Java. On the client side, number values are

always serialized as their String representation and then on the server side they are converted

to the correct destination type. Conversion into either a primitive or wrapper type is supported for

Byte, Double, Float, Integer, Long and Short types.

26.6.1.3. Boolean

Booleans are represented client side by Javascript Boolean values, and server side by a Java

boolean.

JavaBeans

425

26.6.2. JavaBeans

In general these will be either Seam entity or JavaBean components, or some other non-

component class. Use the appropriate method (either Seam.Component.newInstance() for Seam

components or Seam.Remoting.createType() for everything else) to create a new instance of

the object.

It is important to note that only objects that are created by either of these two methods should

be used as parameter values, where the parameter is not one of the other valid types mentioned

anywhere else in this section. In some situations you may have a component method where the

exact parameter type cannot be determined, such as:

@Name("myAction")

public class MyAction implements MyActionLocal {

 public void doSomethingWithObject(Object obj) {

 // code

 }

}

In this case you might want to pass in an instance of your myWidget component, however the

interface for myAction won't include myWidget as it is not directly referenced by any of its methods.

To get around this, MyWidget needs to be explicitly imported:

<s:remote include="myAction,myWidget"/>

This will then allow a myWidget object to be created with

Seam.Component.newInstance("myWidget"), which can then be passed to

myAction.doSomethingWithObject().

26.6.3. Dates and Times

Date values are serialized into a String representation that is accurate to the millisecond. On the

client side, use a Javascript Date object to work with date values. On the server side, use any

java.util.Date (or descendent, such as java.sql.Date or java.sql.Timestamp class.

26.6.4. Enums

On the client side, enums are treated the same as Strings. When setting the value for an enum

parameter, simply use the String representation of the enum. Take the following component as

an example:

@Name("paintAction")

Chapter 26. Remoting

426

public class paintAction implements paintLocal {

 public enum Color {red, green, blue, yellow, orange, purple};

 public void paint(Color color) {

 // code

 }

}

To call the paint() method with the color red, pass the parameter value as a String literal:

Seam.Component.getInstance("paintAction").paint("red");

The inverse is also true - that is, if a component method returns an enum parameter (or contains

an enum field anywhere in the returned object graph) then on the client-side it will be represented

as a String.

26.6.5. Collections

26.6.5.1. Bags

Bags cover all collection types including arrays, collections, lists, sets, (but excluding Maps - see

the next section for those), and are implemented client-side as a Javascript array. When calling a

component method that accepts one of these types as a parameter, your parameter should be a

Javascript array. If a component method returns one of these types, then the return value will also

be a Javascript array. The remoting framework is clever enough on the server side to convert the

bag to an appropriate type for the component method call.

26.6.5.2. Maps

As there is no native support for Maps within Javascript, a simple Map implementation is provided

with the Seam Remoting framework. To create a Map which can be used as a parameter to a

remote call, create a new Seam.Remoting.Map object:

var map = new Seam.Remoting.Map();

This Javascript implementation provides basic methods for working with Maps: size(),

isEmpty(), keySet(), values(), get(key), put(key, value), remove(key) and

contains(key). Each of these methods are equivalent to their Java counterpart. Where the

method returns a collection, such as keySet() and values(), a Javascript Array object will be

returned that contains the key or value objects (respectively).

Debugging

427

26.7. Debugging

To aid in tracking down bugs, it is possible to enable a debug mode which will display the contents

of all the packets send back and forth between the client and server in a popup window. To enable

debug mode, either execute the setDebug() method in Javascript:

Seam.Remoting.setDebug(true);

Or configure it via components.xml:

<remoting:remoting debug="true"/>

To turn off debugging, call setDebug(false). If you want to write your own messages to the

debug log, call Seam.Remoting.log(message).

26.8. Handling Exceptions

When invoking a remote component method, it is possible to specify an exception handler which

will process the response in the event of an exception during component invocation. To specify an

exception handler function, include a reference to it after the callback parameter in your JavaScript:

var callback = function(result) { alert(result); };

var exceptionHandler = function(ex) { alert("An exception occurred: " + ex.getMessage()); };

Seam.Component.getInstance("helloAction").sayHello(name, callback, exceptionHandler);

If you do not have a callback handler defined, you must specify null in its place:

var exceptionHandler = function(ex) { alert("An exception occurred: " + ex.getMessage()); };

Seam.Component.getInstance("helloAction").sayHello(name, null, exceptionHandler);

The exception object that is passed to the exception handler exposes one method, getMessage()

that returns the exception message which is produced by the exception thrown by the @WebRemote

method.

26.9. The Loading Message

The default loading message that appears in the top right corner of the screen can be modified,

its rendering customised or even turned off completely.

Chapter 26. Remoting

428

26.9.1. Changing the message

To change the message from the default "Please Wait..." to something different, set the value of

Seam.Remoting.loadingMessage:

Seam.Remoting.loadingMessage = "Loading...";

26.9.2. Hiding the loading message

To completely suppress the display of the loading message, override the implementation of

displayLoadingMessage() and hideLoadingMessage() with functions that instead do nothing:

// don't display the loading indicator

Seam.Remoting.displayLoadingMessage = function() {};

Seam.Remoting.hideLoadingMessage = function() {};

26.9.3. A Custom Loading Indicator

It is also possible to override the loading indicator to display an animated icon, or anything else

that you want. To do this override the displayLoadingMessage() and hideLoadingMessage()

messages with your own implementation:

 Seam.Remoting.displayLoadingMessage = function() {

 // Write code here to display the indicator

 };

 Seam.Remoting.hideLoadingMessage = function() {

 // Write code here to hide the indicator

 };

26.10. Controlling what data is returned

When a remote method is executed, the result is serialized into an XML response that is returned

to the client. This response is then unmarshaled by the client into a Javascript object. For

complex types (i.e. Javabeans) that include references to other objects, all of these referenced

objects are also serialized as part of the response. These objects may reference other objects,

which may reference other objects, and so forth. If left unchecked, this object "graph" could

potentially be enormous, depending on what relationships exist between your objects. And as

a side issue (besides the potential verbosity of the response), you might also wish to prevent

sensitive information from being exposed to the client.

Constraining normal fields

429

Seam Remoting provides a simple means to "constrain" the object graph, by specifying the

exclude field of the remote method's @WebRemote annotation. This field accepts a String array

containing one or more paths specified using dot notation. When invoking a remote method, the

objects in the result's object graph that match these paths are excluded from the serialized result

packet.

For all our examples, we'll use the following Widget class:

@Name("widget")

public class Widget

{

 private String value;

 private String secret;

 private Widget child;

 private Map<String,Widget> widgetMap;

 private List<Widget> widgetList;

 // getters and setters for all fields

}

26.10.1. Constraining normal fields

If your remote method returns an instance of Widget, but you don't want to expose the secret

field because it contains sensitive information, you would constrain it like this:

@WebRemote(exclude = {"secret"})

public Widget getWidget();

The value "secret" refers to the secret field of the returned object. Now, suppose that we don't

care about exposing this particular field to the client. Instead, notice that the Widget value that

is returned has a field child that is also a Widget. What if we want to hide the child's secret

value instead? We can do this by using dot notation to specify this field's path within the result's

object graph:

@WebRemote(exclude = {"child.secret"})

public Widget getWidget();

26.10.2. Constraining Maps and Collections

The other place that objects can exist within an object graph are within a Map or some kind of

collection (List, Set, Array, etc). Collections are easy, and are treated like any other field. For

Chapter 26. Remoting

430

example, if our Widget contained a list of other Widgets in its widgetList field, to constrain the

secret field of the Widgets in this list the annotation would look like this:

@WebRemote(exclude = {"widgetList.secret"})

public Widget getWidget();

To constrain a Map's key or value, the notation is slightly different. Appending [key] after the Map's

field name will constrain the Map's key object values, while [value] will constrain the value object

values. The following example demonstrates how the values of the widgetMap field have their

secret field constrained:

@WebRemote(exclude = {"widgetMap[value].secret"})

public Widget getWidget();

26.10.3. Constraining objects of a specific type

There is one last notation that can be used to constrain the fields of a type of object no matter

where in the result's object graph it appears. This notation uses either the name of the component

(if the object is a Seam component) or the fully qualified class name (only if the object is not a

Seam component) and is expressed using square brackets:

@WebRemote(exclude = {"[widget].secret"})

public Widget getWidget();

26.10.4. Combining Constraints

Constraints can also be combined, to filter objects from multiple paths within the object graph:

@WebRemote(exclude = {"widgetList.secret", "widgetMap[value].secret"})

public Widget getWidget();

26.11. Transactional Requests

By default there is no active transaction during a remoting request, so if you wish to perform

database updates during a remoting request, you need to annotate the @WebRemote method with

@Transactional, like so:

 @WebRemote @Transactional(TransactionPropagationType.REQUIRED)

JMS Messaging

431

 public void updateOrder(Order order) {

 entityManager.merge(order);

 }

26.12. JMS Messaging

Seam Remoting provides experimental support for JMS Messaging. This section describes the

JMS support that is currently implemented, but please note that this may change in the future. It

is currently not recommended that this feature is used within a production environment.

26.12.1. Configuration

Before you can subscribe to a JMS topic, you must first configure a list

of the topics that can be subscribed to by Seam Remoting. List the topics

under org.jboss.seam.remoting.messaging.subscriptionRegistry.allowedTopics in

seam.properties, web.xml or components.xml.

<remoting:remoting poll-timeout="5" poll-interval="1"/>

26.12.2. Subscribing to a JMS Topic

The following example demonstrates how to subscribe to a JMS Topic:

function subscriptionCallback(message)

{

 if (message instanceof Seam.Remoting.TextMessage)

 alert("Received message: " + message.getText());

}

Seam.Remoting.subscribe("topicName", subscriptionCallback);

The Seam.Remoting.subscribe() method accepts two parameters, the first being the name of

the JMS Topic to subscribe to, the second being the callback function to invoke when a message

is received.

There are two types of messages supported, Text messages and Object messages. If you

need to test for the type of message that is passed to your callback function you can use

the instanceof operator to test whether the message is a Seam.Remoting.TextMessage or

Seam.Remoting.ObjectMessage. A TextMessage contains the text value in its text field (or

alternatively call getText() on it), while an ObjectMessage contains its object value in its value

field (or call its getValue() method).

Chapter 26. Remoting

432

26.12.3. Unsubscribing from a Topic

To unsubscribe from a topic, call Seam.Remoting.unsubscribe() and pass in the topic name:

Seam.Remoting.unsubscribe("topicName");

26.12.4. Tuning the Polling Process

There are two parameters which you can modify to control how polling occurs. The first one is

Seam.Remoting.pollInterval, which controls how long to wait between subsequent polls for

new messages. This parameter is expressed in seconds, and its default setting is 10.

The second parameter is Seam.Remoting.pollTimeout, and is also expressed as seconds. It

controls how long a request to the server should wait for a new message before timing out and

sending an empty response. Its default is 0 seconds, which means that when the server is polled,

if there are no messages ready for delivery then an empty response will be immediately returned.

Caution should be used when setting a high pollTimeout value; each request that has to wait for

a message means that a server thread is tied up until a message is received, or until the request

times out. If many such requests are being served simultaneously, it could mean a large number

of threads become tied up because of this reason.

It is recommended that you set these options via components.xml, however they can be overridden

via Javascript if desired. The following example demonstrates how to configure the polling to occur

much more aggressively. You should set these parameters to suitable values for your application:

Via components.xml:

<remoting:remoting poll-timeout="5" poll-interval="1"/>

Via JavaScript:

// Only wait 1 second between receiving a poll response and sending the next poll request.

Seam.Remoting.pollInterval = 1;

// Wait up to 5 seconds on the server for new messages

Seam.Remoting.pollTimeout = 5;

Chapter 27.

433

Seam and the Google Web Toolkit
For those that prefer to use the Google Web Toolkit (GWT) to develop dynamic AJAX applications,

Seam provides an integration layer that allows GWT widgets to interact directly with Seam

components.

To use GWT, we assume that you are already familiar with the GWT tools - more information

can be found at http://code.google.com/webtoolkit/. This chapter does not attempt to explain how

GWT works or how to use it.

27.1. Configuration

There is no special configuration required to use GWT in a Seam application, however the Seam

resource servlet must be installed. See Chapter 31, Configuring Seam and packaging Seam

applications for details.

27.2. Preparing your component

The first step in preparing a Seam component to be called via GWT, is to create both synchronous

and asynchronous service interfaces for the methods you wish to call. Both of these interfaces

should extend the GWT interface com.google.gwt.user.client.rpc.RemoteService:

public interface MyService extends RemoteService {

 public String askIt(String question);

 }

The asynchronous interface should be identical, except that it also contains an additional

AsyncCallback parameter for each of the methods it declares:

public interface MyServiceAsync extends RemoteService {

 public void askIt(String question, AsyncCallback callback);

}

The asynchronous interface, in this example MyServiceAsync, will be implemented by GWT and

should never be implemented directly.

The next step, is to create a Seam component that implements the synchronous interface:

@Name("org.jboss.seam.example.remoting.gwt.client.MyService")

public class ServiceImpl implements MyService {

 @WebRemote

http://code.google.com/webtoolkit/

Chapter 27. Seam and the Goog...

434

 public String askIt(String question) {

 if (!validate(question)) {

 throw new IllegalStateException("Hey, this shouldn't happen, I checked on the client, " +

 "but its always good to double check.");

 }

 return "42. Its the real question that you seek now.";

 }

 public boolean validate(String q) {

 ValidationUtility util = new ValidationUtility();

 return util.isValid(q);

 }

}

The name of the seam component must match the fully qualified name of the GWT client interface

(as shown), or the seam resource servlet will not be able to find it when a client makes a GWT

call. The methods that are to be made accessible via GWT also need to be annotated with the

@WebRemote annotation.

27.3. Hooking up a GWT widget to the Seam component

The next step, is to write a method that returns the asynchronous interface to the component.

This method can be located inside the widget class, and will be used by the widget to obtain a

reference to the asynchronous client stub:

private MyServiceAsync getService() {

 String endpointURL = GWT.getModuleBaseURL() + "seam/resource/gwt";

 MyServiceAsync svc = (MyServiceAsync) GWT.create(MyService.class);

 ((ServiceDefTarget) svc).setServiceEntryPoint(endpointURL);

 return svc;

}

The final step is to write the widget code that invokes the method on the client stub. The following

example creates a simple user interface with a label, text input and a button:

public class AskQuestionWidget extends Composite {

 private AbsolutePanel panel = new AbsolutePanel();

 public AskQuestionWidget() {

Hooking up a GWT widget to the Seam component

435

 Label lbl = new Label("OK, what do you want to know?");

 panel.add(lbl);

 final TextBox box = new TextBox();

 box.setText("What is the meaning of life?");

 panel.add(box);

 Button ok = new Button("Ask");

 ok.addClickListener(new ClickListener() {

 public void onClick(Widget w) {

 ValidationUtility valid = new ValidationUtility();

 if (!valid.isValid(box.getText())) {

 Window.alert("A question has to end with a '?'");

 } else {

 askServer(box.getText());

 }

 }

 });

 panel.add(ok);

 initWidget(panel);

 }

 private void askServer(String text) {

 getService().askIt(text, new AsyncCallback() {

 public void onFailure(Throwable t) {

 Window.alert(t.getMessage());

 }

 public void onSuccess(Object data) {

 Window.alert((String) data);

 }

 });

 }

 ...

When clicked, the button invokes the askServer() method passing the contents of the input

text (in this example, validation is also performed to ensure that the input is a valid question).

The askServer() method acquires a reference to the asynchronous client stub (returned by the

getService() method) and invokes the askIt() method. The result (or error message if the call

fails) is shown in an alert window.

Chapter 27. Seam and the Goog...

436

The complete code for this example can be found in the Seam distribution in the examples/

remoting/gwt directory.

27.4. GWT Ant Targets

For deployment of GWT apps, there is a compile-to-Javascript step (which compacts and

obfuscates the code). There is an ant utility which can be used instead of the command line or GUI

utility that GWT provides. To use this, you will need to have the ant task jar in your ant classpath,

as well as GWT downloaded (which you will need for hosted mode anyway).

Then, in your ant file, place (near the top of your ant file):

<taskdef uri="antlib:de.samaflost.gwttasks"

 resource="de/samaflost/gwttasks/antlib.xml"

 classpath="./lib/gwttasks.jar"/>

 <property file="build.properties"/>

Create a build.properties file, which has the contents:

gwt.home=/gwt_home_dir

This of course should point to the directory where GWT is installed. Then to use it, create a target:

<!-- the following are are handy utilities for doing GWT development.

 To use GWT, you will of course need to download GWT seperately -->

 <target name="gwt-compile">

 <!-- in this case, we are "re homing" the gwt generated stuff, so in this case

 we can only have one GWT module - we are doing this deliberately to keep the URL short -->

 <delete>

 <fileset dir="view"/>

 </delete>

 <gwt:compile outDir="build/gwt"

 gwtHome="${gwt.home}"

GWT Maven plugin

437

 classBase="${gwt.module.name}"

 sourceclasspath="src"/>

 <copy todir="view">

 <fileset dir="build/gwt/${gwt.module.name}"/>

 </copy>

 </target>

This target when called will compile the GWT application, and copy it to the specified directory

(which would be in the webapp part of your war - remember GWT generates HTML and Javascript

artifacts). You never edit the resulting code that gwt-compile generates - you always edit in the

GWT source directory.

Remember that GWT comes with a hosted mode browser - you should be using that if you are

developing with GWT. If you aren't using that, and are just compiling it each time, you aren't getting

the most out of the toolkit (in fact, if you can't or won't use the hosted mode browser, I would go

far as to say you should NOT be using GWT at all - it's that valuable!).

27.5. GWT Maven plugin

For a deployment of GWT apps, there is a set of maven GWT goals which does everything what

GWT supports. The maven-gwt-plugin usage is in more details at GWT [http://mojo.codehaus.org/

gwt-maven-plugin/].

Basic set up is for instance here:

 <build>

 <plugins>

 [...]

 <plugin>

 <groupId>org.codehaus.mojo</groupId>

 <artifactId>gwt-maven-plugin</artifactId>

 <version>1.2</version> <!-- version 1.2 allows us to specify gwt version by gwt-user

 dependency -->

 <configuration>

 <generateDirectory>${project.build.outoutDirectory}/${project.build.finalName}</

generateDirectory>

 <inplace>false</inplace>

 <logLevel>TRACE</logLevel>

 <extraJvmArgs>-Xmx512m -DDEBUG</extraJvmArgs>

 <soyc>false</soyc>

 </configuration>

 <executions>

 <execution>

http://mojo.codehaus.org/gwt-maven-plugin/
http://mojo.codehaus.org/gwt-maven-plugin/
http://mojo.codehaus.org/gwt-maven-plugin/

Chapter 27. Seam and the Goog...

438

 <goals>

 <goal>resources</goal>

 <goal>compile</goal>

 </goals>

 </execution>

 </executions>

 </plugin>

 [...]

 </plugins>

 [...]

 </build>

More can be seen here http://mojo.codehaus.org/gwt-maven-plugin/user-guide/compile.html

http://mojo.codehaus.org/gwt-maven-plugin/user-guide/compile.html

Chapter 28.

439

Spring Framework integration
The Spring integration (part of the Seam IoC module) allows easy migration of Spring-based

projects to Seam and allows Spring applications to take advantage of key Seam features like

conversations and Seam's more sophisticated persistence context management.

Note! The Spring integration code is included in the jboss-seam-ioc library. This dependency is

required for all seam-spring integration techniques covered in this chapter.

Seam's support for Spring provides the ability to:

• inject Seam component instances into Spring beans

• inject Spring beans into Seam components

• turn Spring beans into Seam components

• allow Spring beans to live in any Seam context

• start a spring WebApplicationContext with a Seam component

• Support for Spring PlatformTransactionManagement

• provides a Seam managed replacement for Spring's OpenEntityManagerInViewFilter and

OpenSessionInViewFilter

• Support for Spring TaskExecutors to back @Asynchronous calls

28.1. Injecting Seam components into Spring beans

Injecting Seam component instances into Spring beans is accomplished using the

<seam:instance/> namespace handler. To enable the Seam namespace handler, the Seam

namespace must be added to the Spring beans definition file:

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:seam="http://jboss.org/schema/seam/spring-seam"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans-2.0.xsd

 http://jboss.org/schema/seam/spring-seam

 http://jboss.org/schema/seam/spring-seam-2.3.xsd">

Now any Seam component may be injected into any Spring bean:

<bean id="someSpringBean" class="SomeSpringBeanClass" scope="prototype">

Chapter 28. Spring Framework ...

440

 <property name="someProperty">

 <seam:instance name="someComponent"/>

 </property>

</bean>

An EL expression may be used instead of a component name:

<bean id="someSpringBean" class="SomeSpringBeanClass" scope="prototype">

 <property name="someProperty">

 <seam:instance name="#{someExpression}"/>

 </property>

</bean>

Seam component instances may even be made available for injection into Spring beans by a

Spring bean id.

<seam:instance name="someComponent" id="someSeamComponentInstance"/>

<bean id="someSpringBean" class="SomeSpringBeanClass" scope="prototype">

 <property name="someProperty" ref="someSeamComponentInstance">

</bean>

Now for the caveat!

Seam was designed from the ground up to support a stateful component model with multiple

contexts. Spring was not. Unlike Seam bijection, Spring injection does not occur at method

invocation time. Instead, injection happens only when the Spring bean is instantiated. So the

instance available when the bean is instantiated will be the same instance that the bean uses for

the entire life of the bean. For example, if a Seam CONVERSATION-scoped component instance

is directly injected into a singleton Spring bean, that singleton will hold a reference to the same

instance long after the conversation is over! We call this problem scope impedance. Seam bijection

ensures that scope impedance is maintained naturally as an invocation flows through the system.

In Spring, we need to inject a proxy of the Seam component, and resolve the reference when

the proxy is invoked.

The <seam:instance/> tag lets us automatically proxy the Seam component.

<seam:instance id="seamManagedEM" name="someManagedEMComponent" proxy="true"/>

<bean id="someSpringBean" class="SomeSpringBeanClass">

 <property name="entityManager" ref="seamManagedEM">

Injecting Spring beans into Seam components

441

</bean>

This example shows one way to use a Seam-managed persistence context from a Spring bean.

(For a more robust way to use Seam-managed persistence contexts as a replacement for the

Spring OpenEntityManagerInView filter see section on Using a Seam Managed Persistence

Context in Spring)

28.2. Injecting Spring beans into Seam components

It is even easier to inject Spring beans into Seam component instances. Actually, there are two

possible approaches:

• inject a Spring bean using an EL expression

• make the Spring bean a Seam component

We'll discuss the second option in the next section. The easiest approach is to access the Spring

beans via EL.

The Spring DelegatingVariableResolver is an integration point Spring provides for integrating

Spring with JSF. This VariableResolver makes all Spring beans available in EL by their bean

id. You'll need to add the DelegatingVariableResolver to faces-config.xml:

<application>

 <variable-resolver>

 org.springframework.web.jsf.DelegatingVariableResolver

 </variable-resolver>

</application>

Then you can inject Spring beans using @In:

@In("#{bookingService}")

private BookingService bookingService;

The use of Spring beans in EL is not limited to injection. Spring beans may be used anywhere that

EL expressions are used in Seam: process and pageflow definitions, working memory assertions,

etc...

28.3. Making a Spring bean into a Seam component

The <seam:component/> namespace handler can be used to make any Spring bean a Seam

component. Just place the <seam:component/> tag within the declaration of the bean that you

wish to be a Seam component:

Chapter 28. Spring Framework ...

442

<bean id="someSpringBean" class="SomeSpringBeanClass" scope="prototype">

 <seam:component/>

</bean>

By default, <seam:component/> will create a STATELESS Seam component with class and name

provided in the bean definition. Occasionally, such as when a FactoryBean is used, the class of

the Spring bean may not be the class appearing in the bean definition. In such cases the class

should be explicitly specified. A Seam component name may be explicitly specified in cases where

there is potential for a naming conflict.

The scope attribute of <seam:component/> may be used if you wish the Spring bean to be

managed in a particular Seam scope. The Spring bean must be scoped to prototype if the

Seam scope specified is anything other than STATELESS. Pre-existing Spring beans usually have

a fundamentally stateless character, so this attribute is not usually needed.

28.4. Seam-scoped Spring beans

The Seam integration package also lets you use Seam's contexts as Spring 2.0 style custom

scopes. This lets you declare any Spring bean in any of Seam's contexts. However, note once

again that Spring's component model was never architected to support statefulness, so please

use this feature with great care. In particular, clustering of session or conversation scoped Spring

beans is deeply problematic, and care must be taken when injecting a bean or component from

a wider scope into a bean of a narrower scope.

By specifying <seam:configure-scopes/> once in a Spring bean factory configuration, all of the

Seam scopes will be available to Spring beans as custom scopes. To associate a Spring bean

with a particular Seam scope, specify the Seam scope in the scope attribute of the bean definition.

<!-- Only needs to be specified once per bean factory-->

<seam:configure-scopes/>

...

<bean id="someSpringBean" class="SomeSpringBeanClass" scope="seam.CONVERSATION"/

>

The prefix of the scope name may be changed by specifying the prefix attribute in the

configure-scopes definition. (The default prefix is seam.)

By default an instance of a Spring Component registered in this way is not automatically

created when referenced using @In. To have an instance auto-created you must either specify

@In(create=true) at the injection point to identify a specific bean to be auto created or you can

Using Spring PlatformTransactionManagement

443

use the default-auto-create attribute of configure-scopes to make all spring beans who use

a seam scope auto created.

Seam-scoped Spring beans defined this way can be injected into other Spring beans without

the use of <seam:instance/>. However, care must be taken to ensure scope impedance is

maintained. The normal approach used in Spring is to specify <aop:scoped-proxy/> in the bean

definition. However, Seam-scoped Spring beans are not compatible with <aop:scoped-proxy/>.

So if you need to inject a Seam-scoped Spring bean into a singleton, <seam:instance/> must

be used:

<bean id="someSpringBean" class="SomeSpringBeanClass" scope="seam.CONVERSATION"/

>

...

<bean id="someSingleton">

 <property name="someSeamScopedSpringBean">

 <seam:instance name="someSpringBean" proxy="true"/>

 </property>

</bean>

28.5. Using Spring PlatformTransactionManagement

Spring provides an extensible transaction management abstraction with support for many

transaction APIs (JPA, Hibernate, JDO, and JTA) Spring also provides tight integrations

with many application server TransactionManagers such as Websphere and Weblogic. Spring

transaction management exposes support for many advanced features such as nested

transactions and supports full Java EE transaction propagation rules like REQUIRES_NEW

and NOT_SUPPORTED. For more information see the spring documentation here [http://

static.springframework.org/spring/docs/2.0.x/reference/transaction.html].

To configure Seam to use Spring transactions enable the SpringTransaction component like so:

<spring:spring-transaction platform-transaction-manager="#{transactionManager}"/>

The spring:spring-transaction component will utilize Springs transaction synchronization

capabilities for synchronization callbacks.

http://static.springframework.org/spring/docs/2.0.x/reference/transaction.html
http://static.springframework.org/spring/docs/2.0.x/reference/transaction.html
http://static.springframework.org/spring/docs/2.0.x/reference/transaction.html

Chapter 28. Spring Framework ...

444

28.6. Using a Seam Managed Persistence Context in

Spring

One of the most powerful features of Seam is its conversation scope and the ability

to have an EntityManager open for the life of a conversation. This eliminates many of

the problems associated with the detachment and re-attachment of entities as well as

mitigates occurrences of the dreaded LazyInitializationException. Spring does not provide

a way to manage an persistence context beyond the scope of a single web request

(OpenEntityManagerInViewFilter). So, it would be nice if Spring developers could have access

to a Seam managed persistence context using all of the same tools Spring provides for integration

with JPA(e.g. PersistenceAnnotationBeanPostProcessor, JpaTemplate, etc.)

Seam provides a way for Spring to access a Seam managed persistence context with Spring's

provided JPA tools bringing conversation scoped persistence context capabilities to Spring

applications.

This integration work provides the following functionality:

• transparent access to a Seam managed persistence context using Spring provided tools

• access to Seam conversation scoped persistence contexts in a non web request (e.g.

asynchronous quartz job)

• allows for using Seam managed persistence contexts with Spring managed transactions (will

need to flush the persistence context manually)

Spring's persistence context propagation model allows only one open EntityManager per

EntityManagerFactory so the Seam integration works by wrapping an EntityManagerFactory

around a Seam managed persistence context.

<bean id="seamEntityManagerFactory" class="org.jboss.seam.ioc.spring.SeamManagedEntityManagerFactoryBean">

 <property name="persistenceContextName" value="entityManager"/>

</bean>

Where 'persistenceContextName' is the name of the Seam managed persistence context

component. By default this EntityManagerFactory has a unitName equal to the Seam component

name or in this case 'entityManager'. If you wish to provide a different unitName you can do so

by providing a persistenceUnitName like so:

<bean id="seamEntityManagerFactory" class="org.jboss.seam.ioc.spring.SeamManagedEntityManagerFactoryBean">

 <property name="persistenceContextName" value="entityManager"/>

 <property name="persistenceUnitName" value="bookingDatabase:extended"/>

Using a Seam Managed Persistence Context in Spring

445

</bean>

This EntityManagerFactory can then be used in any Spring provided tools. For example, using

Spring's PersistenceAnnotationBeanPostProcessor is the exact same as before.

<bean class="org.springframework.orm.jpa.support.PersistenceAnnotationBeanPostProcessor"/

>

If you define your real EntityManagerFactory in Spring but wish to use a Seam managed

persistence context you can tell the PersistenceAnnotationBeanPostProcessor which

persistenctUnitName you wish to use by default by specifying the defaultPersistenceUnitName

property.

The applicationContext.xml might look like:

<bean id="entityManagerFactory" class="org.springframework.orm.jpa.LocalEntityManagerFactoryBean">

 <property name="persistenceUnitName" value="bookingDatabase"/>

</bean>

<bean id="seamEntityManagerFactory" class="org.jboss.seam.ioc.spring.SeamManagedEntityManagerFactoryBean">

 <property name="persistenceContextName" value="entityManager"/>

 <property name="persistenceUnitName" value="bookingDatabase:extended"/>

</bean>

<bean class="org.springframework.orm.jpa.support.PersistenceAnnotationBeanPostProcessor">

 <property name="defaultPersistenceUnitName" value="bookingDatabase:extended"/>

</bean>

The component.xml might look like:

<persistence:managed-persistence-context name="entityManager"

 auto-create="true" entity-manager-factory="#{entityManagerFactory}"/>

JpaTemplate and JpaDaoSupport are configured the same way for a Seam managed persistence

context as they would be fore a Seam managed persistence context.

<bean id="bookingService" class="org.jboss.seam.example.spring.BookingService">

 <property name="entityManagerFactory" ref="seamEntityManagerFactory"/>

</bean>

Chapter 28. Spring Framework ...

446

28.7. Using a Seam Managed Hibernate Session in

Spring

The Seam Spring integration also provides support for complete access to a Seam managed

Hibernate session using spring's tools. This integration is very similar to the JPA integration.

Like Spring's JPA integration spring's propagation model allows only one open EntityManager per

EntityManagerFactory per transaction??? to be available to spring tools. So, the Seam Session

integration works by wrapping a proxy SessionFactory around a Seam managed Hibernate

session context.

<bean id="seamSessionFactory" class="org.jboss.seam.ioc.spring.SeamManagedSessionFactoryBean">

 <property name="sessionName" value="hibernateSession"/>

</bean>

Where 'sessionName' is the name of the persistence:managed-hibernate-session

component. This SessionFactory can then be used in any Spring provided tools. The integration

also provides support for calls to SessionFactory.getCurrentInstance() as long as you call

getCurrentInstance() on the SeamManagedSessionFactory.

28.8. Spring Application Context as a Seam Component

Although it is possible to use the Spring ContextLoaderListener to start your application's Spring

ApplicationContext there are a couple of limitations.

• the Spring ApplicationContext must be started after the SeamListener

• it can be tricky starting a Spring ApplicationContext for use in Seam unit and integration tests

To overcome these two limitations the Spring integration includes a Seam component that will

start a Spring ApplicationContext. To use this Seam component place the <spring:context-

loader/> definition in the components.xml. Specify your Spring context file location in the

config-locations attribute. If more than one config file is needed you can place them in the

nested <spring:config-locations/> element following standard components.xml multi value

practices.

<components xmlns="http://jboss.org/schema/seam/components"

 xmlns:spring="http://jboss.org/schema/seam/spring"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://jboss.org/schema/seam/components

 http://jboss.org/schema/seam/components-2.3.xsd

 http://jboss.org/schema/seam/spring

 http://jboss.org/schema/seam/spring-2.3.xsd">

Using a Spring TaskExecutor for @Asynchronous

447

 <spring:context-loader config-locations="/WEB-INF/applicationContext.xml"/>

</components>

28.9. Using a Spring TaskExecutor for @Asynchronous

Spring provides an abstraction for executing code asynchronously called a TaskExecutor.

The Spring Seam integration allows for the use of a Spring TaskExecutor for

executing immediate @Asynchronous method calls. To enable this functionality install the

SpringTaskExecutorDispatchor and provide a spring bean defined taskExecutor like so:

<spring:task-executor-dispatcher task-executor="#{springThreadPoolTaskExecutor}"/>

Because a Spring TaskExecutor does not support scheduling of an asynchronous event a fallback

Seam Dispatcher can be provided to handle scheduled asynchronous event like so:

 <!-- Install a ThreadPoolDispatcher to handle scheduled asynchronous event -->

<core:thread-pool-dispatcher name="threadPoolDispatcher"/>

<!-- Install the SpringDispatcher as default -->

<spring:task-executor-dispatcher task-

executor="#{springThreadPoolTaskExecutor}" schedule-

dispatcher="#{threadPoolDispatcher}"/>

448

Chapter 29.

449

Guice integration
Google Guice is a library that provides lightweight dependency injection through type-safe

resolution. The Guice integration (part of the Seam IoC module) allows use of Guice injection for

all Seam components annotated with the @Guice annotation. In addition to the regular bijection

that Seam performs (which becomes optional), Seam also delegates to known Guice injectors to

satisfy the dependencies of the component. Guice may be useful to tie non-Seam parts of large

or legacy applications together with Seam.

Note
The Guice integration is bundled in the jboss-seam-ioc library. This dependency is

required for all integration techniques covered in this chapter. You will also need

the Guice JAR file on the classpath.

29.1. Creating a hybrid Seam-Guice component

The goal is to create a hybrid Seam-Guice component. The rule for how to do this is very simple. If

you want to use Guice injection in your Seam component, annotate it with the @Guice annotation

(after importing the type org.jboss.seam.ioc.guice.Guice).

@Name("myGuicyComponent")

@Guice public class MyGuicyComponent

{

 @Inject MyObject myObject;

 @Inject @Special MyObject mySpecialObject;

 ...

}

This Guice injection will happen on every method call, just like with bijection. Guice injects based

on type and binding. To satisfy the dependencies in the previous example, you might have bound

the following implementations in a Guice module, where @Special is an annotation you define

in your application.

public class MyGuicyModule implements Module

{

 public void configure(Binder binder)

 {

 binder.bind(MyObject.class)

 .toInstance(new MyObject("regular"));

Chapter 29. Guice integration

450

 binder.bind(MyObject.class).annotatedWith(Special.class)

 .toInstance(new MyObject("special"));

 }

}

Great, but which Guice injector will be used to inject the dependencies? Well, you need to perform

some setup first.

29.2. Configuring an injector

You tell Seam which Guice injector to use by hooking it into the injection property of the Guice

initialization component in the Seam component descriptor (components.xml):

<components xmlns="http://jboss.org/schema/seam/components"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:guice="http://jboss.org/schema/seam/guice"

 xsi:schemaLocation="

 http://jboss.org/schema/seam/guice

 http://jboss.org/schema/seam/guice-2.3.xsd

 http://jboss.org/schema/seam/components

 http://jboss.org/schema/seam/components-2.3.xsd">

 <guice:init injector="#{myGuiceInjector}"/>

</components>

myGuiceInjector must resolve to a Seam component that implements the Guice Injector

interface.

Having to create an injector is boiler-plate code, though. What you really want to be able to do is

simply hook up Seam to your Guice modules. Fortunately, there is a built-in Seam component that

implements the Injector interface to do exactly that. You can configure it in the Seam component

descriptor with this additional stanza.

<guice:injector name="myGuiceInjector">

 <guice:modules>

 <value>com.example.guice.GuiceModule1</value>

 <value>com.example.guice.GuiceModule2</value>

 </guice:modules>

</guice:injector>

Using multiple injectors

451

Of course you can also use an injector that is already used in other, possibly non-Seam part of

you application. That's one of the main motivations for creating this integration. Since the injector

is defined with EL expression, you can obtain it in whatever way you like. For instance, you may

use the Seam factory component pattern to provide injector.

@Name("myGuiceInjectorFactory")

public InjectorFactory

{

 @Factory(name = "myGuiceInjector", scope = APPLICATION, create = true)

 public Injector getInjector()

 {

 // Your code that returns injector

 }

}

29.3. Using multiple injectors

By default, an injector configured in the Seam component descriptor is used. If you really need to

use multiple injectors (AFAIK, you should use multiple modules instead), you can specify different

injector for every Seam component in the @Guice annotation.

@Name("myGuicyComponent")

@Guice("myGuiceInjector")

public class MyGuicyComponent

{

 @Inject MyObject myObject;

 ...

}

That's all there is to it! Check out the guice example in the Seam distribution to see the Seam

Guice integration in action!

452

Chapter 30.

453

Hibernate Search

30.1. Introduction

Full text search engines like Apache Lucene™ are a very powerful technology that bring full text

and efficient queries to applications. Hibernate Search, which uses Apache Lucene under the

covers, indexes your domain model with the addition of a few annotations, takes care of the

database / index synchronization and returns regular managed objects that are matched by full

text queries. Keep in mind, thought, that there are mismatches that arise when dealing with an

object domain model over a text index (keeping the index up to date, mismatch between the index

structure and the domain model, and querying mismatch). But the benefits of speed and efficiency

far outweigh these limitations.

Hibernate Search has been designed to integrate nicely and as naturally as possible with JPA

and Hibernate. As a natural extension, JBoss Seam provides an Hibernate Search integration.

Please refer to the Hibernate Search documentation [] for information specific to the Hibernate

Search project.

30.2. Configuration

Hibernate Search is configured either in the META-INF/persistence.xml or hibernate.cfg.xml

file.

Hibernate Search configuration has sensible defaults for most configuration parameters. Here is

a minimal persistence unit configuration to get started.

<persistence-unit name="sample">

 <jta-data-source>java:jboss/datasources/ExampleDS</jta-data-source>

 <properties>

 [...]

 <!-- use a file system based index -->

 <property name="hibernate.search.default.directory_provider"

 value="filesystem"/>

 <!-- directory where the indexes will be stored -->

 <property name="hibernate.search.default.indexBase"

 value="/Users/prod/apps/dvdstore/dvdindexes"/>

 </properties>

</persistence-unit>

In addition to the configuration file, the following jars have to be deployed:

• hibernate-search.jar

Chapter 30. Hibernate Search

454

• hibernate-search-orm.jar

• hibernate-search-engine.jar

• lucene-core.jar

Maven coordinates for using Hibernate Search:

 <dependency>

 <groupId>org.hibernate</groupId>

 <artifactId>hibernate-search</artifactId>

 <version>4.1.1.Final</version>

 </dependency>

Some Hibernate Search extensions require additional dependencies, a commonly used is

hibernate-search-analyzers.jar. For details, see the Hibernate Search documentation

[http://docs.jboss.org/hibernate/search/4.1/reference/en-US/html_single] for details.

Note

If you deploy those in a EAR, don't forget to update application.xml

30.3. Usage

Hibernate Search uses annotations to map entities to a Lucene index, check the reference

documentation [http://docs.jboss.org/hibernate/search/4.1/reference/en-US/html_single] for more

informations.

Hibernate Search is fully integrated with the API and semantic of JPA / Hibernate. Switching from

a HQL or Criteria based query requires just a few lines of code. The main API the application

interacts with is the FullTextSession API (subclass of Hibernate's Session).

When Hibernate Search is present, JBoss Seam injects a FullTextSession.

@Stateful

@Name("search")

public class FullTextSearchAction implements FullTextSearch, Serializable {

 @In FullTextSession session;

 public void search(String searchString) {

http://docs.jboss.org/hibernate/search/4.1/reference/en-US/html_single
http://docs.jboss.org/hibernate/search/4.1/reference/en-US/html_single
http://docs.jboss.org/hibernate/search/4.1/reference/en-US/html_single
http://docs.jboss.org/hibernate/search/4.1/reference/en-US/html_single
http://docs.jboss.org/hibernate/search/4.1/reference/en-US/html_single

Usage

455

 org.apache.lucene.search.Query luceneQuery = getLuceneQuery();

 org.hibernate.Query query session.createFullTextQuery(luceneQuery, Product.class);

 searchResults = query

 .setMaxResults(pageSize + 1)

 .setFirstResult(pageSize * currentPage)

 .list();

 }

 [...]

}

Note

FullTextSession extends org.hibernate.Session so that it can be used as a

regular Hibernate Session

If the Java Persistence API is used, a smoother integration is proposed.

@Stateful

@Name("search")

public class FullTextSearchAction implements FullTextSearch, Serializable {

 @In FullTextEntityManager em;

 public void search(String searchString) {

 org.apache.lucene.search.Query luceneQuery = getLuceneQuery();

 javax.persistence.Query query = em.createFullTextQuery(luceneQuery, Product.class);

 searchResults = query

 .setMaxResults(pageSize + 1)

 .setFirstResult(pageSize * currentPage)

 .getResultList();

 }

 [...]

}

When Hibernate Search is present, a FulltextEntityManager is injected.

FullTextEntityManager extends EntityManager with search specific methods, the same way

FullTextSession extends Session.

When an EJB 3.0 Session or Message Driven Bean injection is used (i.e. via the

@PersistenceContext annotation), it is not possible to replace the EntityManager interface by

the FullTextEntityManager interface in the declaration statement. However, the implementation

injected will be a FullTextEntityManager implementation: downcasting is then possible.

Chapter 30. Hibernate Search

456

@Stateful

@Name("search")

public class FullTextSearchAction implements FullTextSearch, Serializable {

 @PersistenceContext EntityManager em;

 public void search(String searchString) {

 org.apache.lucene.search.Query luceneQuery = getLuceneQuery();

 FullTextEntityManager ftEm = (FullTextEntityManager) em;

 javax.persistence.Query query = ftEm.createFullTextQuery(luceneQuery, Product.class);

 searchResults = query

 .setMaxResults(pageSize + 1)

 .setFirstResult(pageSize * currentPage)

 .getResultList();

 }

 [...]

}

Caution

For people accustomed to Hibernate Search out of Seam, note that using

Search.getFullTextSession is not necessary.

Check the DVDStore or the blog examples of the JBoss Seam distribution for a concrete use of

Hibernate Search.

Chapter 31.

457

Configuring Seam and packaging

Seam applications
Configuration is a very boring topic and an extremely tedious pastime. Unfortunately, several

lines of XML are required to integrate Seam into your JSF implementation and servlet container.

There's no need to be too put off by the following sections; you'll never need to type any of this

stuff yourself, since you can just use seam-gen to start your application or you can copy and paste

from the example applications!

31.1. Basic Seam configuration

First, let's look at the basic configuration that is needed whenever we use Seam with JSF.

31.1.1. Integrating Seam with JSF and your servlet container

Of course, you need a faces servlet!

<servlet>

 <servlet-name>Faces Servlet</servlet-name>

 <servlet-class>javax.faces.webapp.FacesServlet</servlet-class>

 <load-on-startup>1</load-on-startup>

</servlet>

<servlet-mapping>

 <servlet-name>Faces Servlet</servlet-name>

 <url-pattern>*.seam</url-pattern>

</servlet-mapping>

(You can adjust the URL pattern to suit your taste.)

In addition, Seam requires the following entry in your web.xml file:

<listener>

 <listener-class>org.jboss.seam.servlet.SeamListener</listener-class>

</listener>

This listener is responsible for bootstrapping Seam, and for destroying session and application

contexts.

Some JSF implementations have a broken implementation of server-side state saving that

interferes with Seam's conversation propagation. If you have problems with conversation

Chapter 31. Configuring Seam ...

458

propagation during form submissions, try switching to client-side state saving. You'll need this in

web.xml:

<context-param>

 <param-name>javax.faces.STATE_SAVING_METHOD</param-name>

 <param-value>client</param-value>

</context-param>

Warning

Setting of javax.faces.STATE_SAVING_METHOD to client can lead

to security issues and it should be set environment entry

com.sun.faces.ClientStateSavingPassword in web.xml like:

 <env-entry>

 <env-entry-name>com.sun.faces.ClientStateSavingPassword</env-

entry-name>

 <env-entry-type>java.lang.String</env-entry-type>

 <env-entry-value>INSERT_YOUR_PASSWORD</env-entry-value>

 </env-entry>

There is a minor gray area in the JSF specification regarding the mutability of view state values.

Since Seam uses the JSF view state to back its PAGE scope this can become an issue in some

cases. If you're using server side state saving with the JSF-RI and you want a PAGE scoped bean

to keep its exact value for a given view of a page you will need to specify the following context-

param. Otherwise if a user uses the "back" button a PAGE scoped component will have the latest

value if it has changed not the value of the "back" page. (see Spec Issue [https://javaserverfaces-

spec-public.dev.java.net/issues/show_bug.cgi?id=295]). This setting is not enabled by default

because of the performance hit of serializing the JSF view with every request.

<context-param>

 <param-name>com.sun.faces.serializeServerState</param-name>

 <param-value>true</param-value>

</context-param>

https://javaserverfaces-spec-public.dev.java.net/issues/show_bug.cgi?id=295
https://javaserverfaces-spec-public.dev.java.net/issues/show_bug.cgi?id=295
https://javaserverfaces-spec-public.dev.java.net/issues/show_bug.cgi?id=295

Seam Resource Servlet

459

31.1.2. Seam Resource Servlet

The Seam Resource Servlet provides resources used by Seam Remoting, captchas (see the

security chapter) and some JSF UI controls. Configuring the Seam Resource Servlet requires the

following entry in web.xml:

<servlet>

 <servlet-name>Seam Resource Servlet</servlet-name>

 <servlet-class>org.jboss.seam.servlet.SeamResourceServlet</servlet-class>

</servlet>

<servlet-mapping>

 <servlet-name>Seam Resource Servlet</servlet-name>

 <url-pattern>/seam/resource/*</url-pattern>

</servlet-mapping>

31.1.3. Seam servlet filters

Seam doesn't need any servlet filters for basic operation. However, there are several features

which depend upon the use of filters. To make things easier, Seam lets you add and configure

servlet filters just like you would configure other built-in Seam components. To take advantage of

this feature, we must first install a master filter in web.xml:

<filter>

 <filter-name>Seam Filter</filter-name>

 <filter-class>org.jboss.seam.servlet.SeamFilter</filter-class>

</filter>

<filter-mapping>

 <filter-name>Seam Filter</filter-name>

 <url-pattern>/*</url-pattern>

</filter-mapping>

The Seam master filter must be the first filter specified in web.xml. This ensures it is run first.

The Seam filters share a number of common attributes, you can set these in components.xml in

addition to any parameters discussed below:

• url-pattern — Used to specify which requests are filtered, the default is all requests. url-

pattern is a Tomcat style pattern which allows a wildcard suffix.

• regex-url-pattern — Used to specify which requests are filtered, the default is all requests.

regex-url-pattern is a true regular expression match for request path.

Chapter 31. Configuring Seam ...

460

• disabled — Used to disable a built in filter.

Note that the patterns are matched against the URI path of the request (see

HttpServletRequest.getURIPath()) and that the name of the servlet context is removed before

matching.

Adding the master filter enables the following built-in filters.

31.1.3.1. Exception handling

This filter provides the exception mapping functionality in pages.xml (almost all applications will

need this). It also takes care of rolling back uncommitted transactions when uncaught exceptions

occur. (According to the Java EE specification, the web container should do this automatically, but

we've found that this behavior cannot be relied upon in all application servers. And it is certainly

not required of plain servlet engines like Tomcat.)

By default, the exception handling filter will process all requests, however this behavior may

be adjusted by adding a <web:exception-filter> entry to components.xml, as shown in this

example:

<components xmlns="http://jboss.org/schema/seam/components"

 xmlns:web="http://jboss.org/schema/seam/web">

 <web:exception-filter url-pattern="*.seam"/>

</components>

31.1.3.2. Conversation propagation with redirects

This filter allows Seam to propagate the conversation context across browser redirects. It

intercepts any browser redirects and adds a request parameter that specifies the Seam

conversation identifier.

The redirect filter will process all requests by default, but this behavior can also be adjusted in

components.xml:

<web:redirect-filter url-pattern="*.seam"/>

31.1.3.3. URL rewriting

This filter allows Seam to apply URL rewriting for views based on configuration in the pages.xml

file. This filter is not activate by default, but can be activated by adding the configuration to

components.xml:

Seam servlet filters

461

<web:rewrite-filter view-mapping="*.seam"/>

The view-mapping parameter must match the servlet mapping defined for the Faces Servlet in

the web.xml file. If ommitted, the rewrite filter assumes the pattern *.seam.

31.1.3.4. Multipart form submissions

This feature is necessary when using the Seam file upload JSF control. It detects multipart form

requests and processes them according to the multipart/form-data specification (RFC-2388). To

override the default settings, add the following entry to components.xml:

<web:multipart-filter create-temp-files="true"

 max-request-size="1000000"

 url-pattern="*.seam"/>

• create-temp-files — If set to true, uploaded files are written to a temporary file (instead of

held in memory). This may be an important consideration if large file uploads are expected. The

default setting is false.

• max-request-size — If the size of a file upload request (determined by reading the Content-

Length header in the request) exceeds this value, the request will be aborted. The default

setting is 0 (no size limit).

31.1.3.5. Character encoding

Sets the character encoding of submitted form data.

This filter is not installed by default and requires an entry in components.xml to enable it:

<web:character-encoding-filter encoding="UTF-16"

 override-client="true"

 url-pattern="*.seam"/>

• encoding — The encoding to use.

• override-client — If this is set to true, the request encoding will be set to whatever is

specified by encoding no matter whether the request already specifies an encoding or not. If

set to false, the request encoding will only be set if the request doesn't already specify an

encoding. The default setting is false.

Chapter 31. Configuring Seam ...

462

31.1.3.6. RichFaces

If RichFaces is used in your project, Seam will install the RichFaces Ajax filter for you, making

sure to install it before all other built-in filters. You don't need to install the RichFaces Ajax filter

in web.xml yourself.

The RichFaces Ajax filter is only installed if the RichFaces jars are present in your project.

To override the default settings, add the following entry to components.xml. The options are the

same as those specified in the RichFaces Developer Guide:

<web:ajax4jsf-filter force-parser="true"

 enable-cache="true"

 log4j-init-file="custom-log4j.xml"

 url-pattern="*.seam"/>

• force-parser — forces all JSF pages to be validated by Richfaces's XML syntax checker. If

false, only AJAX responses are validated and converted to well-formed XML. Setting force-

parser to false improves performance, but can provide visual artifacts on AJAX updates.

• enable-cache — enables caching of framework-generated resources (e.g. javascript, CSS,

images, etc). When developing custom javascript or CSS, setting to true prevents the browser

from caching the resource.

• log4j-init-file — is used to setup per-application logging. A path, relative to web application

context, to the log4j.xml configuration file should be provided.

31.1.3.7. Identity Logging

This filter adds the authenticated user name to the log4j mapped diagnostic context so that it can

be included in formatted log output if desired, by adding %X{username} to the pattern.

By default, the logging filter will process all requests, however this behavior may be adjusted by

adding a <web:logging-filter> entry to components.xml, as shown in this example:

<components xmlns="http://jboss.org/schema/seam/components"

 xmlns:web="http://jboss.org/schema/seam/web">

 <web:logging-filter url-pattern="*.seam"/>

</components>

31.1.3.8. Context management for custom servlets

Requests sent direct to some servlet other than the JSF servlet are not processed through the

JSF lifecycle, so Seam provides a servlet filter that can be applied to any other servlet that needs

access to Seam components.

Seam servlet filters

463

This filter allows custom servlets to interact with the Seam contexts. It sets up the Seam contexts

at the beginning of each request, and tears them down at the end of the request. You should make

sure that this filter is never applied to the JSF FacesServlet. Seam uses the phase listener for

context management in a JSF request.

This filter is not installed by default and requires an entry in components.xml to enable it:

<web:context-filter url-pattern="/media/*"/>

The context filter expects to find the conversation id of any conversation context in a request

parameter named conversationId. You are responsible for ensuring that it gets sent in the

request.

You are also responsible for ensuring propagation of any new conversation id back to the client.

Seam exposes the conversation id as a property of the built in component conversation.

31.1.3.9. Enabling HTTP cache-control headers

Seam does not automatically add cache-control HTTP headers to any resources served by the

Seam resource servlet, or directly from your view directory by the servlet container. This means

that your images, Javascript and CSS files, and resource representations from Seam resource

servlet such as Seam Remoting Javascript interfaces are usually not cached by the browser.

This is convenient in development but should be changed in production when optimizing the

application.

You can configure a Seam filter to enable automatic addition of cache-control headers

depending on the requested URI in components.xml:

<web:cache-control-filter name="commonTypesCacheControlFilter"

 regex-url-pattern=".*(\.gif|\.png|\.jpg|\.jpeg|\.css|\.js)"

 value="max-age=86400"/> <!-- 1 day -->

<web:cache-control-filter name="anotherCacheControlFilter"

 url-pattern="/my/cachable/resources/*"

 value="max-age=432000"/> <!-- 5 days -->

You do not have to name the filters unless you have more than one filter enabled.

31.1.3.10. Adding custom filters

Seam can install your filters for you, allowing you to specify where in the chain your filter is

placed (the servlet specification doesn't provide a well defined order if you specify your filters in

a web.xml). Just add the @Filter annotation to your Seam component (which must implement

javax.servlet.Filter):

Chapter 31. Configuring Seam ...

464

@Startup

@Scope(APPLICATION)

@Name("org.jboss.seam.web.multipartFilter")

@BypassInterceptors

@Filter(within="org.jboss.seam.web.ajax4jsfFilter")

public class MultipartFilter extends AbstractFilter {

Adding the @Startup annotation means that the component is available during Seam startup;

bijection isn't available here (@BypassInterceptors); and the filter should be further down the

chain than the RichFaces filter (@Filter(within="org.jboss.seam.web.ajax4jsfFilter")).

31.1.4. Integrating Seam with your EJB container

In a Seam application, EJB components have a certain duality, as they are managed by both

the EJB container and Seam. Actually, it's more that Seam resolves EJB component references,

manages the lifetime of stateful session bean components, and also participates in each method

call via interceptors. Let's start with the configuration of the Seam interceptor chain.

We need to apply the SeamInterceptor to our Seam EJB components. This interceptor delegates

to a set of built-in server-side interceptors that handle such concerns as bijection, conversation

demarcation, and business process signals. The simplest way to do this across an entire

application is to add the following interceptor configuration in ejb-jar.xml:

<interceptors>

 <interceptor>

 <interceptor-class>org.jboss.seam.ejb.SeamInterceptor</interceptor-class>

 </interceptor>

</interceptors>

<assembly-descriptor>

 <interceptor-binding>

 <ejb-name>*</ejb-name>

 <interceptor-class>org.jboss.seam.ejb.SeamInterceptor</interceptor-class>

 </interceptor-binding>

</assembly-descriptor>

Seam needs to know where to go to find session beans in JNDI. One way to do this is specify the

@JndiName annotation on every session bean Seam component. However, this is quite tedious. A

better approach is to specify a pattern that Seam can use to calculate the JNDI name from the EJB

name. Fortunately, new portable JNDI Syntax was introduced in Java EE 6. There are three JNDI

namespaces for portable JNDI lookups - java:global, java:module and java:app. More in Java

http://docs.oracle.com/javaee/6/tutorial/doc/gipjf.html#girgn

Integrating Seam with your EJB container

465

EE 6 tutorial [http://docs.oracle.com/javaee/6/tutorial/doc/gipjf.html#girgn] We usually specify this

option in components.xml.

For JBoss AS 7, the following pattern is correct:

<core:init jndi-name="java:app/<ejb-module-name>/#{ejbName}" />

In this case, <ejb-module-name> is the name of the EJB module (by default it is filename of ejb

jar) in which the bean is deployed, Seam replaces #{ejbName} with the name of the EJB.

How these JNDI names are resolved and somehow locate an EJB component might appear a

bit like black magic at this point, so let's dig into the details. First, let's talk about how the EJB

components get into JNDI.

EJB components would get assigned a global JNDI name automatically, using the pattern

described in Java EE 6 tutorial [http://docs.oracle.com/javaee/6/tutorial/doc/gipjf.html#girgn]. The

EJB name is the first non-empty value from the following list:

• The value of the <ejb-name> element in ejb-jar.xml

• The value of the name attribute in the @Stateless or @Stateful annotation

• The simple name of the bean class

Let's look at an example. Assume that you have the following EJB bean and interface defined.

package com.example.myapp;

import javax.ejb.Local;

@Local

public interface Authenticator

{

 boolean authenticate();

}

package com.example.myapp;

import javax.ejb.Stateless;

@Stateless

@Name("authenticator")

public class AuthenticatorBean implements Authenticator

{

http://docs.oracle.com/javaee/6/tutorial/doc/gipjf.html#girgn
http://docs.oracle.com/javaee/6/tutorial/doc/gipjf.html#girgn
http://docs.oracle.com/javaee/6/tutorial/doc/gipjf.html#girgn
http://docs.oracle.com/javaee/6/tutorial/doc/gipjf.html#girgn

Chapter 31. Configuring Seam ...

466

 public boolean authenticate() { ... }

}

Assuming your EJB bean class is deployed in an EAR named myapp, the global JNDI name

myapp/AuthenticatorBean/local will be assigned to it on JBoss AS. As you learned, you can

reference this EJB component as a Seam component with the name authenticator and Seam

will take care of finding it in JNDI according to the JNDI pattern (or @JndiName annotation).

So what about the rest of the application servers? Well, according to the Java EE spec, which

most vendors try to adhere to religiously, you have to declare an EJB reference for your EJB in

order for it to be assigned a JNDI name. That requires some XML. It also means that it is up to

you to establish a JNDI naming convention so that you can leverage the Seam JNDI pattern. You

might find the JBoss convention a good one to follow.

There are two places you have to define the EJB reference when using Seam on non-JBoss

application servers. If you are going to be looking up the Seam EJB component through JSF (in

a JSF view or as a JSF action listener) or a Seam JavaBean component, then you must declare

the EJB reference in web.xml. Here is the EJB reference for the example component just shown:

<ejb-local-ref>

 <ejb-ref-name>myapp/AuthenticatorBean</ejb-ref-name>

 <ejb-ref-type>Session</ejb-ref-type>

 <local>org.example.vehicles.action.Authenticator</local>

</ejb-local-ref>

This reference will cover most uses of the component in a Seam application. However, if you want

to be able to inject a Seam EJB component into another Seam EJB component using @In, you

need to define this EJB reference in another location. This time, it must be defined in ejb-jar.xml,

and it's a bit tricker.

Within the context of an EJB method call, you have to deal with a somewhat sheltered JNDI

context. When Seam attempts to find another Seam EJB component to satisfy an injection point

defined using @In, whether or not it finds it depends on whether an EJB reference exists in JNDI.

Strictly speaking, you cannot simply resolve JNDI names as you please. You have to define

the references explicitly. Fortunately, JBoss recognized how aggravating this would be for the

developer and all versions of JBoss automatically register EJBs so they are always available in

JNDI, both to the web container and the EJB container. So if you are using JBoss, you can skip

the next few paragraphs. However, if you are deploying to GlassFish, pay close attention.

For application servers that stubbornly adhere to the EJB specification, EJB references must

always be defined explicitly. But unlike with the web context, where a single resource reference

covers all uses of the EJB from the web environment, you cannot declare EJB references globally

in the EJB container. Instead, you have to specify the JNDI resources for a given EJB component

one-by-one.

Integrating Seam with your EJB container

467

Let's assume that we have an EJB named RegisterAction (the name is resolved using the three

steps mentioned previously). That EJB has the following Seam injection:

@In(create = true)

Authenticator authenticator;

In order for this injection to work, the link must be established in the ejb-jar.xml file as follows:

<ejb-jar>

 <enterprise-beans>

 <session>

 <ejb-name>RegisterAction</ejb-name>

 <ejb-local-ref>

 <ejb-ref-name>myapp/AuthenticatorAction/local</ejb-ref-name>

 <ejb-ref-type>Session</ejb-ref-type>

 <local>com.example.myapp.Authenticator</local>

 </ejb-local-ref>

 </session>

 </enterprise-beans>

 ...

</ejb-jar>

Notice that the contents of the <ejb-local-ref> are identical to what we defined in web.xml.

What we are doing is bringing the reference into the EJB context where it can be used by the

RegisterAction bean. You will need to add one of these references for any injection of a Seam

EJB component into another Seam EJB component using @In. (You can see an example of this

setup in the jee5/booking example).

But what about @EJB? It's true that you can inject one EJB into another using @EJB. However,

by doing so, you are injecting the actual EJB reference rather than the Seam EJB component

instance. In this case, some Seam features will work, while others won't. That's because Seam's

interceptor is invoked on any method call to an EJB component. But that only invokes Seam's

server-side interceptor chain. What you lose is Seam's state management and Seam's client-

side interceptor chain. Client-side interceptors handle concerns such as security and concurrency.

Also, when injecting a SFSB, there is no guarantee that you will get the SFSB bound to the active

session or conversation, whatever the case may be. Thus, you definitely want to inject the Seam

EJB component using @In.

Finally, let's talk about transactions. In an EJB environment, we recommend the use of a special

built-in component for transaction management, that is fully aware of container transactions,

and can correctly process transaction success events registered with the Events component. If

Chapter 31. Configuring Seam ...

468

you don't add this line to your components.xml file, Seam won't know when container-managed

transactions end:

<transaction:ejb-transaction/>

31.1.5. Don't forget!

There is one final item you need to know about. You must place a seam.properties, META-

INF/seam.properties or META-INF/components.xml file in any archive in which your Seam

components are deployed (even an empty properties file will do). At startup, Seam will scan any

archives with seam.properties files for seam components.

In a web archive (WAR) file, you must place a seam.properties file in the WEB-INF/classes

directory if you have any Seam components included here.

That's why all the Seam examples have an empty seam.properties file. You can't just delete

this file and expect everything to still work!

You might think this is silly and what kind of idiot framework designers would make an empty file

affect the behavior of their software?? Well, this is a workaround for a limitation of the JVM — if

we didn't use this mechanism, our next best option would be to force you to list every component

explicitly in components.xml, just like some other competing frameworks do! I think you'll like our

way better.

31.2. Using Alternate JPA Providers

Seam comes packaged and configured with Hibernate as the default JPA provider. If you require

using a different JPA provider you must tell seam about it.

This is a workaround

Configuration of the JPA provider will be easier in the future and will not require

configuration changes, unless you are adding a custom persistence provider

implementation.

Telling seam about a different JPA provider can be done in one of two ways:

Update your application's components.xml so that the generic PersistenceProvider takes

precedence over the hibernate version. Simply add the following to the file:

<component name="org.jboss.seam.persistence.persistenceProvider"

 class="org.jboss.seam.persistence.PersistenceProvider"

 scope="stateless">

Configuring Seam in Java EE 6

469

</component>

If you want to take advantage of your JPA provider's non-standard features you will need to write

you own implementation of the PersistenceProvider. Use HibernatePersistenceProvider

as a starting point (don't forget to give back to the community :). Then you will need to tell seam

to use it as before.

<component name="org.jboss.seam.persistence.persistenceProvider"

 class="org.your.package.YourPersistenceProvider">

</component>

All that is left is updating the persistence.xml file with the correct provider class, and what

ever properties your provider needs. Don't forget to package your new provider's jar files in the

application if they are needed.

31.3. Configuring Seam in Java EE 6

If you're running in a Java EE environment, this is all the configuration required to start using Seam!

31.3.1. Packaging

Once you've packaged all this stuff together into an EAR, the archive structure will look something

like this:

my-application.ear/

 jboss-seam.jar

 lib/

 jboss-el.jar

 META-INF/

 MANIFEST.MF

 application.xml

 jboss-deployment-structure.xml

 my-application.war/

Chapter 31. Configuring Seam ...

470

 META-INF/

 MANIFEST.MF

 WEB-INF/

 web.xml

 components.xml

 faces-config.xml

 lib/

 jboss-seam-ui.jar

 login.jsp

 register.jsp

 ...

 my-application.jar/

 META-INF/

 MANIFEST.MF

 persistence.xml

 seam.properties

 org/

 jboss/

 myapplication/

 User.class

 Login.class

 LoginBean.class

 Register.class

 RegisterBean.class

 ...

You should declare jboss-seam.jar as an ejb module in META-INF/application.xml; jboss-

el.jar should be placed in the EAR's lib directory (putting it in the EAR classpath.

If you want to use jBPM or Drools, you must include the needed jars in the EAR's lib directory.

If you want to use the Seam tag library (most Seam applications do), you must include jboss-

seam-ui.jar in the WEB-INF/lib directory of the WAR. If you want to use the PDF or email tag

libraries, you need to put jboss-seam-pdf.jar or jboss-seam-mail.jar in WEB-INF/lib.

If you want to use the Seam debug page (only works for applications using facelets), you must

include jboss-seam-debug.jar in the WEB-INF/lib directory of the WAR.

Seam ships with several example applications that are deployable in any Java EE container that

supports EJB 3.1.

faces-config.xml is not required in JSF 2, but if you want to set up something non-default you

need to place it in WAR/WEB-INF.

Configuring Seam without EJB

471

I really wish that was all there was to say on the topic of configuration but unfortunately we're only

about a third of the way there. If you're too overwhelmed by all this tedious configuration stuff, feel

free to skip over the rest of this section and come back to it later.

31.4. Configuring Seam without EJB

Seam is useful even if you're not yet ready to take the plunge into EJB 3.1. In this case you would

use Hibernate 4 instead of EJB 3.1 persistence, and plain JavaBeans instead of session beans.

You'll miss out on some of the nice features of session beans but it will be very easy to migrate

to EJB 3.1 when you're ready and, in the meantime, you'll be able to take advantage of Seam's

unique declarative state management architecture.

Seam JavaBean components do not provide declarative transaction demarcation like session

beans do. You could manage your transactions manually using the JTA UserTransaction or

declaratively using Seam's @Transactional annotation. But most applications will just use Seam

managed transactions when using Hibernate with JavaBeans.

The Seam distribution includes a version of the booking example application that uses Hibernate

and JavaBeans instead of EJB, and another version that uses JPA and JavaBeans. These

example applications are ready to deploy into any Java EE application server.

31.4.1. Boostrapping Hibernate in Seam

Seam will bootstrap a Hibernate SessionFactory from your hibernate.cfg.xml file if you install

a built-in component:

<persistence:hibernate-session-factory name="hibernateSessionFactory"/>

You will also need to configure a managed session if you want a Seam managed Hibernate

Session to be available via injection.

<persistence:managed-hibernate-session name="hibernateSession"

 session-factory="#{hibernateSessionFactory}"/>

Chapter 31. Configuring Seam ...

472

31.4.2. Boostrapping JPA in Seam

Seam will bootstrap a JPA EntityManagerFactory from your persistence.xml file if you install

this built-in component:

<persistence:entity-manager-factory name="entityManagerFactory"/>

You will also need to configure a managed persistence context if you want a Seam managed JPA

EntityManager to be available via injection.

<persistence:managed-persistence-context name="entityManager"

 entity-manager-factory="#{entityManagerFactory}"/>

31.4.3. Packaging

We can package our application as a WAR, in the following structure:

my-application.war/

 META-INF/

 MANIFEST.MF

 jboss-deployment-structure.xml

 WEB-INF/

 web.xml

 components.xml

 faces-config.xml

 lib/

 jboss-seam.jar

 jboss-seam-ui.jar

 jboss-el.jar

 hibernate-core.jar

 hibernate-annotations.jar

 hibernate-validator.jar

 ...

 my-application.jar/

 META-INF/

 MANIFEST.MF

 seam.properties

 hibernate.cfg.xml

 org/

 jboss/

 myapplication/

Configuring Seam in Java SE

473

 User.class

 Login.class

 Register.class

 ...

 login.jsp

 register.jsp

 ...

If we want to deploy Hibernate in a non-EE environment like Tomcat or TestNG, we need to do

a little bit more work.

31.5. Configuring Seam in Java SE

It is possible to use Seam completely outside of an EE environment. In this case, you need to tell

Seam how to manage transactions, since there will be no JTA available. If you're using JPA, you

can tell Seam to use JPA resource-local transactions, ie. EntityTransaction, like so:

<transaction:entity-transaction entity-manager="#{entityManager}"/>

If you're using Hibernate, you can tell Seam to use the Hibernate transaction API like this:

<transaction:hibernate-transaction session="#{session}"/>

Of course, you'll also need to define a datasource.

31.6. Configuring jBPM in Seam

Seam's jBPM integration is not installed by default, so you'll need to enable jBPM by installing

a built-in component. You'll also need to explicitly list your process and pageflow definitions. In

components.xml:

<bpm:jbpm>

 <bpm:pageflow-definitions>

 <value>createDocument.jpdl.xml</value>

 <value>editDocument.jpdl.xml</value>

 <value>approveDocument.jpdl.xml</value>

 </bpm:pageflow-definitions>

 <bpm:process-definitions>

 <value>documentLifecycle.jpdl.xml</value>

 </bpm:process-definitions>

Chapter 31. Configuring Seam ...

474

</bpm:jbpm>

No further special configuration is needed if you only have pageflows. If you do have business

process definitions, you need to provide a jBPM configuration, and a Hibernate configuration for

jBPM. The Seam DVD Store demo includes example jbpm.cfg.xml and hibernate.cfg.xml

files that will work with Seam:

<jbpm-configuration>

 <jbpm-context>

 <service name="persistence">

 <factory>

 <bean class="org.jbpm.persistence.db.DbPersistenceServiceFactory">

 <field name="isTransactionEnabled"><false/></field>

 </bean>

 </factory>

 </service>

 <service name="tx" factory="org.jbpm.tx.TxServiceFactory" />

 <service name="message" factory="org.jbpm.msg.db.DbMessageServiceFactory" />

 <service name="scheduler" factory="org.jbpm.scheduler.db.DbSchedulerServiceFactory" />

 <service name="logging" factory="org.jbpm.logging.db.DbLoggingServiceFactory" />

 <service name="authentication"

 factory="org.jbpm.security.authentication.DefaultAuthenticationServiceFactory" />

 </jbpm-context>

</jbpm-configuration>

The most important thing to notice here is that jBPM transaction control is disabled. Seam or EJB3

should control the JTA transactions.

31.6.1. Packaging

There is not yet any well-defined packaging format for jBPM configuration and process/pageflow

definition files. In the Seam examples we've decided to simply package all these files into the root

of the EAR. In future, we will probably design some other standard packaging format. So the EAR

looks something like this:

my-application.ear/

 jboss-seam.jar

 lib/

 jboss-el.jar

 jbpm-jpdl.jar

Deployment in JBoss AS 7

475

 META-INF/

 MANIFEST.MF

 application.xml

 jboss-deployment-structure.xml

 my-application.war/

 META-INF/

 MANIFEST.MF

 WEB-INF/

 web.xml

 components.xml

 faces-config.xml

 lib/

 jboss-seam-ui.jar

 login.jsp

 register.jsp

 ...

 my-application.jar/

 META-INF/

 MANIFEST.MF

 persistence.xml

 seam.properties

 org/

 jboss/

 myapplication/

 User.class

 Login.class

 LoginBean.class

 Register.class

 RegisterBean.class

 ...

 jbpm.cfg.xml

 hibernate.cfg.xml

 createDocument.jpdl.xml

 editDocument.jpdl.xml

 approveDocument.jpdl.xml

 documentLifecycle.jpdl.xml

31.7. Deployment in JBoss AS 7

JBoss AS 7 is default deployment target for all examples in Seam 2.3 distribution.

Seam 2.3 requires to have setup special deployment metada file jboss-deployment-

structure.xml for correct initialization. Minimal content for EAR is:

Chapter 31. Configuring Seam ...

476

Example 31.1. jboss-deployment-structure.xml

<jboss-deployment-structure xmlns="urn:jboss:deployment-structure:1.0">

 <deployment>

 <dependencies>

 <module name="org.dom4j" export="true"/>

 <module name="org.apache.commons.collections" export="true"/>

 <module name="javax.faces.api" export="true"/>

 </dependencies>

 </deployment>

</jboss-deployment-structure>

More details about new AS 7 classloading can be found at https://docs.jboss.org/author/display/

AS7/Developer+Guide#DeveloperGuide-ClassloadinginJBossAS7

Deployment of multiple modules in one EAR

There is a significant enhancement for speed up the application deployment in

AS 7. This unfortunatelly can cause some issues while you have multiple war/ejb

modules in your application.

This situation requires to use and set up new Java EE 6 configuration parameter

- Module initialization order - in application.xml - initialize-in-order to

true. This causes that initialization will happen in defined order like it is in

application.xml. Example of application.xml:

<?xml version="1.0" encoding="UTF-8"?>

<application xmlns="http://java.sun.com/xml/ns/javaee" xmlns:xsi="http://

www.w3.org/2001/XMLSchema-instance"

 version="6" xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://

java.sun.com/xml/ns/javaee/application_6.xsd">

 <application-name>test-app</application-name>

 <initialize-in-order>true</initialize-in-order>

 <module>

 <ejb>jboss-seam.jar</ejb>

 </module>

 <module>

 <web>

 <web-uri>test-web1.war</web-uri>

 <context-root>test</context-root>

 </web>

 <web>

https://docs.jboss.org/author/display/AS7/Developer+Guide#DeveloperGuide-ClassloadinginJBossAS7
https://docs.jboss.org/author/display/AS7/Developer+Guide#DeveloperGuide-ClassloadinginJBossAS7

Deployment in JBoss AS 7

477

 <web-uri>test-web2.war</web-uri>

 <context-root>test</context-root>

 </web>

 </module>

</application>

If you are using maven-ear-plugin for generation of your application, you can use

this plugin configuration:

<plugin>

 <artifactId>maven-ear-plugin</artifactId>

 <!-- from version 2.6 the plugin supports Java EE 6 descriptor -->

 <version>2.7</version>

 <configuration>

 <version>6</version>

 <generateApplicationXml>true</generateApplicationXml>

 <defaultLibBundleDir>lib</defaultLibBundleDir>

 <initializeInOrder>true</initializeInOrder>

 <modules>

 <jarModule>

 <groupId>org.jboss.el</groupId>

 <artifactId>jboss-el</artifactId>

 <includeInApplicationXml>false</includeInApplicationXml>

 <bundleDir>lib</bundleDir>

 </jarModule>

 <ejbModule>

 <groupId>org.jboss.seam</groupId>

 <artifactId>jboss-seam</artifactId>

 <bundleFileName>jboss-seam.jar</bundleFileName>

 </ejbModule>

 <ejbModule>

 <groupId>some.user.module</groupId>

 <artifactId>hello-ejbs</artifactId>

 <bundleFileName>hello-ejbs.jar</bundleFileName>

 </ejbModule>

 <webModule>

 <groupId>some.user.module</groupId>

 <artifactId>hello-web1</artifactId>

 <contextRoot>/hello1</contextRoot>

 <bundleFileName>hello-web1.war</bundleFileName>

 </webModule>

 <webModule>

 <groupId>some.user.module</groupId>

Chapter 31. Configuring Seam ...

478

 <artifactId>hello-web2</artifactId>

 <contextRoot>/hello2</contextRoot>

 <bundleFileName>hello-web2.war</bundleFileName>

 </webModule>

 </modules>

 </configuration>

</plugin>

31.8. Configuring SFSB and Session Timeouts in JBoss

AS 7

It is very important that the timeout for Stateful Session Beans is set higher than the timeout

for HTTP Sessions, otherwise SFSB's may time out before the user's HTTP session has ended.

JBoss Application Server has a default session bean timeout of 30 minutes, which is configured

in standalone/configuration/standalone.xml (replace standalone.xml with your standalone-

full.xml if you use full profile).

The default SFSB timeout can be adjusted by modifying the value of default-access-timeout

in the EJB subsystem subsystem xmlns="urn:jboss:domain:ejb3:1.2":

<subsystem xmlns="urn:jboss:domain:ejb3:1.2">

 <session-bean>

 <stateless>

 <bean-instance-pool-ref pool-name="slsb-strict-max-pool"/>

 </stateless>

 <stateful default-access-timeout="5000" cache-ref="simple"/>

 <singleton default-access-timeout="5000"/>

 </session-bean>

 ...

</subsystem>

The default HTTP session timeout can't be modified in JBoss AS 7.

To override default value for your own application, simply include session-timeout entry in your

application's own web.xml:

 <session-config>

 <session-timeout>30</session-timeout>

 </session-config>

Running Seam in a Portlet

479

31.9. Running Seam in a Portlet

If you want to run your Seam application in a portlet, take a look at the JBoss Portlet Bridge,

an implementation of JSR-301 that supports JSF within a portlet, with extensions for Seam and

RichFaces. See http://labs.jboss.com/portletbridge for more.

31.10. Deploying custom resources

Seam scans all jars containing /seam.properties, /META-INF/components.xml or /META-INF/

seam.properties on startup for resources. For example, all classes annotated with @Name are

registered with Seam as Seam components.

You may also want Seam to handle custom resources. A common use case is to handle a specific

annotation and Seam provides specific support for this. First, tell Seam which annotations to

handle in /META-INF/seam-deployment.properties:

A colon-separated list of annotation types to handle

org.jboss.seam.deployment.annotationTypes=com.acme.Foo:com.acme.Bar

Then, during application startup you can get hold of all classes annotated with @Foo:

@Name("fooStartup")

@Scope(APPLICATION)

@Startup

public class FooStartup {

 @In("#{deploymentStrategy.annotatedClasses['com.acme.Foo']}")

 private Set<Class<Object>> fooClasses;

 @In("#{hotDeploymentStrategy.annotatedClasses['com.acme.Foo']}")

 private Set<Class<Object>> hotFooClasses;

 @Create

 public void create() {

 for (Class clazz: fooClasses) {

 handleClass(clazz);

 }

 for (Class clazz: hotFooClasses) {

 handleClass(clazz);

 }

 }

 public void handleClass(Class clazz) {

http://labs.jboss.com/portletbridge

Chapter 31. Configuring Seam ...

480

 // ...

 }

}

You can also handle any resource. For example, you process any files with the extension

.foo.xml. To do this, we need to write a custom deployment handler:

public class FooDeploymentHandler implements DeploymentHandler {

 private static DeploymentMetadata FOO_METADATA = new DeploymentMetadata()

 {

 public String getFileNameSuffix() {

 return ".foo.xml";

 }

 };

 public String getName() {

 return "fooDeploymentHandler";

 }

 public DeploymentMetadata getMetadata() {

 return FOO_METADATA;

 }

}

Here we are just building a list of any files with the suffix .foo.xml.

Then, we need to register the deployment handler with Seam in /META-INF/seam-

deployment.properties. You can register multiple deployment handler using a comma

separated list.

For standard deployment

org.jboss.seam.deployment.deploymentHandlers=com.acme.FooDeploymentHandler

For hot deployment

org.jboss.seam.deployment.hotDeploymentHandlers=com.acme.FooDeploymentHandler

Seam uses deployment handlers internally to install components and namespaces. You can easily

access the deployment handler during an APPLICATION scoped component's startup:

Deploying custom resources

481

@Name("fooStartup")

@Scope(APPLICATION)

@Startup

public class FooStartup {

 @In("#{deploymentStrategy.deploymentHandlers['fooDeploymentHandler']}")

 private FooDeploymentHandler myDeploymentHandler;

 @In("#{hotDeploymentStrategy.deploymentHandlers['fooDeploymentHandler']}")

 private FooDeploymentHandler myHotDeploymentHandler;

 @Create

 public void create() {

 for (FileDescriptor fd: myDeploymentHandler.getResources()) {

 handleFooXml(fd);

 }

 for (FileDescriptor f: myHotDeploymentHandler.getResources()) {

 handleFooXml(fd);

 }

 }

 public void handleFooXml(FileDescriptor fd) {

 // ...

 }

}

482

Chapter 32.

483

Seam annotations
When you write a Seam application, you'll use a lot of annotations. Seam lets you use annotations

to achieve a declarative style of programming. Most of the annotations you'll use are defined by

the EJB 3.0 specification. The annotations for data validation are defined by the Bean Validation

standard. Finally, Seam defines its own set of annotations, which we'll describe in this chapter.

All of these annotations are defined in the package org.jboss.seam.annotations.

32.1. Annotations for component definition

The first group of annotations lets you define a Seam component. These annotations appear on

the component class.

@Name

@Name("componentName")

Defines the Seam component name for a class. This annotation is required for all Seam

components.

@Scope

@Scope(ScopeType.CONVERSATION)

Defines the default context of the component. The possible values are defined by the

ScopeType enumeration: EVENT, PAGE, CONVERSATION, SESSION, BUSINESS_PROCESS,

APPLICATION, STATELESS.

When no scope is explicitly specified, the default depends upon the component type. For

stateless session beans, the default is STATELESS. For entity beans and stateful session

beans, the default is CONVERSATION. For JavaBeans, the default is EVENT.

@Role

@Role(name="roleName", scope=ScopeType.SESSION)

Allows a Seam component to be bound to multiple contexts variables. The @Name/@Scope

annotations define a "default role". Each @Role annotation defines an additional role.

• name — the context variable name.

Chapter 32. Seam annotations

484

• scope — the context variable scope. When no scope is explicitly specified, the default

depends upon the component type, as above.

@Roles

@Roles({

 @Role(name="user", scope=ScopeType.CONVERSATION),

 @Role(name="currentUser", scope=ScopeType.SESSION)

 })

Allows specification of multiple additional roles.

@BypassInterceptors

@BypassInterceptors

Disables Seam all interceptors on a particular component or method of a component.

@JndiName

@JndiName("my/jndi/name")

Specifies the JNDI name that Seam will use to look up the EJB component. If

no JNDI name is explicitly specified, Seam will use the JNDI pattern specified by

org.jboss.seam.core.init.jndiPattern.

@Conversational

@Conversational

Specifies that a conversation scope component is conversational, meaning that no method of

the component may be called unless a long-running conversation is active.

@PerNestedConversation

@PerNestedConversation

Limits the scope of a CONVERSATION-scoped component to just the parent conversation

in which it was instantiated. The component instance will not be visible to nested child

conversations, which will get their own instance.

Annotations for component definition

485

Warning: this is ill-defined, since it implies that a component will be visible for some part of a

request cycle, and invisible after that. It is not recommended that applications use this feature!

@Startup

@Scope(APPLICATION) @Startup(depends="org.jboss.seam.bpm.jbpm")

Specifies that an application scope component is started immediately at initialization time.

This is mainly used for certain built-in components that bootstrap critical infrastructure such

as JNDI, datasources, etc.

@Scope(SESSION) @Startup

Specifies that a session scope component is started immediately at session creation time.

• depends — specifies that the named components must be started first, if they are installed.

@Install

@Install(false)

Specifies whether or not a component should be installed by default. The lack of an @Install

annotation indicates a component should be installed.

@Install(dependencies="org.jboss.seam.bpm.jbpm")

Specifies that a component should only be stalled if the components listed as dependencies

are also installed.

@Install(genericDependencies=ManagedQueueSender.class)

Specifies that a component should only be installed if a component that is implemented by

a certain class is installed. This is useful when the dependency doesn't have a single well-

known name.

@Install(classDependencies="org.hibernate.Session")

Specifies that a component should only be installed if the named class is in the classpath.

Chapter 32. Seam annotations

486

@Install(precedence=BUILT_IN)

Specifies the precedence of the component. If multiple components with the same name exist,

the one with the higher precedence will be installed. The defined precedence values are (in

ascending order):

• BUILT_IN — Precedence of all built-in Seam components

• FRAMEWORK — Precedence to use for components of frameworks which extend Seam

• APPLICATION — Precedence of application components (the default precedence)

• DEPLOYMENT — Precedence to use for components which override application components

in a particular deployment

• MOCK — Precedence for mock objects used in testing

@Synchronized

@Synchronized(timeout=1000)

Specifies that a component is accessed concurrently by multiple clients, and that Seam should

serialize requests. If a request is not able to obtain its lock on the component in the given

timeout period, an exception will be raised.

@ReadOnly

@ReadOnly

Specifies that a JavaBean component or component method does not require state replication

at the end of the invocation.

@AutoCreate

@AutoCreate

Specifies that a component will be automatically created, even if the client does not specify

create=true.

32.2. Annotations for bijection

The next two annotations control bijection. These attributes occur on component instance

variables or property accessor methods.

Annotations for bijection

487

@In

@In

Specifies that a component attribute is to be injected from a context variable at the beginning

of each component invocation. If the context variable is null, an exception will be thrown.

@In(required=false)

Specifies that a component attribute is to be injected from a context variable at the beginning

of each component invocation. The context variable may be null.

@In(create=true)

Specifies that a component attribute is to be injected from a context variable at the beginning

of each component invocation. If the context variable is null, an instance of the component

is instantiated by Seam.

@In(value="contextVariableName")

Specifies the name of the context variable explicitly, instead of using the annotated instance

variable name.

@In(value="#{customer.addresses['shipping']}")

Specifies that a component attribute is to be injected by evaluating a JSF EL expression at

the beginning of each component invocation.

• value — specifies the name of the context variable. Default to the name of the component

attribute. Alternatively, specifies a JSF EL expression, surrounded by #{...}.

• create — specifies that Seam should instantiate the component with the same name as

the context variable if the context variable is undefined (null) in all contexts. Default to false.

• required — specifies Seam should throw an exception if the context variable is undefined

in all contexts.

Chapter 32. Seam annotations

488

@Out

@Out

Specifies that a component attribute that is a Seam component is to be outjected to its context

variable at the end of the invocation. If the attribute is null, an exception is thrown.

@Out(required=false)

Specifies that a component attribute that is a Seam component is to be outjected to its context

variable at the end of the invocation. The attribute may be null.

@Out(scope=ScopeType.SESSION)

Specifies that a component attribute that is not a Seam component type is to be outjected to

a specific scope at the end of the invocation.

Alternatively, if no scope is explicitly specified, the scope of the component with the @Out

attribute is used (or the EVENT scope if the component is stateless).

@Out(value="contextVariableName")

Specifies the name of the context variable explicitly, instead of using the annotated instance

variable name.

• value — specifies the name of the context variable. Default to the name of the component

attribute.

• required — specifies Seam should throw an exception if the component attribute is null

during outjection.

Note that it is quite common for these annotations to occur together, for example:

@In(create=true) @Out private User currentUser;

The next annotation supports the manager component pattern; a Seam component manages the

lifecycle of an instance of some other class that is to be injected. It appears on a component getter

method.

Annotations for bijection

489

@Unwrap

@Unwrap

Specifies that the object returned by the annotated getter method is the thing that is injected

instead of the component instance itself.

The next annotation supports the factory component pattern; a Seam component is responsible

for initializing the value of a context variable. This is especially useful for initializing any state

needed for rendering the response to a non-faces request. It appears on a component method.

@Factory

@Factory("processInstance") public void createProcessInstance() { ... }

Specifies that the method of the component is used to initialize the value of the named context

variable, when the context variable has no value. This style is used with methods that return

void.

@Factory("processInstance", scope=CONVERSATION) public ProcessInstance createProcessInstance() { ... }

Specifies that the method returns a value that Seam should use to initialize the value of

the named context variable, when the context variable has no value. This style is used with

methods that return a value. If no scope is explicitly specified, the scope of the component with

the @Factory method is used (unless the component is stateless, in which case the EVENT

context is used).

• value — specifies the name of the context variable. If the method is a getter method, default

to the JavaBeans property name.

• scope — specifies the scope that Seam should bind the returned value to. Only meaningful

for factory methods which return a value.

• autoCreate — specifies that this factory method should be automatically called whenever

the variable is asked for, even if @In does not specify create=true.

This annotation lets you inject a Log:

@Logger

@Logger("categoryName")

Chapter 32. Seam annotations

490

Specifies that a component field is to be injected with an instance of

org.jboss.seam.log.Log. For entity beans, the field must be declared as static.

• value — specifies the name of the log category. Default to the name of the component

class.

The last annotation lets you inject a request parameter value:

@RequestParameter

@RequestParameter("parameterName")

Specifies that a component attribute is to be injected with the value of a request parameter.

Basic type conversions are performed automatically.

• value — specifies the name of the request parameter. Default to the name of the

component attribute.

32.3. Annotations for component lifecycle methods

These annotations allow a component to react to its own lifecycle events. They occur on methods

of the component. There may be only one of each per component class.

@Create

@Create

Specifies that the method should be called when an instance of the component is instantiated

by Seam. Note that create methods are only supported for JavaBeans and stateful session

beans.

@Destroy

@Destroy

Specifies that the method should be called when the context ends and its context variables are

destroyed. Note that destroy methods are only supported for JavaBeans and stateful session

beans.

Destroy methods should be used only for cleanup. Seam catches, logs and swallows any

exception that propagates out of a destroy method.

Annotations for context demarcation

491

@Observer

@Observer("somethingChanged")

Specifies that the method should be called when a component-driven event of the specified

type occurs.

@Observer(value="somethingChanged",create=false)

Specifies that the method should be called when an event of the specified type occurs but

that an instance should not be created if one doesn't exist. If an instance does not exist and

create is false, the event will not be observed. The default value for create is true.

32.4. Annotations for context demarcation

These annotations provide declarative conversation demarcation. They appear on methods of

Seam components, usually action listener methods.

Every web request has a conversation context associated with it. Most of these conversations

end at the end of the request. If you want a conversation that span multiple requests, you must

"promote" the current conversation to a long-running conversation by calling a method marked

with @Begin.

@Begin

@Begin

Specifies that a long-running conversation begins when this method returns a non-null

outcome without exception.

@Begin(join=true)

Specifies that if a long-running conversation is already in progress, the conversation context

is simply propagated.

@Begin(nested=true)

Specifies that if a long-running conversation is already in progress, a new nested conversation

context begins. The nested conversation will end when the next @End is encountered, and the

Chapter 32. Seam annotations

492

outer conversation will resume. It is perfectly legal for multiple nested conversations to exist

concurrently in the same outer conversation.

@Begin(pageflow="process definition name")

Specifies a jBPM process definition name that defines the pageflow for this conversation.

@Begin(flushMode=FlushModeType.MANUAL)

Specify the flush mode of any Seam-managed persistence contexts.

flushMode=FlushModeType.MANUAL supports the use of atomic conversations where all write

operations are queued in the conversation context until an explicit call to flush() (which

usually occurs at the end of the conversation).

• join — determines the behavior when a long-running conversation is already in progress.

If true, the context is propagated. If false, an exception is thrown. Default to false. This

setting is ignored when nested=true is specified.

• nested — specifies that a nested conversation should be started if a long-running

conversation is already in progress.

• flushMode — set the flush mode of any Seam-managed Hibernate sessions or JPA

persistence contexts that are created during this conversation.

• pageflow — a process definition name of a jBPM process definition deployed via

org.jboss.seam.bpm.jbpm.pageflowDefinitions.

@End

@End

Specifies that a long-running conversation ends when this method returns a non-null outcome

without exception.

• beforeRedirect — by default, the conversation will not actually be destroyed until after

any redirect has occurred. Setting beforeRedirect=true specifies that the conversation

should be destroyed at the end of the current request, and that the redirect will be processed

in a new temporary conversation context.

• root — by default, ending a nested conversation simply pops the conversation stack and

resumes the outer conversation. Setting root=true specifies that the root conversation

should be destroyed which effectively destroys the entire conversation stack. If the

conversation is not nested, the current conversation is simply ended.

Annotations for context demarcation

493

@StartTask

@StartTask

"Starts" a jBPM task. Specifies that a long-running conversation begins when this method

returns a non-null outcome without exception. This conversation is associated with the jBPM

task specified in the named request parameter. Within the context of this conversation, a

business process context is also defined, for the business process instance of the task

instance.

• The jBPM TaskInstance will be available in a request context variable named

taskInstance. The jBPM ProcessInstance will be available in a request context variable

named processInstance. (Of course, these objects are available for injection via @In.)

• taskIdParameter — the name of a request parameter which holds the id of the task. Default

to "taskId", which is also the default used by the Seam taskList JSF component.

• flushMode — set the flush mode of any Seam-managed Hibernate sessions or JPA

persistence contexts that are created during this conversation.

@BeginTask

@BeginTask

Resumes work on an incomplete jBPM task. Specifies that a long-running conversation

begins when this method returns a non-null outcome without exception. This conversation is

associated with the jBPM task specified in the named request parameter. Within the context

of this conversation, a business process context is also defined, for the business process

instance of the task instance.

• The jBPM org.jbpm.taskmgmt.exe.TaskInstance will be available in a request context

variable named taskInstance. The jBPM org.jbpm.graph.exe.ProcessInstance will be

available in a request context variable named processInstance.

• taskIdParameter — the name of a request parameter which holds the id of the task. Default

to "taskId", which is also the default used by the Seam taskList JSF component.

• flushMode — set the flush mode of any Seam-managed Hibernate sessions or JPA

persistence contexts that are created during this conversation.

@EndTask

@EndTask

Chapter 32. Seam annotations

494

"Ends" a jBPM task. Specifies that a long-running conversation ends when this method

returns a non-null outcome, and that the current task is complete. Triggers a jBPM transition.

The actual transition triggered will be the default transition unless the application has called

Transition.setName() on the built-in component named transition.

@EndTask(transition="transitionName")

Triggers the given jBPM transition.

• transition — the name of the jBPM transition to be triggered when ending the task.

Defaults to the default transition.

• beforeRedirect — by default, the conversation will not actually be destroyed until after

any redirect has occurred. Setting beforeRedirect=true specifies that the conversation

should be destroyed at the end of the current request, and that the redirect will be processed

in a new temporary conversation context.

@CreateProcess

@CreateProcess(definition="process definition name")

Creates a new jBPM process instance when the method returns a non-null outcome without

exception. The ProcessInstance object will be available in a context variable named

processInstance.

• definition — the name of the jBPM process definition deployed via

org.jboss.seam.bpm.jbpm.processDefinitions.

@ResumeProcess

@ResumeProcess(processIdParameter="processId")

Re-enters the scope of an existing jBPM process instance when the method returns a non-

null outcome without exception. The ProcessInstance object will be available in a context

variable named processInstance.

• processIdParameter — the name a request parameter holding the process id. Default to

"processId".

@Transition

@Transition("cancel")

Annotations for use with Seam JavaBean components in a J2EE environment

495

Marks a method as signaling a transition in the current jBPM process instance whenever the

method returns a non-null result.

32.5. Annotations for use with Seam JavaBean

components in a J2EE environment

Seam provides an annotation that lets you force a rollback of the JTA transaction for certain action

listener outcomes.

@Transactional

@Transactional

Specifies that a JavaBean component should have a similar transactional behavior to the

default behavior of a session bean component. ie. method invocations should take place in

a transaction, and if no transaction exists when the method is called, a transaction will be

started just for that method. This annotation may be applied at either class or method level.

Do not use this annotation on EJB 3.0 components, use @TransactionAttribute!

@ApplicationException

@ApplicationException

Synonym for javax.ejb.ApplicationException, for use in a pre Java EE 5 environment. Applied

to an exception to denote that it is an application exception and should be reported to the

client directly(i.e., unwrapped).

Do not use this annotation on EJB 3.0 components, use

@javax.ejb.ApplicationException instead.

• rollback — by default false, if true this exception should set the transaction to rollback

only

• end — by default false, if true this exception should end the current long-running

conversation

@Interceptors

@Interceptors({DVDInterceptor, CDInterceptor})

Chapter 32. Seam annotations

496

Synonym for javax.interceptors.Interceptors, for use in a pre Java EE 5 environment. Note

that this may only be used as a meta-annotation. Declares an ordered list of interceptors for

a class or method.

Do not use this annotations on EJB 3.0 components, use

@javax.interceptor.Interceptors instead.

These annotations are mostly useful for JavaBean Seam components. If you use EJB 3.0

components, you should use the standard Java EE5 annotation.

32.6. Annotations for exceptions

These annotations let you specify how Seam should handle an exception that propagates out of

a Seam component.

@Redirect

@Redirect(viewId="error.jsp")

Specifies that the annotated exception causes a browser redirect to a specified view id.

• viewId — specifies the JSF view id to redirect to. You can use EL here.

• message — a message to be displayed, default to the exception message.

• end — specifies that the long-running conversation should end, default to false.

@HttpError

@HttpError(errorCode=404)

Specifies that the annotated exception causes a HTTP error to be sent.

• errorCode — the HTTP error code, default to 500.

• message — a message to be sent with the HTTP error, default to the exception message.

• end — specifies that the long-running conversation should end, default to false.

32.7. Annotations for Seam Remoting

Seam Remoting requires that the local interface of a session bean be annotated with the following

annotation:

Annotations for Seam interceptors

497

@WebRemote

@WebRemote(exclude="path.to.exclude")

Indicates that the annotated method may be called from client-side JavaScript. The exclude

property is optional and allows objects to be excluded from the result's object graph (see the

Chapter 26, Remoting chapter for more details).

32.8. Annotations for Seam interceptors

The following annotations appear on Seam interceptor classes.

Please refer to the documentation for the EJB 3.0 specification for information about the

annotations required for EJB interceptor definition.

@Interceptor

@Interceptor(stateless=true)

Specifies that this interceptor is stateless and Seam may optimize replication.

@Interceptor(type=CLIENT)

Specifies that this interceptor is a "client-side" interceptor that is called before the EJB

container.

@Interceptor(around={SomeInterceptor.class, OtherInterceptor.class})

Specifies that this interceptor is positioned higher in the stack than the given interceptors.

@Interceptor(within={SomeInterceptor.class, OtherInterceptor.class})

Specifies that this interceptor is positioned deeper in the stack than the given interceptors.

32.9. Annotations for asynchronicity

The following annotations are used to declare an asynchronous method, for example:

Chapter 32. Seam annotations

498

@Asynchronous public void scheduleAlert(Alert alert, @Expiration Date date) { ... }

@Asynchronous public Timer scheduleAlerts(Alert alert,

 @Expiration Date date,

 @IntervalDuration long interval) { ... }

@Asynchronous

@Asynchronous

Specifies that the method call is processed asynchronously.

@Duration

@Duration

Specifies that a parameter of the asynchronous call is the duration before the call is processed

(or first processed for recurring calls).

@Expiration

@Expiration

Specifies that a parameter of the asynchronous call is the datetime at which the call is

processed (or first processed for recurring calls).

@IntervalDuration

@IntervalDuration

Specifies that an asynchronous method call recurs, and that the annotation parameter is

duration between recurrences.

32.10. Annotations for use with JSF

The following annotations make working with JSF easier.

Annotations for use with dataTable

499

@Converter

Allows a Seam component to act as a JSF converter. The annotated class must be a Seam

component, and must implement javax.faces.convert.Converter.

• id — the JSF converter id. Defaults to the component name.

• forClass — if specified, register this component as the default converter for a type.

@Validator

Allows a Seam component to act as a JSF validator. The annotated class must be a Seam

component, and must implement javax.faces.validator.Validator.

• id — the JSF validator id. Defaults to the component name.

32.10.1. Annotations for use with dataTable

The following annotations make it easy to implement clickable lists backed by a stateful session

bean. They appear on attributes.

@DataModel

@DataModel("variableName")

Outjects a property of type List, Map, Set or Object[] as a JSF DataModel into the scope

of the owning component (or the EVENT scope if the owning component is STATELESS). In the

case of Map, each row of the DataModel is a Map.Entry.

• value — name of the conversation context variable. Default to the attribute name.

• scope — if scope=ScopeType.PAGE is explicitly specified, the DataModel will be kept in the

PAGE context.

@DataModelSelection

@DataModelSelection

Injects the selected value from the JSF DataModel (this is the element of the underlying

collection, or the map value). If only one @DataModel attribute is defined for a component, the

selected value from that DataModel will be injected. Otherwise, the component name of each

@DataModel must be specified in the value attribute for each @DataModelSelection.

If PAGE scope is specified on the associated @DataModel, then, in addition to the DataModel

Selection being injected, the associated DataModel will also be injected. In this case, if the

property annotated with @DataModel is a getter method, then a setter method for the property

must also be part of the Business API of the containing Seam Component.

Chapter 32. Seam annotations

500

• value — name of the conversation context variable. Not needed if there is exactly one

@DataModel in the component.

@DataModelSelectionIndex

@DataModelSelectionIndex

Exposes the selection index of the JSF DataModel as an attribute of the component (this is the

row number of the underlying collection, or the map key). If only one @DataModel attribute is

defined for a component, the selected value from that DataModel will be injected. Otherwise,

the component name of each @DataModel must be specified in the value attribute for each

@DataModelSelectionIndex.

• value — name of the conversation context variable. Not needed if there is exactly one

@DataModel in the component.

32.11. Meta-annotations for databinding

These meta-annotations make it possible to implement similar functionality to @DataModel and

@DataModelSelection for other datastructures apart from lists.

@DataBinderClass

@DataBinderClass(DataModelBinder.class)

Specifies that an annotation is a databinding annotation.

@DataSelectorClass

@DataSelectorClass(DataModelSelector.class)

Specifies that an annotation is a dataselection annotation.

32.12. Annotations for packaging

This annotation provides a mechanism for declaring information about a set of components that

are packaged together. It can be applied to any Java package.

@Namespace

@Namespace(value="http://jboss.org/schema/seam/example/seampay")

Annotations for integrating with the servlet container

501

Specifies that components in the current package are associated with the given namespace.

The declared namespace can be used as an XML namespace in a components.xml file to

simplify application configuration.

@Namespace(value="http://jboss.org/schema/seam/core", prefix="org.jboss.seam.core")

Specifies a namespace to associate with a given package. Additionally, it specifies a

component name prefix to be applied to component names specified in the XML file. For

example, an XML element named init that is associated with this namespace would be

understood to actually refer to a component named org.jboss.seam.core.init.

32.13. Annotations for integrating with the servlet

container

These annotations allow you to integrate your Seam components with the servlet container.

@Filter

Use the Seam component (which implements javax.servlet.Filter) annotated with

@Filter as a servlet filter. It will be executed by Seam's master filter.

•
@Filter(around={"seamComponent", "otherSeamComponent"})

Specifies that this filter is positioned higher in the stack than the given filters.

•
@Filter(within={"seamComponent", "otherSeamComponent"})

Specifies that this filter is positioned deeper in the stack than the given filters.

502

Chapter 33.

503

Built-in Seam components
This chapter describes Seam's built-in components, and their configuration properties. The built-

in components will be created even if they are not listed in your components.xml file, but if

you need to override default properties or specify more than one component of a certain type,

components.xml is used.

Note that you can replace any of the built in components with your own implementations simply

by specifying the name of one of the built in components on your own class using @Name.

33.1. Context injection components

The first set of built in components exist purely to support injection of various contextual objects.

For example, the following component instance variable would have the Seam session context

object injected:

@In private Context sessionContext;

org.jboss.seam.core.contexts

Component that provides access to Seam Context objects, for example

org.jboss.seam.core.contexts.sessionContext['user'].

org.jboss.seam.faces.facesContext

Manager component for the FacesContext context object (not a true Seam context)

All of these components are always installed.

33.2. JSF-related components

The following set of components are provided to supplement JSF.

org.jboss.seam.faces.dateConverter

Provides a default JSF converter for properties of type java.util.Date.

This converter is automatically registered with JSF. It is provided to save a developer from

having to specify a DateTimeConverter on an input field or page parameter. By default, it

assumes the type to be a date (as opposed to a time or date plus time) and uses the short

input style adjusted to the Locale of the user. For Locale.US, the input pattern is mm/DD/yy.

However, to comply with Y2K, the year is changed from two digits to four (e.g., mm/DD/yyyy).

It's possible to override the input pattern globally using component configuration. Consult the

JavaDoc for this class to see examples.

Chapter 33. Built-in Seam com...

504

org.jboss.seam.faces.facesMessages

Allows faces success messages to propagate across a browser redirect.

• add(FacesMessage facesMessage) — add a faces message, which will be displayed

during the next render response phase that occurs in the current conversation.

• add(String messageTemplate) — add a faces message, rendered from the given

message template which may contain EL expressions.

• add(Severity severity, String messageTemplate) — add a faces message, rendered

from the given message template which may contain EL expressions.

• addFromResourceBundle(String key) — add a faces message, rendered from a

message template defined in the Seam resource bundle which may contain EL expressions.

• addFromResourceBundle(Severity severity, String key) — add a faces message,

rendered from a message template defined in the Seam resource bundle which may contain

EL expressions.

• clear() — clear all messages.

org.jboss.seam.faces.redirect

A convenient API for performing redirects with parameters (this is especially useful for

bookmarkable search results screens).

• redirect.viewId — the JSF view id to redirect to.

• redirect.conversationPropagationEnabled — determines whether the conversation

will propagate across the redirect.

• redirect.parameters — a map of request parameter name to value, to be passed in the

redirect request.

• execute() — perform the redirect immediately.

• captureCurrentRequest() — stores the view id and request parameters of the current

GET request (in the conversation context), for later use by calling execute().

org.jboss.seam.faces.httpError

A convenient API for sending HTTP errors.

org.jboss.seam.ui.renderStampStore

A component (session-scoped by default) responsible for maintaining a collection of render

stamps. A render stamp is an indicator as to whether a form which was rendered has been

submitted. This store is useful when the client-side state saving method of JSF is being used

because it puts the determination of whether a form has been posted in the control of the

server rather than in the component tree which is maintained on the client.

To unbind this check from the session (which is one of the main design goals of client-

side state saving) an implementation must be provided that stores the render stamps in the

Utility components

505

application (valid as long as the application is running) or the database (valid across server

restarts).

• maxSize — The maximum number of stamps to be kept in the store. Default: 100

These components are installed when the class javax.faces.context.FacesContext is

available on the classpath.

33.3. Utility components

These components are merely useful.

org.jboss.seam.core.events

An API for raising events that can be observed via @Observer methods, or method bindings

in components.xml.

• raiseEvent(String type) — raise an event of a particular type and distribute to all

observers.

• raiseAsynchronousEvent(String type) — raise an event to be processed

asynchronously by the EJB3 timer service.

• raiseTimedEvent(String type,) — schedule an event to be processed

asynchronously by the EJB3 timer service.

• addListener(String type, String methodBinding) — add an observer for a particular

event type.

org.jboss.seam.core.interpolator

An API for interpolating the values of JSF EL expressions in Strings.

• interpolate(String template) — scan the template for JSF EL expressions of the form

#{...} and replace them with their evaluated values.

org.jboss.seam.core.expressions

An API for creating value and method bindings.

• createValueBinding(String expression) — create a value binding object.

• createMethodBinding(String expression) — create a method binding object.

org.jboss.seam.core.pojoCache

Manager component for a JBoss Cache PojoCache instance.

• pojoCache.cfgResourceName — the name of the configuration file. Default to

treecache.xml.

All of these components are always installed.

Chapter 33. Built-in Seam com...

506

33.4. Components for internationalization and themes

The next group of components make it easy to build internationalized user interfaces using Seam.

org.jboss.seam.core.locale

The Seam locale.

org.jboss.seam.international.timezone

The Seam timezone. The timezone is session scoped.

org.jboss.seam.core.resourceBundle

The Seam resource bundle. The resource bundle is stateless. The Seam resource bundle

performs a depth-first search for keys in a list of Java resource bundles.

org.jboss.seam.core.resourceLoader

The resource loader provides access to application resources and resource bundles.

• resourceLoader.bundleNames — the names of the Java resource bundles to search when

the Seam resource bundle is used. Default to messages.

org.jboss.seam.international.localeSelector

Supports selection of the locale either at configuration time, or by the user at runtime.

• select() — select the specified locale.

• localeSelector.locale — the actual java.util.Locale.

• localeSelector.localeString — the stringified representation of the locale.

• localeSelector.language — the language for the specified locale.

• localeSelector.country — the country for the specified locale.

• localeSelector.variant — the variant for the specified locale.

• localeSelector.supportedLocales — a list of SelectItems representing the supported

locales listed in jsf-config.xml.

• localeSelector.cookieEnabled — specifies that the locale selection should be persisted

via a cookie.

org.jboss.seam.international.timezoneSelector

Supports selection of the timezone either at configuration time, or by the user at runtime.

• select() — select the specified locale.

• timezoneSelector.timezone — the actual java.util.TimeZone.

• timezoneSelector.timeZoneId — the stringified representation of the timezone.

Components for controlling conversations

507

• timezoneSelector.cookieEnabled — specifies that the timezone selection should be

persisted via a cookie.

org.jboss.seam.international.messages

A map containing internationalized messages rendered from message templates defined in

the Seam resource bundle.

org.jboss.seam.theme.themeSelector

Supports selection of the theme either at configuration time, or by the user at runtime.

• select() — select the specified theme.

• theme.availableThemes — the list of defined themes.

• themeSelector.theme — the selected theme.

• themeSelector.themes — a list of SelectItems representing the defined themes.

• themeSelector.cookieEnabled — specifies that the theme selection should be persisted

via a cookie.

org.jboss.seam.theme.theme

A map containing theme entries.

All of these components are always installed.

33.5. Components for controlling conversations

The next group of components allow control of conversations by the application or user interface.

org.jboss.seam.core.conversation

API for application control of attributes of the current Seam conversation.

• getId() — returns the current conversation id

• isNested() — is the current conversation a nested conversation?

• isLongRunning() — is the current conversation a long-running conversation?

• getId() — returns the current conversation id

• getParentId() — returns the conversation id of the parent conversation

• getRootId() — returns the conversation id of the root conversation

• setTimeout(int timeout) — sets the timeout for the current conversation

• setViewId(String outcome) — sets the view id to be used when switching back to the

current conversation from the conversation switcher, conversation list, or breadcrumbs.

Chapter 33. Built-in Seam com...

508

• setDescription(String description) — sets the description of the current

conversation to be displayed in the conversation switcher, conversation list, or

breadcrumbs.

• redirect() — redirect to the last well-defined view id for this conversation (useful after

login challenges).

• leave() — exit the scope of this conversation, without actually ending the conversation.

• begin() — begin a long-running conversation (equivalent to @Begin).

• beginPageflow(String pageflowName) — begin a long-running conversation with a

pageflow (equivalent to @Begin(pageflow="...")).

• end() — end a long-running conversation (equivalent to @End).

• pop() — pop the conversation stack, returning to the parent conversation.

• root() — return to the root conversation of the conversation stack.

• changeFlushMode(FlushModeType flushMode) — change the flush mode of the

conversation.

org.jboss.seam.core.conversationList

Manager component for the conversation list.

org.jboss.seam.core.conversationStack

Manager component for the conversation stack (breadcrumbs).

org.jboss.seam.faces.switcher

The conversation switcher.

All of these components are always installed.

33.6. jBPM-related components

These components are for use with jBPM.

org.jboss.seam.pageflow.pageflow

API control of Seam pageflows.

• isInProcess() — returns true if there is currently a pageflow in process

• getProcessInstance() — returns jBPM ProcessInstance for the current pageflow

• begin(String pageflowName) — begin a pageflow in the context of the current

conversation

• reposition(String nodeName) — reposition the current pageflow to a particular node

jBPM-related components

509

org.jboss.seam.bpm.actor

API for application control of attributes of the jBPM actor associated with the current session.

• setId(String actorId) — sets the jBPM actor id of the current user.

• getGroupActorIds() — returns a Set to which jBPM actor ids for the current users groups

may be added.

org.jboss.seam.bpm.transition

API for application control of the jBPM transition for the current task.

• setName(String transitionName) — sets the jBPM transition name to be used when the

current task is ended via @EndTask.

org.jboss.seam.bpm.businessProcess

API for programmatic control of the association between the conversation and business

process.

• businessProcess.taskId — the id of the task associated with the current conversation.

• businessProcess.processId — the id of the process associated with the current

conversation.

• businessProcess.hasCurrentTask() — is a task instance associated with the current

conversation?

• businessProcess.hasCurrentProcess() — is a process instance associated with the

current conversation.

• createProcess(String name) — create an instance of the named process definition and

associate it with the current conversation.

• startTask() — start the task associated with the current conversation.

• endTask(String transitionName) — end the task associated with the current

conversation.

• resumeTask(Long id) — associate the task with the given id with the current conversation.

• resumeProcess(Long id) — associate the process with the given id with the current

conversation.

• transition(String transitionName) — trigger the transition.

org.jboss.seam.bpm.taskInstance

Manager component for the jBPM TaskInstance.

org.jboss.seam.bpm.processInstance

Manager component for the jBPM ProcessInstance.

org.jboss.seam.bpm.jbpmContext

Manager component for an event-scoped JbpmContext.

Chapter 33. Built-in Seam com...

510

org.jboss.seam.bpm.taskInstanceList

Manager component for the jBPM task list.

org.jboss.seam.bpm.pooledTaskInstanceList

Manager component for the jBPM pooled task list.

org.jboss.seam.bpm.taskInstanceListForType

Manager component for the jBPM task lists.

org.jboss.seam.bpm.pooledTask

Action handler for pooled task assignment.

org.jboss.seam.bpm.processInstanceFinder

Manager for the process instance task list.

org.jboss.seam.bpm.processInstanceList

The process instance task list.

All of these components are installed whenever the component org.jboss.seam.bpm.jbpm is

installed.

33.7. Security-related components

These components relate to web-tier security.

org.jboss.seam.web.userPrincipal

Manager component for the current user Principal.

org.jboss.seam.web.isUserInRole

Allows JSF pages to choose to render a control, depending upon the

roles available to the current principal. <h:commandButton value="edit"

rendered="#{isUserInRole['admin']}"/>.

33.8. JMS-related components

These components are for use with managed TopicPublishers and QueueSenders (see below).

org.jboss.seam.jms.queueSession

Manager component for a JMS QueueSession .

org.jboss.seam.jms.topicSession

Manager component for a JMS TopicSession .

33.9. Mail-related components

These components are for use with Seam's Email support

Infrastructural components

511

org.jboss.seam.mail.mailSession

Manager component for a JavaMail Session. The session can be either looked up in the JNDI

context (by setting the sessionJndiName property) or it can created from the configuration

options in which case the host is mandatory.

• org.jboss.seam.mail.mailSession.host — the hostname of the SMTP server to use

• org.jboss.seam.mail.mailSession.port — the port of the SMTP server to use

• org.jboss.seam.mail.mailSession.username — the username to use to connect to the

SMTP server.

• org.jboss.seam.mail.mailSession.password — the password to use to connect to the

SMTP server

• org.jboss.seam.mail.mailSession.debug — enable JavaMail debugging (very

verbose)

• org.jboss.seam.mail.mailSession.ssl — enable SSL connection to SMTP (will default

to port 465)

org.jboss.seam.mail.mailSession.tls — by default true, enable TLS support in the

mail session

• org.jboss.seam.mail.mailSession.sessionJndiName — name under which a

javax.mail.Session is bound to JNDI. If supplied, all other properties will be ignored.

33.10. Infrastructural components

These components provide critical platform infrastructure. You can install a component which isn't

installed by default by setting install="true" on the component in components.xml.

org.jboss.seam.core.init

Initialization settings for Seam. Always installed.

• org.jboss.seam.core.init.jndiPattern — the JNDI pattern used for looking up

session beans

• org.jboss.seam.core.init.debug — enable Seam debug mode. This should be set to

false when in production. You may see errors if the system is placed under any load and

debug is enabled.

• org.jboss.seam.core.init.clientSideConversations — if set to true, Seam will save

conversation context variables in the client instead of in the HttpSession.

org.jboss.seam.core.manager

Internal component for Seam page and conversation context management. Always installed.

• org.jboss.seam.core.manager.conversationTimeout — the conversation context

timeout in milliseconds.

Chapter 33. Built-in Seam com...

512

• org.jboss.seam.core.manager.concurrentRequestTimeout — maximum wait time for

a thread attempting to gain a lock on the long-running conversation context.

• org.jboss.seam.core.manager.conversationIdParameter — the request parameter

used to propagate the conversation id, default to conversationId.

• org.jboss.seam.core.manager.conversationIsLongRunningParameter — the

request parameter used to propagate information about whether the conversation is long-

running, default to conversationIsLongRunning.

• org.jboss.seam.core.manager.defaultFlushMode — set the flush mode set by default

on any Seam Managed Persistence Context. By default AUTO.

org.jboss.seam.navigation.pages

Internal component for Seam workspace management. Always installed.

• org.jboss.seam.navigation.pages.noConversationViewId — global setting for the

view id to redirect to when a conversation entry is not found on the server side.

• org.jboss.seam.navigation.pages.loginViewId — global setting for the view id to

redirect to when an unauthenticated user tries to access a protected view.

• org.jboss.seam.navigation.pages.httpPort — global setting for the port to use when

the http scheme is requested.

• org.jboss.seam.navigation.pages.httpsPort — global setting for the port to use when

the https scheme is requested.

• org.jboss.seam.navigation.pages.resources — a list of resources to search for

pages.xml style resources. Defaults to WEB-INF/pages.xml.

org.jboss.seam.bpm.jbpm

Bootstraps a JbpmConfiguration. Install as class org.jboss.seam.bpm.Jbpm.

• org.jboss.seam.bpm.jbpm.processDefinitions — a list of resource names of jPDL files

to be used for orchestration of business processes.

• org.jboss.seam.bpm.jbpm.pageflowDefinitions — a list of resource names of jPDL

files to be used for orchestration of conversation page flows.

org.jboss.seam.core.conversationEntries

Internal session-scoped component recording the active long-running conversations between

requests.

org.jboss.seam.faces.facesPage

Internal page-scoped component recording the conversation context associated with a page.

org.jboss.seam.persistence.persistenceContexts

Internal component recording the persistence contexts which were used in the current

conversation.

Miscellaneous components

513

org.jboss.seam.jms.queueConnection

Manages a JMS QueueConnection. Installed whenever managed QueueSender is installed.

• org.jboss.seam.jms.queueConnection.queueConnectionFactoryJndiName — the

JNDI name of a JMS QueueConnectionFactory. Default to UIL2ConnectionFactory

org.jboss.seam.jms.topicConnection

Manages a JMS TopicConnection. Installed whenever managed TopicPublisher is

installed.

• org.jboss.seam.jms.topicConnection.topicConnectionFactoryJndiName — the

JNDI name of a JMS TopicConnectionFactory. Default to UIL2ConnectionFactory

org.jboss.seam.persistence.persistenceProvider

Abstraction layer for non-standardized features of JPA provider.

org.jboss.seam.core.validators

Caches instances of Hibernate Validator ClassValidator.

org.jboss.seam.faces.validation

Allows the application to determine whether validation failed or was successful.

org.jboss.seam.debug.introspector

Support for the Seam Debug Page.

org.jboss.seam.debug.contexts

Support for the Seam Debug Page.

org.jboss.seam.exception.exceptions

Internal component for exception handling.

org.jboss.seam.transaction.transaction

API for controlling transactions and abstracting the underlying transaction management

implementation behind a JTA-compatible interface.

org.jboss.seam.faces.safeActions

Decides if an action expression in an incoming URL is safe. This is done by checking that the

action expression exists in the view.

33.11. Miscellaneous components

These components don't fit into

org.jboss.seam.async.dispatcher

Dispatcher stateless session bean for asynchronous methods.

org.jboss.seam.core.image

Image manipulation and interrogation.

Chapter 33. Built-in Seam com...

514

org.jboss.seam.core.pojoCache

Manager component for a PojoCache instance.

org.jboss.seam.core.uiComponent

Manages a map of UIComponents keyed by component id.

33.12. Special components

Certain special Seam component classes are installable multiple times under names specified in

the Seam configuration. For example, the following lines in components.xml install and configure

two Seam components:

<component name="bookingDatabase"

 class="org.jboss.seam.persistence.ManagedPersistenceContext">

 <property name="persistenceUnitJndiName">java:/comp/emf/bookingPersistence</property>

</component>

<component name="userDatabase"

 class="org.jboss.seam.persistence.ManagedPersistenceContext">

 <property name="persistenceUnitJndiName">java:/comp/emf/userPersistence</property>

</component>

The Seam component names are bookingDatabase and userDatabase.

<entityManager>, org.jboss.seam.persistence.ManagedPersistenceContext

Manager component for a conversation scoped managed EntityManager with an extended

persistence context.

• <entityManager>.entityManagerFactory — a value binding expression that evaluates to an

instance of EntityManagerFactory.

<entityManager>.persistenceUnitJndiName — the JNDI name of the entity manager

factory, default to java:/<managedPersistenceContext>.

<entityManagerFactory>, org.jboss.seam.persistence.EntityManagerFactory

Manages a JPA EntityManagerFactory. This is most useful when using JPA outside of an

EJB 3.0 supporting environment.

• entityManagerFactory.persistenceUnitName — the name of the persistence unit.

See the API JavaDoc for further configuration properties.

<session>, org.jboss.seam.persistence.ManagedSession

Manager component for a conversation scoped managed Hibernate Session.

Special components

515

• <session>.sessionFactory — a value binding expression that evaluates to an instance of

SessionFactory.

<session>.sessionFactoryJndiName — the JNDI name of the session factory, default to

java:/<managedSession>.

<sessionFactory>, org.jboss.seam.persistence.HibernateSessionFactory

Manages a Hibernate SessionFactory.

• <sessionFactory>.cfgResourceName — the path to the configuration file. Default to

hibernate.cfg.xml.

See the API JavaDoc for further configuration properties.

<managedQueueSender>, org.jboss.seam.jms.ManagedQueueSender

Manager component for an event scoped managed JMS QueueSender.

• <managedQueueSender>.queueJndiName — the JNDI name of the JMS queue.

<managedTopicPublisher>, org.jboss.seam.jms.ManagedTopicPublisher

Manager component for an event scoped managed JMS TopicPublisher.

• <managedTopicPublisher>.topicJndiName — the JNDI name of the JMS topic.

<managedWorkingMemory>, org.jboss.seam.drools.ManagedWorkingMemory

Manager component for a conversation scoped managed Drools WorkingMemory.

• <managedWorkingMemory>.ruleBase — a value expression that evaluates to an instance

of RuleBase.

<ruleBase>, org.jboss.seam.drools.RuleBase

Manager component for an application scoped Drools RuleBase. Note that this is not really

intended for production usage, since it does not support dynamic installation of new rules.

• <ruleBase>.ruleFiles — a list of files containing Drools rules.

<ruleBase>.dslFile — a Drools DSL definition.

<entityHome>, org.jboss.seam.framework.EntityHome

<hibernateEntityHome>, org.jboss.seam.framework.HibernateEntityHome

<entityQuery>, org.jboss.seam.framework.EntityQuery

<hibernateEntityQuery>, org.jboss.seam.framework.HibernateEntityQuery

516

Chapter 34.

517

Seam JSF controls
Seam includes a number of JSF controls that are useful for working with Seam. These are

intended to complement the built-in JSF controls, and controls from other third-party libraries. We

recommend JBoss RichFaces, ICEsoft ICEfaces and Apache MyFaces Trinidad tag libraries for

use with Seam. We do not recommend the use of the Tomahawk tag library.

34.1. Tags

To use these tags, define the "s" namespace in your page as follows (facelets only):

<html xmlns="http://www.w3.org/1999/xhtml"

 xmlns:s="http://jboss.org/schema/seam/taglib">

The ui example demonstrates the use of a number of these tags.

34.1.1. Navigation Controls

34.1.1.1. <s:button>

Description

A button that supports invocation of an action with control over conversation propagation. Does

not submit the form.

Attributes

• value — the label.

• action — a method binding that specified the action listener.

• view — the JSF view id to link to.

• fragment — the fragment identifier to link to.

• disabled — is the link disabled?

• propagation — determines the conversation propagation style: begin, join, nested, none,

end or endRoot.

• pageflow — a pageflow definition to begin. (This is only useful when propagation="begin"

or propagation="join" is used).

• includePageParams — when set to false, page parameters defined in pages.xml will be

excluded from rendering.

Chapter 34. Seam JSF controls

518

Usage

<s:button id="cancel"

 value="Cancel"

 action="#{hotelBooking.cancel}"/>

You can specify both view and action on <s:link />. In this case, the action will be called once

the redirect to the specified view has occurred.

The use of action listeners (including the default JSF action listener) is not supported with

<s:button />.

34.1.1.2. <s:conversationId>

Description

Add the conversation id to JSF link or button (e.g. <h:commandLink /> , <s:button />).

Attributes

None

34.1.1.3. <s:taskId>

Description

Add the task id to an output link (or similar JSF control), when the task is available via #{task}.

Attributes

None.

34.1.1.4. <s:link>

Description

A link that supports invocation of an action with control over conversation propagation. Does not

submit the form.

The use of action listeners (including the default JSF action listener) is not supported with

<s:link />.

Attributes

• value — the label.

• action — a method binding that specified the action listener.

• view — the JSF view id to link to.

Navigation Controls

519

• fragment — the fragment identifier to link to.

• disabled — is the link disabled?

• propagation — determines the conversation propagation style: begin, join, nested, none,

end or endRoot.

• pageflow — a pageflow definition to begin. (This is only useful when using

propagation="begin" or propagation="join".)

• includePageParams — when set to false, page parameters defined in pages.xml will be

excluded from rendering.

Usage

<s:link id="register" view="/register.xhtml"

 value="Register New User"/>

You can specify both view and action on <s:link />. In this case, the action will be called once

the redirect to the specified view has occured.

34.1.1.5. <s:conversationPropagation>

Description

Customize the conversation propagation for a command link or button (or similar JSF control).

Facelets only.

Attributes

• type — determines the conversation propagation style: begin, join, nested, none, end or

endRoot.

• pageflow — a pageflow definition to begin. (This is only useful when using

propagation="begin" or propagation="join".)

Usage

<h:commandButton value="Apply" action="#{personHome.update}">

 <s:conversationPropagation type="join" />

</h:commandButton>

34.1.1.6. <s:defaultAction>

Description

Chapter 34. Seam JSF controls

520

Specify the default action to run when the form is submitted using the enter key.

Currently you can only nest it inside buttons (e.g. <h:commandButton />, <a:commandButton /

> or <tr:commandButton />).

You must specify an id on the action source. You can only have one default action per form.

Attributes

None.

Usage

<h:commandButton id="foo" value="Foo" action="#{manager.foo}">

 <s:defaultAction />

</h:commandButton>

34.1.2. Converters and Validators

34.1.2.1. <s:convertDateTime>

Description

Perform date or time conversions in the Seam timezone.

Attributes

None.

Usage

<h:outputText value="#{item.orderDate}">

 <s:convertDateTime type="both" dateStyle="full"/>

</h:outputText>

34.1.2.2. <s:convertEntity>

Description

Assigns an entity converter to the current component. This is useful for radio button and dropdown

controls.

The converter works with any managed entity - either simple or composite. The converter should

be able to find the items declared in the JSF controls on form submission, otherwise you will

receive a validation error.

Converters and Validators

521

Attributes

None.

Configuration

You must use Seam managed transactions (see Section 10.2, “Seam managed transactions”)

with <s:convertEntity />.

If your Managed Persistence Context isn't called entityManager, then you need to set it in

components.xml:

<components xmlns="http://jboss.org/schema/seam/components"

 xmlns:ui="http://jboss.org/schema/seam/ui">

 <ui:jpa-entity-loader entity-manager="#{em}" />

If you are using a Managed Hibernate Session then you need to set it in components.xml:

<components xmlns="http://jboss.org/schema/seam/components"

 xmlns:ui="http://jboss.org/schema/seam/ui">

 <ui:hibernate-entity-loader />

If your Managed Hibernate Session isn't called session, then you need to set it in

components.xml:

<components xmlns="http://jboss.org/schema/seam/components"

 xmlns:ui="http://jboss.org/schema/seam/ui">

 <ui:hibernate-entity-loader session="#{hibernateSession}" />

If you want to use more than one entity manager with the entity converter, you can create a copy

of the entity converter for each entity manager in components.xml - note how the entity converter

delegates to the entity loader to perform persistence operations:

<components xmlns="http://jboss.org/schema/seam/components"

 xmlns:ui="http://jboss.org/schema/seam/ui">

 <ui:entity-converter name="standardEntityConverter" entity-loader="#{standardEntityLoader}" /

>

Chapter 34. Seam JSF controls

522

 <ui:jpa-entity-loader name="standardEntityLoader" entity-

manager="#{standardEntityManager}" />

 <ui:entity-converter name="restrictedEntityConverter" entity-loader="#{restrictedEntityLoader}" /

>

 <ui:jpa-entity-loader name="restrictedEntityLoader" entity-

manager="#{restrictedEntityManager}" />

<h:selectOneMenu value="#{person.continent}">

 <s:selectItems value="#{continents.resultList}" var="continent"

 label="#{continent.name}" />

 <f:converter converterId="standardEntityConverter" />

</h:selectOneMenu>

Usage

<h:selectOneMenu value="#{person.continent}" required="true">

 <s:selectItems value="#{continents.resultList}" var="continent"

 label="#{continent.name}"

 noSelectionLabel="Please Select..."/>

 <s:convertEntity />

</h:selectOneMenu>

34.1.2.3. <s:convertEnum>

Description

Assigns an enum converter to the current component. This is primarily useful for radio button and

dropdown controls.

Attributes

None.

Usage

<h:selectOneMenu value="#{person.honorific}">

 <s:selectItems value="#{honorifics}" var="honorific"

 label="#{honorific.label}"

 noSelectionLabel="Please select" />

 <s:convertEnum />

Converters and Validators

523

</h:selectOneMenu>

34.1.2.4. <s:convertAtomicBoolean>

Description

javax.faces.convert.Converter for java.util.concurrent.atomic.AtomicBoolean.

Attributes

None.

Usage

<h:outputText value="#{item.valid}">

 <s:convertAtomicBoolean />

</h:outputText>

34.1.2.5. <s:convertAtomicInteger>

Description

javax.faces.convert.Converter for java.util.concurrent.atomic.AtomicInteger.

Attributes

None.

Usage

<h:outputText value="#{item.id}">

 <s:convertAtomicInteger />

</h:outputText>

34.1.2.6. <s:convertAtomicLong>

Description

javax.faces.convert.Converter for java.util.concurrent.atomic.AtomicLong.

Attributes

None.

Usage

Chapter 34. Seam JSF controls

524

<h:outputText value="#{item.id}">

 <s:convertAtomicLong />

</h:outputText>

34.1.2.7. <s:validateEquality>

Description

Tag to nest inside an input control to validate that its parent's value is equal (or not equal!) to the

referenced control's value.

Attributes

• for — The id of a control to validate against.

• message — Message to show on failure.

• required — False will disable a check that a value at all is inputted in fields.

• messageId — Message id to show on failure.

• operator — What operator to use when comparing the values Valid operators are:

• equal — Validates that value.equals(forValue)

• not_equal — Validates that !value.equals(forValue)

• greater — Validates that ((Comparable)value).compareTo(forValue) > 0

• greater_or_equal — Validates that ((Comparable)value).compareTo(forValue) >= 0

• less — Validates that ((Comparable)value).compareTo(forValue) < 0

• less_or_equal — Validates that ((Comparable)value).compareTo(forValue) <= 0

Usage

<h:inputText id="name" value="#{bean.name}"/>

<h:inputText id="nameVerification" >

 <s:validateEquality for="name" />

</h:inputText>

34.1.2.8. <s:validate>

Description

A non-visual control, validates a JSF input field against the bound property using Hibernate

Validator.

Converters and Validators

525

Attributes

None.

Usage

<h:inputText id="userName" required="true"

 value="#{customer.userName}">

 <s:validate />

</h:inputText>

<h:message for="userName" styleClass="error" />

34.1.2.9. <s:validateAll>

Description

A non-visual control, validates all child JSF input fields against their bound properties using

Hibernate Validator.

Attributes

None.

Usage

<s:validateAll>

 <div class="entry">

 <h:outputLabel for="username">Username:</h:outputLabel>

 <h:inputText id="username" value="#{user.username}"

 required="true"/>

 <h:message for="username" styleClass="error" />

 </div>

 <div class="entry">

 <h:outputLabel for="password">Password:</h:outputLabel>

 <h:inputSecret id="password" value="#{user.password}"

 required="true"/>

 <h:message for="password" styleClass="error" />

 </div>

 <div class="entry">

 <h:outputLabel for="verify">Verify Password:</h:outputLabel>

 <h:inputSecret id="verify" value="#{register.verify}"

 required="true"/>

 <h:message for="verify" styleClass="error" />

 </div>

Chapter 34. Seam JSF controls

526

</s:validateAll>

34.1.3. Formatting

34.1.3.1. <s:decorate>

Description

"Decorate" a JSF input field when validation fails or when required="true" is set.

Attributes

• template — the facelets template to use to decorate the component

• enclose — if true, the template used to decorate the input field is enclosed by the element

specified with the "element" attribute. By default this is a div element.

• element — the element to enclose the template used to decorate the input field. By default, the

template is enclosed with a div element.

#{invalid} and #{required} are available inside s:decorate; #{required} evaluates to true

if you have set the input component being decorated as required, and #{invalid} evaluates to

true if a validation error occurs.

Usage

<s:decorate template="edit.xhtml">

 <ui:define name="label">Country:</ui:define>

 <h:inputText value="#{location.country}" required="true"/>

 </s:decorate>

<ui:composition xmlns="http://www.w3.org/1999/xhtml"

 xmlns:ui="http://java.sun.com/jsf/facelets"

 xmlns:h="http://java.sun.com/jsf/html"

 xmlns:f="http://java.sun.com/jsf/core"

 xmlns:s="http://jboss.org/schema/seam/taglib">

 <div>

 <s:label styleClass="#{invalid?'error':''}">

 <ui:insert name="label"/>

 <s:span styleClass="required" rendered="#{required}">*</s:span>

 </s:label>

Formatting

527

 <s:validateAll>

 <ui:insert/>

 </s:validateAll>

 <s:message styleClass="error"/>

 </div>

</ui:composition>

34.1.3.2. <s:div>

Description

Render a HTML <div>.

Attributes

None.

Usage

<s:div rendered="#{selectedMember == null}">

 Sorry, but this member does not exist.

</s:div>

34.1.3.3. <s:span>

Description

Render a HTML .

Attributes

• title — Title for a span.

Usage

<s:span styleClass="required" rendered="#{required}" title="Small tooltip">*</s:span>

34.1.3.4. <s:fragment>

Description

A non-rendering component useful for enabling/disabling rendering of it's children.

Chapter 34. Seam JSF controls

528

Attributes

None.

Usage

<s:fragment rendered="#{auction.highBidder ne null}">

 Current bid:

</s:fragment>

34.1.3.5. <s:label>

Description

"Decorate" a JSF input field with the label. The label is placed inside the HTML <label> tag, and

is associated with the nearest JSF input component. It is often used with <s:decorate>.

Attributes

• style — The control's style

• styleClass — The control's style class

Usage

<s:label styleClass="label">

 Country:

</s:label>

<h:inputText value="#{location.country}" required="true"/>

34.1.3.6. <s:message>

Description

"Decorate" a JSF input field with the validation error message.

Attributes

None.

Usage

<f:facet name="afterInvalidField">

 <s:span>

 Error:

 <s:message/>

Seam Text

529

 </s:span>

</f:facet>

34.1.4. Seam Text

34.1.4.1. <s:formattedText>

Description

Outputs Seam Text, a rich text markup useful for blogs, wikis and other applications that might

use rich text. See the Seam Text chapter for full usage.

Attributes

• value — an EL expression specifying the rich text markup to render.

Usage

<s:formattedText value="#{blog.text}"/>

Example

Chapter 34. Seam JSF controls

530

34.1.5. Form support

34.1.5.1. <s:token>

Description

Produces a random token that is inserted into a hidden form field to help to secure JSF form

posts against cross-site request forgery (XSRF) attacks. Note that the browser must have cookies

enabled to submit forms that include this component.

Attributes

• requireSession — indicates whether the session id should be included in the form signature,

hence binding the token to the session. This value can be set to false if the "build before restore"

mode of Facelets is activated (the default in JSF 2.0). (default: false)

• enableCookieNotice — indicates that a JavaScript check should be inserted into the page to

verify that cookies are enabled in the browser. If cookies are not enabled, present a notice to

the user that form posts will not work. (default: false)

• allowMultiplePosts — indicates whether to allow the same form to be submitted multiple

times with the same signature (as long as the view does not change). This is a common need

if the form is perform Ajax calls but not rerendering itself or, at the very least, the UIToken

component. The preferred approach is to have the UIToken component rerendered on any Ajax

call where the UIToken component would be processed. (default: false)

Usage

<h:form>

 <s:token enableCookieNotice="true" requireSession="false"/>

 ...

</h:form>

34.1.5.2. <s:enumItem>

Description

Creates a SelectItem from an enum value.

Attributes

• enumValue — the string representation of the enum value.

• label — the label to be used when rendering the SelectItem.

Form support

531

Usage

<h:selectOneRadio id="radioList"

 layout="lineDirection"

 value="#{newPayment.paymentFrequency}">

 <!-- JSF 2 way <f:converter converterId="org.jboss.seam.ui.EnumConverter" />-->

 <s:convertEnum />

 <s:enumItem enumValue="ONCE" label="Only Once" />

 <s:enumItem enumValue="EVERY_MINUTE" label="Every Minute" />

 <s:enumItem enumValue="HOURLY" label="Every Hour" />

 <s:enumItem enumValue="DAILY" label="Every Day" />

 <s:enumItem enumValue="WEEKLY" label="Every Week" />

</h:selectOneRadio>

34.1.5.3. <s:selectItems>

Description

Creates a List<SelectItem> from a List, Set, DataModel or Array.

Attributes

• value — an EL expression specifying the data that backs the List<SelectItem>

• var— defines the name of the local variable that holds the current object during iteration

• label — the label to be used when rendering the SelectItem. Can reference the var variable.

• itemValue — Value to return to the server if this option is selected. Optional, by default the var

object is used. Can reference the var variable.

• disabled — if true the SelectItem will be rendered disabled. Can reference the var variable.

• noSelectionLabel — specifies the (optional) label to place at the top of list (if

required="true" is also specified then selecting this value will cause a validation error).

• hideNoSelectionLabel — if true, the noSelectionLabel will be hidden when a value is

selected

Usage

<h:selectOneMenu value="#{person.age}"

 converter="ageConverter">

 <s:selectItems value="#{ages}" var="age" label="#{age}" />

</h:selectOneMenu>

Chapter 34. Seam JSF controls

532

34.1.5.4. <s:fileUpload>

Description

Renders a file upload control. This control must be used within a form with an encoding type of

multipart/form-data, i.e:

<h:form enctype="multipart/form-data">

For multipart requests, the Seam Multipart servlet filter must also be configured in web.xml:

<filter>

 <filter-name>Seam Filter</filter-name>

 <filter-class>org.jboss.seam.servlet.SeamFilter</filter-class>

</filter>

<filter-mapping>

 <filter-name>Seam Filter</filter-name>

 <url-pattern>/*</url-pattern>

</filter-mapping>

Configuration

The following configuration options for multipart requests may be configured in components.xml:

• createTempFiles — if this option is set to true, uploaded files are streamed to a temporary

file instead of in memory.

• maxRequestSize — the maximum size of a file upload request, in bytes.

Here's an example:

<component class="org.jboss.seam.web.MultipartFilter">

 <property name="createTempFiles">true</property>

 <property name="maxRequestSize">1000000</property>

</component>

Attributes

• data — this value binding receives the binary file data. The receiving field should be declared

as a byte[] or InputStream (required).

Other

533

• contentType — this value binding receives the file's content type (optional).

• fileName — this value binding receives the filename (optional).

• fileSize — this value binding receives the file size (optional).

• accept — a comma-separated list of content types to accept, may not be supported by the

browser. E.g. "images/png,images/jpg", "images/*".

• style — The control's style

• styleClass — The control's style class

Usage

<s:fileUpload id="picture" data="#{register.picture}"

 accept="image/png"

 contentType="#{register.pictureContentType}" />

34.1.6. Other

34.1.6.1. <s:cache>

Description

Cache the rendered page fragment using JBoss Cache. Note that <s:cache> actually uses the

instance of JBoss Cache managed by the built-in pojoCache component.

Attributes

• key — the key to cache rendered content, often a value expression. For example, if we

were caching a page fragment that displays a document, we might use key="Document-

#{document.id}".

• enabled — a value expression that determines if the cache should be used.

• region — a JBoss Cache node to use (different nodes can have different expiry policies).

Usage

<s:cache key="entry-#{blogEntry.id}" region="pageFragments">

 <div class="blogEntry">

 <h3>#{blogEntry.title}</h3>

 <div>

 <s:formattedText value="#{blogEntry.body}"/>

 </div>

Chapter 34. Seam JSF controls

534

 <p>

 [Posted on

 <h:outputText value="#{blogEntry.date}">

 <f:convertDateTime timezone="#{blog.timeZone}" locale="#{blog.locale}"

 type="both"/>

 </h:outputText>]

 </p>

 </div>

</s:cache>

34.1.6.2. <s:resource>

Description

A tag that acts a file download provider. It must be alone in the JSF page. To be able to use this

control, web.xml must be set up as follows.

Configuration

<servlet>

 <servlet-name>Document Store Servlet</servlet-name>

 <servlet-class>org.jboss.seam.document.DocumentStoreServlet</servlet-class>

</servlet>

<servlet-mapping>

 <servlet-name>Document Store Servlet</servlet-name>

 <url-pattern>/seam/docstore/*</url-pattern>

</servlet-mapping>

Attributes

• data — Data that should be downloaded. May be a java.util.File, an InputStream or a byte array.

• fileName — Filename of the file to be served

• contentType — content type of the file to be downloaded

• disposition — disposition to use. Default is inline

Usage

Here is an example on how to use the tag:

<s:resource xmlns="http://www.w3.org/1999/xhtml"

 xmlns:s="http://jboss.org/schema/seam/taglib"

Other

535

 data="#{resources.data}"

 contentType="#{resources.contentType}"

 fileName="#{resources.fileName}" />

The bean named resources is some backing bean that given some request parameters servers

a specific file, see s:download.

34.1.6.3. <s:download>

Description

Builds a RESTful link to a <s:resource>. Nested f:param build up the url.

• src — Resource file serving files.

Attributes

<s:download src="/resources.xhtml">

 <f:param name="fileId" value="#{someBean.downloadableFileId}"/>

</s:download>

Will produce something like: http://localhost/resources.seam?fileId=1

34.1.6.4. <s:graphicImage>

Description

An extended <h:graphicImage> that allows the image to be created in a Seam Component;

further transforms can be applied to the image.

All attributes for <h:graphicImage> are supported, as well as:

Attributes

• value — image to display. Can be a path String (loaded from the classpath), a byte[],

a java.io.File, a java.io.InputStream or a java.net.URL. Currently supported image

formats are image/png, image/jpeg, image/gif and image/bmp.

• fileName — if not specified the served image will have a generated file name. If you want to

name your file, you should specify it here. This name should be unique

Transformations

To apply a transform to the image, you would nest a tag specifying the transform to apply. Seam

currently supports these transforms:

Chapter 34. Seam JSF controls

536

<s:transformImageSize>

• width — new width of the image

• height — new height of the image

• maintainRatio — if true, and one of width/height are specified, the image will be resized

with the dimension not specified being calculated to maintain the aspect ratio.

• factor — scale the image by the given factor

<s:transformImageBlur>

• radius — perform a convolution blur with the given radius

<s:transformImageType>

• contentType — alter the type of the image to either image/jpeg or image/png

It's easy to create your own transform - create a UIComponent which implements

org.jboss.seam.ui.graphicImage.ImageTransform. Inside the applyTransform()method

use image.getBufferedImage() to get the original image and image.setBufferedImage() to

set your transformed image. Transforms are applied in the order specified in the view.

Usage

<s:graphicImage rendered="#{auction.image ne null}"

 value="#{auction.image.data}">

 <s:transformImageSize width="200" maintainRatio="true"/>

</s:graphicImage>

34.1.6.5. <s:remote>

Description

Generates the Javascript stubs required to use Seam Remoting.

Attributes

• include — a comma-separated list of the component names (or fully qualified class names)for

which to generate Seam Remoting Javascript stubs. See Chapter 26, Remoting for more details.

Usage

<s:remote include="customerAction,accountAction,com.acme.MyBean"/>

Annotations

537

34.2. Annotations

Seam also provides annotations to allow you to use Seam components as JSF converters and

validators:

@Converter

@Name("itemConverter")

@BypassInterceptors

@Converter

public class ItemConverter implements Converter {

 @Transactional

 public Object getAsObject(FacesContext context, UIComponent cmp, String value) {

 EntityManager entityManager = (EntityManager) Component.getInstance("entityManager");

 entityManager.joinTransaction();

 // Do the conversion

 }

 public String getAsString(FacesContext context, UIComponent cmp, Object value) {

 // Do the conversion

 }

}

<h:inputText value="#{shop.item}" converter="itemConverter" />

Registers the Seam component as a JSF converter. Shown here is a converter which is able

to access the JPA EntityManager inside a JTA transaction, when converting the value back

to it's object representation.

@Validator

@Name("itemValidator")

@BypassInterceptors

@org.jboss.seam.annotations.faces.Validator

public class ItemValidator implements javax.faces.validator.Validator {

 public void validate(FacesContext context, UIComponent cmp, Object value)

 throws ValidatorException {

 ItemController ItemController = (ItemController) Component.getInstance("itemController");

Chapter 34. Seam JSF controls

538

 boolean valid = itemController.validate(value);

 if (!valid) {

 throw ValidatorException("Invalid value " + value);

 }

 }

}

<h:inputText value="#{shop.item}" validator="itemValidator" />

Registers the Seam component as a JSF validator. Shown here is a validator which injects

another Seam component; the injected component is used to validate the value.

Chapter 35.

539

JBoss EL
Seam uses JBoss EL which provides an extension to the standard Unified Expression Language

(EL). JBoss EL provides a number of enhancements that increase the expressiveness and power

of EL expressions.

35.1. Parameterized Expressions

Standard EL 2.1 does not allow you to use a method with user defined parameters — of course,

JSF listener methods (e.g. a valueChangeListener) take parameters provided by JSF. Standard

EL 2.2 [http://docs.oracle.com/javaee/6/tutorial/doc/gjddd.html], which is in Java EE 6, allows it

now. So you don't have to use JBoss EL enhancements.

You can still use JBoss EL instead of standard EL 2.2 from Java EE 6 by setting up

com.sun.faces.expressionFactory in web.xml:

<context-param>

 <param-name>com.sun.faces.expressionFactory</param-name>

 <param-value>org.jboss.el.ExpressionFactoryImpl</param-value>

</context-param>

JBoss EL and EL 2.2 removed this restriction. For example:

<h:commandButton action="#{hotelBooking.bookHotel(hotel)}" value="Book Hotel"/>

@Name("hotelBooking")

public class HotelBooking

{

 public String bookHotel(Hotel hotel)

 {

 // Book the hotel

 }

}

35.1.1. Usage

Just as in calls to method from Java, parameters are surrounded by parentheses, and separated

by commas:

http://docs.oracle.com/javaee/6/tutorial/doc/gjddd.html
http://docs.oracle.com/javaee/6/tutorial/doc/gjddd.html
http://docs.oracle.com/javaee/6/tutorial/doc/gjddd.html

Chapter 35. JBoss EL

540

<h:commandButton action="#{hotelBooking.bookHotel(hotel, user)}" value="Book Hotel"/>

The parameters hotel and user will be evaluated as value expressions and passed to the

bookHotel() method of the component.

Any value expression may be used as a parameter:

<h:commandButton

 action="#{hotelBooking.bookHotel(hotel.id, user.username)}"

 value="Book Hotel"/>

It's important to fully understand how this extension to EL works. When the page is rendered, the

parameter names are stored (for example, hotel.id and user.username), and evaluated (as

value expressions) when the page is submitted. You can't pass objects as parameters!

You must ensure that the parameters are available not only when the page is rendered, but also

when it is submittedIf the arguments can not be resolved when the page is submitted the action

method will be called with null arguments!

You can also pass literal strings using single quotes:

<h:commandLink action="#{printer.println('Hello world!')}" value="Hello"/>

Unified EL also supports value expressions, used to bind a field to a backing bean. Value

expressions use JavaBean naming conventions and expect a getter/setter pair. Often JSF expects

a value expression where only retrieval (get) is needed (e.g. the rendered attribute). Many objects,

however, don't have appropriately named property accessors or require parameters.

JBoss EL removes this restriction by allowing values to be retrieved using the method syntax.

For example:

<h:outputText value="#{person.name}" rendered="#{person.name.length() > 5}" />

You can access the size of a collection in a similar manner:

#{searchResults.size()}

In general any expression of the form #{obj.property} would be identical to the expression

#{obj.getProperty()}.

Limitations and Hints

541

Parameters are also allowed. The following example calls the productsByColorMethod with a

literal string argument:

#{controller.productsByColor('blue')}

35.1.2. Limitations and Hints

When using JBoss EL you should keep the following points in mind:

• Incompatibility with JSP 2.1 — JBoss EL can't currently be used with JSP 2.1 as the compiler

rejects expressions with parameters in. So, if you want to use this extension with JSF 1.2, you

will need to use Facelets. The extension works correctly with JSP 2.0.

• Use inside iterative components — Components like <c:forEach /> and <ui:repeat />iterate

over a List or array, exposing each item in the list to nested components. This works great if

you are selecting a row using a <h:commandButton /> or <h:commandLink />:

@Factory("items")

public List<Item> getItems() {

 return entityManager.createQuery("select ...").getResultList();

}

<h:dataTable value="#{items}" var="item">

 <h:column>

 <h:commandLink value="Select #{item.name}" action="#{itemSelector.select(item})" />

 </h:column>

</h:dataTable>

However if you want to use <s:link /> or <s:button /> you must expose the items

as a DataModel, and use a <dataTable /> (or equivalent from a component set like

<rich:dataTable />). Neither <s:link /> or <s:button /> submit the form (and therefore

produce a bookmarkable link) so a "magic" parameter is needed to recreate the item when the

action method is called. This magic parameter can only be added when a data table backed

by a DataModel is used.

• Calling a MethodExpression from Java code — Normally, when a MethodExpression is

created, the parameter types are passed in by JSF. In the case of a method binding, JSF

assumes that there are no parameters to pass. With this extension, we can't know the parameter

types until after the expression has been evaluated. This has two minor consequences:

• When you invoke a MethodExpression in Java code, parameters you pass may be ignored.

Parameters defined in the expression will take precedence.

Chapter 35. JBoss EL

542

• Ordinarily, it is safe to call methodExpression.getMethodInfo().getParamTypes() at any

time. For an expression with parameters, you must first invoke the MethodExpression before

calling getParamTypes().

Both of these cases are exceedingly rare and only apply when you want to invoke the

MethodExpression by hand in Java code.

35.2. Projection

JBoss EL supports a limited projection syntax. A projection expression maps a sub-expression

across a multi-valued (list, set, etc...) expression. For instance, the expression:

#{company.departments}

might return a list of departments. If you only need a list of department names, your only option is

to iterate over the list to retrieve the values. JBoss EL allows this with a projection expression:

#{company.departments.{d|d.name}}

The subexpression is enclosed in braces. In this example, the expression d.name is evaluated

for each department, using d as an alias to the department object. The result of this expression

will be a list of String values.

Any valid expression can be used in an expression, so it would be perfectly valid to write the

following, assuming you had a use for the lengths of all the department names in a company:

#{company.departments.{d|d.size()}}

Projections can be nested. The following expression returns the last names of every employee

in every department:

#{company.departments.{d|d.employees.{emp|emp.lastName}}}

Nested projections can be slightly tricky, however. The following expression looks like it returns

a list of all the employees in all the departments:

#{company.departments.{d|d.employees}}

Projection

543

However, it actually returns a list containing a list of the employees for each individual department.

To combine the values, it is necessary to use a slightly longer expression:

#{company.departments.{d|d.employees.{e|e}}}

It is important to note that this syntax cannot be parsed by Facelets or JSP and thus cannot be

used in xhtml or JSP files. We anticipate that the projection syntax will change in future versions

of JBoss EL.

544

Chapter 36.

545

Clustering and EJB Passivation
Please note that this chapter is still being reviewed. Tread carefully.

This chapter covers two distinct topics that happen share a common solution in Seam, (web)

clustering and EJB passivation. Therefore, they are addressed together in this reference manual.

Although performance tends to be grouped in this category as well, it's kept separate because

the focus of this chapter is on the programming model and how it's affected by the use of the

aforementioned features.

In this chapter you will learn how Seam manages the passivation of Seam components and entity

instances, how to activate this feature, and how this feature is related to clustering. You will also

learn how to deploy a Seam application into a cluster and verify that HTTP session replication is

working properly. Let's start with a little background on clustering and see an example of how you

deploy a Seam application to a JBoss AS cluster.

36.1. Clustering

Clustering (more formally web clustering) allows an application to run on two or more parallel

servers (i.e., nodes) while providing a uniform view of the application to clients. Load is distributed

across the servers in such a way that if one or more of the servers fails, the application is still

accessible via any of the surviving nodes. This topology is crucial for building scalable enterprise

applications as performance and availability can be improved simply by adding nodes. But it brings

up an important question. What happens to the state that was on the server that failed?

Since day one, Seam has always provided support for stateful applications running in a cluster.

Up to this point, you have learned that Seam provides state management in the form of additional

scopes and by governing the life cycle of stateful (scoped) components. But state management in

Seam goes beyond creating, storing and destroying instances. Seam tracks changes to JavaBean

components and stores the changes at strategic points during the request so that the changes can

be restored when the request shifts to a secondary node in the cluster. Fortunately, monitoring

and replication of stateful EJB components is already handled by the EJB server, so this feature

of Seam is intended to put stateful JavaBeans on par with their EJB cohorts.

But wait, there's more! Seam also offers an incredibly unique feature for clustered applications. In

addition to monitoring JavaBean components, Seam ensures that managed entity instances (i.e.

JPA and Hibernate entities) don't become detached during replication. Seam keeps a record of the

entities that are loaded and automatically loads them on the secondary node. You must, however,

be using a Seam-managed persistence context to get this feature. More in depth information about

this feature is provided in the second half of this chapter.

Now that you understand what features Seam offers to support a clustered environment, let's look

at how you program for clustering.

Chapter 36. Clustering and EJ...

546

36.1.1. Programming for clustering

Any session- or conversation-scoped mutable JavaBean component that will be used in a

clustered environment must implement the org.jboss.seam.core.Mutable interface from the

Seam API. As part of the contract, the component must maintain a dirty flag that is reported and

reset by the clearDirty() method. Seam calls this method to determine if it is necessary to

replicate the component. This avoids having to use the more cumbersome Servlet API to add and

remove the session attribute on every change of the object.

You also must ensure that all session- and conversation-scoped JavaBean components are

Serializable. Additional, all fields of a stateful component (EJB or JavaBean) must Serializable

unless the field is marked transient or set to null in a @PrePassivate method. You can restore the

value of a transient or nullified field in a @PostActivate method.

One area where people often get bitten is by using List.subList to create a list.

The resulting list is not Serializable. So watch out for situations like that. If hit a

java.io.NotSerializableException and cannot locate the culprit at first glance, you can put

a breakpoint on this exception, run the application server in debug mode and attach a debugger

(such as Eclipse) to see what deserialization is choking on.

Note

Please note that clustering does not work with hot deployable components.

But then again, you shouldn't be using hot deployable components in a non-

development environment anyway.

36.1.2. Deploying a Seam application to a JBoss AS cluster with

session replication

Warning

This section needs to be updated for JBoss AS 7.x

The procedure outlined in this tutorial has been validated with an seam-gen application and the

Seam booking example.

In the tutorial, I assume that the IP addresses of the master and slave servers are 192.168.1.2

and 192.168.1.3, respectively. I am intentionally not using the mod_jk load balancer so that it's

easier to validate that both nodes are responding to requests and can share sessions.

I'm using the farm deployment method in these instructions, though you could also deploy the

application normally and allow the two servers to negotiate a master/slave relationship based on

startup order.

Deploying a Seam application to a JBoss AS cluster with session replication

547

Note

JBoss AS clustering relies on UDP multicasting provided by jGroups. The SELinux

configuration that ships with RHEL/Fedora blocks these packets by default. You

can allow them to pass by modifying the iptables rules (as root). The following

commands apply to an IP address that matches 192.168.1.x.

/sbin/iptables -I RH-Firewall-1-INPUT 5 -p udp -d 224.0.0.0/4 -j ACCEPT

/sbin/iptables -I RH-Firewall-1-INPUT 9 -p udp -s 192.168.1.0/24 -j ACCEPT

/sbin/iptables -I RH-Firewall-1-INPUT 10 -p tcp -s 192.168.1.0/24 -j ACCEPT

/etc/init.d/iptables save

Detailed information can be found on this page [http://www.jboss.org/community/

docs/DOC-11935] on the JBoss Wiki.

• Create two instances of JBoss AS (just extract the zip twice)

• Deploy the JDBC driver to server/all/lib/ on both instances if not using HSQLDB

• Add <distributable/> as the first child element in WEB-INF/web.xml

• Set the distributable property on org.jboss.seam.core.init to true to enable the

ManagedEntityInterceptor (i.e., <core:init distributable="true"/>)

• Ensure you have two IP addresses available (two computers, two network cards, or two IP

addresses bound to the same interface). I'll assume the two IP address are 192.168.1.2 and

192.168.1.3

• Start the master JBoss AS instance on the first IP

./bin/run.sh -c all -b 192.168.1.2

The log should report that there are 1 cluster members and 0 other members.

• Verify that the server/all/farm directory is empty in the slave JBoss AS instance

• Start the slave JBoss AS instance on the second IP

./bin/run.sh -c all -b 192.168.1.3

The log should report that there are 2 cluster members and 1 other members. It should also

show the state being retrieved from the master.

http://www.jboss.org/community/docs/DOC-11935
http://www.jboss.org/community/docs/DOC-11935
http://www.jboss.org/community/docs/DOC-11935

Chapter 36. Clustering and EJ...

548

• Deploy the -ds.xml to server/all/farm of the master instance

In the log of the master you should see acknowledgement of the deployment. In the log of the

slave you should see a corresponding message acknowledging the deployment to the slave.

• Deploy the application to the server/all/farm directory

In the log of the master you should see acknowledgement of the deployment. In the log of the

slave you should see a corresponding message acknowledging the deployment to the slave.

Note that you may have to wait up to 3 minutes for the deployed archive to be transfered.

You're application is now running in a cluster with HTTP session replication! But, of course, you

are going to want to validate that the clustering actually works.

36.1.3. Validating the distributable services of an application

running in a JBoss AS cluster

It's all well and fine to see the application start successfully on two different JBoss AS servers,

but seeing is believing. You likely want to validate that the two instances are exchanging HTTP

sessions to allow the slave to take over when the master instance is stopped.

Start off by visiting the application running on the master instance in your browser. That will

produce the first HTTP session. Now, open up the JBoss AS JMX console on that instance and

navigate to the following MBean:

• Category: jboss.cache

• Entry: service=TomcatClusteringCache

• Method: printDetails()

Invoke the printDetails() method. You will see a tree of active HTTP sessions. Verify that the

session your browser is using corresponds to one of the sessions in this tree.

Now switch over to the slave instance and invoke the same method in the JMX console. You

should see an identical list (at least underneath this application's context path).

So you can see that at least both servers claim to have identical sessions. Now, time to test that

the data is serializing and deserializing properly.

Sign in using using the URL of the master instance. Then, construct a URL for the second instance

by putting the ;jsessionid=XXXX immediately after the servlet path and changing the IP address.

You should see that the session has carried over to the other instance. Now kill the master

instance and see that you can continue to use the application from the slave instance. Remove

the deployments from the server/all/farm directory and start the instance again. Switch the IP in

the URL back to that of the master instance and visit the URL. You'll see that the original session

is still being used.

EJB Passivation and the ManagedEntityInterceptor

549

One way to watch objects passivate and activate is to create a session- or conversation-scoped

Seam component and implement the appropriate life-cycle methods. You can either use methods

from the HttpSessionActivationListener interface (Seam automatically registers this interface on

all non-EJB components):

public void sessionWillPassivate(HttpSessionEvent e);

public void sessionDidActivate(HttpSessionEvent e);

Or you can simply mark two no-argument public void methods with @PrePassivate and

@PostActivate, respectively. Note that the passivation step occurs at the end of every request,

while the activation step occurs when a node is called upon.

Now that you understand the big picture of running Seam in a cluster, it's time to address Seam's

most mysterious, yet remarkable agent, the ManagedEntityInterceptor.

36.2. EJB Passivation and the

ManagedEntityInterceptor

The ManagedEntityInterceptor (MEI) is an optional interceptor in Seam that gets applied

to conversation-scoped components when enabled. Enabling it is simple. You just set the

distributable property on the org.jboss.seam.init.core component to true. More simply put,

you add (or update) the following component declaration in the component descriptor (i.e.,

components.xml).

<core:init distributable="true"/>

Note that this doesn't enable replication of HTTP sessions, but it does prepare Seam to be able

to deal with passivation of either EJB components or components in the HTTP session.

The MEI serves two distinct scenarios (EJB passivation and HTTP session passivation), although

to accomplish the same overall goal. It ensures that throughout the life of a conversation using at

least one extended persistence context, the entity instances loaded by the persistence context(s)

remain managed (they do not become detached prematurely by a passivation event). In short, it

ensures the integrity of the extended persistence context (and therefore its guarantees).

The previous statement implies that there is a challenge that threatens this contract. In fact, there

are two. One case is when a stateful session bean (SFSB) that hosts an extended persistence

context is passivated (to save memory or to migrate it to another node in the cluster) and the

second is when the HTTP session is passivated (to prepare it to be migrated to another node in

the cluster).

I first want to discuss the general problem of passivation and then look at the two challenges cited

individually.

Chapter 36. Clustering and EJ...

550

36.2.1. The friction between passivation and persistence

The persistence context is where the persistence manager (i.e., JPA EntityManager or Hibernate

Session) stores entity instances (i.e., objects) it has loaded from the database (via the object-

relational mappings). Within a persistence context, there is no more than one object per unique

database record. The persistence context is often referred to as the first-level cache because if

the application asks for a record by its unique identifier that has already been loaded into the

persistence context, a call to the database is avoided. But it's about more than just caching.

Objects held in the persistence context can be modified, which the persistence manager tracks.

When an object is modified, it's considered "dirty". The persistence manager will migrate these

changes to the database using a technique known as write-behind (which basically means only

when necessary). Thus, the persistence context maintains a set of pending changes to the

database.

Database-oriented applications do much more than just read from and write to the database. They

capture transactional bits of information that need to be transferred into the database atomically (at

once). It's not always possible to capture this information all on one screen. Additionally, the user

might need to make a judgement call about whether to approve or reject the pending changes.

What we are getting at here is that the idea of a transaction from the user's perspective needs to be

extended. And that is why the extended persistence context fits so perfectly with this requirement.

It can hold such changes for as long as the application can keep it open and then use the

built-in capabilities of the persistence manager to push these pending changes to the database

without requiring the application developer to worry about the low-level details (a simple call to

EntityManager#flush() does the trick).

The link between the persistence manager and the entity instances is maintained using object

references. The entity instances are serializable, but the persistence manager (and in turn its

persistence context) is not. Therefore, the process of serialization works against this design.

Serialization can occur either when a SFSB or the HTTP session is passivated. In order to sustain

the activity in the application, the persistence manager and the entity instances it manages must

weather serialization without losing their relationship. That's the aid that the MEI provides.

36.2.2. Case #1: Surviving EJB passivation

Conversations were initially designed with stateful session beans (SFSBs) in mind, primarily

because the EJB 3 specification designates SFSBs as hosts of the extended persistence context.

Seam introduces a complement to the extended persistence context, known as a Seam-managed

persistence context, which works around a number of limitations in the specification (complex

propagation rules and lack of manual flushing). Both can be used with a SFSB.

A SFSB relies on a client to hold a reference to it in order to keep it active. Seam has provided

an ideal place for this reference in the conversation context. Thus, for as long as the conversation

context is active, the SFSB is active. If an EntityManager is injected into that SFSB using the

annotation @PersistenceContext(EXTENDED), then that EntityManager will be bound to the

Case #2: Surviving HTTP session replication

551

SFSB and remain open throughout its lifetime, the lifetime of the conversation. If an EntityManager

is injected using @In, then that EntityManager is maintained by Seam and stored directly in the

conversation context, thus living for the lifetime of the conversation independent of the lifetime

of the SFSB.

With all of that said, the Java EE container can passivate a SFSB, which means it will serialize

the object to an area of storage external to the JVM. When this happens depends on the settings

of the individual SFSB. This process can even be disabled. However, the persistence context is

not serialized (is this only true of SMPC?). In fact, what happens depends highly on the Java

EE container. The spec is not very clear about this situation. Many vendors just tell you not to

let it happen if you need the guarantees of the extended persistence context. Seam's approach

is more conservative. Seam basically doesn't trust the SFSB with the persistence context or the

entity instances. After each invocation of the SFSB, Seam moves the reference to entity instance

held by the SFSB into the current conversation (and therefore into the HTTP session), nullifying

those fields on the SFSB. It then restores this references at the beginning of the next invocation.

Of course, Seam is already storing the persistence manager in the conversation. Thus, when the

SFSB passivates and later activates, it has absolutely no averse affect on the application.

Note

If you are using SFSBs in your application that hold references to extended

persistence contexts, and those SFSBs can passivate, then you must use the MEI.

This requirement holds even if you are using a single instance (not a cluster).

However, if you are using clustered SFSB, then this requirement also applies.

It is possible to disable passivation on a SFSB. See the Ejb3DisableSfsbPassivation [http://

www.jboss.org/community/docs/DOC-9656] page on the JBoss Wiki for details.

36.2.3. Case #2: Surviving HTTP session replication

Dealing with passivation of a SFSB works by leveraging the HTTP session. But what happens

when the HTTP session passivates? This happens in a clustered environment with session

replication enabled. This case is much tricker to deal with and is where a bulk of the MEI

infrastructure comes into play. In this case, the persistence manager is going to be destroyed

because it cannot be serialized. Seam handles this deconstruction (hence ensuring that the HTTP

session serializes properly). But what happens on the other end. Well, when the MEI sticks an

entity instance into the conversation, it embeds the instance in a wrapper that provides information

on how to re-associate the instance with a persistence manager post-serialization. So when the

application jumps to another node in the cluster (presumably because the target node went down)

the MEI infrastructure essentially reconstructs the persistence context. The huge drawback here

is that since the persistence context is being reconstructed (from the database), pending changes

are dropped. However, what Seam does do is ensure that if the entity instance is versioned, that

the guarantees of optimistic locking are upheld. (why isn't the dirty state transferred?)

http://www.jboss.org/community/docs/DOC-9656
http://www.jboss.org/community/docs/DOC-9656
http://www.jboss.org/community/docs/DOC-9656

Chapter 36. Clustering and EJ...

552

Note

If you are deploying your application in a cluster and using HTTP session

replication, you must use the MEI.

36.2.4. ManagedEntityInterceptor wrap-up

The important point of this section is that the MEI is there for a reason. It's there to ensure that the

extended persistence context can retain intact in the face of passivation (of either a SFSB or the

HTTP session). This matters because the natural design of Seam applications (and conversational

state in general) revolve around the state of this resource.

Chapter 37.

553

Performance Tuning
This chapter is an attempt to document in one place all the tips for getting the best performance

from your Seam application.

37.1. Bypassing Interceptors

For repetitive value bindings such as those found in a JSF dataTable or other iterative control

(like ui:repeat), the full interceptor stack will be invoked for every invocation of the referenced

Seam component. The effect of this can result in a substantial performance hit, especially if the

component is accessed many times. A significant performance gain can be achieved by disabling

the interceptor stack for the Seam component being invoked. To disable interceptors for the

component, add the @BypassInterceptors annotation to the component class.

Warning

It is very important to be aware of the implications of disabling interceptors for

a Seam component. Features such as bijection, annotated security restrictions,

synchronization and others are unavailable for a component marked with

@BypassInterceptors. While in most cases it is possible to compensate for

the loss of these features (e.g. instead of injecting a component using @In, you

can use Component.getInstance() instead) it is important to be aware of the

consequences.

The following code listing demonstrates a Seam component with its interceptors disabled:

@Name("foo")

@Scope(EVENT)

@BypassInterceptors

public class Foo

{

 public String getRowActions()

 {

 // Role-based security check performed inline instead of using @Restrict or other security

 annotation

 Identity.instance().checkRole("user");

 // Inline code to lookup component instead of using @In

 Bar bar = (Bar) Component.getInstance("bar");

 String actions;

 // some code here that does something

Chapter 37. Performance Tuning

554

 return actions;

 }

}

Chapter 38.

555

Testing Seam applications
Most Seam applications will need at least two kinds of automated tests: unit tests, which test

a particular Seam component in isolation, and scripted integration tests which exercise all Java

layers of the application (that is, everything except the view pages).

Both kinds of tests are very easy to write.

38.1. Unit testing Seam components

All Seam components are POJOs. This is a great place to start if you want easy unit testing.

And since Seam emphasises the use of bijection for inter-component interactions and access

to contextual objects, it's very easy to test a Seam component outside of its normal runtime

environment.

Consider the following Seam Component which creates a statement of account for a customer:

@Stateless

@Scope(EVENT)

@Name("statementOfAccount")

public class StatementOfAccount {

 @In(create=true) EntityManager entityManager

 private double statementTotal;

 @In

 private Customer customer;

 @Create

 public void create() {

 List<Invoice> invoices = entityManager

 .createQuery("select invoice from Invoice invoice where invoice.customer = :customer")

 .setParameter("customer", customer)

 .getResultList();

 statementTotal = calculateTotal(invoices);

 }

 public double calculateTotal(List<Invoice> invoices) {

 double total = 0.0;

 for (Invoice invoice: invoices)

 {

 double += invoice.getTotal();

 }

Chapter 38. Testing Seam appl...

556

 return total;

 }

 // getter and setter for statementTotal

}

We could write a unit test for the calculateTotal method (which tests the business logic of the

component) as follows:

public class StatementOfAccountTest {

 @Test

 public testCalculateTotal {

 List<Invoice> invoices = generateTestInvoices(); // A test data generator

 double statementTotal = new StatementOfAccount().calculateTotal(invoices);

 assert statementTotal = 123.45;

 }

}

You'll notice we aren't testing retrieving data from or persisting data to the database; nor are we

testing any functionality provided by Seam. We are just testing the logic of our POJOs. Seam

components don't usually depend directly upon container infrastructure, so most unit testing are

as easy as that!

However, if you want to test the entire application, read on.

38.2. Integration testing Seam components

Warning

Using JBoss Embedded for integration testing was removed. Seam uses Arquillian

with JUnit. Right now TestNG is not recommended test framework with Arquillian.

Integration testing is slightly more difficult. In this case, we can't eliminate the container

infrastructure; indeed, that is part of what is being tested! At the same time, we don't want to be

forced to deploy our application to an application server to run the automated tests. We need to

be able to reproduce just enough of the container infrastructure inside our testing environment to

be able to exercise the whole application, without hurting performance too much.

The approach taken by Seam is to let you write tests that exercise your components while running

inside a pruned down container environment (Seam, together with the JBoss AS container)

Arquillian makes it possible to run integration tests inside a real container, even without SeamTest.

Integration testing Seam components

557

Example 38.1. RegisterTest.java

@RunWith(Arquillian)

public class RegisterTest

{

 @Deployment

 @OverProtocol("Servlet 3.0")

 public static Archive<?> createDeployment()

 {

 EnterpriseArchive er = ShrinkWrap.create(ZipImporter.class)

 .importFrom(new File("../registration-ear/target/seam-registration.ear"))

 .as(EnterpriseArchive.class);

 WebArchive web = er.getAsType(WebArchive.class, "registration-web.war");

 web.addClasses(RegisterTest.class);

 return er;

 }

 @Before

 public void before()

 {

 Lifecycle.beginCall();

 }

 @After

 public void after(

 {

 Lifecycle.endCall();

 }

 protected void setValue(String valueExpression, Object value)

 {

 Expressions.instance().createValueExpression(valueExpression).setValue(value);

 }

 @Test

 public void testRegisterComponent() throws Exception

 {

 setValue("#{user.username}", "1ovthafew");

 setValue("#{user.name}", "Gavin King");

 setValue("#{user.password}", "secret");

 Register register = (Register)Component.getInstance("register");

 Assert.assertEquals("success", register.register());

Chapter 38. Testing Seam appl...

558

 }

 ...

}

The JUnit @RunWith annotation must be present to run our tests with Arquillian.

Since we want to run our test in a real container, we need to specify an archive that gets

deployed.

@OverProtocol is an Arquillian annotation to specify the protocol used for running the tests.

The "Servlet 3.0" protocol is the recommended protocol for running Seam tests.

ShrinkWrap can be used to create the deployment archive. In this example, the whole EAR

is imported, but we could also use the ShrinkWrap API to create a WAR or an EAR from the

scratch and put in just the artifacts that we need for the test.

The test class itself must be added to the web archive.

Lifecycle.beginCall() is needed to setup Seam contexts.

38.2.1. Configuration

The Arquillian configuration depends on the specific container used. See Arquillian documentation

for more information.

Assuming you are using Maven as your build tool and want run your tests on JBoss AS 7, you will

need to put these dependencies into your pom.xml:

<dependency>

 <groupId>org.jboss.arquillian.junit</groupId>

 <artifactId>arquillian-junit-container</artifactId>

 <version>${version.arquillian}</version>

 <scope>test</scope>

</dependency>

<dependency>

 <groupId>org.jboss.as</groupId>

 <artifactId>jboss-as-arquillian-container-managed</artifactId>

 <version>${version.jboss.as7}</version>

 <scope>test</scope>

</dependency>

The Arquillian JBoss AS Managed Container will automatically start the application server,

provided the JBOSS_HOME environment property points to the JBoss AS 7 installation.

Using JUnitSeamTest with Arquillian

559

38.2.2. Using JUnitSeamTest with Arquillian

It is also possible to use the simulated JSF environment provided by SeamTest along with

Arquillian. This is useful especially if you are migrating from previous Seam releases and want to

keep your existing testsuite mostly unchanged.

Note
SeamTest was primary designated for TestNG integration tests. There are some

glitches so we recommend to use JUnitSeamTest which is the JUnit variant for

SeamTest.

The following changes must be done to run a JUnitSeamTest with Arquillian:

• Create the @Deployment method.

• Convert the test to JUnit. A JUnitSeamTest class can now be used instead of the original

SeamTest.

• Replace the SeamListener with org.jboss.seam.mock.MockSeamListener in web.xml.

Example 38.2. RegisterTest.java

@RunWith(Arquillian)

public class RegisterTest extends JUnitSeamTest

{

 @Deployment

 @OverProtocol("Servlet 3.0")

 public static Archive<?> createDeployment()

 {

 EnterpriseArchive er = ShrinkWrap.create(ZipImporter.class)

 .importFrom(new File("../registration-ear/target/seam-registration.ear"))

 .as(EnterpriseArchive.class);

 WebArchive web = er.getAsType(WebArchive.class, "registration-web.war");

 web.addClasses(RegisterTest.class);

 // Replacing the SeamListener with MockSeamListener

 web.delete("/WEB-INF/web.xml");

 web.addAsWebInfResource("WEB-INF/mock-web.xml", "web.xml");

 return er;

 }

 @Test

 public void testRegisterComponent() throws Exception

Chapter 38. Testing Seam appl...

560

 {

 new ComponentTest() {

 protected void testComponents() throws Exception

 {

 setValue("#{user.username}", "1ovthafew");

 setValue("#{user.name}", "Gavin King");

 setValue("#{user.password}", "secret");

 assert invokeMethod("#{register.register}").equals("success");

 assert getValue("#{user.username}").equals("1ovthafew");

 assert getValue("#{user.name}").equals("Gavin King");

 assert getValue("#{user.password}").equals("secret");

 }

 }.run();

 }

 ...

}

Example 38.3. mock-web.xml

<?xml version="1.0" ?>

<web-app version="3.0"

 xmlns="http://java.sun.com/xml/ns/javaee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/javaee/

web-app_3_0.xsd">

 <listener>

 <listener-class>org.jboss.seam.mock.MockSeamListener</listener-class>

 </listener>

</web-app>

Integration testing Seam application user interactions

561

38.2.2.1. Using mocks in integration tests

Occasionally, we need to be able to replace the implementation of some Seam component that

depends upon resources which are not available in the integration test environment. For example,

suppose we have some Seam component which is a facade to some payment processing system:

@Name("paymentProcessor")

public class PaymentProcessor {

 public boolean processPayment(Payment payment) { }

}

For integration tests, we can mock out this component as follows:

@Name("paymentProcessor")

@Install(precedence=MOCK)

public class MockPaymentProcessor extends PaymentProcessor {

 public boolean processPayment(Payment payment) {

 return true;

 }

}

Since the MOCK precedence is higher than the default precedence of application components,

Seam will install the mock implementation whenever it is in the classpath. When deployed into

production, the mock implementation is absent, so the real component will be installed.

38.2.3. Integration testing Seam application user interactions

An even harder problem is emulating user interactions. A third problem is where to put

our assertions. Some test frameworks let us test the whole application by reproducing user

interactions with the web browser. These frameworks have their place, but they are not appropriate

for use at development time.

SeamTest or JUnitSeamTest lets you write scripted tests, in a simulated JSF environment. The

role of a scripted test is to reproduce the interaction between the view and the Seam components.

In other words, you get to pretend you are the JSF implementation!

This approach tests everything except the view.

Let's consider a JSF view for the component we unit tested above:

<html>

 <head>

 <title>Register New User</title>

Chapter 38. Testing Seam appl...

562

 </head>

 <body>

 <f:view>

 <h:form>

 <table border="0">

 <tr>

 <td>Username</td>

 <td><h:inputText value="#{user.username}"/></td>

 </tr>

 <tr>

 <td>Real Name</td>

 <td><h:inputText value="#{user.name}"/></td>

 </tr>

 <tr>

 <td>Password</td>

 <td><h:inputSecret value="#{user.password}"/></td>

 </tr>

 </table>

 <h:messages/>

 <h:commandButton type="submit" value="Register" action="#{register.register}"/>

 </h:form>

 </f:view>

 </body>

</html>

We want to test the registration functionality of our application (the stuff that happens when the

user clicks the Register button). We'll reproduce the JSF request lifecycle in an automated JUnit

test:

@RunWith(Arquillian.class)

public class RegisterTest extends JUnitSeamTest

{

 @Deployment(name="RegisterTest")

 @OverProtocol("Servlet 3.0")

 public static Archive<?> createDeployment()

 {

 EnterpriseArchive er = ShrinkWrap.create(ZipImporter.class, "seam-

registration.ear").importFrom(new File("../registration-ear/target/seam-registration.ear"))

 .as(EnterpriseArchive.class);

 WebArchive web = er.getAsType(WebArchive.class, "registration-web.war");

 web.addClasses(RegisterTest.class);

 // Install org.jboss.seam.mock.MockSeamListener

Integration testing Seam application user interactions

563

 web.delete("/WEB-INF/web.xml");

 web.addAsWebInfResource("web.xml");

 return er;

 }

 @Test

 public void testLogin() throws Exception

 {

 new FacesRequest("/register.xhtml") {

 @Override

 protected void processValidations() throws Exception

 {

 validateValue("#{user.username}", "1ovthafew");

 validateValue("#{user.name}", "Gavin King");

 validateValue("#{user.password}", "secret");

 assert !isValidationFailure();

 }

 @Override

 protected void updateModelValues() throws Exception

 {

 setValue("#{user.username}", "1ovthafew");

 setValue("#{user.name}", "Gavin King");

 setValue("#{user.password}", "secret");

 }

 @Override

 protected void invokeApplication()

 {

 assert invokeMethod("#{register.register}").equals("/registered.xhtml");

 setOutcome("/registered.xhtml");

 }

 @Override

 protected void afterRequest()

 {

 assert isInvokeApplicationComplete();

 assert !isRenderResponseBegun();

 }

 }.run();

Chapter 38. Testing Seam appl...

564

 ...

}

Notice that we've extended JUnitSeamTest, which provides a Seam environment for

our components, and written our test script as an anonymous class that extends

JUnitSeamTest.FacesRequest, which provides an emulated JSF request lifecycle. (There is

also a JUnitSeamTest.NonFacesRequest for testing GET requests.) We've written our code in

methods which are named for the various JSF phases, to emulate the calls that JSF would make

to our components. Then we've thrown in various assertions.

You'll find plenty of integration tests for the Seam example applications which demonstrate more

complex cases. There are instructions for running these tests using Maven, or using the JUnit

plugin for eclipse:

Integration testing Seam application user interactions

565

38.2.3.1. Configuration

If you used seam-gen to create your project you are ready to start writing tests. Otherwise you'll

need to setup the testing environment in your favorite build tool (e.g. ant, maven, eclipse).

For ant or own build tool which uses jars on local - you can use to get all jars by running ant -

f get-arquillian-libs.xml -Dtest.lib.dir=lib/test. This just copy all Arquillian jars for

managed JBoss AS 7.1.1 container and copy all jars into defined directory lib/test by using

that test.lib.dir property.

And, of course you need to put your built project and tests onto the classpath as well as jar for

your test framework. Don't forget to put all the correct configuration files for JPA and Seam onto

the classpath as well. Seam asks Arquillian to deploy any resource (jar or directory) which has

seam.properties in it's root. Therefore, if you don't assemble a directory structure that resembles

a deployable archive containing your built project, you must put a seam.properties in each

resource.

38.2.3.2. Using JUnitSeamTest with another test framework

Seam provides JUnit support out of the box, but you can also use another test framework, if you

want.

You'll need to provide an implementation of AbstractSeamTest which does the following:

• Calls super.begin() before every test method.

• Calls super.end() after every test method.

• Calls super.setupClass() to setup integration test environment. This should be called before

any test methods are called.

• Calls super.cleanupClass() to clean up the integration test environment.

• Calls super.startSeam() to start Seam at the start of integration testing.

• Calls super.stopSeam() to cleanly shut down Seam at the end of integration testing.

38.2.3.3. Integration Testing with Mock Data

If you want to insert or clean data in your database before each test you can use Seam's integration

with DBUnit. To do this, extend DBUnitSeamTest rather than SeamTest.

You have to provide a dataset for DBUnit.

Caution
DBUnit supports two formats for dataset files, flat and XML. Seam's

DBUnitSeamTest or DBJUnitSeamTest assumes the flat format is used, so make

sure that your dataset is in this format.

Chapter 38. Testing Seam appl...

566

<dataset>

 <ARTIST

 id="1"

 dtype="Band"

 name="Pink Floyd" />

 <DISC

 id="1"

 name="Dark Side of the Moon"

 artist_id="1" />

</dataset>

In your test class, configure your dataset with overriding prepareDBUnitOperations():

protected void prepareDBUnitOperations() {

 beforeTestOperations.add(

 new DataSetOperation("my/datasets/BaseData.xml")

);

 }

DataSetOperation defaults to DatabaseOperation.CLEAN_INSERT if no other operation is

specified as a constructor argument. The above example cleans all tables defined BaseData.xml,

then inserts all rows declared in BaseData.xml before each @Test method is invoked.

If you require extra cleanup after a test method executes, add operations to

afterTestOperations list.

You need to tell DBUnit which datasource you are using. This is accomplished by defining

a test parameter [http://testng.org/doc/documentation-main.html#parameters-testng-xml] named

datasourceJndiName in testng.xml as follows:

<parameter name="datasourceJndiName" value="java:/seamdiscsDatasource"/>

DBUnitSeamTest or DBJUnitSeamTest have support for MySQL and HSQL - you need to tell it

which database is being used, otherwise it defaults to HSQL:

<parameter name="database" value="MYSQL" />

http://testng.org/doc/documentation-main.html#parameters-testng-xml
http://testng.org/doc/documentation-main.html#parameters-testng-xml

Integration testing Seam application user interactions

567

It also allows you to insert binary data into the test data set (n.b. this is untested on Windows).

You need to tell it where to locate these resources on your classpath:

<parameter name="binaryDir" value="images/" />

You do not have to configure any of these parameters if you use HSQL and have no binary imports.

However, unless you specify datasourceJndiName in your test configuration, you will have to call

setDatabaseJndiName() before your test runs. If you are not using HSQL or MySQL, you need

to override some methods. See the Javadoc of DBUnitSeamTest for more details.

38.2.3.4. Integration Testing Seam Mail

Caution
Warning! This feature is still under development.

It's very easy to integration test your Seam Mail:

public class MailTest extends SeamTest {

 @Test

 public void testSimpleMessage() throws Exception {

 new FacesRequest() {

 @Override

 protected void updateModelValues() throws Exception {

 setValue("#{person.firstname}", "Pete");

 setValue("#{person.lastname}", "Muir");

 setValue("#{person.address}", "test@example.com");

 }

 @Override

 protected void invokeApplication() throws Exception {

 MimeMessage renderedMessage = getRenderedMailMessage("/simple.xhtml");

 assert renderedMessage.getAllRecipients().length == 1;

 InternetAddress to = (InternetAddress) renderedMessage.getAllRecipients()[0];

 assert to.getAddress().equals("test@example.com");

 }

 }.run();

 }

Chapter 38. Testing Seam appl...

568

}

We create a new FacesRequest as normal. Inside the invokeApplication hook we render the

message using getRenderedMailMessage(viewId);, passing the viewId of the message to

render. The method returns the rendered message on which you can do your tests. You can of

course also use any of the standard JSF lifecycle methods.

There is no support for rendering standard JSF components so you can't test the content body

of the mail message easily.

Chapter 39.

569

Dependencies

39.1. JDK Dependencies

Seam does not work with JDK 1.4 and requires JDK 5 or above as it uses annotations and

other JDK 5.0 features. Seam has been thoroughly tested using Oracle's JDKs and OpenJDKs.

However there are no known issues specific to Seam with other JDKs.

39.1.1. Oracle's JDK 6 Considerations

Earlier versions of Oracle's JDK 6 contained an incompatible version of JAXB and required

overriding it using the "endorsed" directory. Oracle's JDK6 Update 4 release upgraded to JAXB

2.1 and removed this requirement. When building, testing, or executing be sure to use this version

or higher.

39.2. Project Dependencies

This section both lists the compile-time and runtime dependencies for Seam. Where the type

is listed as ear, the library should be included in the /lib directory of your application's ear file.

Where the type is listed as war, the library should be placed in the /WEB-INF/lib directory of your

application's war file. The scope of the dependency is either all, runtime or provided (by JBoss

AS 7.1.x).

Up to date version information and complete dependency information is not included in the docs,

but is provided in the /dependency-report.txt which is generated from the Maven POMs stored

in /build. You can generate this file by running ant dependencyReport.

39.2.1. Core

Table 39.1.

Name Scope Type Notes

jboss-seam.jar all ear The core Seam library, always

required.

jboss-seam-debug.jar runtime war Include during development

when enabling Seam's debug

feature

jboss-seam-ioc.jar runtime war Required when using Seam with

Spring

jboss-seam-pdf.jar runtime war Required when using Seam's

PDF features

jboss-seam-excel.jar runtime war Required when using Seam's

Microsoft® Excel® features

Chapter 39. Dependencies

570

Name Scope Type Notes

jboss-seam-rss.jar runtime war Required when using Seam's

RSS generation features

jboss-seam-

remoting.jar

runtime war Required when using Seam

Remoting

jboss-seam-ui.jar runtime war Required to use the Seam JSF

controls

jsf-api.jar provided JSF API

jsf-impl.jar provided JSF Reference Implementation

urlrewrite.jar runtime war URL Rewrite library

quartz.jar runtime ear Required when you wish

to use Quartz with Seam's

asynchronous features

39.2.2. RichFaces

Table 39.2. RichFaces dependencies

Name Scope Type Notes

richfaces-core-

api.jar

all ear Required to use RichFaces.

Provides Core API classes that

you may wish to use from your

application e.g. to create a tree

richfaces-core-

impl.jar

runtime war Required to use RichFaces Core

implementations.

richfaces-

components-ui.jar

runtime war Required to use RichFaces.

Provides all the Components UI

components.

richfaces-

components-api.jar

runtime war Required to use RichFaces.

Provides all the API for UI

components.

39.2.3. Seam Mail

Table 39.3. Seam Mail Dependencies

Name Scope Type Notes

mail.jar runtime ear Required for outgoing mail

support

ironjacamar-mail.jar compile

only

Required for incoming mail

support

Seam PDF

571

Name Scope Type Notes

ironjacamar-mail.jar should

be deployed to the application

server at runtime

jboss-seam-mail.jar runtime war Seam Mail

39.2.4. Seam PDF

Table 39.4. Seam PDF Dependencies

Name Type Scope Notes

itext.jar runtime war PDF Library

jfreechart.jar runtime war Charting library

jcommon.jar runtime war Required by JFreeChart

jboss-seam-pdf.jar runtime war Seam PDF core library

39.2.5. Seam Microsoft® Excel®

Table 39.5. Seam Microsoft® Excel® Dependencies

Name Type Scope Notes

jxl.jar runtime war JExcelAPI library

jboss-seam-excel.jar runtime war Seam Microsoft® Excel® core

library

39.2.6. Seam RSS support

Table 39.6. Seam RSS Dependencies

Name Type Scope Notes

yarfraw.jar runtime war YARFRAW RSS library

JAXB runtime war JAXB XML parsing libraries

http-client.jar runtime war Apache HTTP Client libraries

commons-io runtime war Apache commons IO library

commons-lang runtime war Apache commons lang library

commons-codec runtime war Apache commons codec library

commons-collections runtime war Apache commons collections

library

jboss-seam-rss.jar runtime war Seam RSS core library

Chapter 39. Dependencies

572

39.2.7. Drools

The Drools libraries can be found in the lib directory in Seam.

Table 39.7. Drools Dependencies

Name Scope Type Notes

antlr-runtime.jar runtime ear ANTLR Runtime Library

ecj.jar runtime ear Eclipse Compiler for Java

knowledge-api.jar runtime ear

drools-compiler.jar runtime ear Drools compiler

drools-core.jar runtime ear

drools-

decisiontables.jar

runtime ear

drools-templates.jar runtime ear

mvel2.jar runtime ear

39.2.8. JBPM

Table 39.8. JBPM dependencies

Name Scope Type Notes

jbpm-jpdl.jar runtime ear

39.2.9. GWT

These libraries are required if you with to use the Google Web Toolkit (GWT) with your Seam

application.

Table 39.9. GWT dependencies

Name Scope Type Notes

gwt-servlet.jar runtime war The GWT Servlet libs

39.2.10. Spring

These libraries are required if you with to use the Spring Framework with your Seam application.

Table 39.10. Spring Framework dependencies

Name Scope Type Notes

spring.jar runtime ear The Spring Framework library

Groovy

573

39.2.11. Groovy

These libraries are required if you with to use Groovy with your Seam application.

Table 39.11. Groovy dependencies

Name Scope Type Notes

groovy-all.jar runtime ear The Groovy libs

39.3. Dependency Management using Maven

We aren't actually going to discuss how to use Maven here, but just run over some Seam usage

from user/application point of view you could use.

Released versions of Seam are available in http://repository.jboss.org/nexus/content/groups/

public [http://repository.jboss.org/nexus/content/groups/public].

All the Seam artifacts are available in Maven:

<dependency>

 <groupId>org.jboss.seam</groupId>

 <artifactId>jboss-seam</artifactId>

</dependency>

<dependency>

 <groupId>org.jboss.seam</groupId>

 <artifactId>jboss-seam-ui</artifactId>

</dependency>

<dependency>

 <groupId>org.jboss.seam</groupId>

 <artifactId>jboss-seam-pdf</artifactId>

</dependency>

<dependency>

 <groupId>org.jboss.seam</groupId>

 <artifactId>jboss-seam-mail</artifactId>

</dependency>

http://repository.jboss.org/nexus/content/groups/public
http://repository.jboss.org/nexus/content/groups/public
http://repository.jboss.org/nexus/content/groups/public

Chapter 39. Dependencies

574

<dependency>

 <groupId>org.jboss.seam</groupId>

 <artifactId>jboss-seam-debug</artifactId>

</dependency>

<dependency>

 <groupId>org.jboss.seam</groupId>

 <artifactId>jboss-seam-remoting</artifactId>

</dependency>

<dependency>

 <groupId>org.jboss.seam</groupId>

 <artifactId>jboss-seam-ioc</artifactId>

</dependency>

<dependency>

 <groupId>org.jboss.seam</groupId>

 <artifactId>jboss-seam-excel</artifactId>

</dependency>

<dependency>

 <groupId>org.jboss.seam</groupId>

 <artifactId>jboss-seam-resteasy</artifactId>

</dependency>

<dependency>

 <groupId>org.jboss.seam</groupId>

 <artifactId>jboss-seam-rss</artifactId>

</dependency>

<dependency>

 <groupId>org.jboss.seam</groupId>

 <artifactId>jboss-seam-wicket</artifactId>

Dependency Management using Maven

575

</dependency>

This sample POM will give you Seam, JPA (provided by Hibernate), Hibernate Validator and

Hibernate Search:

<?xml version="1.0" encoding="UTF-8"?>

<project xmlns="http://maven.apache.org/POM/4.0.0"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-

v4_0_0.xsd">

 <modelVersion>4.0.0</modelVersion>

 <groupId>org.jboss.seam.example/groupId>

 <artifactId>my-project</artifactId>

 <version>1.0</version>

 <name>My Seam Project</name>

 <packaging>jar</packaging>

 <repositories>

 <repository>

 <id>repository.jboss.org</id>

 <name>JBoss Public Repository</name>

 <url>http://repository.jboss.org/nexus/content/groups/public</url>

 </repository>

 </repositories>

 <dependencyManagement>

 <dependencies>

 <dependency>

 <groupId>org.jboss.seam</groupId>

 <artifactId>bom</artifactId>

 <version>2.3.0.Final</version>

 <type>pom</type>

 <scope>import</scope>

 </dependency>

 </dependencies>

 </dependencyManagement>

 <dependencies>

 <dependency>

 <groupId>org.hibernate</groupId>

 <artifactId>hibernate-validator</artifactId>

 </dependency>

Chapter 39. Dependencies

576

 <dependency>

 <groupId>org.hibernate</groupId>

 <artifactId>hibernate-entitymanager</artifactId>

 </dependency>

 <dependency>

 <groupId>org.hibernate</groupId>

 <artifactId>hibernate-search</artifactId>

 </dependency>

 <dependency>

 <groupId>org.jboss.seam</groupId>

 <artifactId>jboss-seam</artifactId>

 </dependency>

 </dependencies>

</project>

	Seam - Contextual Components
	Table of Contents
	Introduction to JBoss Seam
	1. Contribute to Seam

	Chapter 1. Seam Tutorial
	1.1. Using the Seam examples
	1.1.1. Running the examples on JBoss AS
	1.1.2. Running the example tests

	1.2. Your first Seam application: the registration example
	1.2.1. Understanding the code
	1.2.1.1. The entity bean: User.java
	1.2.1.2. The stateless session bean class: RegisterAction.java
	1.2.1.3. The session bean local interface: Register.java
	1.2.1.4. The view: register.xhtml and registered.xhtml
	1.2.1.5. The Seam component deployment descriptor: components.xml
	1.2.1.6. The web deployment description: web.xml
	1.2.1.7. The JSF configuration: faces-config.xml
	1.2.1.8. The EJB deployment descriptor: ejb-jar.xml
	1.2.1.9. The EJB persistence deployment descriptor: persistence.xml
	1.2.1.10. The EAR deployment descriptor: application.xml

	1.2.2. How it works

	1.3. Clickable lists in Seam: the messages example
	1.3.1. Understanding the code
	1.3.1.1. The entity bean: Message.java
	1.3.1.2. The stateful session bean: MessageManagerBean.java
	1.3.1.3. The session bean local interface: MessageManager.java
	1.3.1.4. The view: messages.xhtml

	1.3.2. How it works

	1.4. Seam and jBPM: the todo list example
	1.4.1. Understanding the code
	1.4.2. How it works

	1.5. Seam pageflow: the numberguess example
	1.5.1. Understanding the code
	1.5.2. How it works

	1.6. A complete Seam application: the Hotel Booking example
	1.6.1. Introduction
	1.6.2. Overview of the booking example
	1.6.3. Understanding Seam conversations
	1.6.4. The Seam Debug Page

	1.7. Nested conversations: extending the Hotel Booking example
	1.7.1. Introduction
	1.7.2. Understanding Nested Conversations

	1.8. A complete application featuring Seam and jBPM: the DVD Store example
	1.9. Bookmarkable URLs with the Blog example
	1.9.1. Using "pull"-style MVC
	1.9.2. Bookmarkable search results page
	1.9.3. Using "push"-style MVC in a RESTful application

	Chapter 2. Getting started with Seam, using seam-gen
	2.1. Before you start
	2.2. Setting up a new project
	2.3. Creating a new action
	2.4. Creating a form with an action
	2.5. Generating an application from an existing database
	2.6. Generating an application from existing JPA/EJB3 entities
	2.7. Deploying the application as an EAR
	2.8. Seam and incremental hot deployment

	Chapter 3. Getting started with Seam, using JBoss Tools
	3.1. Before you start

	Chapter 4. Migration from 2.2 to 2.3
	4.1. Migration of XML Schemas
	4.1.1. Seam schema migration
	4.1.2. Java EE 6 schema changes

	4.2. Java EE 6 upgrade
	4.2.1. Using Bean Validation standard instead of Hibernate Validator
	4.2.2. Migration of JSF 1 to JSF 2 Facelets templates
	4.2.3. Migration to JPA 2.0
	4.2.4. Using compatible JNDI for resources

	4.3. JBoss AS 7.1 deployment
	4.3.1. Deployment changes
	4.3.2. Datasource migration

	4.4. Changes in testing framework
	4.5. Dependency changes with using Maven
	4.5.1. Seam Bill of Materials

	Chapter 5. The contextual component model
	5.1. Seam contexts
	5.1.1. Stateless context
	5.1.2. Event context
	5.1.3. Page context
	5.1.4. Conversation context
	5.1.5. Session context
	5.1.6. Business process context
	5.1.7. Application context
	5.1.8. Context variables
	5.1.9. Context search priority
	5.1.10. Concurrency model

	5.2. Seam components
	5.2.1. Stateless session beans
	5.2.2. Stateful session beans
	5.2.3. Entity beans
	5.2.4. JavaBeans
	5.2.5. Message-driven beans
	5.2.6. Interception
	5.2.7. Component names
	5.2.8. Defining the component scope
	5.2.9. Components with multiple roles
	5.2.10. Built-in components

	5.3. Bijection
	5.4. Lifecycle methods
	5.5. Conditional installation
	5.6. Logging
	5.7. The Mutable interface and @ReadOnly
	5.8. Factory and manager components

	Chapter 6. Configuring Seam components
	6.1. Configuring components via property settings
	6.2. Configuring components via components.xml
	6.3. Fine-grained configuration files
	6.4. Configurable property types
	6.5. Using XML Namespaces

	Chapter 7. Events, interceptors and exception handling
	7.1. Seam events
	7.2. Page actions
	7.3. Page parameters
	7.3.1. Mapping request parameters to the model

	7.4. Propagating request parameters
	7.5. URL rewriting with page parameters
	7.6. Conversion and Validation
	7.7. Navigation
	7.8. Fine-grained files for definition of navigation, page actions and parameters
	7.9. Component-driven events
	7.10. Contextual events
	7.11. Seam interceptors
	7.12. Managing exceptions
	7.12.1. Exceptions and transactions
	7.12.2. Enabling Seam exception handling
	7.12.3. Using annotations for exception handling
	7.12.4. Using XML for exception handling
	7.12.4.1. Suppressing exception logging

	7.12.5. Some common exceptions

	Chapter 8. Conversations and workspace management
	8.1. Seam's conversation model
	8.2. Nested conversations
	8.3. Starting conversations with GET requests
	8.4. Requiring a long-running conversation
	8.5. Using <s:link> and <s:button>
	8.6. Success messages
	8.7. Natural conversation ids
	8.8. Creating a natural conversation
	8.9. Redirecting to a natural conversation
	8.10. Workspace management
	8.10.1. Workspace management and JSF navigation
	8.10.2. Workspace management and jPDL pageflow
	8.10.3. The conversation switcher
	8.10.4. The conversation list
	8.10.5. Breadcrumbs

	8.11. Conversational components and JSF component bindings
	8.12. Concurrent calls to conversational components
	8.12.1. How should we design our conversational AJAX application?
	8.12.2. Dealing with errors

	Chapter 9. Pageflows and business processes
	9.1. Pageflow in Seam
	9.1.1. The two navigation models
	9.1.2. Seam and the back button

	9.2. Using jPDL pageflows
	9.2.1. Installing pageflows
	9.2.2. Starting pageflows
	9.2.3. Page nodes and transitions
	9.2.4. Controlling the flow
	9.2.5. Ending the flow
	9.2.6. Pageflow composition

	9.3. Business process management in Seam
	9.4. Using jPDL business process definitions
	9.4.1. Installing process definitions
	9.4.2. Initializing actor ids
	9.4.3. Initiating a business process
	9.4.4. Task assignment
	9.4.5. Task lists
	9.4.6. Performing a task

	Chapter 10. Seam and Object/Relational Mapping
	10.1. Introduction
	10.2. Seam managed transactions
	10.2.1. Disabling Seam-managed transactions
	10.2.2. Configuring a Seam transaction manager
	10.2.3. Transaction synchronization

	10.3. Seam-managed persistence contexts
	10.3.1. Using a Seam-managed persistence context with JPA
	10.3.2. Using a Seam-managed Hibernate session
	10.3.3. Seam-managed persistence contexts and atomic conversations

	10.4. Using the JPA "delegate"
	10.5. Using EL in EJB-QL/HQL
	10.6. Using Hibernate filters

	Chapter 11. JSF form validation in Seam
	Chapter 12. Groovy integration
	12.1. Groovy introduction
	12.2. Writing Seam applications in Groovy
	12.2.1. Writing Groovy components
	12.2.1.1. Entity
	12.2.1.2. Seam component

	12.2.2. seam-gen

	12.3. Deployment
	12.3.1. Deploying Groovy code
	12.3.2. Native .groovy file deployment at development time
	12.3.3. seam-gen

	Chapter 13. Writing your presentation layer using Apache Wicket
	13.1. Adding Seam to your wicket application
	13.1.1. Bijection
	13.1.2. Orchestration

	13.2. Setting up your project
	13.2.1. Runtime instrumentation
	13.2.1.1. Location-specific instrumentation
	13.2.1.2. Runtime instrumentation agent

	13.2.2. Compile-time instrumentation
	13.2.2.1. Instrumenting with ant
	13.2.2.2. Instrumenting with maven

	13.2.3. The @SeamWicketComponent annotation
	13.2.4. Defining the Application

	Chapter 14. The Seam Application Framework
	14.1. Introduction
	14.2. Home objects
	14.3. Query objects
	14.4. Controller objects

	Chapter 15. Seam and JBoss Rules
	15.1. Installing rules
	15.2. Using rules from a Seam component
	15.3. Using rules from a jBPM process definition

	Chapter 16. Security
	16.1. Overview
	16.2. Disabling Security
	16.3. Authentication
	16.3.1. Configuring an Authenticator component
	16.3.2. Writing an authentication method
	16.3.2.1. Identity.addRole()
	16.3.2.2. Writing an event observer for security-related events

	16.3.3. Writing a login form
	16.3.4. Configuration Summary
	16.3.5. Remember Me
	16.3.5.1. Token-based Remember-me Authentication

	16.3.6. Handling Security Exceptions
	16.3.7. Login Redirection
	16.3.8. HTTP Authentication
	16.3.8.1. Writing a Digest Authenticator

	16.3.9. Advanced Authentication Features
	16.3.9.1. Using your container's JAAS configuration

	16.4. Identity Management
	16.4.1. Configuring IdentityManager
	16.4.2. JpaIdentityStore
	16.4.2.1. Configuring JpaIdentityStore
	16.4.2.2. Configuring the Entities
	16.4.2.3. Entity Bean Examples
	16.4.2.3.1. Minimal schema example
	16.4.2.3.2. Complex Schema Example

	16.4.2.4. JpaIdentityStore Events
	16.4.2.4.1. JpaIdentityStore.EVENT_PRE_PERSIST_USER
	16.4.2.4.2. JpaIdentityStore.EVENT_USER_CREATED
	16.4.2.4.3. JpaIdentityStore.EVENT_USER_AUTHENTICATED

	16.4.3. LdapIdentityStore
	16.4.3.1. Configuring LdapIdentityStore
	16.4.3.2. LdapIdentityStore Configuration Example

	16.4.4. Writing your own IdentityStore
	16.4.5. Authentication with Identity Management
	16.4.6. Using IdentityManager

	16.5. Error Messages
	16.6. Authorization
	16.6.1. Core concepts
	16.6.1.1. What is a role?
	16.6.1.2. What is a permission?

	16.6.2. Securing components
	16.6.2.1. The @Restrict annotation
	16.6.2.2. Inline restrictions

	16.6.3. Security in the user interface
	16.6.4. Securing pages
	16.6.5. Securing Entities
	16.6.5.1. Entity security with JPA
	16.6.5.2. Entity security with a Managed Hibernate Session

	16.6.6. Typesafe Permission Annotations
	16.6.7. Typesafe Role Annotations
	16.6.8. The Permission Authorization Model
	16.6.8.1. PermissionResolver
	16.6.8.1.1. Writing your own PermissionResolver

	16.6.8.2. ResolverChain

	16.6.9. RuleBasedPermissionResolver
	16.6.9.1. Requirements
	16.6.9.2. Configuration
	16.6.9.3. Writing Security Rules
	16.6.9.4. Non-String permission targets
	16.6.9.5. Wildcard permission checks

	16.6.10. PersistentPermissionResolver
	16.6.10.1. Configuration
	16.6.10.2. Permission Stores
	16.6.10.3. JpaPermissionStore
	16.6.10.3.1. Permission annotations
	16.6.10.3.2. Example Entity
	16.6.10.3.3. Class-specific Permission Configuration
	16.6.10.3.4. Permission masks
	16.6.10.3.5. Identifier Policy
	16.6.10.3.6. ClassIdentifierStrategy
	16.6.10.3.7. EntityIdentifierStrategy

	16.7. Permission Management
	16.7.1. PermissionManager
	16.7.2. Permission checks for PermissionManager operations

	16.8. SSL Security
	16.8.1. Overriding the default ports

	16.9. CAPTCHA
	16.9.1. Configuring the CAPTCHA Servlet
	16.9.2. Adding a CAPTCHA to a form
	16.9.3. Customising the CAPTCHA algorithm

	16.10. Security Events
	16.11. Run As
	16.12. Extending the Identity component
	16.13. OpenID
	16.13.1. Configuring OpenID
	16.13.2. Presenting an OpenIdDLogin form
	16.13.3. Logging in immediately
	16.13.4. Deferring login
	16.13.5. Logging out

	Chapter 17. Internationalization, localization and themes
	17.1. Internationalizing your app
	17.1.1. Application server configuration
	17.1.2. Translated application strings
	17.1.3. Other encoding settings

	17.2. Locales
	17.3. Labels
	17.3.1. Defining labels
	17.3.2. Displaying labels
	17.3.3. Faces messages

	17.4. Timezones
	17.5. Themes
	17.6. Persisting locale and theme preferences via cookies

	Chapter 18. Seam Text
	18.1. Basic fomatting
	18.2. Entering code and text with special characters
	18.3. Links
	18.4. Entering HTML
	18.5. Using the SeamTextParser

	Chapter 19. iText PDF generation
	19.1. Using PDF Support
	19.1.1. Creating a document
	19.1.2. Basic Text Elements
	19.1.3. Headers and Footers
	19.1.4. Chapters and Sections
	19.1.5. Lists
	19.1.6. Tables
	19.1.7. Document Constants
	19.1.7.1. Color Values
	19.1.7.2. Alignment Values

	19.2. Charting
	19.3. Bar codes
	19.4. Fill-in-forms
	19.5. Rendering Swing/AWT components
	19.6. Configuring iText
	19.7. Further documentation

	Chapter 20. The Microsoft® Excel® spreadsheet application
	20.1. The Microsoft® Excel® spreadsheet application support
	20.2. Creating a simple workbook
	20.3. Workbooks
	20.4. Worksheets
	20.5. Columns
	20.6. Cells
	20.6.1. Validation
	20.6.2. Format masks
	20.6.2.1. Number masks
	20.6.2.2. Date masks

	20.7. Formulas
	20.8. Images
	20.9. Hyperlinks
	20.10. Headers and footers
	20.11. Print areas and titles
	20.12. Worksheet Commands
	20.12.1. Grouping
	20.12.2. Page breaks
	20.12.3. Merging

	20.13. Datatable exporter
	20.14. Fonts and layout
	20.14.1. Stylesheet links
	20.14.2. Fonts
	20.14.3. Borders
	20.14.4. Background
	20.14.5. Column settings
	20.14.6. Cell settings
	20.14.7. The datatable exporter
	20.14.8. Layout examples
	20.14.9. Limitations

	20.15. Internationalization
	20.16. Links and further documentation

	Chapter 21. RSS support
	21.1. Installation
	21.2. Generating feeds
	21.3. Feeds
	21.4. Entries
	21.5. Links and further documentation

	Chapter 22. Email
	22.1. Creating a message
	22.1.1. Attachments
	22.1.2. HTML/Text alternative part
	22.1.3. Multiple recipients
	22.1.4. Multiple messages
	22.1.5. Templating
	22.1.6. Internationalisation
	22.1.7. Other Headers

	22.2. Receiving emails
	22.3. Configuration
	22.3.1. mailSession
	22.3.1.1. JNDI lookup in JBoss AS
	22.3.1.2. Seam configured Session

	22.4. Tags

	Chapter 23. Asynchronicity and messaging
	23.1. Messaging in Seam
	23.1.1. Configuration
	23.1.2. Sending messages
	23.1.3. Receiving messages using a message-driven bean
	23.1.4. Receiving messages in the client

	23.2. Asynchronicity
	23.2.1. Asynchronous methods
	23.2.2. Asynchronous methods with the Quartz Dispatcher
	23.2.3. Asynchronous events
	23.2.4. Handling exceptions from asynchronous calls

	Chapter 24. Caching
	24.1. Using Caching in Seam
	24.2. Page fragment caching

	Chapter 25. Web Services
	25.1. Configuration and Packaging
	25.2. Conversational Web Services
	25.2.1. A Recommended Strategy

	25.3. An example web service
	25.4. RESTful HTTP webservices with RESTEasy
	25.4.1. RESTEasy configuration and request serving
	25.4.2. Resources as Seam components
	25.4.3. Securing resources
	25.4.4. Mapping exceptions to HTTP responses
	25.4.5. Exposing entities via RESTful API
	25.4.5.1. ResourceQuery
	25.4.5.2. ResourceHome

	25.4.6. Testing resources and providers

	Chapter 26. Remoting
	26.1. Configuration
	26.2. The "Seam" object
	26.2.1. A Hello World example
	26.2.2. Seam.Component
	26.2.2.1. Seam.Component.newInstance()
	26.2.2.2. Seam.Component.getInstance()
	26.2.2.3. Seam.Component.getComponentName()

	26.2.3. Seam.Remoting
	26.2.3.1. Seam.Remoting.createType()
	26.2.3.2. Seam.Remoting.getTypeName()

	26.3. Client Interfaces
	26.4. The Context
	26.4.1. Setting and reading the Conversation ID
	26.4.2. Remote calls within the current conversation scope

	26.5. Batch Requests
	26.6. Working with Data types
	26.6.1. Primitives / Basic Types
	26.6.1.1. String
	26.6.1.2. Number
	26.6.1.3. Boolean

	26.6.2. JavaBeans
	26.6.3. Dates and Times
	26.6.4. Enums
	26.6.5. Collections
	26.6.5.1. Bags
	26.6.5.2. Maps

	26.7. Debugging
	26.8. Handling Exceptions
	26.9. The Loading Message
	26.9.1. Changing the message
	26.9.2. Hiding the loading message
	26.9.3. A Custom Loading Indicator

	26.10. Controlling what data is returned
	26.10.1. Constraining normal fields
	26.10.2. Constraining Maps and Collections
	26.10.3. Constraining objects of a specific type
	26.10.4. Combining Constraints

	26.11. Transactional Requests
	26.12. JMS Messaging
	26.12.1. Configuration
	26.12.2. Subscribing to a JMS Topic
	26.12.3. Unsubscribing from a Topic
	26.12.4. Tuning the Polling Process

	Chapter 27. Seam and the Google Web Toolkit
	27.1. Configuration
	27.2. Preparing your component
	27.3. Hooking up a GWT widget to the Seam component
	27.4. GWT Ant Targets
	27.5. GWT Maven plugin

	Chapter 28. Spring Framework integration
	28.1. Injecting Seam components into Spring beans
	28.2. Injecting Spring beans into Seam components
	28.3. Making a Spring bean into a Seam component
	28.4. Seam-scoped Spring beans
	28.5. Using Spring PlatformTransactionManagement
	28.6. Using a Seam Managed Persistence Context in Spring
	28.7. Using a Seam Managed Hibernate Session in Spring
	28.8. Spring Application Context as a Seam Component
	28.9. Using a Spring TaskExecutor for @Asynchronous

	Chapter 29. Guice integration
	29.1. Creating a hybrid Seam-Guice component
	29.2. Configuring an injector
	29.3. Using multiple injectors

	Chapter 30. Hibernate Search
	30.1. Introduction
	30.2. Configuration
	30.3. Usage

	Chapter 31. Configuring Seam and packaging Seam applications
	31.1. Basic Seam configuration
	31.1.1. Integrating Seam with JSF and your servlet container
	31.1.2. Seam Resource Servlet
	31.1.3. Seam servlet filters
	31.1.3.1. Exception handling
	31.1.3.2. Conversation propagation with redirects
	31.1.3.3. URL rewriting
	31.1.3.4. Multipart form submissions
	31.1.3.5. Character encoding
	31.1.3.6. RichFaces
	31.1.3.7. Identity Logging
	31.1.3.8. Context management for custom servlets
	31.1.3.9. Enabling HTTP cache-control headers
	31.1.3.10. Adding custom filters

	31.1.4. Integrating Seam with your EJB container
	31.1.5. Don't forget!

	31.2. Using Alternate JPA Providers
	31.3. Configuring Seam in Java EE 6
	31.3.1. Packaging

	31.4. Configuring Seam without EJB
	31.4.1. Boostrapping Hibernate in Seam
	31.4.2. Boostrapping JPA in Seam
	31.4.3. Packaging

	31.5. Configuring Seam in Java SE
	31.6. Configuring jBPM in Seam
	31.6.1. Packaging

	31.7. Deployment in JBoss AS 7
	31.8. Configuring SFSB and Session Timeouts in JBoss AS 7
	31.9. Running Seam in a Portlet
	31.10. Deploying custom resources

	Chapter 32. Seam annotations
	32.1. Annotations for component definition
	32.2. Annotations for bijection
	32.3. Annotations for component lifecycle methods
	32.4. Annotations for context demarcation
	32.5. Annotations for use with Seam JavaBean components in a J2EE environment
	32.6. Annotations for exceptions
	32.7. Annotations for Seam Remoting
	32.8. Annotations for Seam interceptors
	32.9. Annotations for asynchronicity
	32.10. Annotations for use with JSF
	32.10.1. Annotations for use with dataTable

	32.11. Meta-annotations for databinding
	32.12. Annotations for packaging
	32.13. Annotations for integrating with the servlet container

	Chapter 33. Built-in Seam components
	33.1. Context injection components
	33.2. JSF-related components
	33.3. Utility components
	33.4. Components for internationalization and themes
	33.5. Components for controlling conversations
	33.6. jBPM-related components
	33.7. Security-related components
	33.8. JMS-related components
	33.9. Mail-related components
	33.10. Infrastructural components
	33.11. Miscellaneous components
	33.12. Special components

	Chapter 34. Seam JSF controls
	34.1. Tags
	34.1.1. Navigation Controls
	34.1.1.1. <s:button>
	34.1.1.2. <s:conversationId>
	34.1.1.3. <s:taskId>
	34.1.1.4. <s:link>
	34.1.1.5. <s:conversationPropagation>
	34.1.1.6. <s:defaultAction>

	34.1.2. Converters and Validators
	34.1.2.1. <s:convertDateTime>
	34.1.2.2. <s:convertEntity>
	34.1.2.3. <s:convertEnum>
	34.1.2.4. <s:convertAtomicBoolean>
	34.1.2.5. <s:convertAtomicInteger>
	34.1.2.6. <s:convertAtomicLong>
	34.1.2.7. <s:validateEquality>
	34.1.2.8. <s:validate>
	34.1.2.9. <s:validateAll>

	34.1.3. Formatting
	34.1.3.1. <s:decorate>
	34.1.3.2. <s:div>
	34.1.3.3. <s:span>
	34.1.3.4. <s:fragment>
	34.1.3.5. <s:label>
	34.1.3.6. <s:message>

	34.1.4. Seam Text
	34.1.4.1. <s:formattedText>

	34.1.5. Form support
	34.1.5.1. <s:token>
	34.1.5.2. <s:enumItem>
	34.1.5.3. <s:selectItems>
	34.1.5.4. <s:fileUpload>

	34.1.6. Other
	34.1.6.1. <s:cache>
	34.1.6.2. <s:resource>
	34.1.6.3. <s:download>
	34.1.6.4. <s:graphicImage>
	34.1.6.5. <s:remote>

	34.2. Annotations

	Chapter 35. JBoss EL
	35.1. Parameterized Expressions
	35.1.1. Usage
	35.1.2. Limitations and Hints

	35.2. Projection

	Chapter 36. Clustering and EJB Passivation
	36.1. Clustering
	36.1.1. Programming for clustering
	36.1.2. Deploying a Seam application to a JBoss AS cluster with session replication
	36.1.3. Validating the distributable services of an application running in a JBoss AS cluster

	36.2. EJB Passivation and the ManagedEntityInterceptor
	36.2.1. The friction between passivation and persistence
	36.2.2. Case #1: Surviving EJB passivation
	36.2.3. Case #2: Surviving HTTP session replication
	36.2.4. ManagedEntityInterceptor wrap-up

	Chapter 37. Performance Tuning
	37.1. Bypassing Interceptors

	Chapter 38. Testing Seam applications
	38.1. Unit testing Seam components
	38.2. Integration testing Seam components
	38.2.1. Configuration
	38.2.2. Using JUnitSeamTest with Arquillian
	38.2.2.1. Using mocks in integration tests

	38.2.3. Integration testing Seam application user interactions
	38.2.3.1. Configuration
	38.2.3.2. Using JUnitSeamTest with another test framework
	38.2.3.3. Integration Testing with Mock Data
	38.2.3.4. Integration Testing Seam Mail

	Chapter 39. Dependencies
	39.1. JDK Dependencies
	39.1.1. Oracle's JDK 6 Considerations

	39.2. Project Dependencies
	39.2.1. Core
	39.2.2. RichFaces
	39.2.3. Seam Mail
	39.2.4. Seam PDF
	39.2.5. Seam Microsoft Excel
	39.2.6. Seam RSS support
	39.2.7. Drools
	39.2.8. JBPM
	39.2.9. GWT
	39.2.10. Spring
	39.2.11. Groovy

	39.3. Dependency Management using Maven

