Seam - Contextual Components

A Framework for

Enterprise Java

2.3.0.Final-SNAPSHOT

by Gavin King, Pete Muir, Norman Richards, Shane Bryzak, Michael Yuan,
Mike Youngstrom, Christian Bauer, Jay Balunas, Dan Allen, Max Rydahl
Andersen, Emmanuel Bernard, Nicklas Karlsson, Daniel Roth, Matt Drees,
Jacob Orshalick, Denis Forveille, Marek Novotny, and Jozef Hartinger

edited by Samson Kittoli

and thanks to James Cobb (Graphic Design), Cheyenne Weaver (Graphic Design),
Mark Newton, Steve Ebersole, Michael Courcy (French Translation), Nicola
Benaglia (Italian Translation), Stefano Travelli (Italian Translation), Francesco
Milesi (Italian Translation), and Japan JBoss User Group (Japanese Translation)

INtrOdUCTION 10 JBOSS SEAIM ..eueiiiiiiieee e e e e e e e e et e et e et et et et et eaeeaaes XV

I @0 |] o 10) (=T (o RS T =T o XiX
ST g o B U (Y - | PR 1
1.1. Using the Seam eXampPlesS ...t 1
1.1.1. Running the examples 0n JBOSS AScccouiiiiiiiiiiii e 1
1.1.2. Running the example teSES ..o 2

1.2. Your first Seam application: the registration exampleccooooiiveiieeiiiiiieeiees 2
1.2.1. Understanding the COAEcoouuiiiiiiiieii e 3
1.2.2. HOW Bt WOTKS oot e s 14

1.3. Clickable lists in Seam: the messages exampleccooviiiiiiiiiiiini e, 15
1.3.1. Understanding the COUEoiiiiiiiiiii e 15

I 2 o o YA | A Yo P 21

1.4. Seam and jBPM: the todo list exampleccooviiiiiiiiiii 21
1.4.1. Understanding the COUEcoiiiiiiiiiiiiei e 22
L1.4.2. HOW Bt WOTKS .ot e et e e eae s 29

1.5. Seam pageflow: the numberguess exampleccooiiiiiiiiiiiiii e 30
1.5.1. Understanding the COUEoiiiiiiiiiii e 30
1.5.2. HOW Jt WOTKS <. eeeiee et e e e 37

1.6. A complete Seam application: the Hotel Booking exampleccccocviveviiievinnennnn. 38
G20 R [1 o T [T 4o) o S 38
1.6.2. Overview of the booking exampleccooeiiiiiiiin e, 40
1.6.3. Understanding Seam CONVEISAtIONSc.uuveeiiiiniieiiiiieeeeiie e e e 40
1.6.4. The Seam Debug Pageccoiiiiiiiiiieii e 49

1.7. Nested conversations: extending the Hotel Booking examplec.....cceeiieis 50
Rt O [11 o To [o 1T PPN 50
1.7.2. Understanding Nested CONVErSationsocvevueieriiiiiieieiiieeeiiieeeennnns 52

1.8. A complete application featuring Seam and jBPM: the DVD Store example 58
1.9. Bookmarkable URLs with the Blog examplecoooiiiiiiiiiii e 60
1.9.1. Using "pull=style MVCcooiiiiiii i 61
1.9.2. Bookmarkable search resultS pagecccoooeeviviiieiiiiiinec e 63
1.9.3. Using "push"-style MVC in a RESTful applicationccooveviieennn. 66

2. Getting started with Seam, USING SEAM-gENuiiiiiiiiiieiiii e 71
D 1= (o] (=T oTU TS 7 T o 71
2.2. SEtting UP & NEW PIOJECE ... ceieitieiiiii ettt ettt e e e e et e e e e e aae e eeneen 72
2.3. Creating @ NEW ACHIONiiii e e e e e e e e e e e e aanas 75
2.4. Creating a form with @n actionoooiiiiiiiiii e 76
2.5. Generating an application from an existing databasecccooeeiiiiiiiiien e, 77
2.6. Generating an application from existing JPA/EJB3 entitieScccoeevviviieeinnennnnn. 78
2.7. Deploying the application as an EARcccoiiiiiiiiiiie e 78
2.8. Seam and incremental hot deploymeNtcooiiiiiiiiiiii e 78
3. Getting started with Seam, using JB0OSS TOOIScc.iiiiiiiiiiiiiiice e 81
3.1, BEFOIE YOU SEAN ..oevuiiiiiiie ettt ettt et e e e e eaaans 81
4, Migration from 2.2 10 2.3 .o 83
4.1. Migration of XML SCNEMASiiiiiiiiiiii e 83

Seam - Contextual Components

4.1.1. Seam schema MIgrationcc.oeeiiiiiiiiieii e e 83
4.1.2. Java EE 6 Schema Changesc..oiiiiiiiiiiiiiii e 85

4.2, Java EE 6 UPGradeccoovniiiiiiii et 86
4.2.1. Using Bean Validation standard instead of Hibernate Validator 86
4.2.2. Migration of JSF 1 to JSF 2 Facelets templatesccococeveviiiiiiiiieinne, 86
4.2.3. Migration 10 JPA 2.0 ... 87
4.2.4. Using compatible JNDI fOr reSOUICEScecevuieiiiieeiiieiiiiieeie e e 87

4.3. JB0SS AS 7.1 deplOYMENTniiiiiiiie e 87
4.3.1. Deployment ChaNQESccovniiiiieii e 87
4.3.2. Datasource MIgrationo.uuiieeeeueieiiii et e et et e e eeees 88

4.4, Changes in testing frameWOrKcccouiiiiiiiiiii e 89
4.5. Dependency changes with USING MaVENcociiiiiiiiiiiiiiiei e 91
4.5.1. Seam Bill of MAterialSoiiiiiiiiiiiii e 91

5. The contextual component MOlooiiiiiiiiiiiii e 93
5.1, SEAM CONEXLS ...ouiiiiiii ittt e e e e e e e e e ees 93
5.1.1. StateleSS CONIEXL ...ovuniieiie et e e e e e 93
5.1.2. EVENE CONEXE ...oeiieeieiee ettt et e e e e enas 94
5.1.3. PAQE CONEXLniiiiiiiieiiee ittt e e e e 94
5.1.4. CONVErSAtioN CONEXL ...eieitiiiiiii et e et e e 94
5.1.5. SESSION CONEXL ..ouuniiitieii et e e e e e e e een s 95
5.1.6. BUSINESS ProCESS CONIEXL ...ivvuiiiiiieiiieeiii e e et e e e e e e e e e eans 95
5.1.7. APPlICAtION CONTEXEuiiiiiiii e 95
5.1.8. Context VAriableSouuiiiiiiiieiiii e 95
5.1.9. Context SEArCh PriOFItYiiiieiuieiiii e 96
5.1.10. ConcurrenCy MOUEIciiuuiiiiiieii i e 96

5.2, S€AM COMPONENES ...euiiiiiiit ettt ettt e e e e 97
5.2.1. Stateless SeSSION DEANSiiiiiiiiiiiiii e 98
5.2.2. Stateful SeSSION DEANSoiiiii 98
B5.2.3. ENLitY DEANS ...oieiii e 99
B5.2.4. JAVABEANS ... e 99
5.2.5. Message-adrivVEN DEANSoiiiiiiiiii i 99
5.2.6. INTEICEPLION ...ttt e et e e et e eeees 100
5.2.7. COMPONENE NAIMES ..uiiiiiiiie et aeens 100
5.2.8. Defining the COMPONENt SCOPEiiiiiiieiiiii e 102
5.2.9. Components with multiple rolesc.ooeiiiiiii i 103
5.2.10. BUIlt-in COMPONENTS ...covuniiiiiii e 103

B3, BIIBCHON et e 104
5.4. LifecycCle MEtNOSiiiiiii e 107
5.5. Conditional INSTAllAtIONiiiiiiiieiii e 107
LG I Moo o 11T H PP PUPPPT 109
5.7. The Mutable interface and @ReadOnlyccooveiiiiiiiiiii e, 110
5.8. Factory and manager COMPONENTSuuiiiiiineiiiii et e et e eenens 112
6. Configuring Seam COMPONENTSciiiiiiii e e e e aaas 115
6.1. Configuring components via property Settingscooceeuuireiiiiinieeeiineeeeieeeeeenn 115

6.2. Configuring components via componentsS.Xmlcccoeeviiiiiiiieiii e 115

6.3. Fine-grained configuration fileSoiiiiiiiiiii 119
6.4. Configurable Property tYPESoiiiiiii e 120
6.5. USING XML NAMESPACES ... ceevtiiiiiiii ettt ettt e e et eeea e eeaa e eees 122
7. Events, interceptors and exception handlingccococoiiiiiiii i 127
7.1, SEAM BVENES ...ttt ettt e et et e ea e e e e e e et e et e et e ea e enaannas 127
A o= Vo LT T 1o o 1 PN 128
7.3. PAg€ PANBIMELEIS ...etiiiiieiiie ettt ettt et 129
7.3.1. Mapping request parameters to the modelccooveiiiiiiiii e, 129

7.4. Propagating request Parametersooceiuuiiieiiiiiiaeeeeie e 130
7.5. URL rewriting with page parameterscoeveuiiiiiiieiiie e 131
7.6. Conversion and Validationcoouioiiioiiii e 132
0 1\ Y, o = L4 o N 133
7.8. Fine-grained files for definition of navigation, page actions and parameters 137
7.9. ComMpPONENt-AriVEN EVENLScuuiiiiiieiiie e e et e e e e e e e e e e e aaeees 137
7.10. CONtEXIUAI BVENLSiiie et e et e e e e e e aee 139
0 Y=Y T BT =Y o7 =T o (o) P 141
7.12. ManNaging EXCEPLIONSceeiutieiiiiii ettt e et e e et e e e e e e aa e e eanans 143
7.12.1. Exceptions and tranSactionsceceuieiiiiieiiieeiii e 143
7.12.2. Enabling Seam exception handlingcooviiiiiiiiii e, 144
7.12.3. Using annotations for exception handlingccocoiviiiiiiiieiieeeis 144
7.12.4. Using XML for exception handlingocooeiiiiiiiiiiiiiie e, 145
7.12.5. SOme COMmMON EXCEPLIONS ...uuiiviiiiiieiiii e e e e e e eaa e 147

8. Conversations and workspace managementooveeiiiiieiiiiiiieeeei e 149
8.1. Seam's coONVErsation MOE!viiiiiiiiiiiii e e 149
8.2. NeSted CONVEISALIONSccuueiii et e e e e e et e e e ean s 152
8.3. Starting conversations with GET reqUEeSstScccouiiiiiiiiiiiiiiiii e 153
8.4. Requiring a long-running CONVEISAtIONcouuuuiieiiiiiiieiiiiii e 154
8.5. Using <s:link> and <S:bULtON>ciiiiiiii e 155
8.6. SUCCESS MESSAGES ...cevuiiriiiiieiet et e ettt et et et e e e et e e e enaees 157
8.7. Natural CONVErSatioN dSiiiiiiiiieiiiii et e e e eeaens 158
8.8. Creating a natural CONVEISAtIONcccuuuiiiiiiiiiiiiiii e e 158
8.9. Redirecting to a natural CONVErsationccoeeuiiiiiieiiiieii e e 159
8.10. WOrkspace ManagemMENTuiiiiiuuuieiiitii ettt e e et e e 160
8.10.1. Workspace management and JSF navigationcccoeevviiiiiineinnenn, 160
8.10.2. Workspace management and jPDL pageflowccccoovieiiiiniiiiininnnn. 161
8.10.3. The conversation SWItCNEruuiiiiiiiiiiei e 162
8.10.4. The conversation liSt ... 162
8.10.5. BreadCrumbsioiiiiiiiii e 163
8.11. Conversational components and JSF component bindingsccccooeveviiieiennnn. 164
8.12. Concurrent calls to conversational COMPONENLScccevvveviiiiiiieeiiieeieeeieen, 165
8.12.1. How should we design our conversational AJAX application? 166
8.12.2. Dealing WIth €ITOISciviiii i 167

9. Pageflows and DUSINESS PrOCESSES ...ooiuuiiiiiii e 169

Seam - Contextual Components

9.1. Pageflow in SEaMiiiiii 169
9.1.1. The two navigation MOdelSc.iiiiiiiiiiii e 169
9.1.2. Seam and the back button ... 173

9.2. USINg JPDL PAgEflOWSuuiiiiiiiiieeie e 174
9.2.1. Installing pageflowscooviiiiiiii 174
9.2.2. Starting Pageflowso 175
9.2.3. Page nodes and tranSitionsccocvuiiiiiiiiiii e 176
9.2.4. Controlling the fIOWco.uuiiii e 177
9.2.5. ENding the flOWouiiinii i 178
9.2.6. Pageflow COMPOSITIONiiiiiiiiiii e 178

9.3. Business process management iN SEaAMcovvuiieiiiieiiiieeiii e e e 178

9.4. Using jPDL business process definitionsccoouiiiiiiiiiiiiiiiiici e 180
9.4.1. Installing process definitionNsccccouiiiiiiiiii e 180
9.4.2. INitializiNng @CLOr S ...coeeviieiiiii e 180
9.4.3. Initiating a bUSINESS PrOCESSccvvuiiiiieiiiee et e e e e e e 180
9.4.4. TaSK @SSIGNMENTcootiiiiiiii ettt e eeaes 181
9.4.5. TASK IISIS .iiiiii e 181
9.4.6. Performing @ taSKc.uuiiiiiiiii e 182

10. Seam and Object/Relational Mappingcocuiiiiiiiiiiiiei e 185

0 R 1o T [T o o P 185

10.2. Seam managed tranNSACONScceuuieiiiieiii e e e e e e e e e e 186
10.2.1. Disabling Seam-managed transSactionscccoeveeeiiiiiiiiiiiineeeiiineeeens 187
10.2.2. Configuring a Seam transaction MaNAQErccvvevuieriiieeiiieeeiieerineens 187
10.2.3. Transaction SyNnChronizationccceuoiieiiiiiieeiiiieece e 188

10.3. Seam-managed persiSteNCe CONIEXESveiiieiiieiii e e 188
10.3.1. Using a Seam-managed persistence context with JPAcocc. 189
10.3.2. Using a Seam-managed Hibernate Sessioncccoeeeeveviiiieiieeennenn, 189
10.3.3. Seam-managed persistence contexts and atomic conversations 190

10.4. Using the JPA "delegate"ccouiiiiiiiiii e 192

10.5. Using EL in EIB-QL/HQLuuiiiiiiiieiiie e a e e e 193

10.6. Using Hibernate filterscoooiuiiiii e 194

11. JSF form validation iN SEAIMoiiiiiiii e e 195
i 1 o To XY A YA T} (<o = Lo I 203

12.1. GrooVy INFOAUCTIONiieiiiieeiie e e 203

12.2. Writing Seam applications iN GrOOVYccceuuiiiiiiiiiiieiiiiecieee e e e e 203
12.2.1. Writing GrooVY COMPONENTSuuiiiiiiieieiiieeeeiiin e eeenin e e et eeene e eenanns 203
12,22, SBAIM -GN ittt 205

12.3. DEPIOYMENT ...ttt ettt et e 205
12.3.1. Deploying GroOVY COUEccuuiiiiiiiiiii i e e e e e e e e e e e e 206
12.3.2. Native .groovy file deployment at development timeccccceeveeennnn. 206
12,3, 3, SBAIM-GBIN ittt 206

13. Writing your presentation layer using Apache Wicketccccooooiiiiiiin, 207

13.1. Adding Seam to your wicket applicationc.cccoiiiiiiiiii i 207

13.0.1. BIJECHION ittt et e 207

vi

T 2 @] (od 1153 (- 1 [o 208

13.2. Setting UP YOUT PIOJECEcceuuneiiiiii ettt ettt ettt et e e e e eaaes 209
13.2.1. Runtime inStrumentationc.oiiieiiiiiine e 209
13.2.2. Compile-time iNStrumMentationocoevuiiiieiinieii e 210
13.2.3. The @SeamWicketComponent annotationcccceevveeeiiiieiiinneinnn, 212
13.2.4. Defining the APPIICALIONccouuiiiiiiiiieii e 212

14. The Seam Application Frameworkcccooiiiiiiiiiii e 215

I R o T [T o o PP 215

I o To) 2 0 L= o] o] = ox £ PP 217

14.3. QUETY ODJECES .euiiiiiii ettt et e e e e e 222

14.4. CoNtroller ODJECLScvviiiii e 225

15. Seam and JBOSS RUIES ..o e 227

15.1. INStAlliNG TUIES ..ovniiiici e e e e e e e aaas 227

15.2. Using rules from a Seam COMPONENTuiiiiiiiiiiiiiieeecii e 230

15.3. Using rules from a jBPM process definitioncccoeeviiiiiiiiiii e, 230

G S T= ot U1 41 Y TP PP PPPTT 233

TR B @Y= = PP 233

16.2. DiSADIING SECUNLYuiiiiiieeeii e 233

16.3. AULNENTICALION ...ouviiiiii e e e e e e eaees 234
16.3.1. Configuring an Authenticator COmMpPONENTccovvviieiiiiiiieeiiiineeeeiien 234
16.3.2. Writing an authentication methodccooviiiiiiiin e, 234
16.3.3. Writing @ 10gin fOIMuniii e 237
16.3.4. Configuration SUMMAIYcccuiiiiiiiiiiii e e e e e e e eaens 238
16.3.5. ReEMEMDEr ME ...ooiiii e e 238
16.3.6. Handling Security EXCEPLIONSccvviiiiieiiiiieiii e e ee e eeaes 241
16.3.7. LOgin REIMECHIONciiiiiiieiiiiie e 242
16.3.8. HTTP AUtheNtICAtIONiiiiiiiieiiiii e 243
16.3.9. Advanced Authentication Featurescoooeiviiiiiiiiiiiiii e 244

16.4. Identity ManagEMENTccouuiiiiie e e e e e e e e e e e et e e ee 244
16.4.1. Configuring 1dentityManagerccouuuiiiiiiiiieeeii e 245
16.4.2. JPAldENtitYSIOreccvuiiiii e e 246
16.4.3. LAapldentityStOrecoouuuiiiiiiieeiii e 252
16.4.4. Writing your own IdentityStoreccoveiiiiiiiiie e 254
16.4.5. Authentication with Identity Managementccccoeveeiiiinieiiiineeeeninnn, 254
16.4.6. UsiNg 1dentityManagerccouuieiiiiiiii e e e e e e e e 254

16.5. ETOr MESSAGES ...cvuniiriiiit ettt ettt e 259

16.6. AULNOTIZALION ...ooitiiiiii e e et e e et e e et e e aa e e eaeens 260
16.6.1. COre CONCEPLS ..ovuiiiriieiii ettt ettt et e e e e ea e enes 260
16.6.2. SECUNNG COMPONENES ..iuvuiiiiiieiiieeiieeei e et e e e e e e e e e e e et e e eeanaees 261
16.6.3. Security in the user iNterfaceoooii i 263
16.6.4. SECUMNNG PAGES .rueerneiitnieei ettt et eie e et e e et r e e e e et e e et aeeae e et eeateeaanaaees 265
16.6.5. Securing ENtItIESuiiiiiii e 265
16.6.6. Typesafe Permission ANNOtAtioNSoveviuieeiiieiiiiieiii e e e een 268
16.6.7. Typesafe Role ANNOLALIONSuiiiiiiiniiiiiii e 269

Vii

Seam - Contextual Components

16.6.8. The Permission Authorization Modelccooviiiiiiiiiiiiiiii e, 270
16.6.9. RuleBasedPermisSioNRESOIVELcouuiiiiiiiiiiiieei e 273
16.6.10. PersistentPermisSiONRESOIVENiviiiiiiiiiiiiieeci e 278
16.7. Permission ManagemENtoiiiiuuieiiiii ettt 287
16.7.1. PermiSSIONMANAQETucviiiieeiieeii et ee e e e e e e e eaa s 287
16.7.2. Permission checks for PermissionManager operationsc.c........ 288
L16.8. SSL SECUMLY .vuuieeiiiieee ettt et e e et e e e et s e e e et e e e e et aeeeeranas 289
16.8.1. Overriding the default POrtSccoiiiiiiiiiii e 290
16.9. CAP T CHA e 290
16.9.1. Configuring the CAPTCHA Servletcovviiiiiiiiiiiic e 290
16.9.2. Adding a CAPTCHA t0 @ fOrMcvviiiiiic e 291
16.9.3. Customising the CAPTCHA algorithmccoiiiiiiiiiiiiiieees 291
16.10. SECUNLY EVENS ...iiiiiiiiici i e e e e e e e e e e aaaaes 292
L 200 I O 1] PP 292
16.12. Extending the Identity COMPONENLc.uiiiiiiiii e 293
G700 T @ o 7= o | TP 294
16.13.1. Configuring OPENIDcovuiiiieii e 294
16.13.2. Presenting an OpenldDLogin fOrmMccocieuiiiiiiiiinieiiie e 295
16.13.3. Logging in immediatelyooiiiiiiiiiiii 295
16.13.4. Deferring l0giN i 296
G700 38 S T o o o 11 To o 11 | P 296

17. Internationalization, localization and themesccc.ceeviiiiiiiiieeee 297
17.1. InternationaliZing YOUF @PP «.cceueiiueiii e e e e e e e e e e e et e e e e eanas 297
17.1.1. Application server configurationccoooveiiiiiiiiiiiiin e 297
17.1.2. Translated application StriNgSooeviiiiiiiiieii e e 298
17.1.3. Other encoding SEttNGSiiiiiiiiieiiiii e 298
7 o Yo 1 = PP 299
e R I o1 PP 300
17.3.1. Defining 1abelscovuiiiii 300
17.3.2. Displaying 1abelsi i 301
17.3.3. FACES MESSAGES .uituiiniiiiieie et et e e e e e e e aaeenas 302
A 4 1= .0 1= LU 302
ST I 1= T PRSP 303
17.6. Persisting locale and theme preferences via cookiescccooeiveiiiiinieiiinnnnn. 304
S TS =T- 1o B =) APPSR 305
18.1. BASIC fOMALIING ...vuuieeiiitieeeii ettt e e e e 305
18.2. Entering code and text with special charactersccoooeiiiiiiiiii i, 307
20 T I 1< PP 308
S o1 (=Y o N I Y PP 309
18.5. USiNg the SEaMTEXIPAISENccouuuiiiiiiii ettt eees 309
S = G A d BT o =T =T = 1 Lo 1 o T PN 311
19.1. USING PDF SUPPOIT ...ttt ettt e e e 311
19.1.1. Creating @ dOCUMENTiiiiiiiii e e e e e e e e e e e e 311
19.1.2. Basic Text EIEMENTScoeuiii e 312

viii

19.1.3. Headers and FOOEISc.iiuiiniieiiii e eaes 317

19.1.4. Chapters and SECHONSccuuuiiiiiiiiieiei e 318

L T I T I PSPPSR 320
19.0.6. TABIES ..ooeviiiiii e 321
19.1.7. DOCUMENE CONSLANTSuiiiieiiitieei e eeens 324
19.2. ChAITING ..ttt ettt 324
S JRC T =TT oo Lo =SSP 333
S 1| T {0 0 T 334
19.5. Rendering SWIiNg/AWT COMPONENTSuiivuiiiiiieiiiee e e e e e e eanns 335
19.6. CONFIGUING TTEXE ...iiiit ettt e e e e e eeaans 336
19.7. Further dOCUMENTALIONcouuuiiiiiii et e et e e et eeeera e eeees 337
20. The Microsoft® Excel® spreadsheet applicationccovoiiiiiiiiiiiiin e, 339
20.1. The Microsoft® Excel® spreadsheet application SUPPOrtc.ccvevevvveviinnennnnn. 339
20.2. Creating a simple WOrkbooKc.oiiiiiiiiiii e 340
20.3. WOTKDOOKS ... it et e e et e aaans 341
P I VY o] 4 S U= =] £ P 343
b0 S T o] ¥ 4o o LSRR 347
20.6. CElIS ..t 348
20.6.1. ValidAtiONccovniiiiiiie e e 349
20.6.2. FOrMat MASKSuiieieiiiiie e e e 353
20.7. FOMMUIAS «..eeiiieeei et e et e e et e e e et e e e e et e e e e eaan e 353
20.8. IMAGES ..ottt 354
20.9. HYPEIIINKS ...iiii e e 355
20.10. Headers and fOOLEIScieuiieiii e e 356
20.11. Print areas and titleSiiiiiiiiiii e 358
20.12. Worksheet COMMEANGTSuiiieiiiiee e e e e e e e e ean e eees 359
b0 T I € {10] [T PN 359
20.12.2. Page Breaks ... 360

b2 I T Y/ 1= o |1 o P 361
20.13. Datatable EXPOITEI ... oo 361
20.14. FONtS @nd IaYOULcouiiiiiie i e 362
20.14.1. Stylesheet INKSoooiiiiiiei e 363
20.14.2. FONES ittt ettt e e a et aane 363
O e N = T o =T = PPN 364
20.14.4. BaCKGIrOUNGcouiiiiiiiii e e e e e e e e e e e 365
20.14.5. COlUMN SELINGS ..evtuiiiiiii et 365
20.14.6. Cell SELHNGS ...ivvueiii it e 365
20.14.7. The datatable eXPOITErooi i 366
20.14.8. Layout €XAMPIES ..covuiiiii i 366
20.14.9. LIMItAtIONS ...iieniiii e e e e e e e 366
20.15. INternatioNaliZationcooeieuiiiii e 366
20.16. Links and further documentationcocoiiiiiiiiiiiii e 367
20 RSO S SUP P O ittt 369
A0 S I 1 1 = = o o N 369

Seam - Contextual Components

21.2. Generating fEEASc.uiii i 369
A0 T = o L 370
O Lo 1 1= SR 370
21.5. Links and further documentationco.ioiiiiiiii i 371

22, EMaAIL <o e 373
22.1. Creating @ MESSAGEueieetunaieitiateeti e eeet et eate et et et eaa e e eea e e eaaa e eenaas 373
P N I A\ i - Tod o 0 1= £ ST 374

22.1.2. HTML/Text alternative Partc.c.uoveeeiiiiiieiiie e 376

22.1.3. MUILIpIE FECIPIENLS ...ivin it e e 376

22.1.4. MUIIPIE MESSAUES .. .eevineiiiii ettt 376

b S T =14 T o] = 1 T 376

22.1.6. INternationaliSationocuiiiiiiii e 377

22.1.7. Other HEAUEISuiiiiiiiie e 378

22.2. RECEIVING EMAIIS ...ooieiiiiii e 378
b2 T O 110 [= 4o) o [N 379
22.3. 1. MAIISESSION ..eeeiiiie e 379

T - o 1= S TP 380

23. AsynchronicCity and MeESSAGINGcoouuuiiiiiiiiie i 383
23.1. MESSAQING 1N SEAIM ...uiiiiiiiiiii e e e e e e e e e e e et e e et e e eanaees 383
23.1. 2. CONFIGUIALION ...oeiieiieeeie e 383

23.1.2. SENAING MESSAGES ..evuueirnieieineeii ettt e e ete e s et e e et e e et a e et eetreranaaaanaees 384

23.1.3. Receiving messages using a message-driven beanccccoeveeeennnnn. 385

23.1.4. Receiving messages inthe clientcocoooiiiiiiiiiin e, 386

23.2. ASYNCHAIONICITY ...uiiiiii ettt 386
23.2.1. Asynchronous mMethodscocuiiiiiiiiiiic e 387

23.2.2. Asynchronous methods with the Quartz Dispatcherccoooceiiienn. 391

23.2.3. ASYNCHIONOUS EVENLSiiiiieiiiieiii e e e e e e e e e e e e e e eeas 393

23.2.4. Handling exceptions from asynchronous callsccccooeveiiiiinienennnnnn. 394

S O Tl Y1 o [395
24.1. Using Caching iN SEAMcoouuiiiiiiiie e 396
24.2. Page fragment CaChingccoiiiiiiiiii e 398

25, WD SEBIVICES ettt et e ean s 401
25.1. Configuration and Packagingcoeeuuiiiiiieiiieeii i e e e e e e e e 401
25.2. Conversational WeD SEIVICESoieiuiiiiiiiei e 401
25.2.1. A Recommended Strategyccuvieiueeiiieiiii e e e e e 402

25.3. An example WED SEIVICEccouuiiiiiiiii e 403
25.4. RESTful HTTP webservices with RESTEASYcccovvvviiiiiiiiciie e, 405
25.4.1. RESTEasy configuration and request SErViNgccoveeeeveneeeeiinneeeennnn 405

25.4.2. Resources as Seam COMPONENTSuiuuiuiiniiiieieie e e ane e 408

25.4.3. SECUIMNNG FESOUICESuieeeiitneteiti e eeeti e e eeti et e et e e e et e e eeai e e eaba e eenees 411

25.4.4. Mapping exceptions to HTTP reSPONSEScc.vevviiiiiiiieiiieeiiieeeieenins 411

25.4.5. Exposing entities via RESTIUl APl ... 412

25.4.6. Testing resources and ProVidersc.ccivviiiiieiiiieiii e 415

26, REMOLING ottt e e ettt et e et et e eee 417

b2 20 I @ T [0 = 4o) o 417

26.2. The "SeamM" ODJECT ...uuiiiii e 418
26.2.1. A Hello World @Xampleoooiiiiiiii e 418
26.2.2. SEAM.COMPONENTiiiiiit ettt 420
26.2.3. SEAM.REMOLING ...vuuiiiieiiiiee et e e e e e e e e e e et e e eanaees 422

P TR T O 1= o A 11 =T 1 = Lo = 422

P S N 0T B O] o 1= SR 423
26.4.1. Setting and reading the Conversation IDcccviiieiiiiiniiiiiiineeecinn, 423
26.4.2. Remote calls within the current conversation SCOpPecccovevvvveinnnnnns 423

26.5. BAtCh REQUESTESoiitiiiiiiii et 424

26.6. Working wWith Data tyPeScvvuiiiiiieii e 424
26.6.1. Primitives / BaSIC TYPESiiieiiiiiiiiiie ettt 424
26.6.2. JAVABEANS ..o 425
26.6.3. Dates and TiMESuiiiuiiiiiie e 425
26.6.4. ENUMS ..ottt e e e e e e e e et e et a s 425
26.6.5. COlIECLIONS . .eviieiieii et e e e e e e 426

b4 ST 1= o 18 o o 1T [P 427

26.8. HandliNg EXCEPLIONS ...couuuiiiiiii ettt et e e e e e e eees 427

26.9. The Loading MESSAUEuiivuieiit et eeii ettt e e e e e e e e e e e e e e e et e eaaaees 427
26.9.1. Changing the MESSATEcccuuuiiiiiiii it 428
26.9.2. Hiding the 10ading MESSAJEoivvuiiiiiieii e 428
26.9.3. A Custom Loading INAiCALOrccouuuiiiiiiiiieiei e 428

26.10. Controlling what data is returnedcoovevviiiiiiiiiiie e 428
26.10.1. Constraining normal fields ..o 429
26.10.2. Constraining Maps and ColleCtioNSccocoviviiiiieiiiiee e 429
26.10.3. Constraining objects of a Specific typecooviviiiiiiiiiiii e, 430
26.10.4. Combining CONSIIAINESuiiiiiiiiiieiie e 430

26.11. Transactional REQUESTScoouuuiiiiiii et 430

26.12. IMS MESSAQING ..uevuneiiieeiieee et e e e e e e e e et e e et e et e e et e e et e e et e e ean e eaneeaes 431
26.12.1. CONfIQUIALIONcieiitieiiii e 431
26.12.2. Subscribing t0 @ JMS TOPIC ...cvvviiiiiiiii e 431
26.12.3. Unsubscribing from @ TOPICuiiiiiiiiiiiiii e 432
26.12.4. Tuning the Polling ProCESScocvvuiiiiiiciii e 432

27. Seam and the Google Web TOOIKItooveuiiiiiiii e 433

47 % T O T [= 4o) o 1 433

27.2. Preparing YOUr COMPONENTciiiutieiiiitieeeeti et et et eeti e e e e e e eaai e e eaae e eennes 433

27.3. Hooking up a GWT widget to the Seam componentccccocevveviiiieiiineeinenn, 434

274, GWT ANE TAIGELS ..eeiiiiiiieii ettt e e eees 436

27.5. GWT MaVEN PIUGIN ..oeiniiiii e e e e e e e e e e e ean s 437

28. Spring Framework integrationcoiiiiiiiiiiii e 439

28.1. Injecting Seam components iNto SPring beanscccceeveviievii i, 439

28.2. Injecting Spring beans into Seam COMPONENESc.uviiiiiiiiieiiriineeeie e 441

28.3. Making a Spring bean into a Seam ComponNentcooveviiieeiiieciiiiece e 441

28.4. Seam-scoped Spring DeaNS ..o 442

Xi

Seam - Contextual Components

28.5. Using Spring PlatformTransactionManagementc.cccevevviieiiieeiiiiecineeiieens 443
28.6. Using a Seam Managed Persistence Context in SPringcccoevvveevinieeeiiinnenens 444
28.7. Using a Seam Managed Hibernate Session in SPringc..ccoevevviieiiiiieiieeennnn. 446
28.8. Spring Application Context as a Seam COMPONENTceeevviiiiiiiiiiieiiineeeenen. 446
28.9. Using a Spring TaskExecutor for @ASYNChronousccooevvieviiieiiiiiecieeennnn, 447
29. GUICE TNTEOTALION ..ttt ettt e et e e et e e e eat e e e enaaaeeees 449
29.1. Creating a hybrid Seam-Guice COMPONENLovviiiieiiiieiii e, 449
29.2. Configuring &N INJECLOTcieueii ettt 450
29.3. Using MUILIPIE INJECIOIS . .oevuiiiieii e e r e 451
30. HIbernate SEarCh ... et 453
110 I 1 o o (U7 i o] o R PP 453
30.2. CONFIGUIALTION ...ttt e e et e e 453
30,3, U S A0 ittt ittt 454
31. Configuring Seam and packaging Seam applicationscc...occviiieiiiiinieiiiiinneeenns 457
31.1. Basic Seam CONfIQUIratiONcoiiuiiiiiiiiei e e e e e e e 457
31.1.1. Integrating Seam with JSF and your servlet containercc.......... 457
31.1.2. Seam ReSOUICE SErVIELcciiiiiiiiiiiii e 459
31.1.3. Seam servlet filters ... 459
31.1.4. Integrating Seam with your EJB CONtaiNercccovevvvieeiiieeiiieeiieennn. 464
31.1.5. DON't FOrQet! ..o 468
31.2. Using Alternate JPA ProVIAEISccvuuiiiii i e e e 468
31.3. Configuring Seam in Java EE 6cc.iiiiiiiiiiiiiii e 469
31.3.1. PACKAGING ..ucivieiiiiee e 469
31.4. Configuring Seam Without EJBoiiiiiiiii e 471
31.4.1. Boostrapping Hibernate in Seamc.ccccoiiiiiiiiiii i 471
31.4.2. Boostrapping JPA iN SEAMiiiiiiiiiiiiii e 472
31.4.3. PACKAGING ...civieiiiiii e 472
31.5. Configuring Seam in Java SEcoooiiiiiiii e 473
31.6. Configuring [BPM N SEAIMcciviiiiiieii e e e e 473
31.6.1. PACKAGING .. eeiiiiieiiii et 474
31.7. Deployment iN JBOSS AS 7 ..couniiiiieii et 475
31.8. Configuring SFSB and Session Timeouts in JBOSS AS 7ovvviieiiieiiiieeeieee, 478
31.9. Running Seam in a Portletcooiiiiii e 479
31.10. Deploying CUSLOM FESOUICESceierieiietieeeeeti e e e et e et e e et e e e ea e e e eba s 479
32. SeaM ANNOTALIONS oouiiiiiii e e e e et e e e e et e e et e et 483
32.1. Annotations for component definitioncoooiiiiiiiii 483
32.2. Annotations for DIJECHIONo.uiiiii e 486
32.3. Annotations for component lifecycle methodsccooiiieiiiiiiiii s 490
32.4. Annotations for context demarCationooeuiireriiiinneriiii e 491
32.5. Annotations for use with Seam JavaBean components in a J2EE environment... 495
32.6. ANNOtations fOr EXCEPLIONS ...cvvuiiiiii i e e e e e e 496
32.7. Annotations for Seam RemMOLNGuuiiiiiiiiiieiiiii e 496
32.8. Annotations for Seam INtErCEPLOISovvviiiiiieeii e e e e 497
32.9. Annotations for asynChroniCitycoeuuiiiiiiiiiii e 497

Xii

32.10. AnNotations for USE WIth JSF ... 498

32.10.1. Annotations for use with dataTableccoooiiiiiiiiiiii e 499
32.11. Meta-annotations for databindingccooeiiiiiiiiii i 500
32.12. AnNNnotations for PACKAGINGuuuiiiiiie et 500
32.13. Annotations for integrating with the servlet containercc..ccoeveviieenne. 501

33. BUIilt-iN SEAM COMPONENTSiiiiiiiiiiiii ettt eenens 503
33.1. Context iNJeCtion COMPONENLSu.iiieeiiiieeii e e e e e e e e aanas 503
33.2. JSF-related COMPONENTSiiiiiiieieii ettt 503
33.3. Utility COMPONENLS .. ovuiiiiiii e e e e e e e e ees 505
33.4. Components for internationalization and themesccoviiviiiiniiiin e, 506
33.5. Components for controlling CONVErsationsc.ccoveviiieeiiiieiiiieeie e e, 507
33.6. jBPM-related COMPONENESccouuiiiiiiiiei et 508
33.7. Security-related COMPONENLScovuiiiiiiii e e e 510
33.8. IMS-related COMPONENLSciiiiiiieiiii ettt 510
33.9. Mail-related COMPONENESiiiiiii e e 510
33.10. Infrastructural COMPONENTSiiiiiiiieiiii e 511
33.11. Miscellaneous COMPONENLSiiuunieiiieieiiie e e e e e e e e e e e e e eaneens 513
33.12. Special COMPONENLScceiiiiiiiiii ettt e e e e e e enaans 514

34. SEAM JSF CONIIOIS outiiiiiiii et e e e e 517
K N I To [PP PP PTIPPPIN 517

34.1.1. Navigation CONtrolScciuiiiiiiiiii e e 517

34.1.2. Converters and Validatorsoooouiiiiiiioiiii e 520

G I R o 1 4= 1111 T PN 526

3414, SEAM TOXE ..t e 529

34.1.5. FOIM SUPPOIM Lottt e e e e e e e 530

G O T @) 1 3 1Y 533
I N g g] = 110] £ F- PPN 537

LS TN 1 = o 1= = ISP 539
35.1. Parameterized EXPreSSIONSoiiiiiiiiiiiii i e e 539

5. 1.1 USAQE ..ieiiiiiiieiei ettt 539

35.1.2. Limitations and HiNtScoouuiiiiiiiiiiii e 541
35.2. PIOJECHION ...ttt 542

36. Clustering and EJB PasSiVationcccc.iiiiiiiiiiiii e e e 545
LG I O 111 (=1 11 oo [PO PP PPPPTN 545

36.1.1. Programming for CIUSLEriNgcc.uiiiiiiiiiiieii e 546

36.1.2. Deploying a Seam application to a JBoss AS cluster with session

11 0] 1 T07= 11 o I 546

36.1.3. Validating the distributable services of an application running in a JBoss

F S o U1 (=T PP 548
36.2. EJB Passivation and the ManagedEntitylnterceptorcccooovveiiiiiieiiiinneeens 549

36.2.1. The friction between passivation and persiStenceccccocceveviieeinnnnns 550

36.2.2. Case #1: Surviving EJB passivationcccoeveeiiiiiiiiiiineeei 550

36.2.3. Case #2: Surviving HTTP session replicationcccccoeevvviieiiineennnen. 551

36.2.4. ManagedEntityINterceptor Wrap-Upoeeeeeuuiereriieeeiinae e e e e 552

Xiii

Seam - Contextual Components

A =T (oY d = Vg od I U o VT o 553
37.1. BypasSing INTEICEPIOIS ...couuuuiiiiiiiieeeit ettt et enaans 553

38. Testing Seam appliCatiONSiiiiiiii e 555
38.1. Unit testing Seam COMPONENTSuiiiiiiiieeiiiie et e ettt e et eeeai e eees 555
38.2. Integration testing Seam COMPONENLSovvvuiiiiieiiiiee e aen 556
38.2.1. CONfIGUIALION ...ceeveniieiie e 558

38.2.2. Using JUnitSeamTest with Arquilliancoooeiiiiiiiiii e 559

38.2.3. Integration testing Seam application user interactionsccccoeeevevenne. 561

1S TR B 1T oY=T g o L= o Fod 1= P 569
39.1. IDK DEPENUEINCIES ...euiiiiiiieeeett ettt ettt et e e e e e e 569
39.1.1. Oracle's JDK 6 CoNSIderationscc.uueiieiiriinieriiiinieeiiie e 569

39.2. ProjeCt DEPENUENCIESuuuiiiiiiieieii et e 569
30,20, COME ettt 569

39.2.2. RICNFACES ..euiiii e e 570

39.2.3. S€AM Mall .oovuiiiiiiii i 570

39.2.4. SEAM PDF ... 571

39.2.5. Seam MICrosoft EXCEloovviviiiiiiiiiiiii e 571

39.2.6. S€AM RSS SUPPOIT ...oiiiiiiiie ittt 571

39.2.7. DIOOIS ..oviieeii et 572

30.2.8. IBPM ..o 572

30.2.9. G VT i 572

39.2.00. SPIING ieitiieiiit et ettt et e e ee 572

39.2. 10, GFOOVY ...ttt ettt ettt ettt e 573

39.3. Dependency Management USiNg MaVENovieiiiiiiieiiiiineeici e 573

Xiv

Introduction to JBoss Seam

Seam is an application framework for Enterprise Java. It is inspired by the following principles:

One kind of "stuff"
Seam defines a uniform component model for all business logic in your application. A
Seam component may be stateful, with the state associated with any one of several well-
defined contexts, including the long-running, persistent, business process context and the
conversation context, which is preserved across multiple web requests in a user interaction.

There is no distinction between presentation tier components and business logic components
in Seam. You can layer your application according to whatever architecture you devise, rather
than being forced to shoehorn your application logic into an unnatural layering scheme forced
upon you by whatever combination of stovepipe frameworks you're using today.

Unlike plain Java EE or Java EE components, Seam components may simultaneously access
state associated with the web request and state held in transactional resources (without the
need to propagate web request state manually via method parameters). You might object
that the application layering imposed upon you by the old Java EE platform was a Good
Thing. Well, nothing stops you creating an equivalent layered architecture using Seam — the
difference is that you get to architect your own application and decide what the layers are and
how they work together.

Integrate JSF with EJB 3.0

JSF and EJB 3 are two of the best new features of Java EE 5. EJB3 is a brand new
component model for server side business and persistence logic. Meanwhile, JSF is a great
component model for the presentation tier. Unfortunately, neither component model is able
to solve all problems in computing by itself. Indeed, JSF and EJB3 work best used together.
But the Java EE 5 specification provides no standard way to integrate the two component
models. Fortunately, the creators of both models foresaw this situation and provided standard
extension points to allow extension and integration with other frameworks.

Seam unifies the component models of JSF and EJB 3, eliminating glue code, and letting the
developer think about the business problem.

It is possible to write Seam applications where "everything" is an EJB. This may come as a
surprise if you're used to thinking of EJBs as coarse-grained, so-called "heavyweight" objects.
However, version 3.0 has completely changed the nature of EJB from the point of view of
the developer. An EJB is a fine-grained object — nothing more complex than an annotated
JavaBean. Seam even encourages you to use session beans as JSF action listeners!

On the other hand, if you prefer not to adopt EJB 3.0 at this time, you don't have to. Virtually
any Java class may be a Seam component, and Seam provides all the functionality that you
expect from a "lightweight" container, and more, for any component, EJB or otherwise.

Integrated with Java EE6
While Seam 2.2 was targeted Java EE 5 mainly, you can use some Java EE 6 technologies
also on Seam 2.3.x.

XV

Introduction to JBoss Seam

Seam 2 and some of its extensions/implementations were added into Java EE 6 as CDI
technology. So this should be a current focus of majority users. But for previous Seam 2.2
users who doesn't want or can't use pure Java EE 6, we bring some new features from the
Java EE 6 set like JSF 2, JPA 2 and Bean Validation integrations into Seam 2.3.x.

° Note

Be warned - Seam 2.3 should work only on Java EE 6 certified server like
JBoss AS 7 is.

Integrated AJAX

Seam supports the best open source JSF-based AJAX solutions: RichFaces and ICEfaces.
These solutions let you add AJAX capability to your user interface without the need to write
any JavaScript code.

Alternatively, Seam provides a built-in JavaScript remoting layer that lets you call components
asynchronously from client-side JavaScript without the need for an intermediate action layer.
You can even subscribe to server-side JMS topics and receive messages via AJAX push.

Neither of these approaches would work well, were it not for Seam's built-in concurrency and
state management, which ensures that many concurrent fine-grained, asynchronous AJAX
requests are handled safely and efficiently on the server side.

Business process as a first class construct

Optionally, Seam provides transparent business process management via jJBPM. You won't
believe how easy it is to implement complex workflows, collaboration and task management
using jBPM and Seam.

Seam even allows you to define presentation tier pageflow using the same language (jPDL)
that jBPM uses for business process definition.

JSF provides an incredibly rich event model for the presentation tier. Seam enhances this
model by exposing jBPM's business process related events via exactly the same event
handling mechanism, providing a uniform event model for Seam's uniform component model.

Declarative state management

We're all used to the concept of declarative transaction management and declarative
security from the early days of EJB. EJB 3.0 even introduces declarative persistence
context management. These are three examples of a broader problem of managing state
that is associated with a particular context, while ensuring that all needed cleanup occurs
when the context ends. Seam takes the concept of declarative state management much
further and applies it to application state. Traditionally, Java EE applications implement
state management manually, by getting and setting servlet session and request attributes.
This approach to state management is the source of many bugs and memory leaks when
applications fail to clean up session attributes, or when session data associated with different

XVi

workflows collides in a multi-window application. Seam has the potential to almost entirely
eliminate this class of bugs.

Declarative application state management is made possible by the richness of the context
model defined by Seam. Seam extends the context model defined by the servilet spec —
request, session, application — with two new contexts — conversation and business process
— that are more meaningful from the point of view of the business logic.

You'll be amazed at how many things become easier once you start using conversations. Have
you ever suffered pain dealing with lazy association fetching in an ORM solution like Hibernate
or JPA? Seam's conversation-scoped persistence contexts mean you'll rarely have to see a
Lazyl nitializati onExcepti on. Have you ever had problems with the refresh button? The
back button? With duplicate form submission? With propagating messages across a post-
then-redirect? Seam's conversation management solves these problems without you even
needing to really think about them. They're all symptoms of the broken state management
architecture that has been prevalent since the earliest days of the web.

Bijection

The notion of Inversion of Control or dependency injection exists in both JSF and EJB3, as
well as in numerous so-called "lightweight containers". Most of these containers emphasize
injection of components that implement stateless services. Even when injection of stateful
components is supported (such as in JSF), it is virtually useless for handling application
state because the scope of the stateful component cannot be defined with sufficient flexibility,
and because components belonging to wider scopes may not be injected into components
belonging to narrower scopes.

Bijection differs from loC in that it is dynamic, contextual, and bidirectional. You can think of
it as a mechanism for aliasing contextual variables (names in the various contexts bound to
the current thread) to attributes of the component. Bijection allows auto-assembly of stateful
components by the container. It even allows a component to safely and easily manipulate the
value of a context variable, just by assigning it to an attribute of the component.

Workspace management and multi-window browsing
Seam applications let the user freely switch between multiple browser tabs, each associated
with a different, safely isolated, conversation. Applications may even take advantage of
workspace management, allowing the user to switch between conversations (workspaces) in
a single browser tab. Seam provides not only correct multi-window operation, but also multi-
window-like operation in a single window!

Prefer annotations to XML
Traditionally, the Java community has been in a state of deep confusion about precisely
what kinds of meta-information counts as configuration. Java EE and popular "lightweight"
containers have provided XML-based deployment descriptors both for things which are
truly configurable between different deployments of the system, and for any other kinds or
declaration which can not easily be expressed in Java. Java 5 annotations changed all this.

EJB 3.0 embraces annotations and "configuration by exception™ as the easiest way to provide
information to the container in a declarative form. Unfortunately, JSF is still heavily dependent

XVii

Introduction to JBoss Seam

on verbose XML configuration files. Seam extends the annotations provided by EJB 3.0 with
a set of annotations for declarative state management and declarative context demarcation.
This lets you eliminate the noisy JSF managed bean declarations and reduce the required
XML to just that information which truly belongs in XML (the JSF navigation rules).

Integration testing is easy

Seam components, being plain Java classes, are by nature unit testable. But for complex
applications, unit testing alone is insufficient. Integration testing has traditionally been a messy
and difficult task for Java web applications. Therefore, Seam provides for testability of Seam
applications as a core feature of the framework. You can easily write JUnit or TestNG tests
that reproduce a whole interaction with a user, exercising all components of the system apart
from the view. You can run these tests directly inside your IDE, where Seam will automatically
deploy EJB components using Arquillian.

The specs ain't perfect

We think the latest incarnation of Java EE is great. But we know it's never going to be perfect.
Where there are holes in the specifications (for example, limitations in the JSF lifecycle for
GET requests), Seam fixes them. And the authors of Seam are working with the JCP expert
groups to make sure those fixes make their way back into the next revision of the standards.

There's more to a web application than serving HTML pages

Get

Today's web frameworks think too small. They let you get user input off a form and into
your Java objects. And then they leave you hanging. A truly complete web application
framework should address problems like persistence, concurrency, asynchronicity, state
management, security, email, messaging, PDF and chart generation, workflow, wikitext
rendering, webservices, caching and more. Once you scratch the surface of Seam, you'll be
amazed at how many problems become simpler...

Seam integrates JPA and Hibernate for persistence, the EJB Timer Service and Quartz for
lightweight asychronicity, jBPM for workflow, JBoss Rules for business rules, Meldware Malil
for email, Hibernate Search and Lucene for full text search, JMS for messaging and JBoss
Cache for page fragment caching. Seam layers an innovative rule-based security framework
over JAAS and JBoss Rules. There's even JSF tag libraries for rendering PDF, outgoing
email, charts and wikitext. Seam components may be called synchronously as a Web Service,
asynchronously from client-side JavaScript or Google Web Toolkit or, of course, directly from
JSF.

started now!

Seam should work in any Java EE application server, and even works in Tomcat. If your
environment supports EJB 3.0 or 3.1, great! If it doesn't, no problem, you can use Seam's
built-in transaction management with JPA or Hibernate for persistence.

XViii

Contribute to Seam

Facelets Portal
JSF 2
Seam
Facelets || Facelets Facelets
Java EE

P et lian
apmr

Request
canirailer

Con e
managSmam

Sime
man agemem

It turns out that the combination of Seam, JSF and EJB is the simplest way to write a complex

web application in Java. You won't believe how little code is required!

1. Contribute to Seam

Visit SeamFramework.org [http://www.seamframework.org/Community/Contribute] to find out

how to contribute to Seam!

XiX

http://www.seamframework.org/Community/Contribute
http://www.seamframework.org/Community/Contribute

XX

Chapter 1.

Seam Tutorial

1.1. Using the Seam examples

Seam provides a number of example applications demonstrating how to use the various features of
Seam. This tutorial will guide you through a few of those examples to help you get started learning
Seam. The Seam examples are located in the exanpl es subdirectory of the Seam distribution. The
registration example, which will be the first example we look at, is in the exanpl es/ regi strati on
directory.

Each example has the very similar directory structure which is based on Maven
project structure defaults [http://maven.apache.org/guides/introduction/introduction-to-the-
standard-directory-layout.html]:

e The <exanpl e>-ear directory contains enterprise application submodule files such as
aggregator for web application files, EJB project.

« The <exanpl e>-web directory contains web application submodule view-related files such as
web page templates, images and stylesheets.

» The <exanpl e>- ej b directory contains Enterprise Java Beans components.

» The <exanpl e>-t est s directory contains integration and functional tests.

« The <exanpl e>-web/ sr ¢/ mai n/ webapp directory contains view-related files such as web page
templates, images and stylesheets.

e The <exanpl e>-[ear| ej b]/ src/ mai n/ resour ces directory contains deployment descriptors
and other configuration files.

» The <exanpl e>-ej b/ src/ mai n/ j ava directory contains the application source code.

The example applications run on JBoss AS 7.1.1 with no additional configuration. The following
sections will explain the procedure. Note that all the examples are built and run from the Maven
pom xmi , so you'll need at least version 3.x of Maven installed before you get started. At the time
of writing this text recent version of Maven was 3.0.4.

1.1.1. Running the examples on JBoss AS

The examples are configured for use on JBoss AS 7.1. You'll need to set JBOSS_HOME, in your
environment, to the location of your JBoss AS installation.

Once you've set the location of JBoss AS and started the application server, you can build any
example by typing nvn install in the example root directory. Any example is deployed by

http://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
http://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
http://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
http://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html

Chapter 1. Seam Tutorial

changing directory to *-ear or *-web directory in case of existence only *-web submodule. Type in
that submodule nvn j boss- as: depl oy. Any example that is packaged as an EAR deploys to a
URL like / seam exanpl e, where exanpl e is the name of the example folder, with one exception.
If the example folder begins with seam, the prefix "seam" is ommitted. For instance, if JBoss AS
is running on port 8080, the URL for the registration example is htt p: // 1 ocal host : 8080/ seam
regi stration/ [http://localhost:8080/seam-registration/], whereas the URL for the seamspace
exampleis http://1ocal host: 8080/ seam space/ [http://localhost:8080/seam-space/].

If, on the other hand, the example gets packaged as a WAR, then it deploys to a URL like / j boss-
seam exanpl e. Several of the examples can only be deployed as a WAR. Those examples are
groovybooking, hibernate, jpa, and spring.

1.1.2. Running the example tests

Most of the examples come with a suite of Arquillian JUnit integration tests. The easiest way to
run the testsisto run nvn verify -Darquillian=j bossas-managed- 7. Itis also possible to run
the tests inside your IDE using the JUnit plugin. Consult the readme.txt in the examples directory
of the Seam distribution for more information.

1.2. Your first Seam application: the registration
example

The registration example is a simple application that lets a new user store his username, real name
and password in the database. The example isn't intended to show off all of the cool functionality
of Seam. However, it demonstrates the use of an EJB3 session bean as a JSF action listener,
and basic configuration of Seam.

We'll go slowly, since we realize you might not yet be familiar with EJB 3.0.

The start page displays a very basic form with three input fields. Try filling them in and then
submitting the form. This will save a user object in the database.

http://localhost:8080/seam-registration/
http://localhost:8080/seam-registration/
http://localhost:8080/seam-registration/
http://localhost:8080/seam-space/
http://localhost:8080/seam-space/

Understanding the code

) Register New User - Mozilla Firefox
File Edit View Go Bookmarks Tools Help

QE - E:} - %1 @ @ |@ http://localhost:8080/seam-registration/register.seam V| © Go @

[Chapter 1. Seam Tutorial | [Register New User |[#3Boss DVD Store

Username |93Vi”
Real Name |Gavin King
Password |’”*”1

1.2.1. Understanding the code

The example is implemented with two Facelets templates, one entity bean and one stateless
session bean. Let's take a look at the code, starting from the "bottom".

1.2.1.1. The entity bean: user.java

We need an EJB entity bean for user data. This class defines persistence and validation
declaratively, via annotations. It also needs some extra annotations that define the class as a
Seam component.

Example 1.1. User.java

@Entity D)
@Name("user") 3
@Scope(SESSION) 3
@Table(name="users") 4
public class User implements Serializable

{
private static final long serialVersionUID = 1881413500711441951L;

private String username; 5
private String password;

Chapter 1. Seam Tutorial

private String name;

public User(String name, String password, String username)

{

this.name = name;
this.password = password;
this.username = username,;

}

public User() {} 6

@NotNull @Size(min=5, max=15)
public String getPassword()
{

return password;

}

public void setPassword(String password)

{

this.password = password;

}

@NotNull
public String getName()

{

return name;

public void setName(String name)

{

this.name = name;

}

@Id @NotNull @Size(min=5, max=15)
public String getUsername()

{

return username;

public void setUsername(String username)

{

this.username = username;

}

Understanding the code

11 The EJB3 standard @nt i t y annotation indicates that the User class is an entity bean.

2 A Seam component needs a component name specified by the @ane annotation. This
name must be unique within the Seam application. When JSF asks Seam to resolve a context
variable with a name that is the same as a Seam component name, and the context variable
is currently undefined (null), Seam will instantiate that component, and bind the new instance
to the context variable. In this case, Seam will instantiate a User the first time JSF encounters
a variable named user.

2 Whenever Seam instantiates a component, it binds the new instance to a context variable
in the component's default context. The default context is specified using the @scope
annotation. The User bean is a session scoped component.

4 The EJB standard @abl e annotation indicates that the User class is mapped to the users
table.

5 nane, password and user nane are the persistent attributes of the entity bean. All of our
persistent attributes define accessor methods. These are needed when this component is
used by JSF in the render response and update model values phases.

& An empty constructor is both required by both the EJB specification and by Seam.

77 The @botNull and @i ze annotations are part of the Bean Validation annotations
specification (JSR-303). Seam integrates Bean Validation through Hibernate Validator, which
is the reference implementation, and lets you use it for data validation (even if you are not
using Hibernate for persistence).

g The EJB standard @ d annotation indicates the primary key attribute of the entity bean.

The most important things to notice in this example are the @ame and @cope annotations. These
annotations establish that this class is a Seam component.

We'll see below that the properties of our User class are bound directly to JSF components and
are populated by JSF during the update model values phase. We don't need any tedious glue
code to copy data back and forth between the JSF pages and the entity bean domain model.

However, entity beans shouldn't do transaction management or database access. So we can't
use this component as a JSF action listener. For that we need a session bean.

1.2.1.2. The stateless session bean class: RegisterAction.java

Most Seam application use session beans as JSF action listeners (you can use JavaBeans instead
if you like).

We have exactly one JSF action in our application, and one session bean method attached to it.
In this case, we'll use a stateless session bean, since all the state associated with our action is
held by the User bean.

This is the only really interesting code in the example!

Chapter 1. Seam Tutorial

Example 1.2. RegisterAction.java

@Stateless 1
@Name("register")
public class RegisterAction implements Register

{
@In

private User user; 2

@PersistenceContext

private EntityManager em; 3

@Logger
private Log log; 4

public String register()
{ 5
List existing = em.createQuery(
"select username from User where username = #{user.username}")

.getResultList(); 8

if (existing.size()==0)
{
em.persist(user);
log.info("Registered new user #{user.username}");

return "/registered.xhtml"; 7
} 8
else

{

FacesMessages.instance().add("User #{user.username} already exists");

return null; 9

11 The EJB @bt at el ess annotation marks this class as a stateless session bean.

2 The @n annotation marks an attribute of the bean as injected by Seam. In this case, the
attribute is injected from a context variable named user (the instance variable name).

3 The EJB standard @persi st enceContext annotation is used to inject the EJB3 entity
manager.

Understanding the code

4 The Seam @uogger annotation is used to inject the component's Log instance.

5. The action listener method uses the standard EJB3 Ent it yManager API to interact with
the database, and returns the JSF outcome. Note that, since this is a session bean, a
transaction is automatically begun when the r egi st er () method is called, and committed
when it completes.

& Notice that Seam lets you use a JSF EL expression inside EJB-QL. Under the covers, this
results in an ordinary JPA set Par anet er () call on the standard JPA Query object. Nice,
huh?

7. The Log API lets us easily display templated log messages which can also make use of JSF
EL expressions.

& JSF action listener methods return a string-valued outcome that determines what page will
be displayed next. A null outcome (or a void action listener method) redisplays the previous
page. In plain JSF, it is normal to always use a JSF navigation rule to determine the JSF view
id from the outcome. For complex application this indirection is useful and a good practice.
However, for very simple examples like this one, Seam lets you use the JSF view id as the
outcome, eliminating the requirement for a navigation rule. Note that when you use a view
id as an outcome, Seam always performs a browser redirect.

g Seam provides a number of built-in components to help solve common problems. The
FacesMessages component makes it easy to display templated error or success messages.
(As of Seam 2.1, you can use St at usMessages instead to remove the semantic dependency
on JSF). Built-in Seam components may be obtained by injection, or by calling the
i nstance() method on the class of the built-in component.

Note that we did not explicitly specify a @cope this time. Each Seam component type has a default
scope if not explicitly specified. For stateless session beans, the default scope is the stateless
context, which is the only sensible value.

Our session bean action listener performs the business and persistence logic for our mini-
application. In more complex applications, we might need require a separate service layer. This
is easy to achieve with Seam, but it's overkill for most web applications. Seam does not force you
into any particular strategy for application layering, allowing your application to be as simple, or
as complex, as you want.

Note that in this simple application, we've actually made it far more complex than it needs to be.
If we had used the Seam application framework controllers, we would have eliminated all of our
application code. However, then we wouldn't have had much of an application to explain.

1.2.1.3. The session bean local interface: Rregister.java

Naturally, our session bean needs a local interface.

Example 1.3. Register.java

@Local
public interface Register

Chapter 1. Seam Tutorial

{
public String register();

}

That's the end of the Java code. Now we'll look at the view.
1.2.1.4. The view: register. xhtni and regi st ered. xht

The view pages for a Seam application could be implemented using any technology that supports
JSF. In this example we use Facelets, because we think it's better than JSF.

Example 1.4. register.xhtml

<?xml version="1.0" encoding="utf-8"?>

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmins:s="http://jboss.org/schema/seam/taglib"
xmlns:h="http://java.sun.com/jsf/html|"
xmins:f="http://java.sun.com/jsf/core">

<h:head>
<title>Register New User</title>
</h:head>
<h:body>
<h:head>f.view>
<h:form>
<s:validateAll>
<h:panelGrid columns="2">
Username: <h:inputText value="#{user.username}" required="true"/>
Real Name: <h:inputText value="#{user.name}" required="true"/>
Password: <h:inputSecret value="#{user.password}" required="true"/>
</h:panelGrid>
</s:validateAll>
<h:messages/>
<h:commandButton value="Register" action="#{register.register}"/>
</h:form>
</f.view>
</h:body>

</html>

Understanding the code

The only thing here that is specific to Seam is the <s: val i dat eAl | > tag. This JSF component
tells JSF to validate all the contained input fields against the Bean Validation annotations specified
on the entity bean.

Example 1.5. registered.xhtml

<?xml version="1.0" encoding="utf-8"?>

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://iwww.w3.0rg/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlIns="http://www.w3.0rg/1999/xhtml"
xmlIns:f="http://java.sun.com/jsf/core">

<h:head>
<title>Successfully Registered New User</title>
</h:head>
<h:body>
<fview>
Welcome, #{user.name}, you are successfully registered as #{user.username}.
</f:view>
</h:body>

</html>

This is a simple Facelets page using some inline EL. There's nothing specific to Seam here.
1.2.1.5. The Seam component deployment descriptor: conponents. xni

Since this is the first Seam app we've seen, we'll take a look at the deployment descriptors.
Before we get into them, it is worth noting that Seam strongly values minimal configuration. These
configuration files will be created for you when you create a Seam application. You'll never need
to touch most of these files. We're presenting them now only to help you understand what all the
pieces in the example are doing.

If you've used many Java frameworks before, you'll be used to having to declare all your
component classes in some kind of XML file that gradually grows more and more unmanageable
as your project matures. You'll be relieved to know that Seam does not require that application
components be accompanied by XML. Most Seam applications require a very small amount of
XML that does not grow very much as the project gets bigger.

Nevertheless, it is often useful to be able to provide for some external configuration of some
components (particularly the components built in to Seam). You have a couple of options here,
but the most flexible option is to provide this configuration in a file called conponent s. xnl , located
in the VEB- | NF directory. We'll use the conponents. xn file to tell Seam how to find our EJB
components in JNDI:

Chapter 1. Seam Tutorial

Example 1.6. components.xml

<?xml version="1.0" encoding="UTF-8"?>
<components xmlns="http://jboss.org/schema/seam/components
xmlns:core="http://jpboss.org/schema/seam/core"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="
http://jboss.org/schema/seam/core
http://jboss.org/schema/seam/core-2.3.xsd
http://jboss.org/schema/seam/components
http://jboss.org/schema/seam/components-2.3.xsd">

<core:init jndi-pattern="${jndiPattern}"/>

</components>

This code configures a property named j ndi Pattern of a built-in Seam component named
org.jboss.seamcore.init. The funny @ symbols are there because our Maven build
puts the correct JNDI pattern in when we deploy the application, which it reads from the
components.properties file. You learn more about how this process works in Section 6.2,
“Configuring components via components.xml”.

° Note

Eclipse M2e Web tools plugin can't use the @for token property filtering. Fortunately
there works the other way which is in Maven filtering defined - ${ pr operty}.

1.2.1.6. The web deployment description: web. xni

The presentation layer for our mini-application will be deployed in a WAR. So we'll need a web
deployment descriptor.

Example 1.7. web.xml

<?xml version="1.0" encoding="UTF-8"?>
<web-app xmlns="http://java.sun.com/xml/ns/javaee"
xmlins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="
http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd"
version="3.0">

10

Understanding the code

<listener>
<listener-class>org.jboss.seam.servlet.SeamListener</listener-class>
</listener>

<context-param>
<param-name>javax.faces.DEFAULT_SUFFIX</param-name>
<param-value>.xhtml</param-value>

</context-param>

<servlet>
<servlet-name>Faces Servlet</serviet-name>
<servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
<load-on-startup>1</load-on-startup>

</servlet>

<servlet-mapping>
<servlet-name>Faces Servlet</servlet-name>
<url-pattern>*.seam</url-pattern>
</servlet-mapping>

<session-config>
<session-timeout>10</session-timeout>
</session-config>

</web-app>

This web. xnl file configures Seam and JSF. The configuration you see here is pretty much
identical in all Seam applications.

1.2.1.7. The JSF configuration: faces-config. xn

Most Seam applications use JSF views as the presentation layer. So usually we'll need f aces-
config.xnl . In our case, we are going to use Facelets for defining our views, so we need to tell
JSF to use Facelets as its templating engine.

Example 1.8. faces-config.xml

<?xml version="1.0" encoding="UTF-8"?>
<faces-config xmlIns="http://java.sun.com/xml/ns/javaee"”
xmlins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="
http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-facesconfig_2_1.xsd"
version="2.1">

11

Chapter 1. Seam Tutorial

</faces-config>

Note that we don't need any JSF managed bean declarations and neither FaceletViewHandler
definition as Facelets are default view technology in JSF 2! Our managed beans are annotated
Seam components. So basically we don't need f aces- confi g. xm at all, but here is the f aces-
config. xn as the template for advanced JSF configurations.

In fact, once you have all the basic descriptors set up, the only XML you need to write as you
add new functionality to a Seam application is orchestration: navigation rules or jBPM process
definitions. Seam's stand is that process flow and configuration data are the only things that truly
belong in XML.

In this simple example, we don't even need a navigation rule, since we decided to embed the
view id in our action code.

1.2.1.8. The EJB deployment descriptor: ejb-jar. xn

The ej b-jar.xnm file integrates Seam with EJB3, by attaching the Seam nterceptor to all
session beans in the archive.

<?xml version="1.0" encoding="UTF-8"?>
<ejb-jar xmlIns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="
http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaeelejb-jar_3 0.xsd"
version="3.0">

<interceptors>
<interceptor>
<interceptor-class>org.jboss.seam.ejb.Seaminterceptor</interceptor-class>
</interceptor>
</interceptors>

<assembly-descriptor>
<interceptor-binding>
<ejb-name>*</ejb-name>
<interceptor-class>org.jboss.seam.ejb.Seaminterceptor</interceptor-class>
</interceptor-binding>
</assembly-descriptor>

</ejb-jar>

12

Understanding the code

1.2.1.9. The EJB persistence deployment descriptor: persi stence. xn

The persi st ence. xni file tells the EJB persistence provider where to find the datasource, and
contains some vendor-specific settings. In this case, enables automatic schema export at startup
time.

<?xml version="1.0" encoding="UTF-8"?>
<persistence xmlns="http://java.sun.com/xml/ns/persistence"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="
http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd"
version="2.0">

<persistence-unit name="userDatabase">
<provider>org.hibernate.ejb.HibernatePersistence</provider>
<jta-data-source>java:jboss/datasources/ExampleDS</jta-data-source>
<properties>
<property name="hibernate.hbm2ddl.auto" value="create-drop"/>
</properties>
</persistence-unit>

</persistence>

1.2.1.10. The EAR deployment descriptor: application. xni

Finally, since our application is deployed as an EAR, we need a deployment descriptor there, too.

° Note

This file can be generated by Maven EAR plugin and registration application has
got this set up in registration-ear/pom.xml.

Just for clarity, the following is the result of that generation:

Example 1.9. registration application

<?xml version="1.0" encoding="UTF-8"?>
<application xmlns="http://java.sun.com/xml/ns/javaee"
xmlins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="
http://java.sun.com/xml/ns/javaee

13

Chapter 1. Seam Tutorial

http://java.sun.com/xml/ns/javaee/application_6.xsd"
version="6">
<display-name>registration-ear</display-name>
<module>
<web>
<web-uri>registration-web.war</web-uri>
<context-root>/seam-registration</context-root>
</web>
</module>
<module>
<ejb>registration-ejb.jar</ejb>
</module>
<module>
<ejb>jboss-seam.jar</ejb>
</module>
</application>

This deployment descriptor links modules in the enterprise archive and binds the web application
to the context root / seam regi strati on.

We've now seen all the files in the entire application!

1.2.2. How it works

When the form is submitted, JSF asks Seam to resolve the variable named user . Since there is no
value already bound to that name (in any Seam context), Seam instantiates the user component,
and returns the resulting User entity bean instance to JSF after storing it in the Seam session
context.

The form input values are now validated against the Bean Validator constraints specified on the
User entity. If the constraints are violated, JSF redisplays the page. Otherwise, JSF binds the form
input values to properties of the User entity bean.

Next, JSF asks Seam to resolve the variable named r egi st er. Seam uses the JNDI pattern
mentioned earlier to locate the stateless session bean, wraps it as a Seam component, and returns
it. Seam then presents this component to JSF and JSF invokes the regi st er () action listener
method.

But Seam is not done yet. Seam intercepts the method call and injects the User entity from the
Seam session context, before allowing the invocation to continue.

The r egi st er () method checks if a user with the entered username already exists. If so, an error
message is queued with the FacesMessages component, and a null outcome is returned, causing
a page redisplay. The FacesMessages component interpolates the JSF expression embedded in
the message string and adds a JSF FacesMessage to the view.

14

Clickable lists in Seam: the messages example

If no user with that username exists, the "/ regi stered. xht Ml " outcome triggers a browser
redirect to the r egi st ered. xht Ml page. When JSF comes to render the page, it asks Seam to
resolve the variable named user and uses property values of the returned User entity from Seam's
session scope.

1.3. Clickable lists in Seam: the messages example

Clickable lists of database search results are such an important part of any online application that
Seam provides special functionality on top of JSF to make it easier to query data using EJB-QL
or HQL and display it as a clickable list using a JSF <h: dat aTabl e>. The messages example
demonstrates this functionality.

) Messages - Mozilla Firefox
File Edit View Go Bookmarks Tools Help

@ - - & ©) &) [0 nip:/focahost:s080 ¥ | © Go [[GL

L3 Latest Headlines £33 The World Clock B XE Currency Converter ' Hibernate JIRA
|[] Chapter 1. Seam Tutorial | LI Messages \

Message List

Read Title Date/Time

Greetings Earthling Feb 4, 2006 9:40 AM
Hello World Jan 2, 2006 7:00 AM

Greetings Earthling

This is another example of a message.

1.3.1. Understanding the code

The message list example has one entity bean, Message, one session bean, MessagelLi st Bean
and one JSF.

15

Chapter 1. Seam Tutorial

1.3.1.1. The entity bean: wmessage. java

The Message entity defines the title, text, date and time of a message, and a flag indicating whether
the message has been read:

Example 1.10. Message.java

@Entity
@Name("'message")
@Scope(EVENT)
public class Message implements Serializable
{
private Long id;
private String title;
private String text;
private boolean read;
private Date datetime;

@Ild @GeneratedValue
public Long getld()

{

return id;

}
public void setld(Long id)

{
this.id = id;
}

@NotNull @Size(max=100)
public String getTitle()
{

return title;

}
public void setTitle(String title)

{
this.title = title;

}

@NotNull @Lob
public String getText()

{

return text,

}
public void setText(String text)

16

Understanding the code

{

this.text = text;

}

@NotNull
public boolean isRead()
{
return read,;
}
public void setRead(boolean read)
{
this.read = read;

}

@NotNull

@Basic @Temporal(TemporalType. TIMESTAMP)
public Date getDatetime()

{

return datetime;

}

public void setDatetime(Date datetime)

{

this.datetime = datetime;

1.3.1.2. The stateful session bean: messageManager Bean. j ava

Just like in the previous example, we have a session bean, MessageManager Bean, which defines
the action listener methods for the two buttons on our form. One of the buttons selects a message
from the list, and displays that message. The other button deletes a message. So far, this is not
so different to the previous example.

But MessageManager Bean is also responsible for fetching the list of messages the first time we
navigate to the message list page. There are various ways the user could navigate to the page,
and not all of them are preceded by a JSF action — the user might have bookmarked the page, for
example. So the job of fetching the message list takes place in a Seam factory method, instead
of in an action listener method.

We want to cache the list of messages in memory between server requests, so we will make this
a stateful session bean.

17

Chapter 1. Seam Tutorial

Example 1.11. MessageManagerBean.java

@Stateful

@Scope(SESSION)

@Name("messageManager")

public class MessageManagerBean implements Serializable, MessageManager

{
@DataModel

private List<Message> messageList; .

@DataModelSelection
@Out(required=false) 2

private Message message; 3

@PersistenceContext(type=EXTENDED)

private EntityManager em; 4

@Factory("messagelList")

public void findMessages() 5

{

messagelList = em.createQuery("select msg from Message msg order by msg.datetime desc")
.getResultList();

public void select()

{ &
message.setRead(true);

}

public void delete()

{ 7
messageList.remove(message);
em.remove(message);
message=null;

}

@Remove

public void destroy() {} 8

18

Understanding the code

The @pat aMbdel annotation exposes an attribute of type j ava. uti |l . Li st to the JSF page
as an instance of j avax. f aces. nodel . Dat aMbdel . This allows us to use the list in a JSF
<h: dat aTabl e> with clickable links for each row. In this case, the Dat aMbdel is made
available in a session context variable named nessagelLi st .

The @pat aMbdel Sel ection annotation tells Seam to inject the List element that
corresponded to the clicked link.

The @ut annotation then exposes the selected value directly to the page. So every time
a row of the clickable list is selected, the Message is injected to the attribute of the stateful
bean, and the subsequently outjected to the event context variable named nessage.

This stateful bean has an EJB3 extended persistence context. The messages retrieved in the
guery remain in the managed state as long as the bean exists, so any subsequent method
calls to the stateful bean can update them without needing to make any explicit call to the
Enti t yManager.

The first time we navigate to the JSF page, there will be no value in the nessageLi st context
variable. The @act or y annotation tells Seam to create an instance of MessageManager Bean
and invoke the fi ndMessages() method to initialize the value. We call fi ndMessages() a
factory method for nessages.

The sel ect () action listener method marks the selected Message as read, and updates it
in the database.

The del et e() action listener method removes the selected Message from the database.

All stateful session bean Seam components must have a method with no parameters marked
@enove that Seam uses to remove the stateful bean when the Seam context ends, and
clean up any server-side state.

Note that this is a session-scoped Seam component. It is associated with the user login session,
and all requests from a login session share the same instance of the component. (In Seam

applications, we usually use session-scoped components sparingly.)

1.3.1.3. The session bean local interface: messagemanager . j ava

All session beans have a business interface, of course.

Example 1.12. MessageManager.java

@Local
public interface MessageManager
{
public void findMessages();
public void select();
public void delete();
public void destroy();

}

From now on, we won't show local interfaces in our code examples.

19

Chapter 1. Seam Tutorial

Let's skip over conponent s. xm , per si st ence. xm , web. xm , ej b-j ar. xnl , faces-confi g. xm
and appl i cation. xnl since they are much the same as the previous example, and go straight
to the JSF.

1.3.1.4. The view: nessages. xht n

The JSF page is a straightforward use of the JSF <h: dat aTabl e> component. Again, nothing
specific to Seam.

Example 1.13. messages.xhtml

<?xml version="1.0" encoding="utf-8"?>
<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlIns="http://www.w3.0rg/1999/xhtml"
xmlns:s="http://jboss.org/schema/seam/taglib"
xmins:h="http://java.sun.com/jsf/html|"
xmins:f="http://java.sun.com/jsf/core">
<h:head>
<title>Messages</title>
</h:head>
<h:body>
<fview>
<h2>Message List</h2>
<h:outputText id="noMessages" value="No messages to display"
rendered="#{messageList.rowCount==0}"/>
<h:dataTable id="messages" var="msg" value="#{messageList}"
rendered="#{messageList.rowCount>0}">
<h:column>
<f:.facet name="header">
<h:outputText value="Read"/>
</f:facet>
<h:selectBooleanCheckbox id="read" value="#{msg.read}" disabled="true"/>
</h:column>
<h:column>
<f:facet name="header">
<h:outputText value="Title"/>
</f:facet>
<s:link id="link" value="#{msg.title}" action="#{messageManager.select}"/>
</h:column>
<h:column>
<f:facet name="header">
<h:outputText value="Date/Time"/>
</f:facet>

20

How it works

<h:outputText id="date" value="#{msg.datetime}">
<f:convertDateTime type="both" dateStyle="medium" timeStyle="short"/>
</h:outputText>
</h:column>
<h:column>
<s:button id="delete" value="Delete" action="#{messageManager.delete}"/>
</h:column>
</h:dataTable>
<h3><h:outputText id="title" value="#{message.title}"/></h3>
<div><h:outputText id="text" value="#{message.text}"/></div>
</f.view>
</h:body>
</html>

1.3.2. How it works

The first time we navigate to the nessages. xhtnl page, the page will try to resolve the
messageli st context variable. Since this context variable is not initialized, Seam will call the
factory method fi ndMessages(), which performs a query against the database and results in
a Dat aMbdel being outjected. This Dat aMbdel provides the row data needed for rendering the
<h: dat aTabl e>.

When the user clicks the <h: conmandLi nk>, JSF calls the sel ect () action listener. Seam
intercepts this call and injects the selected row data into the nessage attribute of the
messageManager component. The action listener fires, marking the selected Message as read. At
the end of the call, Seam outjects the selected Message to the context variable named nessage.
Next, the EJB container commits the transaction, and the change to the Message is flushed to
the database. Finally, the page is re-rendered, redisplaying the message list, and displaying the
selected message below it.

If the user clicks the <h: commandBut t on>, JSF calls the del et e() action listener. Seam intercepts
this call and injects the selected row data into the nessage attribute of the nmessagelLi st
component. The action listener fires, removing the selected Message from the list, and also
calling renove() onthe Enti t yManager . At the end of the call, Seam refreshes the nessagelLi st
context variable and clears the context variable named nessage. The EJB container commits
the transaction, and deletes the Message from the database. Finally, the page is re-rendered,
redisplaying the message list.

1.4. Seam and |BPM: the todo list example

jBPM provides sophisticated functionality for workflow and task management. To get a small taste
of how jBPM integrates with Seam, we'll show you a simple "todo list" application. Since managing
lists of tasks is such core functionality for BPM, there is hardly any Java code at all in this example.

21

Chapter 1. Seam Tutorial

Y Todo List - Mozilla Firefox
File Edit View Go Bookmarks Tools Help

<&~ - &) @) [ntip:/fiocahost:8080/seam-todo/todo.seam v| @ 6o G

|[] Chapter 1. Seam Tutoral [Todo List |[#3Boss DVD Store

Todo List

Description Created Priority Due Date

|Bookﬂightto |sreal |Ja.n 13, 2006 |
|Getme stupid Seam release finished! |Jam 13, 2006 |1f1?fﬂ'5

Haircut Jan13,20063 | |

|Review Hibernate in Action second edition |Jan 13, 2006

|
|Kick Roy out of my office |Ja.n 13, 2006 |
|Blog aboutworkspace management |Jam 13, 2006 |

Update ltems

| |[Create New ltem]

1.4.1. Understanding the code

The center of this example is the jBPM process definition. There are also two JSFs and two trivial
JavaBeans (There was no reason to use session beans, since they do not access the database,
or have any other transactional behavior). Let's start with the process definition:

Example 1.14. todo.jpdl.xml

<process-definition name="todo">

<start-state name="start">]
<transition to="todo"/>
</start-state>

<task-node name="todo"> 2
<task name="todo" description="#{todoList.description}"> 3
<assignment actor-id="#{actor.id}"/> 4
</task>

<transition to="done"/>
</task-node>

22

Understanding the code

<end-state name="done"/> 5

</process-definition>

11 The <start-state> node represents the logical start of the process. When the process
starts, it immediately transitions to the t odo node.

2 The <t ask- node> node represents a wait state, where business process execution pauses,
waiting for one or more tasks to be performed.

32 The <t ask> element defines a task to be performed by a user. Since there is only one task
defined on this node, when it is complete, execution resumes, and we transition to the end
state. The task gets its description from a Seam component named t odoLi st (one of the
JavaBeans).

4 Tasks need to be assigned to a user or group of users when they are created. In this case,
the task is assigned to the current user, which we get from a built-in Seam component named
act or . Any Seam component may be used to perform task assignment.

5. The <end- st at e> node defines the logical end of the business process. When execution
reaches this node, the process instance is destroyed.

This document defines our business process as a graph of nodes. This is the most trivial possible
business process: there is one task to be performed, and when that task is complete, the business
process ends.

The first JavaBean handles the login screen | ogi n. xht m . Its job is just to initialize the jBPM actor
id using the act or component. In a real application, it would also need to authenticate the user.

Example 1.15. Login.java

@Name("login")
public class Login

{
@In
private Actor actor;

private String user;

public String getUser()
{

return user;

public void setUser(String user)

{

this.user = user;

23

Chapter 1. Seam Tutorial

public String login()

{
actor.setld(user);
return "/todo.xhtml";

Here we see the use of @ n to inject the built-in Act or component.

The JSF itself is trivial:

Example 1.16. login.xhtml

<?xml version="1.0" encoding="utf-8"?>
<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://lwww.w3.0rg/TR/xhtmI1/DTD/xhtml1-transitional.dtd">
<html xmlIns="http://www.w3.0rg/1999/xhtml"
xmins:s="http://jboss.org/schema/seam/taglib"
xmins:h="http://java.sun.com/jsf/html"
xmins:f="http://java.sun.com/jsf/core">
<h:head>
<title>Login</title>
</h:head>
<h:body>
<h1>Login</h1>
<fview>
<h:form id="login">
<div>
<h:inputText id="username" value="#{login.user}"/>
<h:commandButton id="submit" value="Login" action="#{login.login}"/>
</div>
</h:form>
</f.view>
</h:body>
</html>

The second JavaBean is responsible for starting business process instances, and ending tasks.

Example 1.17. TodoList.java

@Name("todoList")

24

Understanding the code

public class TodoList

{

private String description;

public String getDescription() 1
{

return description;

}

public void setDescription(String description)

{

this.description = description;

}

@CreateProcess(definition="todo")
public void createTodo() {}

@StartTask @EndTask
public void done() {}

11 The description property accepts user input from the JSF page, and exposes it to the process
definition, allowing the task description to be set.

2. The Seam @r eat ePr ocess annotation creates a new jBPM process instance for the named
process definition.

3 The Seam @5t art Task annotation starts work on a task. The @ndTask ends the task, and
allows the business process execution to resume.

In a more realistic example, @t art Task and @ndTask would not appear on the same method,
because there is usually work to be done using the application in order to complete the task.

Finally, the core of the application is in t odo. xht i :

Example 1.18. todo.xhtml

<?xml version="1.0" encoding="utf-8"?>
<IDOCTYPE html PUBLIC "-//W3C//IDTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmiIns="http://www.w3.0rg/1999/xhtml"
xmins:s="http://jboss.org/schema/seam/taglib"
xmlins:h="http://java.sun.com/jsf/html"
xmins:f="http://java.sun.com/jsf/core">

<head>

25

Chapter 1. Seam Tutorial

<title>Todo List</title>
</head>
<body>
<h1>Todo List</h1>
<f.view>
<h:form id="list">
<div>
<h:outputText id="noltems" value="There are no todo items." rendered="#{empty
taskinstancePriorityList}"/>
<h:dataTable id="items" value="#{taskinstancePriorityList}" var="task" rendered="#{not
empty taskinstancePriorityList}">
<h:column>
<f:.facet name="header">
<h:outputText value="Description"/>
</f.facet>
<h:inputText id="description" value="#{task.description}" style="width: 400"/>
</h:column>
<h:column>
<f:.facet name="header">
<h:outputText value="Created"/>
</f.facet>
<h:outputText value="#{task.taskMgmtinstance.processinstance.start}">
<f.convertDateTime type="date"/>
</h:outputText>
</h:column>
<h:column>
<f:.facet name="header">
<h:outputText value="Priority"/>
</f.facet>
<h:inputText id="priority" value="#{task.priority}" style="width: 30"/>
</h:column>
<h:column>
<f:.facet name="header">
<h:outputText value="Due Date"/>
</f.facet>
<h:inputText id="dueDate" value="#{task.dueDate}" style="width: 100">
<f.convertDateTime type="date" dateStyle="short"/>
</h:inputText>
</h:column>
<h:column>
<s:button id="done" action="#{todoList.done}" taskinstance="#{task}" value="Done"/>
</h:column>
</h:dataTable>
</div>

26

Understanding the code

<div>
<h:messages/>
</div>
<div>
<h:commandButton id="update" value="Update Items" rendered="#{not empty
taskinstancelList}"/>
</div>
</h:form>
<h:form id="new">
<div>
<h:inputText id="description" value="#{todoList.description}" style="width: 400"/>
<h:commandButton id="create" value="Create New ltem" action="#{todoList.createTodo}"/>
</div>
</h:form>
</f.view>
</body>
</html>

Let's take this one piece at a time.

The page renders a list of tasks, which it gets from a built-in Seam component named
t askl nst ancelLi st . The list is defined inside a JSF form.

Example 1.19. todo.xhtml

<h:form id="list">
<div>
<h:outputText value="There are no todo items." rendered="#{empty taskinstanceList}"/>
<h:dataTable value="#{tasklnstanceList}" var="task"
rendered="#{not empty taskinstanceList}">

</h:dataTable>
</div>
</h:form>

Each element of the list is an instance of the jBPM class Taskl nst ance. The following code simply
displays the interesting properties of each task in the list. For the description, priority and due
date, we use input controls, to allow the user to update these values.

<h:column>
<f:facet name="header">
<h:outputText value="Description"/>

27

Chapter 1. Seam Tutorial

</f:facet>
<h:inputText value="#{task.description}"/>
</h:column>
<h:column>
<f:.facet name="header">
<h:outputText value="Created"/>
</f:facet>
<h:outputText value="#{task.taskMgmtinstance.processinstance.start}">
<f.convertDateTime type="date"/>
</h:outputText>
</h:column>
<h:column>
<f:.facet name="header">
<h:outputText value="Priority"/>
</f.facet>
<h:inputText value="#{task.priority}" style="width: 30"/>
</h:column>
<h:column>
<f:.facet name="header">
<h:outputText value="Due Date"/>
</f.facet>
<h:inputText value="#{task.dueDate}" style="width: 100">
<f.convertDateTime type="date" dateStyle="short"/>
</h:inputText>
</h:column>

° Note

Seam provides a default JSF date converter for converting a string to a date (no
time). Thus, the converter is not necessary for the field bound to #{ t ask. dueDat e} .

This button ends the task by calling the action method annotated @t art Task @ndTask. It passes
the task id to Seam as a request parameter:

<h:column>
<s:button value="Done" action="#{todoList.done}" taskinstance="#{task}"/>
</h:column>

Note that this is using a Seam <s: but t on> JSF control from the seam ui . j ar package. This
button is used to update the properties of the tasks. When the form is submitted, Seam and jBPM
will make any changes to the tasks persistent. There is no need for any action listener method:

28

How it works

<h:commandButton value="Update Items" action="update"/>

A second form on the page is used to create new items, by calling the action method annotated

@cr eat ePr ocess.

<h:form id="new">
<div>
<h:inputText value="#{todoList.description}"/>
<h:commandButton value="Create New Item" action="#{todoList.createTodo}"/>
</div>
</h:form>

1.4.2. How it works

After logging in, todo.xhtml uses the taskl nst anceLi st component to display a table of
outstanding todo items for a the current user. Initially there are none. It also presents a form to
enter a new entry. When the user types the todo item and hits the "Create New Item" button,
#{t odoLi st. creat eTodo} is called. This starts the todo process, as defined in t odo. j pdl . xm .

The process instance is created, starting in the start state and immediately transition to the t odo
state, where a new task is created. The task description is set based on the user's input, which
was saved to #{t odoLi st . descri pti on}. Then, the task is assigned to the current user, which
was stored in the seam actor component. Note that in this example, the process has no extra
process state. All the state in this example is stored in the task definition. The process and task
information is stored in the database at the end of the request.

When t odo. xht mi is redisplayed, t askl nst anceLi st now finds the task that was just created.
The task is shown in an h: dat aTabl e. The internal state of the task is displayed in each column:
#{task. description}, #{task. priority}, #{task. dueDat e}, etc... These fields can all be
edited and saved back to the database.

Each todo item also has "Done" button, which calls #{t odoLi st . done} . Thet odoLi st component
knows which task the button is for because each s:button specificies t askl nst ance="#{t ask}",
referring to the task for that particular line of the table. The @st art Tast and @ndTask annotations
cause seam to make the task active and immediately complete the task. The original process then
transitions into the done state, according to the process definition, where it ends. The state of the
task and process are both updated in the database.

When t odo. xht nl is displayed again, the now-completed task is no longer displayed in the
t askl nst ancelLi st, since that component only display active tasks for the user.

29

Chapter 1. Seam Tutorial

1.5. Seam pageflow: the numberguess example

For Seam applications with relatively freeform (ad hoc) navigation, JSF/Seam navigation rules are
a perfectly good way to define the page flow. For applications with a more constrained style of
navigation, especially for user interfaces which are more stateful, navigation rules make it difficult
to really understand the flow of the system. To understand the flow, you need to piece it together
from the view pages, the actions and the navigation rules.

Seam allows you to use a jPDL process definition to define pageflow. The simple number guessing
example shows how this is done.

©) Guess a number... - Mozilla Firefox
File Edit View Go Bookmarks Tools Help

Q-EI - E:> - % @ | hittp://localhost:8080/seam-numberguess/numberGuess.seam?conversationld=1 v | ® Go [[GL

| [Chapter 1. Seam Tutorial |] Guess a number... }

Guess a number...

Lower!
I'm thinking of a number between 1 and 49. You have 9 guesses.
Your guess: 50 ‘ [Guess |

1.5.1. Understanding the code

The example is implemented using one JavaBean, three JSF pages and a jPDL pageflow
definition. Let's begin with the pageflow:

Example 1.20. pageflow.jpdl.xml

<pageflow-definition
xmlns="http://jboss.org/schema/seam/pageflow"
xmlins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://jboss.org/schema/seam/pageflow
http://jboss.org/schema/seam/pageflow-2.3.xsd"
name="numberGuess">

<start-page name="displayGuess" view-id="/numberGuess.xhtml|">
<redirect/>
<transition name="guess" to="evaluateGuess">

<action expression="#{numberGuess.guess}"/>

30

Understanding the code

</transition>

<transition name="giveup" to="giveup"/>

<transition name="cheat" to="cheat"/>
</start-page>

4

<decision name="evaluateGuess" expression="#{numberGuess.correctGuess}">
<transition name="true" to="win"/>
<transition name="false" to="evaluateRemainingGuesses"/>

</decision>

<decision name="evaluateRemainingGuesses" expression="#{numberGuess.lastGuess}">
<transition name="true" to="lose"/>
<transition name="false" to="displayGuess"/>

</decision>

<page name="giveup" view-id="/giveup.xhtml|">
<redirect/>
<transition name="yes" to="lose"/>
<transition name="no" to="displayGuess"/>
</page>

<process-state name="cheat">
<sub-process name="cheat"/>
<transition to="displayGuess"/>

</process-state>

<page name="win" view-id="/win.xhtm|">
<redirect/>
<end-conversation/>

</page>

<page name="lose" view-id="/lose.xhtml|">
<redirect/>
<end-conversation/>

</page>

</pageflow-definition>

11 The <page> element defines a wait state where the system displays a particular JSF view
and waits for user input. The vi ew i d is the same JSF view id used in plain JSF navigation
rules. The redirect attribute tells Seam to use post-then-redirect when navigating to the
page. (This results in friendly browser URLS.)

31

Chapter 1. Seam Tutorial

2z The <transiti on> element names a JSF outcome. The transition is triggered when a JSF
action results in that outcome. Execution will then proceed to the next node of the pageflow
graph, after invocation of any jBPM transition actions.

3 A transition <act i on> is just like a JSF action, except that it occurs when a jBPM transition
occurs. The transition action can invoke any Seam component.

4 A <deci si on> node branches the pageflow, and determines the next node to execute by
evaluating a JSF EL expression.

Now that we have seen the pageflow, it is very, very easy to understand the rest of the application!

Here is the main page of the application, nunber Guess. xht ni :

Example 1.21. numberGuess.xhtml

<IDOCTYPE html PUBLIC "-//W3C//IDTD XHTML 1.0 Transitional//EN" "http://www.w3.0rg/TR/
xhtml1/DTD/xhtml1-transitional.dtd">
<html xmiIns="http://www.w3.0rg/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/htm|"
xmins:f="http://java.sun.com/jsf/core"
xmlns:s="http://jboss.org/schema/seam/taglib">
<h:head>
<title>Guess a number...</title>
<link href="niceforms.css" rel="stylesheet" type="text/css" />
<script language="javascript" type="text/javascript" src="niceforms.js"><!-- --></script>
</h:head>
<h:body>
<h1>Guess a number...</h1>
<h:form id="NumberGuessMain" styleClass="niceform">

<div>
<h:messages id="messages" globalOnly="true"/>
<h:outputText id="Higher"
value="Higher!"
rendered="#{numberGuess.randomNumber gt numberGuess.currentGuess}"/>
<h:outputText id="Lower"
value="Lower!"
rendered="#{numberGuess.randomNumber It numberGuess.currentGuess}"/>
</div>

<div>
I'm thinking of a number between <h:outputText id="Smallest"
value="#{numberGuess.smallest}"/> and
<h:outputText id="Biggest" value="#{numberGuess.biggest}"/>. You have
<h:outputText id="RemainingGuesses" value="#{numberGuess.remainingGuesses}"/>
guesses.

32

Understanding the code

</div>

<div>
Your guess:
<h:inputText id="inputGuess" value="#{numberGuess.currentGuess}" required="true"
size="3"
rendered="#{(numberGuess.biggest-numberGuess.smallest) gt 20}">
<f.validateLongRange maximum="#{numberGuess.biggest}"
minimum="#{numberGuess.smallest}"/>
</h:inputText>
<h:selectOneMenu id="selectGuessMenu" value="#{numberGuess.currentGuess}"
required="true"
rendered="#{(numberGuess.biggest-numberGuess.smallest) le 20 and
(numberGuess.biggest-numberGuess.smallest) gt 4}">
<s:selectltems id="PossibilitiesMenultems" value="#{numberGuess.possibilities}"' var="i"
label="#{i}"/>
</h:selectOneMenu>
<h:selectOneRadio id="selectGuessRadio" value="#{numberGuess.currentGuess}"
required="true"
rendered="#{(humberGuess.biggest-numberGuess.smallest) le 4}">
<s:selectltems id="PossibilitiesRadioltems" value="#{numberGuess.possibilities}" var="i"
label="#{i}"/>
</h:selectOneRadio>
<h:commandButton id="GuessButton" value="Guess" action="guess"/>
<s:button id="CheatButton" value="Cheat" action="cheat"/>
<s:button id="GiveUpButton" value="Give up" action="giveup"/>
</div>

<div>
<h:message id="message" for="inputGuess" style="color: red"/>
</div>

</h:form>
</h:body>
</html|>

Notice how the command button names the guess transition instead of calling an action directly.

The wi n. xht ml page is predictable:

Example 1.22. win.xhtml

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional/EN" "http://www.w3.0rg/TR/
xhtml1/DTD/xhtml1-transitional.dtd">

33

Chapter 1. Seam Tutorial

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlIns:h="http://java.sun.com/jsf/html"
xmins:f="http://java.sun.com/jsf/core"
xmlins:s="http://jboss.org/schema/seam/taglib">
<h:head>
<title>You won!</title>
<link href="niceforms.css" rel="stylesheet" type="text/css" />
</h:head>
<h:body>
<h1>You won!</h1>
Yes, the answer was <h:outputText id="CurrentGuess"
value="#{numberGuess.currentGuess}" />.
It took you <h:outputText id="GuessCount" value="#{numberGuess.guessCount}" /> guesses.
<h:outputText id="CheatedMessage" value="But you cheated, so it doesn't count!"
rendered="#{numberGuess.cheat}"/>
Would you like to play again?
</h:body>
</html>

The | ose. xht m looks roughly the same, so we'll skip over it.

Finally, we'll look at the actual application code:

Example 1.23. NumberGuess.java

@Name('numberGuess")
@Scope(ScopeType. CONVERSATION)
public class NumberGuess implements Serializable {

private int randomNumber;
private Integer currentGuess;
private int biggest;

private int smallest;

private int guessCount;
private int maxGuesses;
private boolean cheated;

@Create 1
public void begin()
{
randomNumber = new Random().nextint(100);
guessCount = 0;
biggest = 100;

34

Understanding the code

smallest = 1;

public void setCurrentGuess(Integer guess)

{

this.currentGuess = guess;

}

public Integer getCurrentGuess()

{

return currentGuess;

public void guess()

{

if (currentGuess>randomNumber)

{

biggest = currentGuess - 1;

}

if (currentGuess<randomNumber)

{
smallest = currentGuess + 1;
}
guessCount ++;
}

public boolean isCorrectGuess()

{

return currentGuess==randomNumber;

public int getBiggest()
{

return biggest;

}

public int getSmallest()
{

return smallest;

public int getGuessCount()
{

return guessCount;

35

Chapter 1. Seam Tutorial

}
public boolean isLastGuess()
{
return guessCount==maxGuesses;
}

public int getRemainingGuesses() {
return maxGuesses-guessCount;

public void setMaxGuesses(int maxGuesses) {
this.maxGuesses = maxGuesses;

public int getMaxGuesses() {
return maxGuesses;

public int getRandomNumber() {
return randomNumber;

}
public void cheated()
{
cheated = true;
}

public boolean isCheat() {
return cheated,;

public List<Integer> getPossibilities()

{
List<Integer> result = new ArrayList<Integer>();
for(int i=smallest; i<=biggest; i++) result.add(i);
return result;

11 The first time a JSF page asks for a nunber Guess component, Seam will create a new one
for it, and the @r eat e method will be invoked, allowing the component to initialize itself.

36

How it works

The pages. xnl file starts a Seam conversation (much more about that later), and specifies the
pageflow definition to use for the conversation's page flow.

Example 1.24. pages.xml

<?xml version="1.0" encoding="UTF-8"?>

<pages xmlns="http://jboss.org/schema/seam/pages”
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://jboss.org/schema/seam/pages http://jboss.org/schema/seam/

pages-2.3.xsd">

<page view-id="/numberGuess.xhtml">
<begin-conversation join="true" pageflow="numberGuess"/>
</page>

</pages>

As you can see, this Seam component is pure business logic! It doesn't need to know anything at
all about the user interaction flow. This makes the component potentially more reuseable.

1.5.2. How it works

We'll step through basic flow of the application. The game starts with the nunber Guess. xht ni
view. When the page is first displayed, the pages. xm configuration causes conversation to begin
and associates the nunber Guess pageflow with that conversation. The pageflow starts with a
st art - page tag, which is a wait state, so the nunber Guess. xht nl is rendered.

The view references the nunber Guess component, causing a new instance to be created and
stored in the conversation. The @r eat e method is called, initializing the state of the game. The
view displays an h: f or mthat allows the user to edit #{ nunber Guess. cur r ent Guess}.

The "Guess" button triggers the guess action. Seam defers to the pageflow to handle the
action, which says that the pageflow should transition to the eval uat eGuess state, first invoking
#{ nunber Guess. guess}, which updates the guess count and highest/lowest suggestions in the
nunber Guess component.

The eval uat eGuess state checks the value of #{ nunber Guess. correct Guess} and transitions
either to the wi n or eval uat i ngRemai ni ngGuesses state. We'll assume the number was incorrect,
in which case the pageflow transitions to eval uat i ngRemai ni ngGuesses. That is also a decision
state, which tests the #{ nunber Guess. | ast Guess} state to determine whether or not the user
has more guesses. If there are more guesses (I ast Guess is f al se), we transition back to the
original di spl ayGQuess state. Finally we've reached a page state, so the associated page /
nunber Guess. xht nl is displayed. Since the page has a redirect element, Seam sends a redirect
to the user's browser, starting the process over.

37

Chapter 1. Seam Tutorial

We won't follow the state any more except to note that if on a future request either the wi n or the
| ose transition were taken, the user would be taken to either the / wi n. xhtml or /| ose. xht m .
Both states specify that Seam should end the conversation, tossing away all the game state and
pageflow state, before redirecting the user to the final page.

The numberguess example also contains Giveup and Cheat buttons. You should be able to trace
the pageflow state for both actions relatively easily. Pay particular attention to the cheat transition,
which loads a sub-process to handle that flow. Although it's overkill for this application, it does
demonstrate how complex pageflows can be broken down into smaller parts to make them easier
to understand.

1.6. A complete Seam application: the Hotel Booking
example

1.6.1. Introduction

The booking application is a complete hotel room reservation system incorporating the following
features:

 User registration

* Login

e Logout

» Set password

» Hotel search

* Hotel selection

* Room reservation

» Reservation confirmation

 Existing reservation list

38

Introduction

jboss suites

State management in
Seam

State in Seam is contextual.
When you click "Find
Hotels", the application
retrieves a list of hotels
from the database and
caches it in the session
context. When you navigate
to one of the hotel records
by clicking the "View Hotel"
link, a conversation begins.
The conversation is
attached to a particular
tab, in a particular browser
window. You can navigate
to multiple hotels using
"open in new tab" or "open
in new window" in your web
browser. Each window will
execute in the context of a
different conversation. The
application keeps state
associated with your hotel
booking in the conversation
context, which ensures that
the concurrent
conversations do not
interfere with each other.

How does the search page

work?

seam framework demo

Thank you, Gavin King, your confimation number for Doubletree is 1

Search Hotels

Atlanta

Maximum results: 10¥

Name Address

Marriott Tower Place,

Courtyard Buckhead
Tower Place

Doubletree '
Buckhead

Ritz Carlton Peachtree Rd,

Buckhead

Current Hotel Bookings

City
Name Address r
State
Tower
Doubletree Place, 'égaﬂta;
Buckhead

Find Hotels

Check
in
date

Apr 16,
2006

City, State

Atlanta, GA,
usa

Atlanta, GA,
usa

Atlanta, GA,
usa

Zip Action
30305 %
30305 %
30326 %

Check .

out Confirmation Action
number

date

Apr 17,

2006 1 Cancel

Created with JBoss EJB 3.0, Seam, MyFaces, and Facelets

The booking application uses JSF 2, EJB 3.0 and Seam, together with Facelets for the view. There
is also a port of this application to JSF 2, Seam, JavaBeans and Hibernate4.

One of the things you'll notice if you play with this application for long enough is that it is extremely
robust. You can play with back buttons and browser refresh and opening multiple windows and
entering nonsensical data as much as you like and you will find it very difficult to make the

39

Chapter 1. Seam Tutorial

application crash. You might think that we spent weeks testing and fixing bugs to achieve this.
Actually, this is not the case. Seam was designed to make it very straightforward to build robust
web applications and a lot of robustness that you are probably used to having to code yourself
comes naturally and automatically with Seam.

As you browse the sourcecode of the example application, and learn how the application works,
observe how the declarative state management and integrated validation has been used to
achieve this robustness.

1.6.2. Overview of the booking example

The project structure is identical to the previous one, to install and deploy this application, please
refer to Section 1.1, “Using the Seam examples”. Once you've successfully started the application,
you can access it by pointing your browser to http://1 ocal host: 8080/ seam booki ng/ [http://
localhost:8080/seam-booking/]

The application uses six session beans for to implement the business logic for the listed features.

e Aut henti cat or Act i on provides the login authentication logic.
* Booki ngLi st Act i on retrieves existing bookings for the currently logged in user.
» ChangePasswor dAct i on updates the password of the currently logged in user.

* Hot el Booki ngAct i on implements booking and confirmation functionality. This functionality is
implemented as a conversation, so this is one of the most interesting classes in the application.

* Hot el Sear chi ngAct i on implements the hotel search functionality.
* Regi st er Acti on registers a new system user.

Three entity beans implement the application's persistent domain model.

e Hot el is an entity bean that represent a hotel
» Booki ng is an entity bean that represents an existing booking

e User is an entity bean to represents a user who can make hotel bookings

1.6.3. Understanding Seam conversations

We encourage you browse the sourcecode at your pleasure. In this tutorial we'll concentrate
upon one particular piece of functionality: hotel search, selection, booking and confirmation. From
the point of view of the user, everything from selecting a hotel to confirming a booking is one
continuous unit of work, a conversation. Searching, however, is not part of the conversation. The
user can select multiple hotels from the same search results page, in different browser tabs.

Most web application architectures have no first class construct to represent a conversation. This
causes enormous problems managing conversational state. Usually, Java web applications use a
combination of several techniques. Some state can be transfered in the URL. What can't is either

40

http://localhost:8080/seam-booking/
http://localhost:8080/seam-booking/
http://localhost:8080/seam-booking/

Understanding Seam conversations

thrown into the Ht t pSessi on or flushed to the database after every request, and reconstructed
from the database at the beginning of each new request.

Since the database is the least scalable tier, this often results in an utterly unacceptable lack of
scalability. Added latency is also a problem, due to the extra traffic to and from the database on
every request. To reduce this redundant traffic, Java applications often introduce a data (second-
level) cache that keeps commonly accessed data between requests. This cache is necessarily
inefficient, because invalidation is based upon an LRU policy instead of being based upon when
the user has finished working with the data. Furthermore, because the cache is shared between
many concurrent transactions, we've introduced a whole raft of problem's associated with keeping
the cached state consistent with the database.

Now consider the state held in the Ht t pSessi on. The HttpSession is great place for true session
data, data that is common to all requests that the user has with the application. However, it's a bad
place to store data related to individual series of requests. Using the session of conversational
quickly breaks down when dealing with the back button and multiple windows. On top of that,
without careful programming, data in the HTTP Session can grow quite large, making the HTTP
session difficult to cluster. Developing mechanisms to isolate session state associated with
different concurrent conversations, and incorporating failsafes to ensure that conversation state
is destroyed when the user aborts one of the conversations by closing a browser window or tab
is not for the faint hearted. Fortunately, with Seam, you don't have to worry about that.

Seam introduces the conversation context as a first class construct. You can safely keep
conversational state in this context, and be assured that it will have a well-defined lifecycle. Even
better, you won't need to be continually pushing data back and forth between the application
server and the database, since the conversation context is a natural cache of data that the user
is currently working with.

In this application, we'll use the conversation context to store stateful session beans. There is
an ancient canard in the Java community that stateful session beans are a scalability killer. This
may have been true in the early days of enterprise Java, but it is no longer true today. Modern
application servers have extremely sophisticated mechanisms for stateful session bean state
replication. JBoss AS, for example, performs fine-grained replication, replicating only those bean
attribute values which actually changed. Note that all the traditional technical arguments for why
stateful beans are inefficient apply equally to the Ht t pSessi on, so the practice of shifting state from
business tier stateful session bean components to the web session to try and improve performance
is unbelievably misguided. It is certainly possible to write unscalable applications using stateful
session beans, by using stateful beans incorrectly, or by using them for the wrong thing. But that
doesn't mean you should never use them. If you remain unconvinced, Seam allows the use of
POJOs instead of stateful session beans. With Seam, the choice is yours.

The booking example application shows how stateful components with different scopes can
collaborate together to achieve complex behaviors. The main page of the booking application
allows the user to search for hotels. The search results are kept in the Seam session scope. When
the user navigates to one of these hotels, a conversation begins, and a conversation scoped
component calls back to the session scoped component to retrieve the selected hotel.

41

Chapter 1. Seam Tutorial

The booking example also demonstrates the use of RichFaces Ajax to implement rich client
behavior without the use of handwritten JavaScript.

The search functionality is implemented using a session-scope stateful session bean, similar to
the one we saw in the message list example.

Example 1.25. HotelSearchingAction.java
@Stateful 1

@Name("hotelSearch")
@Scope(ScopeType.SESSION)

@Restrict("#{identity.loggedIn}") 2
public class HotelSearchingAction implements HotelSearching
{

@PersistenceContext
private EntityManager em;

private String searchString;
private int pageSize = 10;
private int page;

@DataModel 3
private List<Hotel> hotels;

public void find()
{
page = 0;
gueryHotels();

}
public void nextPage()

{
page++;
queryHotels();
}

private void queryHotels()
{
hotels =
em.createQuery("select h from Hotel h where lower(h.name) like #{pattern} " +
"or lower(h.city) like #{pattern} " +
"or lower(h.zip) like #{pattern} " +
"or lower(h.address) like #{pattern}")
.setMaxResults(pageSize)

42

Understanding Seam conversations

.setFirstResult(page * pageSize)
.getResultList();

public boolean isNextPageAvailable()
{

return hotels!=null && hotels.size()==pageSize;

}

public int getPageSize() {
return pageSize;

}

public void setPageSize(int pageSize) {
this.pageSize = pageSize;
}

@Factory(value="pattern", scope=ScopeType.EVENT)
public String getSearchPattern()
{
return searchString==null ?
"%" :'%' + searchString.toLowerCase().replace(™, '%'") + '%';

public String getSearchString()
{

return searchString;

}

public void setSearchString(String searchString)
{

this.searchString = searchString;

}

@Remove
public void destroy() {}

}

11 The EJB standard @t at ef ul annotation identifies this class as a stateful session bean.
Stateful session beans are scoped to the conversation context by default.

2 The @Restri ct annotation applies a security restriction to the component. It restricts access
to the component allowing only logged-in users. The security chapter explains more about
security in Seam.

43

Chapter 1. Seam Tutorial

3 The @pat aMbdel annotation exposes a Li st as a JSF Li st Dat aMbdel . This makes it easy
to implement clickable lists for search screens. In this case, the list of hotels is exposed to
the page as a Li st Dat aMbdel in the conversation variable named hot el s.

4 The EJB standard @Renove annotation specifies that a stateful session bean should be
removed and its state destroyed after invocation of the annotated method. In Seam, all
stateful session beans must define a method with no parameters marked @enove. This
method will be called when Seam destroys the session context.

The main page of the application is a Facelets page. Let's look at the fragment which relates to
searching for hotels:

Example 1.26. main.xhtml

<div class="section">

<h:messages id="messages" globalOnly="true"/>

<h1>Search Hotels</h1>

<h:form id="searchCriteria">
<fieldset>
<h:inputText id="searchString" value="#{hotelSearch.searchString}" style="width: 165px;">
<a:ajax event="keyup" render="searchResults" listener="#{hotelSearch.find}"/>
</h:inputText> g

<a:commandButton id="findHotels" value="Find Hotels" actionListener="#{hotelSearch.find}"
render="searchResults"/>

<a:status id="status">
<f:facet id="StartStatus" name="start">
<h:graphiclmage id="SpinnerGif" value="/img/spinner.gif"/> 2
</f:facet>
</a:status>

<h:outputLabel id="MaximumResultsLabel" for="pageSize">Maximum results:</
h:outputLabel>
<h:selectOneMenu id="pageSize" value="#{hotelSearch.pageSize}">
<f:selectltem id="PageSize5" itemLabel="5" itemValue="5"/>
<f:selectltem id="PageSizel0" itemLabel="10" itemValue="10"/>
<f:selectltem id="PageSize20" itemLabel="20" itemValue="20"/>
</h:selectOneMenu>

44

Understanding Seam conversations

</fieldset>
</h:form>

</div>

<a:outputPanel id="searchResults">
<div class="section">

<h:outputText id="NoHotelsFoundMessage" value="No Hotels Found" rendered="# 2 {hotels !
= null and hotels.rowCount==0}"/>
<h:dataTable id="hotels" value="#{hotels}" var="hot" rendered="#{hotels.rowCount>0}">
<h:column id="column1">
<f:facet id="NameFacet" name="header">Name</f:facet>
#{hot.name}
</h:column>
<h:column id="column2">
<f:facet id="AddressFacet" name="header">Address</f:facet>
#{hot.address}
</h:column>
<h:column id="column3">
<f:facet id="CityStateFacet" name="header">City, State</f:facet>
#{hot.city}, #{hot.state}, #{hot.country}
</h:column>
<h:column id="column4">
<f:facet id="ZipFacet" hame="header">Zip</f:facet>
#{hot.zip}
</h:column>
<h:column id="column5">
<f:facet id="ActionFacet" name="header">Action</f:facet>
<s:link id="viewHotel" value="View Hotel" action="#{hotelBooking.selectHotel(hot)}"'/>
</h:column>
</h:dataTable>
<s:link id="MoreResultsLink" value="More results" action="#{hotelSearch.nextPage}"
rendered="#{hotelSearch.nextPageAvailable}"'/>

</div> 4

</a:outputPanel>

11 The RichFaces <a: aj ax>tag allows a JSF action event listener to be called by asynchronous
XM_Ht t pRequest when a JavaScript event like onkeyup occurs. Even better, the r ender
attribute lets us render a fragment of the JSF page and perform a partial page update when
the asynchronous response is received.

2 The RichFaces <a: st atus> tag lets us display an animated image while we wait for
asynchronous requests to return.

45

Chapter 1. Seam Tutorial

3 The RichFaces <a: out put Panel > tag defines a region of the page which can be re-rendered
by an asynchronous request.

4 The Seam <s: | i nk> tag lets us attach a JSF action listener to an ordinary (non-JavaScript)
HTML link. The advantage of this over the standard JSF <h: commandLi nk> is that it preserves
the operation of "open in new window" and "open in new tab".

If you're wondering how navigation occurs, you can find all the rules in WVEB- | NF/ pages. xni ;
this is discussed in Section 7.7, “Navigation”.

This page displays the search results dynamically as we type, and lets us choose a hotel and pass
itto the sel ect Hot el () method of the Hot el Booki ngAct i on, which is where the really interesting
stuff is going to happen.

Now let's see how the booking example application uses a conversation-scoped stateful session
bean to achieve a natural cache of persistent data related to the conversation. The following code
example is pretty long. But if you think of it as a list of scripted actions that implement the various
steps of the conversation, it's understandable. Read the class from top to bottom, as if it were
a story.

Example 1.27. HotelBookingAction.java

@ Stateful

@Name("hotelBooking")

@Restrict("#{identity.loggedIn}")

public class HotelBookingAction implements HotelBooking

{

@PersistenceContext(type=EXTENDED) 1
private EntityManager em;

@In
private User user;

@In(required=false) @Out
private Hotel hotel;

@In(required=false)
@Out(required=false) 2
private Booking booking;

@In
private FacesMessages facesMessages;

@In
private Events events;

46

Understanding Seam conversations

@Logger
private Log log;

private boolean bookingValid;

@Begin 3
public void selectHotel(Hotel selectedHotel)

{

hotel = em.merge(selectedHotel);

}

public void bookHotel()

{
booking = new Booking(hotel, user);
Calendar calendar = Calendar.getinstance();
booking.setCheckinDate(calendar.getTime());
calendar.add(Calendar.DAY_OF_MONTH, 1);
booking.setCheckoutDate(calendar.getTime());

public void setBookingDetails()

{
Calendar calendar = Calendar.getinstance();
calendar.add(Calendar.DAY_OF_MONTH, -1);
if (booking.getCheckinDate().before(calendar.getTime()))

{

facesMessages.addToControl("checkinDate", "Check in date must be a future date");

bookingValid=false;
}
else if (!booking.getCheckinDate().before(booking.getCheckoutDate()))
{
facesMessages.addToControl("checkoutDate",
"Check out date must be later than check in date");
bookingValid=false;
}
else
{
bookingValid=true;
}
}

public boolean isBookingValid()
{

47

Chapter 1. Seam Tutorial

return bookingValid;

@End c.
public void confirm()
{
em.persist(booking);
facesMessages.add("Thank you, #{user.name}, your confimation number " +
" for #{hotel.name} is #{booki g.id}");
log.info("New booking: #{booking.id} for #{user.username}");
events.raiseTransactionSuccessEvent("bookingConfirmed");

@End
public void cancel() {}

@Remove .
public void destroy() {}

1. This bean uses an EJB3 extended persistence context, so that any entity instances remain
managed for the whole lifecycle of the stateful session bean.

2z The @ut annotation declares that an attribute value is outjected to a context variable after
method invocations. In this case, the context variable named hot el will be set to the value
of the hot el instance variable after every action listener invocation completes.

3 The @Begin annotation specifies that the annotated method begins a long-running
conversation, so the current conversation context will not be destroyed at the end of the
request. Instead, it will be reassociated with every request from the current window, and
destroyed either by timeout due to conversation inactivity or invocation of a matching @nd
method.

4 The @nd annotation specifies that the annotated method ends the current long-running
conversation, so the current conversation context will be destroyed at the end of the request.

5 This EJB remove method will be called when Seam destroys the conversation context. Don't
forget to define this method!

Hot el Booki ngAct i on contains all the action listener methods that implement selection, booking
and booking confirmation, and holds state related to this work in its instance variables. We think
you'll agree that this code is much cleaner and simpler than getting and setting Ht t pSessi on
attributes.

Even better, a user can have multiple isolated conversations per login session. Try it! Log in, run
a search, and navigate to different hotel pages in multiple browser tabs. You'll be able to work
on creating two different hotel reservations at the same time. If you leave any one conversation
inactive for long enough, Seam will eventually time out that conversation and destroy its state. If,
after ending a conversation, you backbutton to a page of that conversation and try to perform an

48

The Seam Debug Page

action, Seam will detect that the conversation was already ended, and redirect you to the search
page.

1.6.4. The Seam Debug Page

The WAR also includes seam debug. j ar. The Seam debug page will be available if this jar is
deployed in VEB- | NF/ | i b, along with the Facelets, and if you set the debug property of the i ni t
component:

<core:init jndi-pattern="@jndiPattern@" debug="true"/>

This page lets you browse and inspect the Seam components in any of the Seam contexts
associated with your current login session. Just point your browser at htt p:// 1 ocal host: 8080/
seam booki ng/ debug. seam [http://localhost:8080/seam-booking/debug.seam].

49

http://localhost:8080/seam-booking/debug.seam
http://localhost:8080/seam-booking/debug.seam
http://localhost:8080/seam-booking/debug.seam

Chapter 1. Seam Tutorial

JBoss Seam Debug Page

This page allows you to view and inspect any component in any Seam context associated with the current session.

Conversations

conversation id activity description view id

4 1:51:34 AM - 1:51:34 AM Search hotels: M fmain.xhtml Select conversation context
6 1:57:40 AM - 1:52:23 AM Book hotel: Marriott Courtyard fbook.xhtml Select conversation context

- Component (booking)

checkinDate Fri Jan 20 20:52:20 EST 2006

checkoutDate Sat.Jan 21 20:52:20 EST 2006

class class org.jboss.seam.example.booking.Booking
creditCard

description Marriott Courtyard, Jan 20, 2006 to Jan 21, 2006
hotel Hotel{Tower Place, Buckhead, Atlanta,30305)

id

user User(gavin)

- Conversation Context (6)

booking

conversation

hotel

hotelBooking
hotels

- Business Process Context
Empty business process context
+ Session Context

+ Application Context

1.7. Nested conversations: extending the Hotel Booking
example

1.7.1. Introduction

Long-running conversations make it simple to maintain consistency of state in an application
even in the face of multi-window operation and back-buttoning. Unfortunately, simply beginning
and ending a long-running conversation is not always enough. Depending on the requirements
of the application, inconsistencies between what the user's expectations and the reality of the
application’s state can still result.

50

Introduction

The nested booking application extends the features of the hotel booking application to incorporate
the selection of rooms. Each hotel has available rooms with descriptions for a user to select from.
This requires the addition of a room selection page in the hotel reservation flow.

jboss suites

Mesting conversations
Mested conversations

allow the application to
capture a consistent
continuable state at
yarious points in a user
interaction, thus insuring
truly correct behavior in
the face of backbuttoning
and workspace
management,

How Seam manages
continuable state

Seam provides a container
for context state for each
nested conversation, &ny
contextual variable in the
outer conversations
context will not be
overwritten by a new
value, the value will simply
be stored in the new
context container, This
allows each nested
conversation to maintain
its own unigue state,

seam framework demo

Welcome Jacob Orshalick |Search |Settings |Logout

Foom Preference

Rooms available for the dates selected: Tue Cct 14 00:00:00 COT 20082
“wed Qct 15 00:00:00 CODT 2008

Mame

Wonderful
Foom

Spectacular
Foom

Fantastic
Suite

YWorkspaces

Eoom Preference: W Hotel [current]

Description

Cne king bed, Desk, Cable/satellite TV
with pay movies and OWVD player, CD
player. Coffeeftea maker and minibar,
Hair dryer, Ironfironing board. In-room
safe. Complimentary newspaper.

one king bed, Desk, Cable/satellite TV
with pay movies and OWD playver, CD
player, Coffeeftea maker and minibar.
Hair dryer. Ironfironing board. In-room
safe. Complimentary newspaper.

Cne king bed, Desk, Cable/satellite TV
with pay movies and OWVD player, CD
player. Coffeeftea maker and minibar,
Hair dryer, Ironfironing board, In-room
safe. Complimentary newspaper.

Per
Might

£450.00

£500.00

£1,000,00

0g:28 -08:28

Action

Select

Select

Select

Created with JBoss EIB 2.0, Seam, MyFaces, and Facelets

The user now has the option to select any available room to be included in the booking. As with
the hotel booking application we saw previously, this can lead to issues with state consistency.
As with storing state in the HTTPSessi on, if a conversation variable changes it affects all windows
operating within the same conversation context.

51

Chapter 1. Seam Tutorial

To demonstrate this, let's suppose the user clones the room selection screen in a new window.
The user then selects the Wonderful Room and proceeds to the confirmation screen. To see just
how much it would cost to live the high-life, the user returns to the original window, selects the
Fantastic Suite for booking, and again proceeds to confirmation. After reviewing the total cost,
the user decides that practicality wins out and returns to the window showing Wonderful Room
to confirm.

In this scenario, if we simply store all state in the conversation, we are not protected from multi-
window operation within the same conversation. Nested conversations allow us to achieve correct
behavior even when context can vary within the same conversation.

1.7.2. Understanding Nested Conversations

Now let's see how the nested booking example extends the behavior of the hotel booking
application through use of nested conversations. Again, we can read the class from top to bottom,
as if it were a story.

Example 1.28. RoomPreferenceAction.java

@Stateful

@Name("roomPreference")

@Restrict("#{identity.loggedIn}")

public class RoomPreferenceAction implements RoomPreference

{

@Logger
private Log log;

@In private Hotel hotel;
@In private Booking booking;

@DataModel(value="availableRooms")
private List<Room> availableRooms;

@DataModelSelection(value="availableRooms")
private Room roomSelection;

@In(required=false, value="roomSelection")
@Out(required=false, value="roomSelection")
private Room room;

@Factory("availableRooms")

public void loadAvailableRooms() 1

{

52

Understanding Nested Conversations

availableRooms = hotel.getAvailableRooms(booking.getCheckinDate(), booking.getCheckoutDate());
log.info("Retrieved #0 available rooms", availableRooms.size());

}

public BigDecimal getExpectedPrice()
{

log.info("Retrieving price for room #0", roomSelection.getName());

return booking.getTotal(roomSelection);

}

@Begin(nested=true) 2
public String selectPreference()

{

log.info("Room selected");

this.room = this.roomSelection; 3

return "payment”;

}

public String requestConfirmation()

{

/I all validations are performed through the s:validateAll, so checks are already
/I performed
log.info("Request confirmation from user");

return "confirm";

@End(beforeRedirect=true)

public String cancel() 4

{

log.info("ending conversation");

return "cancel";

@Destroy @Remove
public void destroy() {}

}

53

Chapter 1. Seam Tutorial

The hot el instance is injected from the conversation context. The hotel is loaded through
an extended persistence context so that the entity remains managed throughout the
conversation. This allows us to lazily load the avai | abl eRoons through an @act or y method
by simply walking the association.

When @Begi n(nested=true) is encountered, a nested conversation is pushed onto the
conversation stack. When executing within a nested conversation, components still have
access to all outer conversation state, but setting any values in the nested conversation’s
state container does not affect the outer conversation. In addition, nested conversations can
exist concurrently stacked on the same outer conversation, allowing independent state for
each.

The r oonBel ecti on is outjected to the conversation based on the @at aModel Sel ecti on.
Note that because the nested conversation has an independent context, the r oontel ecti on
is only set into the new nested conversation. Should the user select a different preference in
another window or tab a new nested conversation would be started.

The @nd annotation pops the conversation stack and resumes the outer conversation. The
roonBel ecti on is destroyed along with the conversation context.

When we begin a nested conversation it is pushed onto the conversation stack. In the
nest edbooki ng example, the conversation stack consists of the outer long-running conversation
(the booking) and each of the nested conversations (room selections).

Example 1.29. rooms.xhtml

<div class="section">
<hl1>Room Preference</h1>
</div>
<div class="section">
<h:form id="room_selections_form">

<div class="section">

<h:outputText styleClass="output" value="No rooms available for the dates selected: "

rendered="#{availableRooms != null and availableRooms.rowCount == 0}"/>

<h:outputText styleClass="output" value="Rooms available for the dates selected: "

rendered="#{availableRooms != null and availableRooms.rowCount > 0}"/>

<h:outputText styleClass="output" value="#{booking.checkinDate}"/> -
<h:outputText styleClass="output" value="#{booking.checkoutDate}"/>

<h:dataTable id="rooms" value="#{availableRooms}" var="room"

rendered=""1#{availableRooms.rowCount > 0}">

<h:column>
<f:facet name="header">Name</f:facet>
#{room.name}

</h:column>

<h:column>
<f:facet name="header">Description</f:facet>

54

Understanding Nested Conversations

#{room.description}
</h:column>
<h:column>
<f:facet name="header">Per Night</f:facet>
<h:outputText value="#{room.price}">
<f:convertNumber type="currency" currencySymbol="$"/>
</h:outputText>
</h:column>
<h:column>
<f:facet name="header">Action</f:facet>
<h:commandLink id="selectRoomPreference"

action="#{roomPreference 2 .selectPreference}">Select</h:commandLink>
</h:column>
</h:dataTable>
</div>
<div class="entry">
<div class="label"> </div>
<div class="input">
<s:button id="cancel" value="Revise Dates" view="/book.xhtml"/> 3
</div>
</div>
</h:form>
</div>

11 When requested from EL, the #{avai | abl eRoons} are loaded by the @actory method
defined in RoonPr ef er enceAct i on. The @act or y method will only be executed once to load
the values into the current context as a @at aMbdel instance.

2z Invoking the #{roonPreference. sel ect Preference} action results in the row being
selected and set into the @at aMbdel Sel ecti on. This value is then outjected to the nested
conversation context.

3 Revising the dates simply returns to the / book. xht nl . Note that we have not yet nested
a conversation (no room preference has been selected), so the current conversation can
simply be resumed. The <s: but t on> component simply propagates the current conversation
when displaying the / book. xht m view.

Now that we have seen how to nest a conversation, let's see how we can confirm the booking
once a room has been selected. This can be achieved by simply extending the behavior of the
Hot el Booki ngActi on.

Example 1.30. HotelBookingAction.java

@Stateful
@Name("hotelBooking")

55

Chapter 1. Seam Tutorial

@Restrict("#{identity.loggedIn}")
public class HotelBookingAction implements HotelBooking

{

@PersistenceContext(type=EXTENDED)
private EntityManager em;

@In
private User user;

@In(required=false) @Out
private Hotel hotel;

@In(required=false)
@Out(required=false)
private Booking booking;

@In(required=false)
private Room roomSelection;

@In

private FacesMessages facesMessages;

@In
private Events events;

@Logger
private Log log;

@Begin

public void selectHotel(Hotel selectedHotel)

{
log.info("Selected hotel #0", selectedHotel.getName());
hotel = em.merge(selectedHotel);

}

public String setBookingDates()

{
/I the result will indicate whether or not to begin the nested conversation
/I as well as the navigation. if a null result is returned, the nested
/I conversation will not begin, and the user will be returned to the current
/I page to fix validation issues
String result = null;

56

Understanding Nested Conversations

Calendar calendar = Calendar.getinstance();
calendar.add(Calendar.DAY_OF_MONTH, -1);

/I validate what we have received from the user so far
if (booking.getCheckinDate().before(calendar.getTime()))
{

facesMessages.addToControl("checkinDate", "Check in date must be a future date");

}
else if (!booking.getCheckinDate().before(booking.getCheckoutDate()))

{
facesMessages.addToControl("checkoutDate", "Check out date must be later than check
in date");
}
else
{

result = "rooms";

}

return result;

public void bookHotel()

{
booking = new Booking(hotel, user);
Calendar calendar = Calendar.getinstance();
booking.setCheckinDate(calendar.getTime());
calendar.add(Calendar.DAY_OF MONTH, 1);
booking.setCheckoutDate(calendar.getTime());

@End(root=true)

public void confirm() 1

{
/I on confirmation we set the room preference in the booking. the room preference
/I will be injected based on the nested conversation we are in.
booking.setRoomPreference(roomSelection);

em.persist(booking);

facesMessages.add("Thank you, #{user.name}, your confimation number for #{hotel.name}
is #{booking.id}");

log.info("New booking: #{booking.id} for #{user.username}");

events.raiseTransactionSuccessEvent("bookingConfirmed");

}

57

Chapter 1. Seam Tutorial

@End(root=true, beforeRedirect=true) 3
public void cancel() {}

@Destroy @Remove
public void destroy() {}

Annotating an action with @nd(r oot =t rue) ends the root conversation which effectively
destroys the entire conversation stack. When any conversation is ended, its nested
conversations are ended as well. As the root is the conversation that started it all, this is a
simple way to destroy and release all state associated with a workspace once the booking
is confirmed.

The roonsel ection is only associated with the booki ng on user confirmation. While
outjecting values to the nested conversation context will not impact the outer conversation,
any objects injected from the outer conversation are injected by reference. This means that
any changing to these objects will be reflected in the parent conversation as well as other
concurrent nested conversations.

By simply annotating the cancellation action with @nd(r oot =t r ue,
bef oreRedi rect =true) we can easily destroy and release all state associated with the
workspace prior to redirecting the user back to the hotel selection view.

Feel free to deploy the application, open many windows or tabs and attempt combinations of
various hotels with various room preferences. Confirming a booking always results in the correct
hotel and room preference thanks to the nested conversation model.

1.8. A complete application featuring Seam and jBPM:

the DVD Store example

The DVD Store demo application shows the practical usage of jBPM for both task management
and pageflow.

The user screens take advantage of a jPDL pageflow to implement searching and shopping cart
functionality.

58

A complete application featuring Seam and jBPM: the DVD Store example

Search for Movies My Orders

Search Results

m Welcome, Harry

Add to cart Title Actor Price Thank you for choosing
FE Life is Beautiful Roberto Benini £12.00 the DVD Store
] Finding Nemo Albert Brooks $22.49 Logout
F March of the Penguins Morgan Freeman $16.98
F Indiana Jones and the Temple of Doom Harisson Ford $19.99)
] Clear and Present Danger Harisson Ford $19.99 Search for DVDs:
L] Roman Holiday Audrey Hepburn $12.99
] Breakfast at Tiffany's Audrey Hepburn $12.99
] Sabrina Audrey Hepburn $12.99
FE Sabrina Harrison Ford £19.99
F Kill Bill val. 1 Uma Thurman $19.99 R
O Kill Bill vaol. 2 Uma Thurman $19.99 v |
FE Lost in Translation Bill Murray £19.99 Results Per Page:
F Broken Flowers Bill Murray £$19.99 b |
] Better Off Dead John Cusak $8.99 Search
FE Grosse Pointe Blank John Cusak £11.99
N——
¥ High Fidelity John Cusak $14.99))
O Somewhere in Time Christopher Reeve $11.24 Shopping Cart
F Superman - The Movie Christopher Reeve $14.99 1 Napoleon Dynamite
] Superman II Christopher Reeve 314,99
. Superman III Christopher Reeve $14.99 Total:$14.06
Update Shopping Cart Checkout
L
Done

The administration screens take use jBPM to manage the approval and shipping cycle for
orders. The business process may even be changed dynamically, by selecting a different process
definition!

59

Chapter 1. Seam Tutorial

Manage Orders

Order Management

Pending orders are shown here on the order management screen for the store
manager to process. Rather than being data-driven, order management is the DVD Store

i Welcome, Albus -

Thank you for choosing

process-driven. A JBoss JBPM process assigns fulfillment tasks to the manager ‘

chance to approve the order before sending it to shipping. In each case, the

status of the order is shown in the customer's order list. iTis

£437.63 from 7 orders
* Order process 3 introduces a decision node. Only orders over $100.00 need to
be accepted. Smaller orders are automatically approved for shipping.
Admin Options
Task Assignment
Process Management

. Logout
based on the wversion of the process loaded. The manager can change the g
version of the process at any time using the admin options box to the right. L
» Order process 1 sends orders immediately to shipping, where the manager should [§ Statistics
ship the order and record the tracking number for the user to see.
. . Inventory
* Order process 2 adds an approval step where the manager is first given the 28 sold, 2473 in stock

Order Id Order Amount Customer Task |0rdermanagement3

=]

[$12.99 userl ship ‘ Switch Order Process |

7 577.70 user2 ship

Order Acceptance

There are no orders to be accepted.

Shipping

Order Id Order Amount Customer

5 94,95 userl
Done

The Seam DVD Store demo can be run from dvdst ore directory, just like the other demo
applications.

1.9. Bookmarkable URLs with the Blog example

Seam makes it very easy to implement applications which keep state on the server-side. However,
server-side state is not always appropriate, especially in for functionality that serves up content.
For this kind of problem we often want to keep application state in the URL so that any page can
be accessed at any time through a bookmark. The blog example shows how to a implement an
application that supports bookmarking throughout, even on the search results page. This example
demonstrates how Seam can manage application state in the URL as well as how Seam can
rewrite those URLSs to be even

60

Using "pull”-style MVC

-

@v I..p? A e @ Q o |=‘: http://lecalhost: 8080 /seam-blog/entry/book B | =2 'f' Google
& JBoss Seam Blog o |

| Search | Idefault | Select Theme |

JBoss Seam Blog
An example of a RESTful Seam application

Seam book excerpt on InfoQ

Michael and Thomas are writing a book about Seam for O'Reilly, which is apparently the hottest selling

Meanwhile, Norman and | have been tearing our way through JIRA issues, and so 1.1.1 will be ready to
go when | get back from vacation :-)

[Posted on 19/12/2006 17:00:00]

JBoss Seam Blog:[All posts][Recent posts][Write new post][Atom feed]
Total pageviews: 1009

The Blog example demonstrates the use of "pull"-style MVC, where instead of using action listener
methods to retrieve data and prepare the data for the view, the view pulls data from components
as it is being rendered.

1.9.1. Using "pull"-style MVC

This snippet from the i ndex. xht nl facelets page displays a list of recent blog entries:

Example 1.31.

<h:dataTable value="#{blog.recentBlogEntries}" var="blogEntry" rows="3">
<h:column>
<div class="blogEntry">
<h3>#{blogEntry.title}</h3>
<div>

61

Chapter 1. Seam Tutorial

<s:formattedText value="#{blogEntry.excerpt==null ? blogEntry.body : blogEntry.excerpt}"'/>
</div>
<p>
<s:link view="/entry.xhtml" rendered="#{blogEntry.excerpt!=null}" propagation="none"
value="Read more...">
<f:param name="blogEntryld" value="#{blogEntry.id}"/>
</s:link>
</p>
<p>
[Posted on
<h:outputText value="#{blogEntry.date}">
<f:convertDateTime timeZone="#{blog.timeZone}" locale="#{blog.locale}" type="both"/>
</h:outputText>]

<s:link view="/entry.xhtml" propagation="none" value="[Link]">
<f:param name="blogEntryld" value="#{blogEntry.id}"/>
</s:link>
</p>
</div>
</h:column>
</h:dataTable>

If we navigate to this page from a bookmark, how does the #{bl og. recent Bl ogEntri es} data
used by the <h: dat aTabl e> actually get initialized? The Bl og is retrieved lazily — "pulled" —
when needed, by a Seam component named bl og. This is the opposite flow of control to what is
used in traditional action-based web frameworks like Struts.

Example 1.32.

@Name("blog")
@Scope(ScopeType.STATELESS)
@AutoCreate

public class BlogService

{
@In EntityManager entityManager; g

@Unwrap 2
public Blog getBlog()
{
return (Blog) entityManager.createQuery("select distinct b from Blog b left join fetch
b.blogEntries")
.setHint("org.hibernate.cacheable", true)

62

Bookmarkable search results page

.getSingleResult();

11 This component uses a seam-managed persistence context. Unlike the other examples
we've seen, this persistence context is managed by Seam, instead of by the EJB3 container.
The persistence context spans the entire web request, allowing us to avoid any exceptions
that occur when accessing unfetched associations in the view.

2 The @w ap annotation tells Seam to provide the return value of the method — the BI og
— instead of the actual Bl ogServi ce component to clients. This is the Seam manager
component pattern.

This is good so far, but what about bookmarking the result of form submissions, such as a search
results page?

1.9.2. Bookmarkable search results page

The blog example has a tiny form in the top right of each page that allows the user to search for blog
entries. This is defined in a file, menu. xht nl , included by the facelets template, t enpl at e. xht ni ;

Example 1.33.

<div id="search">
<h:form>
<h:inputText value="#{searchAction.searchPattern}"/>
<h:commandButton value="Search" action="/search.xhtml"/>
</h:form>
</div>

To implement a bookmarkable search results page, we need to perform a browser redirect after
processing the search form submission. Because we used the JSF view id as the action outcome,
Seam automatically redirects to the view id when the form is submitted. Alternatively, we could
have defined a navigation rule like this:

<navigation-rule>
<navigation-case>
<from-outcome>searchResults</from-outcome>
<to-view-id>/search.xhtml</to-view-id>
<redirect/>
</navigation-case>
</navigation-rule>

63

Chapter 1. Seam Tutorial

Then the form would have looked like this:

<div id="search">
<h:form>
<h:inputText value="#{searchAction.searchPattern}"/>
<h:commandButton value="Search" action="searchResults"/>
</h:form>
</div>

But when we redirect, we need to include the values submitted with the form in the URL to get
a bookmarkable URL like htt p: / /1 ocal host : 8080/ seam bl og/ sear ch/ . JSF does not provide
an easy way to do this, but Seam does. We use two Seam features to accomplish this: page
parameters and URL rewriting. Both are defined in VEB- | NF/ pages. xn :

Example 1.34.

<pages>
<page view-id="/search.xhtml">
<rewrite pattern="/search/{searchPattern}"/>
<rewrite pattern="/search"/>

<param name="searchPattern" value="#{searchService.searchPattern}"/>
</page>

</pages>

The page parameter instructs Seam to link the request parameter named sear chPattern to
the value of #{sear chSer vi ce. sear chPat t er n}, both whenever a request for the Search page
comes in and whenever a link to the search page is generated. Seam takes responsibility for
maintaining the link between URL state and application state, and you, the developer, don't have
to worry about it.

Without URL rewriting, the URL for a search on the term book would be ht t p: / /| ocal host : 8080/
seam bl og/ sean sear ch. xht m ?sear chPat t er n=book. This is nice, but Seam can make the
URL even simpler using a rewrite rule. The first rewrite rule, for the pattern /search/
{searchPattern}, says that any time we have a URL for search.xhtml with a searchPattern
request parameter, we can fold that URL into the simpler URL. So,the URL we saw
earlier, http://1 ocal host: 8080/ seam bl og/ seam sear ch. xht ml ?sear chPat t er n=book can
be written instead as htt p: / /| ocal host : 8080/ seam bl og/ sear ch/ book.

Just like with page parameters, URL rewriting is bi-directional. That means that Seam forwards
requests for the simpler URL to the right view, and it also automatically generates the simpler

64

Bookmarkable search results page

view for you. You never need to worry about constructing URLSs. It's all handled transparently
behind the scenes. The only requirement is that to use URL rewriting, the rewrite filter needs to
be enabled in conponent s. xni .

<web:rewrite-filter view-mapping="/seam/*" />

The redirect takes us to the sear ch. xht nl page:

<h:dataTable value="#{searchResults}" var="blogEntry">
<h:column>
<div>
<s:link view="/entry.xhtml" propagation="none" value="#{blogEntry.title}">
<f:param name="blogEntryld" value="#{blogEntry.id}"/>
</s:link>
posted on
<h:outputText value="#{blogEntry.date}">
<f:convertDateTime timeZone="#{blog.timeZone}" locale="#{blog.locale}" type="both"/>
</h:outputText>
</div>
</h:column>
</h:dataTable>

Which again uses "pull"-style MVC to retrieve the actual search results using Hibernate Search.

@Name("searchService")
public class SearchService

{

@In
private FullTextEntityManager entityManager;

private String searchPattern;

@Factory("searchResults")
public List<BlogEntry> getSearchResults()
{
if (searchPattern==null || "".equals(searchPattern)) {
searchPattern = null;
return entityManager.createQuery("select be from BlogEntry be order by date
desc").getResultList();

}

65

Chapter 1. Seam Tutorial

else
{
Map<String,Float> boostPerField = new HashMap<String,Float>();
boostPerField.put("title", 4f);
boostPerField.put("body", 1f);
String[] productFields = {"title", "body"};
QueryParser parser = new MultiFieldQueryParser(productFields, new StandardAnalyzer(), boostPerField);
parser.setAllowLeadingWildcard(true);
org.apache.lucene.search.Query luceneQuery;
try
{
luceneQuery = parser.parse(searchPattern);
}
catch (ParseException e)
{

return null;

}

return entityManager.createFullTextQuery(luceneQuery, BlogEntry.class)
.setMaxResults(100)
.getResultList();

public String getSearchPattern()
{

return searchPattern;

public void setSearchPattern(String searchPattern)

{

this.searchPattern = searchPattern;

}

1.9.3. Using "push"-style MVC in a RESTful application

Very occasionally, it makes more sense to use push-style MVC for processing RESTful pages,
and so Seam provides the notion of a page action. The Blog example uses a page action for the
blog entry page, ent ry. xht nl . Note that this is a little bit contrived, it would have been easier to
use pull-style MVC here as well.

66

Using "push"-style MVC in a RESTful application

The ent ryActi on component works much like an action class in a traditional push-MVC action-
oriented framework like Struts:

@Name("entryAction")
@Scope(STATELESS)
public class EntryAction

{
@In Blog blog;

@Out BlogEntry blogEntry;

public void loadBlogEntry(String id) throws EntryNotFoundException

{

blogEntry = blog.getBlogEntry(id);

if (blogEntry==null) throw new EntryNotFoundException(id);
}

Page actions are also declared in pages. xni :

<pages>

<page view-id="/entry.xhtm|">
<rewrite pattern="/entry/{blogEntryld}" />
<rewrite pattern="/entry" />

<param name="blogEntryld"
value="#{blogEntry.id}"/>

<action execute="#{entryAction.loadBlogEntry(blogEntry.id)}"/>
</page>

<page view-id="/post.xhtml" login-required="true">
<rewrite pattern="/post" />

<action execute="#{postAction.post}"
if="#{validation.succeeded}"/>

<action execute="#{postAction.invalid}"
if="#{validation.failed}"/>

67

Chapter 1. Seam Tutorial

<navigation from-action="#{postAction.post}">
<redirect view-id="/index.xhtml"/>
</navigation>
</page>

<page view-id="*">
<action execute="#{blog.hitCount.hit}"/>
</page>

</pages>

Notice that the example is using page actions for post validation and the pageview counter. Also
notice the use of a parameter in the page action method binding. This was not a standard feature
of JSF EL in Java EE 5, but now it is and works like Seam lets you use it before, not just for page
actions but also in JSF method bindings.

When the entry. xht "l page is requested, Seam first binds the page parameter bl ogEntryl d
to the model. Keep in mind that because of the URL rewriting, the blogEntryld parameter name
won't show up in the URL. Seam then runs the page action, which retrieves the needed data —
the bl ogEnt ry — and places it in the Seam event context. Finally, the following is rendered:

<div class="blogEntry">
<h3>#{blogEntry.title}</h3>
<div>
<s:.formattedText value="#{blogEntry.body}"/>
</div>
<p>
[Posted on
<h:outputText value="#{blogEntry.date}">
<f:convertDateTime timeZone="#{blog.timeZone}" locale="#{blog.locale}" type="both"/>
</h:outputText>]
</p>
</div>

If the blog entry is not found in the database, the Ent r yNot FoundExcept i on exception is thrown.
We want this exception to result in a 404 error, not a 505, so we annotate the exception class:

@ApplicationException(rollback=true)
@HttpError(errorCode=HttpServletResponse.SC_NOT_FOUND)
public class EntryNotFoundException extends Exception

{

68

Using "push"-style MVC in a RESTful application

EntryNotFoundException(String id)
{

super("entry not found: " + id);

}
}

An alternative implementation of the example does not use the parameter in the method binding:

@Name("entryAction”)
@Scope(STATELESS)
public class EntryAction

{

@In(create=true)
private Blog blog;

@In @Out
private BlogEntry blogEntry;

public void loadBlogEntry() throws EntryNotFoundException

{
blogEntry = blog.getBlogEntry(blogEntry.getld());

if (blogEntry==null) throw new EntryNotFoundException(id);
}
}

<pages>

<page view-id="/entry.xhtml" action="#{entryAction.loadBlogEntry}">
<param name="blogEntryld" value="#{blogEntry.id}"/>
</page>

</pages>
It is a matter of taste which implementation you prefer.

The blog demo also demonstrates very simple password authentication, posting to the blog, page
fragment caching and atom feed generation.

69

70

Chapter 2.

Getting started with Seam, using
seam-gen

The Seam distribution includes a command line utility that makes it really easy to set up an Eclipse
project, generate some simple Seam skeleton code, and reverse engineer an application from a
preexisting database.

This is the easy way to get your feet wet with Seam, and gives you some ammunition for next
time you find yourself trapped in an elevator with one of those tedious Ruby guys ranting about
how great and wonderful his new toy is for building totally trivial applications that put things in
databases.

In this release, seam-gen works best for people with JBoss AS. You can use the generated project
with other J2EE or Java EE 5 application servers by making a few manual changes to the project
configuration.

You can use seam-gen without Eclipse, but in this tutorial, we want to show you how to use it in
conjunction with Eclipse for debugging and integration testing. If you don't want to install Eclipse,
you can still follow along with this tutorial—all steps can be performed from the command line.

seam-gen is basically just an intricate Ant script wrapped around Hibernate Tools, together with
some templates. That makes it easy to customize if you need to.

2.1. Before you start

Make sure you have JDK 6 (see Section 39.1, “JDK Dependencies” for details), JBoss AS 7.1.1
and Maven 3.x, along with recent versions of Eclipse, the JBoss IDE plugin for Eclipse correctly
installed before starting. Add your JBoss installation to the JBoss Server View in Eclipse. Start
JBoss in debug mode. Finally, start a command prompt in the directory where you unzipped the
Seam distribution.

JBoss has sophisticated support for hot re-deployment of WARs and EARs. Unfortunately, due
to bugs in the JVM, repeated redeployment of an EAR—which is common during development—
eventually causes the JVM to run out of perm gen space. For this reason, we recommend running
JBoss in a JVM with a large perm gen space at development time. If you're running JBoss from
JBoss IDE, you can configure this in the server launch configuration, under "VM arguments". We
suggest the following values:

-Xms512m -Xmx1024m -XX:PermSize=256m -XX:MaxPermSize=512m

If you don't have so much memory available, the following is our minimum recommendation:

71

Chapter 2. Getting started wi...

-Xms256m -Xmx512m -XX:PermSize=128m -XX:MaxPermSize=256m

If you're running JBoss from the command line, you can configure the JVM options in bi n/
st andal one. conf .

If you don't want to bother with this stuff now, you don't have to—come back to it later, when you
get your first Qut Of Menor yExcept i on.

2.2. Setting up a new project

The first thing we need to do is configure seam-gen for your environment: JBoss AS installation
directory, project workspace, and database connection. It's easy, just type:

cd jboss-seam-2.3.0
seam setup

And you will be prompted for the needed information:

~/workspace/jboss-seam$./seam setup
Buildfile: build.xml

init;

setup:
[echo] Welcome to seam-gen :-)
[input] Enter your project workspace (the directory that contains your Seam projects) [C:/
Projects] [C:/Projects]
/Users/pmuir/workspace
[input] Enter your JBoss AS home directory [C:/Program Files/jboss-as-7.1.1.Final] [C:/Program
Files/jboss-as-7.1.1.Final]
/Applications/jboss-as-7.1.1.Final
[input] Enter the project name [myproject] [myproject]
helloworld
[echo] Accepted project name as: helloworld
[input] Select a RichFaces skin [blueSky] ([blueSky], emeraldTown, ruby, classic, japanCherry,
wine, deepMarine, DEFAULT, plain)

[input] Is this project deployed as an EAR (with EJB components) or a WAR (with no EJB
support) [ear] ([ear], war,)

[input] Enter the Java package name for your session beans [com.mydomain.helloworld]
[com.mydomain.helloworld]

72

Setting up a new project

org.jboss.helloworld
[input] Enter the Java package name for your entity beans [org.jboss.helloworld]
[org.jboss.helloworld]

[input] Enter the Java package name for your test cases [org.jboss.helloworld.test]
[org.jboss.helloworld.test]

[input] What kind of database are you using? [h2] ([h2], hsql, mysq|, oracle, postgres, mssq|,
db2, sybase, enterprisedb)
mysq|
[input] Enter the Hibernate dialect for your database [org.hibernate.dialect. MySQLDialect]
[org.hibernate.dialect. MySQLDialect]

[input] Enter the filesystem path to the JDBC driver jar [lib/hsgldb.jar] [lib/hsqldb.jar]
/Users/pmuir/java/mysql.jar
[input] Enter JDBC driver class for your database [com.mysql.jdbc.Driver]
[com.mysql.jdbc.Driver]

[input] Enter the JDBC URL for your database [jdbc:mysql:///test] [jdbc:mysql:///test]
jdbc:mysql:///helloworld

[input] Enter database username [sa] [sa]
pmuir

[input] Enter database password [] []

[input] skipping input as property hibernate.default_schema.new has already been set.
[input] Enter the database catalog name (it is OK to leave this blank) [] []

[input] Are you working with tables that already exist in the database? [n] (y, [n],)

y

[input] Do you want to drop and recreate the database tables and data in import.sgl each time
you deploy? [n] (y, [n],)
n

[propertyfile] Creating new property file: /Users/pmuir/workspace/jboss-seam/seam-gen/
build.properties

[echo] Installing JDBC driver jar to JBoss server

[echo] Type 'seam create-project' to create the new project

BUILD SUCCESSFUL

Total time: 1 minute 32 seconds
~/workspace/jboss-seam $

The tool provides sensible defaults, which you can accept by just pressing enter at the prompt.

73

Chapter 2. Getting started wi...

The most important choice you need to make is between EAR deployment and WAR deployment
of your project. EAR projects support EJB 3.0 and require Java EE 5. WAR projects do not support
EJB 3.0, but may be deployed to a J2EE environment. The packaging of a WAR is also simpler to
understand. If you installed an EJB3-ready application server like JBoss, choose ear . Otherwise,
choose war . We'll assume that you've chosen an EAR deployment for the rest of the tutorial, but
you can follow exactly the same steps for a WAR deployment.

If you are working with an existing data model, make sure you tell seam-gen that the tables already
exist in the database.

The settings are stored in seam gen/ bui | d. properti es, but you can also modify them simply
by running seam set up a second time.

Now we can create a new project in our Eclipse workspace directory, by typing:

seam new-project

C:\Projects\jboss-seam>seam new-project
Buildfile: build.xml

new-project:
[echo] A new Seam project named 'helloworld' was created in the C:\Projects directory
[echo] Type 'seam explode' and go to http://localhost:8080/helloworld
[echo] Eclipse Users: Add the project into Eclipse using File > New > Project and select General
> Project (not Java Project)
[echo] NetBeans Users: Open the project in NetBeans

BUILD SUCCESSFUL
Total time: 7 seconds
C:\Projects\jboss-seam>

This copies the Seam jars, dependent jars and the JDBC driver jar to a new Eclipse project, and
generates all needed resources and configuration files, a facelets template file and stylesheet,
along with Eclipse metadata and an Ant build script. The Eclipse project will be automatically
deployed to an exploded directory structure in JBoss AS as soon as you add the project using
New -> Project... -> General -> Project -> Next,typingthe Proj ect nane (hell oworld
in this case), and then clicking Fi ni sh. Do not select Java Pr oj ect from the New Project wizard.

If your default JDK in Eclipse is not a Java SE 6 JDK, you will need to select a Java SE 6 compliant
JDK using Proj ect -> Properties -> Java Conpiler.

Alternatively, you can deploy the project from outside Eclipse by typing seam expl ode.

74

Creating a new action

Go to http://1ocal host: 8080/ hel | owor | d to see a welcome page. This is a facelets page,
vi ew horre. xht nl , using the template vi ew/ | ayout / t enpl at e. xht m . You can edit this page,
or the template, in Eclipse, and see the results immediately, by clicking refresh in your browser.

Don't get scared by the XML configuration documents that were generated into the project
directory. They are mostly standard Java EE stuff, the stuff you need to create once and then
never look at again, and they are 90% the same between all Seam projects. (They are so easy
to write that even seam-gen can do it.)

The generated project includes three database and persistence configurations. The
persi stence-test.xnm and inport-test.sqgl files are used when running the TestNG unit
tests against HSQLDB. The database schema and the test data in i nport-test.sql is always
exported to the database before running tests. The nyproj ect - dev-ds. xnl , persi stence-
dev. xm and inport-dev.sqgl files are for use when deploying the application to your
development database. The schema might be exported automatically at deployment, depending
upon whether you told seam-gen that you are working with an existing database. The nypr oj ect -
prod-ds. xm , per si st ence- prod. xm andi nport - pr od. sql files are for use when deploying the
application to your production database. The schema is not exported automatically at deployment.

2.3. Creating a new action

If you're used to traditional action-style web frameworks, you're probably wondering how you can
create a simple web page with a stateless action method in Java. If you type:

seam new-action

Seam will prompt for some information, and generate a new facelets page and Seam component
for your project.

C:\Projects\jboss-seam>seam new-action
Buildfile: build.xml

validate-workspace:
validate-project:
action-input:
[input] Enter the Seam component hame
ping
[input] Enter the local interface name [Ping]

[input] Enter the bean class name [PingBean)

[input] Enter the action method name [ping]

75

Chapter 2. Getting started wi...

[input] Enter the page name [ping]

setup-filters:

new-action:
[echo] Creating a new stateless session bean component with an action method
[copy] Copying 1 file to C:\Projects\helloworld\src\hot\org\jboss\helloworld
[copy] Copying 1 file to C:\Projects\helloworld\src\hot\org\jboss\helloworld
[copy] Copying 1 file to C:\Projects\helloworld\src\hot\org\jboss\helloworld\test
[copy] Copying 1 file to C:\Projects\helloworld\src\hot\org\jboss\helloworld\test
[copy] Copying 1 file to C:\Projects\helloworld\view
[echo] Type 'seam restart' and go to http://localhost:8080/helloworld/ping.seam

BUILD SUCCESSFUL
Total time: 13 seconds
C:\Projects\jboss-seam>

Because we've added a new Seam component, we need to restart the exploded directory
deployment. You can do this by typing seam restart, or by running the rest art target in the
generated project bui | d. xm file from inside Eclipse. Another way to force a restart is to edit
the file r esour ces/ META- | NF/ appl i cati on. xm in Eclipse. Note that you do not need to restart
JBoss each time you change the application.

Now go to http:/ /1 ocal host: 8080/ hel | owor | d/ pi ng. seamand click the button. You can see
the code behind this action by looking in the project sr ¢ directory. Put a breakpoint in the pi ng()
method, and click the button again.

Finally, locate the Pi ngTest . xn file in the test package and run the integration tests using the
TestNG plugin for Eclipse. Alternatively, run the tests using seam t est or the t est target of the
generated build.

2.4. Creating a form with an action

The next step is to create a form. Type:

seam new-form

C:\Projects\jboss-seam>seam new-form
Buildfile: C:\Projects\jboss-seam\seam-gen\build.xml

validate-workspace:

76

Generating an application from an existing database

validate-project:

action-input:

[input] Enter the Seam component name
hello

[input] Enter the local interface name [Hello]

[input] Enter the bean class name [HelloBean]
[input] Enter the action method name [hello]

[input] Enter the page name [hello]

setup-filters:

new-form:
[echo] Creating a new stateful session bean component with an action method
[copy] Copying 1 file to C:\Projects\hello\src\hot\com\hello
[copy] Copying 1 file to C:\Projects\hello\src\hot\com\hello
[copy] Copying 1 file to C:\Projects\hello\src\hot\com\hello\test
[copy] Copying 1 file to C:\Projects\hello\view
[copy] Copying 1 file to C:\Projects\hello\src\hot\com\hello\test
[echo] Type 'seam restart' and go to http://localhost:8080/hello/hello.seam

BUILD SUCCESSFUL
Total time: 5 seconds
C:\Projects\jboss-seam>

Restart the application again, and go to http://1 ocal host: 8080/ hel | owor | d/ hel | 0. seam
Then take a look at the generated code. Run the test. Try adding some new fields to the form and
Seam component (remember to restart the deployment each time you change the Java code).

2.5. Generating an application from an existing
database

Manually create some tables in your database. (If you need to switch to a different database, just
run seam set up again.) Now type:

seam generate-entities

77

Chapter 2. Getting started wi...

Restart the deployment, and go to htt p://1 ocal host: 8080/ hel | owor | d. You can browse the
database, edit existing objects, and create new objects. If you look at the generated code, you'l
probably be amazed how simple it is! Seam was designed so that data access code is easy to
write by hand, even for people who don't want to cheat by using seam-gen.

2.6. Generating an application from existing JPA/EJB3
entities

Place your existing, valid entity classes inside the sr ¢/ mai n. Now type
seam generate-ui

Restart the deployment, and go to htt p: / /| ocal host : 8080/ hel | owor | d.

2.7. Deploying the application as an EAR

Finally, we want to be able to deploy the application using standard Java EE 5 packaging. First,
we need to remove the exploded directory by running seam unexpl ode. To deploy the EAR, we
can type seam depl oy at the command prompt, or run the depl oy target of the generated project
build script. You can undeploy using seam undepl oy or the undepl oy target.

By default, the application will be deployed with the dev profile. The EAR will include the
persi stence-dev.xm and i nport-dev. sql files, and the nyproj ect - dev-ds. xnm file will be
deployed. You can change the profile, and use the prod profile, by typing

seam -Dprofile=prod deploy

You can even define new deployment profiles for your application. Just add appropriately
named files to your project—for example, per si st ence- st agi ng. xm , i mpor t - st agi ng. sql and
nmypr oj ect - st agi ng- ds. xnl —and select the name of the profile using - Dpr of i | e=st agi ng.

2.8. Seam and incremental hot deployment

When you deploy your Seam application as an exploded directory, you'll get some support for
incremental hot deployment at development time. You need to enable debug mode in both Seam
and Facelets, by adding this line to conponent s. xm :

<core:init debug="true">

Now, the following files may be redeployed without requiring a full restart of the web application:

78

Seam and incremental hot deployment

« any facelets page
e any pages. xni file

But if we want to change any Java code, we still need to do a full restart of the application.
(In JBoss this can be handled by configuring deployment scanner mode [https://docs.jboss.org/
author/display/AS7/Deployment+Scanner+configuration] - more details how to do that are in
$JBOSS_HOMWE/ st andal one/ depl oyment s/ READVE. t xt

But if you really want a fast edit/compile/test cycle, Seam supports incremental redeployment
of JavaBean components. To make use of this functionality, you must deploy the JavaBean
components into the WEB- | NF/ dev directory, so that they will be loaded by a special Seam
classloader, instead of by the WAR or EAR classloader.

You need to be aware of the following limitations:

« the components must be JavaBean components, they cannot be EJB3 beans (we are working
on fixing this limitation)

* entities can never be hot-deployed

« components deployed via conponent s. xni may not be hot-deployed

« the hot-deployable components will not be visible to any classes deployed outside of WEB- | NF/
dev

* Seam debug mode must be enabled and j boss- seam debug. j ar must be in WVEB- I NF/ | i b
¢ You must have the Seam filter installed in web.xml
* You may see errors if the system is placed under any load and debug is enabled.

If you create a WAR project using seam-gen, incremental hot deployment is available out of the
box for classes inthe sr ¢/ hot source directory. However, seam-gen does not support incremental
hot deployment for EAR projects.

79

https://docs.jboss.org/author/display/AS7/Deployment+Scanner+configuration
https://docs.jboss.org/author/display/AS7/Deployment+Scanner+configuration
https://docs.jboss.org/author/display/AS7/Deployment+Scanner+configuration

80

Chapter 3.

Getting started with Seam, using
JBoss Tools

JBoss Tools is a collection of Eclipse plugins. JBoss Tools a project creation wizard for Seam,
Content Assist for the Unified Expression Language (EL) in both facelets and Java code, a
graphical editor for Seam configuration files, support for running Seam integration tests from within
Eclipse, and much more.

In short, if you are an Eclipse user, then you'll want JBoss Tools!

Please read the latest JBoss Tools documentation at http:/docs.jboss.org/tools/latest/en/
seam_tools_ref_guide/html/index.html.

JBoss Tools, as with seam-gen, works best with JBoss AS, but it's possible with a few tweaks to
get your app running on other application servers. The changes are much like those described
for seam-gen later in this reference manual.

3.1. Before you start

Make sure you have JDK 6, JBoss AS 7.1.1.Final, Eclipse 3.7, the JBoss Tools plugins (at least
Seam Tools, the Visual Page Editor and JBoss AS Tools) and the JUnit plugin for Eclipse correctly
installed before starting.

Please see the official JBoss Tools Getting started [http://docs.jboss.org/tools/latest/en/
GettingStartedGuide/html_single/index.html] page for the quickest way to get JBoss Tools setup
in Eclipse.

81

http://docs.jboss.org/tools/latest/en/seam_tools_ref_guide/html/index.html
http://docs.jboss.org/tools/latest/en/seam_tools_ref_guide/html/index.html
http://docs.jboss.org/tools/latest/en/GettingStartedGuide/html_single/index.html
http://docs.jboss.org/tools/latest/en/GettingStartedGuide/html_single/index.html
http://docs.jboss.org/tools/latest/en/GettingStartedGuide/html_single/index.html

82

Chapter 4.

Migration from 2.2 to 2.3

Before you get started with Seam 2.3, there are a few things you should be aware of. This process
should not be too painful - if you get stuck, just refer back to the updated Seam examples in Seam
distribution.

This migration guide assumes you are using Seam 2.2, if you are migrating from Seam 1.2 or
2.0, see the j boss-seam x.y. z. Fi nal / sean2ni gration. txt and j boss-seam x.y. z. Fi nal /
sean2lni gration. txt guide as well.

4.1. Migration of XML Schemas

4.1.1. Seam schema migration

XML schemas for validation Files that use the Seam 2.2 XSDs should be updated to refer to the
2.3 XSDs, notice the version change. Current namespace pattern is www. j boss. or g/ schema/
seani * and schemalLocation URL was changed to www. j boss. or g/ schena/ seam * _- 2. 3. xsd,
where * is Seam module.

Following snippet is an example of component declaration for 2.2 version:

Example 4.1. Before migration of Seam conponent s. xm

<?xml version="1.0" encoding="UTF-8"?>
<components xmlns="http://jposs.com/products/seam/components"
xmlns:core="http://jposs.com/products/seam/core"
xmins:persistence="http://jpboss.com/products/seam/persistence"
xmlns:security="http://jboss.com/products/seam/security"
xmlns:theme="http://jposs.com/products/seam/theme"
xmlns:cache="http://jboss.com/products/seam/cache"
xmlns:web="http://jboss.com/products/seam/web"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation=
"http://jboss.com/products/seam/core http://jboss.com/products/seam/core-2.2.xsd
http://jboss.com/products/seam/persistence http://jboss.com/products/seam/
persistence-2.2.xsd
http://jboss.com/products/seam/security http://jposs.com/products/seam/security-2.2.xsd
http://jboss.com/products/seam/theme http://jboss.com/products/seam/theme-2.2.xsd
http://jboss.com/products/seam/cache http://jboss.com/products/seam/cache-2.2.xsd
http://jboss.com/products/seam/web http://jboss.com/products/seam/web-2.2.xsd
http://jboss.com/products/seam/components http://jboss.com/products/seam/
components-2.2.xsd">

83

Chapter 4. Migration from 2.2...

And finally migrated declaration of conponent s. xm for 2.3 version:

Example 4.2. Migrated conponent s. xn

<?xml version="1.0" encoding="UTF-8"?>
<components xmlns="http://jpboss.org/schema/seam/components"
xmlns:core="http://jpboss.org/schema/seam/core"
xmlns:persistence="http://jboss.org/schema/seam/persistence"
xmlns:security="http://jboss.org/schema/seam/security"
xmlns:theme="http://jboss.org/schema/seam/theme"
xmlns:cache="http://jboss.org/schema/seam/cache"
xmlns:web="http://jboss.org/schema/seam/web"
xmlIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation=
"http://jboss.org/schema/seam/core http://jboss.org/schema/seam/core-2.3.xsd
http://jboss.org/schema/seam/persistence http://jboss.org/schema/seam/
persistence-2.3.xsd
http://jboss.org/schema/seam/security http://jboss.org/schema/seam/security-2.3.xsd
http://jboss.org/schema/seam/theme http://jboss.org/schema/seam/theme-2.3.xsd
http://jboss.org/schema/seam/cache http://jboss.org/schema/seam/cache-2.3.xsd
http://jboss.org/schema/seam/web http://jpboss.org/schema/seam/web-2.3.xsd
http://jboss.org/schema/seam/components http://jboss.org/schema/seam/
components-2.3.xsd">

Next remainning migration step is pages. xnl file(s) as well as other files only requires that the
schemas be upgraded.

Example 4.3. Before migration of Seam pages. xni

<?xml version="1.0" encoding="UTF-8"?>
<pages xmlns="http://jposs.com/products/seam/pages"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemal ocation="http://jboss.com/products/seam/pages http://jpboss.com/products/
seam/pages-2.2.xsd">

</pages>

Example 4.4. After migration of Seam pages. xn

<?xml version="1.0" encoding="UTF-8"?>
<pages xmlns="http://jpboss.org/schema/seam/pages"

84

Java EE 6 schema changes

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://jboss.org/schema/seam/pages http://jpboss.org/schema/seam/
pages-2.3.xsd">

</pages>

4.1.2. Java EE 6 schema changes

Seam 2.3 technology upgrade includes also Java EE 6 upgrade so you need to update the
following descriptors

» persistence. xn for using JPA 2
* web. xm for using Servlet 3.0 and Web application
e application.xm for using Enterprise Java 6 application

» faces-config. xnl if you need to specify some advanced configuration for JSF 2 (this desciptor
file is not mandatory, you don't have to use/include it in your application)

Examples of changed headers with correct versions are the following:

Example 4.5. persistence.xml

<persistence xmlns="http://java.sun.com/xml/ns/persistence"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://java.sun.com/xml/ns/persistence http://java.sun.com/xml/ns/
persistence/persistence_2_ 0.xsd"
version="2.0">

Example 4.6. application.xml

<application xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/javaee/
application_6.xsd"
version="6">

Example 4.7. web.xml

<web-app xmIns="http://java.sun.com/xml/ns/javaee"

85

Chapter 4. Migration from 2.2...

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/
javaee/web-app_3_0.xsd"
version="3.0">

Example 4.8. faces-config.xml

<?xml version="1.0" encoding="UTF-8"?>
<faces-config version="2.1"
xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/
javaeel/web-facesconfig_2 1.xsd">

4.2. Java EE 6 upgrade

Seam 2.3 can integrate with the major upgrades in Java EE (from 5 to 6). You can use persistence
with JPA 2, EJB 3.1 and Bean Validation. Aimost all EE 6 technology upgrade requires to change
XML schema declaration. See Section 4.1.2, “Java EE 6 schema changes”

4.2.1. Using Bean Validation standard instead of Hibernate
Validator

Bean Validation is a standard included in Java EE 6 as new technology. Seam already uses for
validation Hibernate Validator which is a reference implementation.

You need to migrate from using of or g. hi ber nat e. val i dat or . * Hibernate validator annotations
to javax.validation. constraint.* equivalent for instance Seam examples used a lot of
the following annotations and you can use this list as a helper (Using Bean Validation [http://
docs.oracle.com/javaee/6/tutorial/doc/gircz.html]):

* org. hibernate.validator. Lengthtojavax.validation.constraint.Size,
e org. hibernate.validator.NotNull tojavax.validation.constraint.NotNull,

e org. hibernate.validator.Patterntojavax.validation.constraint.Pattern.

4.2.2. Migration of JSF 1 to JSF 2 Facelets templates

Configuration file f aces- confi g. xnl is not required to be in your application, so for simple using
of JSF 2 you need to migrate only web. xni . If you anyway would like to have it, change the XML
schema declaration as is described in Example 4.8, “faces-config.xml”.

All your application JSF templates should use only facelets technology as JSP is deprecated.

86

http://docs.oracle.com/javaee/6/tutorial/doc/gircz.html
http://docs.oracle.com/javaee/6/tutorial/doc/gircz.html
http://docs.oracle.com/javaee/6/tutorial/doc/gircz.html

Migration to JPA 2.0

In facelet templates there are required to convert <head>/<body> tags to ><h: head>/
<h: body>respectively.

Depending on what JSF components that you use like Richfaces or Icefaces, there may be some
differences when upgrading from JSF 1.x to JSF 2.x. You may need to upgrade libraries entirely.
Consult any component framework documentation on those changes. This migration doesn't cover
these migration steps.

4.2.3. Migration to JPA 2.0

Using JPA 2 requires to change version to 2.0 in persistence.xm, see Example 4.5,
“persistence.xml” file and version in appl i cati on. xm should be 6 if you are using EAR - see
Example 4.6, “application.xml” or version in web. xm file change to 3.0 if you use only WAR - look
at Example 4.7, “web.xml”.

What is important for developers, most application can use just WAR with EJB 3.1 and doesn't
have to package application as EAR.

JPA 2.0 is backward compatible with JPA 1.0, so you don't have to migrate any JPA annotation
or classes. JPA 2.0 is more like enhancement to JPA 1.0.

4.2.4. Using compatible JNDI for resources
Java EE 6 brings new standardized global rules for creating portable JNDI syntax. So you
have to change all JNDI strings from _your _appl i cati on_/ #{ej bNarme}/| ocal to j ava: app/

appl i cation-nodul e- nanme/ #{ ej bNane} like for instance in WEB-I NF/ conponents. xml
change of j ndi Pat t er n from:

seam-mail/#{ejbName}/local
to

java:app/seam-mail-ejb/#{ejbName}

4.3. JBoss AS 7.1 deployment

4.3.1. Deployment changes

Next level is migration of your target runtime. Seam 2.3 uses JBoss AS 7 as default target runtime.

If you are using for development or testing default datasource in JBoss AS 7.1, you need to
change datasource JNDI in your persi stence.xm from java:/Defaul t DS to j ava: j boss/
dat asour ces/ Exanpl eDS.

87

Chapter 4. Migration from 2.2...

JBoss AS 7 has got refactored classloading model. Classloading of bundled or provided libraries
can be managed in j boss-depl oynent - structure. xnl or in META- | NF/ MANI FEST. MF file in
section Dependenci es. This migration documentation prefers using of j boss- depl oynment -
structure. xm file, which should be placed in META- | NF directory of your WAR or EAR application
according to your application type.

For full EAR projects, the j boss- depl oynent - st ruct ure. xml will be located inthe _your _ear _/
META- | NF directory.

For Web (non-ear) projects, the j boss-depl oyment-structure. xm will be located in the
_your _war _/ WEB- | NF directory.

Minimal content for Seam 2.3 based application is:

<jboss-deployment-structure xmlns="urn:jboss:deployment-structure:1.0">
<deployment>
<dependencies>
<module name="org.dom4j" export="true"/>
<module name="org.apache.commons.collections" export="true"/>
<module name="javax.faces.api" export="true"/> <!-- keep there only if you use JSF
as view technology -->
</dependencies>
</deployment>
</jboss-deployment-structure>

More details are described in JBoss AS 7 documentation [https://docs.jboss.org/author/display/
AS7/Class+Loading+in+AS7].

4.3.2. Datasource migration

You can also include now any database descriptor (*-ds.xml) files into your project in the META-
I NF directory, and the data source will be deployed automatically when deployed to a JBoss AS
7.1 Application Server. The structure of the file though has changed. Before the datasource file
was a simple xml based file, but now is an IronJacamar [https://www.jboss.org/ironjacamar] based
file. Iron-Jacamar is the JBoss' JCA (Java Connector Architecture) project. Below on Example 4.9,
“Sample Seam 2.2 Datasource Descriptor File” is the former datasource for JBoss AS 4/5, and
Example 4.10, “Ironjacamar Datasource Descriptor File” shows the conversion to IronJacamar
using the same driver, url, and credentials.

Example 4.9. Sample Seam 2.2 Datasource Descriptor File
<?xml version="1.0" encoding="UTF-8"?>

<IDOCTYPE datasources
PUBLIC "-//[JBoss//DTD JBOSS JCA Config 1.5//EN"

88

https://docs.jboss.org/author/display/AS7/Class+Loading+in+AS7
https://docs.jboss.org/author/display/AS7/Class+Loading+in+AS7
https://docs.jboss.org/author/display/AS7/Class+Loading+in+AS7
https://www.jboss.org/ironjacamar
https://www.jboss.org/ironjacamar

Changes in testing framework

"http://www.jboss.org/j2ee/dtd/jboss-ds_1_5.dtd">
<datasources>
<local-tx-datasource>
<jndi-name>seamdiscsDatasource</jndi-name>
<connection-url>jdbc:hsqgldb:.</connection-url>
<driver-class>org.hsqldb.jdbcDriver</driver-class>
<user-name>sa</user-name>
<password></password>
</local-tx-datasource>
</datasources>

Example 4.10. Ironjacamar Datasource Descriptor File

<?xml version="1.0" encoding="UTF-8"?>
<datasources xmlIns="http://www.jboss.org/ironjacamar/schema">
<datasource
jndi-name="java:/jpboss/seamdiscsDatasource"
enabled="true"
use-java-context="true" pool-name="seamdiscs">
<connection-url>jdbc:hsqgldb:.</connection-url>
<driver>org.hsqgldb.jdbcDriver</driver>
<security>
<user-name>sa</user-name>
<password></password>
</security>
</datasource>
</datasources>

4.4. Changes in testing framework

SeamTest and JBoss Embedded are legacy components and have many limitations and we
doesn't support it like we did in Seam 2.2.

We now bring Arquillian as the replacement of JBoss Embedded and you should
extend org.j boss. seam nock. JUni t SeanTest instead of org.j boss. seam nock. Seanfest
DBUnit testing is provided by org.jboss.seam nock. DBJUnit Seanifest instead of
org. j boss. seam nock. DBUni t SeaniTest . Due assertion issues with TestNG framework and
Arquillian, we use JUnit as preferred test framework. Migration to Junit and Arquillian goes in the
following steps:

1. Add

89

Chapter 4. Migration from 2.2...

@RunWith(Arquillian.class)

annotation to your test class.

2. Your test class should extend org.jboss.seam nock.JUnit SeaniTest instead of
org.j boss. seam nock. Seantest .

3. Add a method for creating an ShrinkWrap deployment, Seam examples and Seam integration
testsuite uses helper class for that purpose for instance. For inspiration look for instance
at Booking example test modules j boss- seam x. y. z. Fi nal / exanpl es/ booki ng/ booki ng-
tests/src/test/javalorg/jboss/seanl exanpl e/ booki ng/t est/ Depl oynents. j ava.

package org.jboss.seam.example.booking.test;

import java.io.File;

import org.jboss.shrinkwrap.api.ShrinkWrap;

import org.jboss.shrinkwrap.api.spec.EnterpriseArchive;
import org.jboss.shrinkwrap.api.importer.Ziplmporter;

public class Deployments {
public static EnterpriseArchive bookingDeployment() {
return ShrinkWrap.create(Ziplmporter.class, "seam-booking.ear").importFrom(new File("../
booking-ear/target/seam-booking.ear"))
.as(EnterpriseArchive.class);

4. Add a method like

@Deployment(hame="_your_test_name_")
@OverProtocol("Servlet 3.0")
public static org.jboss.shrinkwrap.api.Archive<?> createDeployment(){}

for creating test deployment archive. The following example is taken from Booking example
testsuite:

@Deployment(name="BookingTest")
@OverProtocol("Servlet 3.0")
public static Archive<?> createDeployment()

{

EnterpriseArchive er = Deployments.bookingDeployment();

90

Dependency changes with using Maven

WebArchive web = er.getAsType(WebArchive.class, "booking-web.war");
web.addClasses(BookingTest.class);
return er;

5. Add arqui I l'ian.xnl file into root of your classpath for running Arquillian test(s). The file
content should specify path to remote or managed container and some specific options for
JVM or Arquillian. The example of arquillian file is at j boss- seam x. y. z. Fi nal / exanpl es/

booki ng/ booki ng-tests/src/test/resources-integration/arquillian.xmn:

<?xml version="1.0" encoding="UTF-8"7?>
<arquillian xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns="http://jboss.org/schema/arquillian”
xsi:schemalocation="http://jboss.org/schema/arquillian http://jboss.org/schema/arquillian/
arquillian_1_0.xsd">
<engine>
<property name="deploymentExportPath">target/</property>
</engine>
<container qualifier="jboss" default="true">
<configuration>
<property name="javaVmArguments">-Xmx1024m -XX:MaxPermSize=512m</property>
<property name="jbossHome">target/jboss-as-${version.jpbossas7}</property>
</configuration>
</container>
</arquillian>

More details in Seam reference documentation guide in Section 38.2, “Integration testing Seam
components”.

4.5. Dependency changes with using Maven

The "provided" platform is now JBoss AS 7.1.x as is written above, therefore all Java EE
dependencies included in AS 7 are now marked as provided.

4.5.1. Seam Bill of Materials

A Bill of materials is a set of dependeny elements in <dependencyManagenent > section that can
be used to import into your application maven build and be able to declare which dependencies
and their versions that you wish to use in your application. The nice thing about the Seam BOM
is that the dependencies and their versions are there recommended dependencies that would
work well with Seam 2.3. The usage of Seam BOM is shown in Example 4.11, “Seam BOM
usage”. The Seam BOM is deployed in JBoss Maven repository [https://repository.jboss.org/
nexus/index.html#nexus-search;gav~org.jboss.seam~bom~~~].

91

https://repository.jboss.org/nexus/index.html#nexus-search;gav~org.jboss.seam~bom~~~
https://repository.jboss.org/nexus/index.html#nexus-search;gav~org.jboss.seam~bom~~~
https://repository.jboss.org/nexus/index.html#nexus-search;gav~org.jboss.seam~bom~~~

Chapter 4. Migration from 2.2...

Example 4.11. Seam BOM usage

<dependencyManagement>
<dependencies>

<dependency>
<groupld>org.jboss.seam</groupld>
<artifactld>bom</artifactld>
<version>2.3.0.Final</version>
<type>pom</type>
<scope>import</scope>

</dependency>

</dependencies>
</dependencyManagement>

<dependencies>
<dependency>
<groupld>org.jboss.seam</groupld>
<artifactld>jboss-seam</artifactld>
<type>ejb</type>
<dependency>

</dependencies>

92

Chapter 5.

The contextual component model

The two core concepts in Seam are the notion of a context and the notion of a component.
Components are stateful objects, usually EJBs, and an instance of a component is associated
with a context, and given a name in that context. Bijection provides a mechanism for aliasing
internal component names (instance variables) to contextual names, allowing component trees to
be dynamically assembled, and reassembled by Seam.

Let's start by describing the contexts built in to Seam.

5.1. Seam contexts

Seam contexts are created and destroyed by the framework. The application does not control
context demarcation via explicit Java API calls. Context are usually implicit. In some cases,
however, contexts are demarcated via annotations.

The basic Seam contexts are:

» Stateless context

« Event (i.e., request) context
» Page context

» Conversation context

» Session context
 Business process context

* Application context

You will recognize some of these contexts from servlet and related specifications. However, two of
them might be new to you: conversation context, and business process context. One reason state
management in web applications is so fragile and error-prone is that the three built-in contexts
(request, session and application) are not especially meaningful from the point of view of the
business logic. A user login session, for example, is a fairly arbitrary construct in terms of the
actual application work flow. Therefore, most Seam components are scoped to the conversation
or business process contexts, since they are the contexts which are most meaningful in terms
of the application.

Let's look at each context in turn.

5.1.1. Stateless context

Components which are truly stateless (stateless session beans, primarily) always live in the
stateless context (which is basically the absence of a context since the instance Seam resolves
is not stored). Stateless components are not very interesting, and are arguably not very object-

93

Chapter 5. The contextual com...

oriented. Nevertheless, they do get developed and used and are thus an important part of any
Seam application.

5.1.2. Event context

The event context is the "narrowest" stateful context, and is a generalization of the notion of the
web request context to cover other kinds of events. Nevertheless, the event context associated
with the lifecycle of a JSF request is the most important example of an event context, and the
one you will work with most often. Components associated with the event context are destroyed
at the end of the request, but their state is available and well-defined for at least the lifecycle of
the request.

When you invoke a Seam component via RMI, or Seam Remoting, the event context is created
and destroyed just for the invocation.

5.1.3. Page context

The page context allows you to associate state with a particular instance of a rendered page.
You can initialize state in your event listener, or while actually rendering the page, and then have
access to it from any event that originates from that page. This is especially useful for functionality
like clickable lists, where the list is backed by changing data on the server side. The state is
actually serialized to the client, so this construct is extremely robust with respect to multi-window
operation and the back button.

5.1.4. Conversation context

The conversation context is a truly central concept in Seam. A conversation is a unit of work from
the point of view of the user. It might span several interactions with the user, several requests,
and several database transactions. But to the user, a conversation solves a single problem. For
example, "book hotel", "approve contract", "create order" are all conversations. You might like to
think of a conversation implementing a single "use case" or "user story", but the relationship is

not necessarily quite exact.

A conversation holds state associated with "what the user is doing now, in this window". A single
user may have multiple conversations in progress at any point in time, usually in multiple windows.
The conversation context allows us to ensure that state from the different conversations does not
collide and cause bugs.

It might take you some time to get used to thinking of applications in terms of conversations. But
once you get used to it, we think you'll love the notion, and never be able to not think in terms
of conversations again!

Some conversations last for just a single request. Conversations that span multiple requests must
be demarcated using annotations provided by Seam.

Some conversations are also tasks. A task is a conversation that is significant in terms of a long-
running business process, and has the potential to trigger a business process state transition when
it is successfully completed. Seam provides a special set of annotations for task demarcation.

94

Session context

Conversations may be nested, with one conversation taking place "inside" a wider conversation.
This is an advanced feature.

Usually, conversation state is actually held by Seam in the servlet session between
requests. Seam implements configurable conversation timeout, automatically destroying inactive
conversations, and thus ensuring that the state held by a single user login session does not grow
without bound if the user abandons conversations.

Seam serializes processing of concurrent requests that take place in the same long-running
conversation context, in the same process.

Alternatively, Seam may be configured to keep conversational state in the client browser.

5.1.5. Session context

A session context holds state associated with the user login session. While there are some cases
where it is useful to share state between several conversations, we generally frown on the use of
session context for holding components other than global information about the logged in user.

In a JSR-168 portal environment, the session context represents the portlet session.

5.1.6. Business process context

The business process context holds state associated with the long running business process. This
state is managed and made persistent by the BPM engine (JBoss jBPM). The business process
spans multiple interactions with multiple users, so this state is shared between multiple users, but
in a well-defined manner. The current task determines the current business process instance, and
the lifecycle of the business process is defined externally using a process definition language, so
there are no special annotations for business process demarcation.

5.1.7. Application context

The application context is the familiar servlet context from the servlet spec. Application context
is mainly useful for holding static information such as configuration data, reference data or
metamodels. For example, Seam stores its own configuration and metamodel in the application
context.

5.1.8. Context variables

A context defines a namespace, a set of context variables. These work much the same as session
or request attributes in the servlet spec. You may bind any value you like to a context variable,
but usually we bind Seam component instances to context variables.

So, within a context, a component instance is identified by the context variable name (this is
usually, but not always, the same as the component name). You may programmatically access a
named component instance in a particular scope via the Cont ext s class, which provides access
to several thread-bound instances of the Cont ext interface:

95

Chapter 5. The contextual com...

User user = (User) Contexts.getSessionContext().get("user");

You may also set or change the value associated with a name:

Contexts.getSessionContext().set("user", user);

Usually, however, we obtain components from a context via injection, and put component
instances into a context via outjection.

5.1.9. Context search priority

Sometimes, as above, component instances are obtained from a particular known scope. Other
times, all stateful scopes are searched, in priority order. The order is as follows:

« Event context

* Page context

« Conversation context

» Session context

* Business process context
» Application context

You can perform a priority search by calling Contexts. | ookupl nStateful Contexts().
Whenever you access a component by hame from a JSF page, a priority search occurs.

5.1.10. Concurrency model

Neither the servlet nor EJB specifications define any facilities for managing concurrent requests
originating from the same client. The servlet container simply lets all threads run concurrently
and leaves enforcing thread safeness to application code. The EJB container allows stateless
components to be accessed concurrently, and throws an exception if multiple threads access a
stateful session bean.

This behavior might have been okay in old-style web applications which were based around fine-
grained, synchronous requests. But for modern applications which make heavy use of many fine-
grained, asynchronous (AJAX) requests, concurrency is a fact of life, and must be supported by
the programming model. Seam weaves a concurrency management layer into its context model.

The Seam session and application contexts are multithreaded. Seam will allow concurrent
requests in a context to be processed concurrently. The event and page contexts are by nature

96

Seam components

single threaded. The business process context is strictly speaking multi-threaded, but in practice
concurrency is sufficiently rare that this fact may be disregarded most of the time. Finally, Seam
enforces a single thread per conversation per process model for the conversation context by
serializing concurrent requests in the same long-running conversation context.

Since the session context is multithreaded, and often contains volatile state, session scope
components are always protected by Seam from concurrent access so long as the Seam
interceptors are not disabled for that component. If interceptors are disabled, then any thread-
safety that is required must be implemented by the component itself. Seam serializes requests to
session scope JavaBeans by default (and detects and breaks any deadlocks that occur). This is
not the default behaviour for application scoped components however, since application scoped
components do not usually hold volatile state and because synchronization at the global level
is extremely expensive. However, you can force a serialized threading model on any JavaBean
component by adding the @ynchr oni zed annotation.

Note

j=deo

Seam 2.3 removed the serialization of Stateful session beans by Seam
synchronization interceptor because stateful session beans are serialized by EJB
3.1 container by default .

This concurrency model means that AJAX clients can safely use volatile session and
conversational state, without the need for any special work on the part of the developer.

Warning

Be warned that Statefull session Beans are not serialized by Seam anymore.
Serialization of Statefull session beans are controlled by EJB container, so there
is no need for Seam to duplicate that. So @Synchronized annotation is ignored
on Statefull session beans.

5.2. Seam components

Seam components are POJOs (Plain Old Java Objects). In particular, they are JavaBeans or
EJB 3.0 enterprise beans. While Seam does not require that components be EJBs and can even
be used without an EJB 3.0 compliant container, Seam was designed with EJB 3.0 in mind and
includes deep integration with EJB 3.0. Seam supports the following component types.

* EJB 3.0 stateless session beans
+ EJB 3.0 stateful session beans

« EJB 3.0 entity beans (i.e., JPA entity classes)

97

Chapter 5. The contextual com...

» JavaBeans
« EJB 3.0 message-driven beans

» Spring beans (see Chapter 28, Spring Framework integration)

5.2.1. Stateless session beans

Stateless session bean components are not able to hold state across multiple invocations.
Therefore, they usually work by operating upon the state of other components in the various
Seam contexts. They may be used as JSF action listeners, but cannot provide properties to JSF
components for display.

Stateless session beans always live in the stateless context.

Stateless session beans can be accessed concurrently as a new instance is used for each
request. Assigning the instance to the request is the responsibility of the EJB3 container (normally
instances will be allocated from a reusable pool meaning that you may find any instance variables
contain data from previous uses of the bean).

Stateless session beans are the least interesting kind of Seam component.

Seam stateless session bean components may be instantiated using Conponent . get | nst ance()
or @n(create=true). They should not be directly instantiated via JNDI lookup or the new
operator.

5.2.2. Stateful session beans

Stateful session bean components are able to hold state not only across multiple invocations of
the bean, but also across multiple requests. Application state that does not belong in the database
should usually be held by stateful session beans. This is a major difference between Seam
and many other web application frameworks. Instead of sticking information about the current
conversation directly in the Ht t pSessi on, you should keep it in instance variables of a stateful
session bean that is bound to the conversation context. This allows Seam to manage the lifecycle
of this state for you, and ensure that there are no collisions between state relating to different
concurrent conversations.

Stateful session beans are often used as JSF action listener, and as backing beans that provide
properties to JSF components for display or form submission.

By default, stateful session beans are bound to the conversation context. They may never be
bound to the page or stateless contexts.

Concurrent requests to session-scoped stateful session beans are not serialized by Seam as long
as EJB 3.1 has changed that. This is a difference in comparison to previous Seam 2.2.x.

Seam stateful session bean components may be instantiated using Conponent . get | nst ance()
or @n(create=true). They should not be directly instantiated via JNDI lookup or the new
operator.

98

Entity beans

5.2.3. Entity beans

Entity beans may be bound to a context variable and function as a seam component. Because
entities have a persistent identity in addition to their contextual identity, entity instances are usually
bound explicitly in Java code, rather than being instantiated implicitly by Seam.

Entity bean components do not support bijection or context demarcation. Nor does invocation of
an entity bean trigger validation.

Entity beans are not usually used as JSF action listeners, but do often function as backing beans
that provide properties to JSF components for display or form submission. In particular, it is
common to use an entity as a backing bean, together with a stateless session bean action listener
to implement create/update/delete type functionality.

By default, entity beans are bound to the conversation context. They may never be bound to the
stateless context.

Note that it in a clustered environment is somewhat less efficient to bind an entity bean directly to
a conversation or session scoped Seam context variable than it would be to hold a reference to
the entity bean in a stateful session bean. For this reason, not all Seam applications define entity
beans to be Seam components.

Seam entity bean components may be instantiated using Conponent. getlnstance(),
@n(create=true) or directly using the new operator.

5.2.4. JavaBeans

JavaBeans may be used just like a stateless or stateful session bean. However, they do not
provide the functionality of a session bean (declarative transaction demarcation, declarative
security, efficient clustered state replication, EJB 3.0 persistence, timeout methods, etc).

In a later chapter, we show you how to use Seam and Hibernate without an EJB container. In
this use case, components are JavaBeans instead of session beans. Note, however, that in many
application servers it is somewhat less efficient to cluster conversation or session scoped Seam
JavaBean components than it is to cluster stateful session bean components.

By default, JavaBeans are bound to the event context.
Concurrent requests to session-scoped JavaBeans are always serialized by Seam.

Seam JavaBean components may be instantiated using Conponent. getlnstance() or
@n(create=true). They should not be directly instantiated using the new operator.

5.2.5. Message-driven beans

Message-driven beans may function as a seam component. However, message-driven beans
are called quite differently to other Seam components - instead of invoking them via the context
variable, they listen for messages sent to a JMS queue or topic.

99

Chapter 5. The contextual com...

Message-driven beans may not be bound to a Seam context. Nor do they have access to the
session or conversation state of their "caller". However, they do support bijection and some other
Seam functionality.

Message-driven beans are never instantiated by the application. They are instantiated by the EJB
container when a message is received.

5.2.6. Interception

In order to perform its magic (bijection, context demarcation, validation, etc), Seam must intercept
component invocations. For JavaBeans, Seam is in full control of instantiation of the component,
and no special configuration is needed. For entity beans, interception is not required since bijection
and context demarcation are not defined. For session beans, we must register an EJB interceptor
for the session bean component. We could use an annotation, as follows:

@Stateless
@Interceptors(Seaminterceptor.class)
public class LoginAction implements Login {

But a much better way is to define the interceptor in ej b-j ar. xm .

<interceptors>
<interceptor>
<interceptor-class>org.jboss.seam.ejb.Seaminterceptor</interceptor-class>
</interceptor>
</interceptors>

<assembly-descriptor>
<interceptor-binding>
<ejb-name>*</ejb-name>
<interceptor-class>org.jboss.seam.ejb.Seaminterceptor</interceptor-class>
</interceptor-binding>
</assembly-descriptor>

5.2.7. Component names

All seam components need a name. We can assign a name to a component using the @lane
annotation:

@Name("loginAction")

100

Component names

@Stateless
public class LoginAction implements Login {

This name is the seam component name and is not related to any other name defined by the EJB
specification. However, seam component names work just like JSF managed bean names and
you can think of the two concepts as identical.

@ane is not the only way to define a component name, but we always need to specify the name
somewhere. If we don't, then none of the other Seam annotations will function.

Whenever Seam instantiates a component, it binds the new instance to a variable in the scope
configured for the component that matches the component name. This behavior is identical to
how JSF managed beans work, except that Seam allows you to configure this mapping using
annotations rather than XML. You can also programmatically bind a component to a context
variable. This is useful if a particular component serves more than one role in the system. For
example, the currently logged in User might be bound to the current User session context
variable, while a User that is the subject of some administration functionality might be bound
to the user conversation context variable. Be careful, though, because through a programmatic
assignment, it's possible to overwrite a context variable that has a reference to a Seam component,
potentially confusing matters.

For very large applications, and for built-in seam components, qualified component names are
often used to avoid naming conflicts.

@Name("com.jboss.myapp.loginAction™)
@Stateless
public class LoginAction implements Login {

We may use the qualified component name both in Java code and in JSF's expression language:

<h:commandButton type="submit" value="Login"
action="#{com.jboss.myapp.loginAction.login}"/>

Since this is noisy, Seam also provides a means of aliasing a qualified name to a simple name.
Add a line like this to the conponent s. xmi file:

<factory name="loginAction" scope="STATELESS" value="#{com.jboss.myapp.loginAction}"/>

101

Chapter 5. The contextual com...

All of the built-in Seam components have qualified names but can be accessed through their
unqualified names due to the namespace import feature of Seam. The conponents. xm file
included in the Seam JAR defines the following namespaces.

<components xmlns="http://jboss.org/schema/seam/components">

<import>org.jboss.seam.core</import>
<import>org.jboss.seam.cache</import>
<import>org.jboss.seam.transaction</import>
<import>org.jboss.seam.framework</import>
<import>org.jboss.seam.web</import>
<import>org.jboss.seam.faces</import>
<import>org.jboss.seam.international</import>
<import>org.jboss.seam.theme</import>
<import>org.jboss.seam.pageflow</import>
<import>org.jboss.seam.bpm</import>
<import>org.jboss.seam.jms</import>
<import>org.jboss.seam.mail</import>
<import>org.jboss.seam.security</import>
<import>org.jboss.seam.security.management</import>
<import>org.jboss.seam.security.permission</import>
<import>org.jboss.seam.captcha</import>
<import>org.jboss.seam.excel.exporter</import>

<l-- ... --->

</components>

When attempting to resolve an unqualified name, Seam will check each of those namespaces,
in order. You can include additional namespaces in your application's conponent s. xm file for
application-specific namespaces.

5.2.8. Defining the component scope

We can override the default scope (context) of a component using the @cope annotation. This
lets us define what context a component instance is bound to, when it is instantiated by Seam.

@Name("user")
@Entity
@Scope(SESSION)
public class User {

102

Components with multiple roles

org. j boss. seam ScopeType defines an enumeration of possible scopes.

5.2.9. Components with multiple roles

Some Seam component classes can fulfill more than one role in the system. For example, we
often have a User class which is usually used as a session-scoped component representing the
current user but is used in user administration screens as a conversation-scoped component. The
@Rol e annotation lets us define an additional named role for a component, with a different scope
— it lets us bind the same component class to different context variables. (Any Seam component
instance may be bound to multiple context variables, but this lets us do it at the class level, and
take advantage of auto-instantiation.)

@Name("user")

@Entity

@Scope(CONVERSATION)
@Role(name="currentUser", scope=SESSION)
public class User {

The @Rol es annotation lets us specify as many additional roles as we like.

@Name("user")

@Entity

@Scope(CONVERSATION)

@Roles({@Role(name="currentUser", scope=SESSION),
@Role(name="tempUser", scope=EVENT)})

public class User {

5.2.10. Built-in components

Like many good frameworks, Seam eats its own dogfood and is implemented mostly as a set of
built-in Seam interceptors (see later) and Seam components. This makes it easy for applications
to interact with built-in components at runtime or even customize the basic functionality of Seam
by replacing the built-in components with custom implementations. The built-in components are
defined in the Seam namespace or g. j boss. seam cor e and the Java package of the same name.

The built-in components may be injected, just like any Seam components, but they also provide
convenient static i nst ance() methods:

103

Chapter 5. The contextual com...

FacesMessages.instance().add("Welcome back, #{user.name}!");

5.3. Bijection

Dependency injection or inversion of control is by now a familiar concept to most Java developers.
Dependency injection allows a component to obtain a reference to another component by
having the container "inject" the other component to a setter method or instance variable. In all
dependency injection implementations that we have seen, injection occurs when the component
is constructed, and the reference does not subsequently change for the lifetime of the component
instance. For stateless components, this is reasonable. From the point of view of a client, all
instances of a particular stateless component are interchangeable. On the other hand, Seam
emphasizes the use of stateful components. So traditional dependency injection is no longer a
very useful construct. Seam introduces the notion of bijection as a generalization of injection. In
contrast to injection, bijection is:

« contextual - bijection is used to assemble stateful components from various different contexts (a
component from a "wider" context may even have a reference to a component from a "narrower"
context)

« bidirectional - values are injected from context variables into attributes of the component being
invoked, and also outjected from the component attributes back out to the context, allowing the
component being invoked to manipulate the values of contextual variables simply by setting its
own instance variables

« dynamic - since the value of contextual variables changes over time, and since Seam
components are stateful, bijection takes place every time a component is invoked

In essence, bijection lets you alias a context variable to a component instance variable, by
specifying that the value of the instance variable is injected, outjected, or both. Of course, we use
annotations to enable bijection.

The @ n annotation specifies that a value should be injected, either into an instance variable:

@Name("loginAction")

@Stateless

public class LoginAction implements Login {
@In User user;

or into a setter method:

@Name("loginAction")

104

Bijection

@Stateless
public class LoginAction implements Login {
User user;

@In
public void setUser(User user) {
this.user=user,;

By default, Seam will do a priority search of all contexts, using the name of the property or instance
variable that is being injected. You may wish to specify the context variable name explicitly, using,
for example, @ n("current User").

If you want Seam to create an instance of the component when there is no existing component
instance bound to the named context variable, you should specify @ n(cr eat e=t r ue) . If the value
is optional (it can be null), specify @ n(r equi r ed=f al se) .

For some components, it can be repetitive to have to specify @ n(cr eat e=t r ue) everywhere they
are used. In such cases, you can annotate the component @ut oCr eat e, and then it will always
be created, whenever needed, even without the explicit use of cr eat e=t r ue.

You can even inject the value of an expression:

@Name("loginAction™)

@Stateless

public class LoginAction implements Login {
@In("#{user.username}") String username;

Injected values are disinjected (i.e., set to nul |) immediately after method completion and
outjection.

(There is much more information about component lifecycle and injection in the next chapter.)

The @ut annotation specifies that an attribute should be outjected, either from an instance
variable:

@Name("loginAction")
@Stateless
public class LoginAction implements Login {

105

Chapter 5. The contextual com...

@Out User user;

or from a getter method:

@Name("loginAction™)

@Stateless

public class LoginAction implements Login {
User user;

@Out
public User getUser() {
return user;

An attribute may be both injected and outjected:

@Name("loginAction")

@Stateless

public class LoginAction implements Login {
@In @Out User user;

or:

@Name("loginAction")

@Stateless

public class LoginAction implements Login {
User user;

@In
public void setUser(User user) {
this.user=user;

106

Lifecycle methods

@Out
public User getUser() {
return user;

5.4. Lifecycle methods

Session bean and entity bean Seam components support all the usual EJB 3.0 lifecycle
callback (@ost Const ruct , @r eDest r oy, etc). But Seam also supports the use of any of these
callbacks with JavaBean components. However, since these annotations are not available in
a J2EE environment, Seam defines two additional component lifecycle callbacks, equivalent to
@Post Construct and @r eDest r oy.

The @ eat e method is called after Seam instantiates a component. Components may define only
one @ eat e method.

The @est roy method is called when the context that the Seam component is bound to ends.
Components may define only one @est r oy method.

In addition, stateful session bean components must define a method with no parameters annotated
@enove. This method is called by Seam when the context ends.

Finally, a related annotation is the @5t ar t up annotation, which may be applied to any application
or session scoped component. The @t ar t up annotation tells Seam to instantiate the component
immediately, when the context begins, instead of waiting until it is first referenced by a
client. It is possible to control the order of instantiation of startup components by specifying
@t artup(depends={....}).

5.5. Conditional installation

The @ nst al | annotation lets you control conditional installation of components that are required
in some deployment scenarios and not in others. This is useful if:

* You want to mock out some infrastructural component in tests.
« You want change the implementation of a component in certain deployment scenarios.

* You want to install some components only if their dependencies are available (useful for
framework authors).

@ nst al | works by letting you specify precedence and dependencies.

The precedence of a component is a number that Seam uses to decide which component to
install when there are multiple classes with the same component name in the classpath. Seam

107

Chapter 5. The contextual com...

will choose the component with the higher precedence. There are some predefined precedence
values (in ascending order):

1. BUI LT_I N— the lowest precedence components are the components built in to Seam.

2. FRAMEWORK — components defined by third-party frameworks may override built-in
components, but are overridden by application components.

3. APPLI CATI ON — the default precedence. This is appropriate for most application components.
4. DEPLOYMENT — for application components which are deployment-specific.
5. MOCK — for mock objects used in testing.

Suppose we have a component named messageSender that talks to a JMS queue.

@Name("messageSender")
public class MessageSender {
public void sendMessage() {
/ldo something with JIMS

In our unit tests, we don't have a JMS queue available, so we would like to stub out this method.
We'll create a mock component that exists in the classpath when unit tests are running, but is
never deployed with the application:

@Name("messageSender")
@Install(precedence=MOCK)
public class MockMessageSender extends MessageSender {
public void sendMessage() {
/ldo nothing!

The pr ecedence helps Seam decide which version to use when it finds both components in the
classpath.

This is nice if we are able to control exactly which classes are in the classpath. But if I'm writing
a reusable framework with many dependencies, | don't want to have to break that framework
across many jars. | want to be able to decide which components to install depending upon
what other components are installed, and upon what classes are available in the classpath. The
@nstal | annotation also controls this functionality. Seam uses this mechanism internally to

108

Logging

enable conditional installation of many of the built-in components. However, you probably won't
need to use it in your application.

5.6. Logging

Who is not totally fed up with seeing noisy code like this?

private static final Log log = LogFactory.getLog(CreateOrderAction.class);

public Order createOrder(User user, Product product, int quantity) {
if (log.isDebugEnabled()) {
log.debug("Creating new order for user: " + user.username() +
" product: " + product.name()
+ " quantity: " + quantity);
}

return new Order(user, product, quantity);

It is difficult to imagine how the code for a simple log message could possibly be more verbose.
There is more lines of code tied up in logging than in the actual business logic! | remain totally
astonished that the Java community has not come up with anything better in 10 years.

Seam provides a logging API that simplifies this code significantly:

@Logger private Log log;

public Order createOrder(User user, Product product, int quantity) {
log.debug("Creating new order for user: #0 product: #1 quantity:
#2", user.username(), product.name(), quantity);
return new Order(user, product, quantity);

It doesn't matter if you declare the | og variable static or not — it will work either way, except for
entity bean components which require the | og variable to be static.

Note that we don't need the noisy if (|og.isDebugEnabled()) guard, since string
concatenation happens inside the debug() method. Note also that we don't usually need to specify
the log category explicitly, since Seam knows what component it is injecting the Log into.

If User and Product are Seam components available in the current contexts, it gets even better:

@Logger private Log log;

109

Chapter 5. The contextual com...

public Order createOrder(User user, Product product, int quantity) {

log.debug("Creating new order for user: #{user.username} product: #{product.name} quantity:
#0", quantity);

return new Order(user, product, quantity);

Seam logging automagically chooses whether to send output to log4j or JDK logging. If log4j is in
the classpath, Seam with use it. If it is not, Seam will use JDK logging.

5.7. The mtani e Interface and @readonly

Many application servers feature an amazingly broken implementation of Ht t pSessi on clustering,
where changes to the state of mutable objects bound to the session are only replicated when the
application calls set Attri but e() explicitly. This is a source of bugs that can not effectively be
tested for at development time, since they will only manifest when failover occurs. Furthermore,
the actual replication message contains the entire serialized object graph bound to the session
attribute, which is inefficient.

Of course, EJB stateful session beans must perform automatic dirty checking and replication of
mutable state and a sophisticated EJB container can introduce optimizations such as attribute-
level replication. Unfortunately, not all Seam users have the good fortune to be working in an
environment that supports EJB 3.0. So, for session and conversation scoped JavaBean and entity
bean components, Seam provides an extra layer of cluster-safe state management over the top
of the web container session clustering.

For session or conversation scoped JavaBean components, Seam automatically forces replication
to occur by calling set Attri but e() once in every request that the component was invoked by
the application. Of course, this strategy is inefficient for read-mostly components. You can control
this behavior by implementing the or g. j boss. seam cor e. Mut abl e interface, or by extending
org.j boss. seam cor e. Abst ract Mit abl e, and writing your own dirty-checking logic inside the
component. For example,

@Name("account")
public class Account extends AbstractMutable

{

private BigDecimal balance;

public void setBalance(BigDecimal balance)

{

setDirty(this.balance, balance);
this.balance = balance;

public BigDecimal getBalance()

110

The Mutable interface and @ReadOnly

return balance;

Or, you can use the @eadOnl y annotation to achieve a similar effect:

@Name("account")
public class Account

{

private BigDecimal balance;

public void setBalance(BigDecimal balance)

{

this.balance = balance;

@ReadOnly
public BigDecimal getBalance()

{

return balance;

For session or conversation scoped entity bean components, Seam automatically forces
replication to occur by calling set At t ri but e() once in every request, unless the (conversation-
scoped) entity is currently associated with a Seam-managed persistence context, in which case no
replication is needed. This strategy is not necessarily efficient, so session or conversation scope
entity beans should be used with care. You can always write a stateful session bean or JavaBean
component to "manage" the entity bean instance. For example,

@Stateful
@Name("account")
public class AccountManager extends AbstractMutable

{

private Account account; // an entity bean

111

Chapter 5. The contextual com...

@Unwrap
public Account getAccount()

{

return account;

Note that the Ent i t yHorre class in the Seam Application Framework provides a great example of
managing an entity bean instance using a Seam component.

5.8. Factory and manager components

We often need to work with objects that are not Seam components. But we still want to be able to
inject them into our components using @ n and use them in value and method binding expressions,
etc. Sometimes, we even need to tie them into the Seam context lifecycle (@est r oy, for example).
So the Seam contexts can contain objects which are not Seam components, and Seam provides a
couple of nice features that make it easier to work with non-component objects bound to contexts.

The factory component pattern lets a Seam component act as the instantiator for a non-component
object. A factory method will be called when a context variable is referenced but has no value
bound to it. We define factory methods using the @act or y annotation. The factory method binds
a value to the context variable, and determines the scope of the bound value. There are two styles
of factory method. The first style returns a value, which is bound to the context by Seam:

@Factory(scope=CONVERSATION)
public List<Customer> getCustomerList() {
return ... ;

The second style is a method of type voi d which binds the value to the context variable itself:

@DataModel List<Customer> customerList;

@Factory("customerList")
public void initCustomerList() {
customerList = ... ;

112

Factory and manager components

In both cases, the factory method is called when we reference the cust oner Li st context variable
and its value is null, and then has no further part to play in the lifecycle of the value. An even more
powerful pattern is the manager component pattern. In this case, we have a Seam component
that is bound to a context variable, that manages the value of the context variable, while remaining
invisible to clients.

A manager component is any component with an @nw ap method. This method returns the value
that will be visible to clients, and is called every time a context variable is referenced.

@Name("customerList")
@Scope(CONVERSATION)
public class CustomerListManager

{

@Unwrap
public List<Customer> getCustomerList() {
return ... ;

The manager component pattern is especially useful if we have an object where you need more
control over the lifecycle of the component. For example, if you have a heavyweight object that
needs a cleanup operation when the context ends you could @nw ap the object, and perform
cleanup in the @est r oy method of the manager component.

@Name("hens")
@Scope(APPLICATION)
public class HenHouse

{

Set<Hen> hens;

@In(required=false) Hen hen;

@Unwrap
public List<Hen> getHens()

{

if (hens == null)

{

/I Setup our hens

}

return hens;

113

Chapter 5. The contextual com...

@Observer({"chickBorn", "chickenBoughtAtMarket"})
public addHen()

{
hens.add(hen);

@Observer("chickenSoldAtMarket")
public removeHen()

{

hens.remove(hen);

@Observer('foxGetsiIn®)
public removeAllHens()

{

hens.clear();

Here the managed component observes many events which change the underlying object. The
component manages these actions itself, and because the object is unwrapped on every access,
a consistent view is provided.

114

Chapter 6.

Configuring Seam components

The philosophy of minimizing XML-based configuration is extremely strong in Seam.
Nevertheless, there are various reasons why we might want to configure a Seam component
using XML: to isolate deployment-specific information from the Java code, to enable the creation
of re-usable frameworks, to configure Seam's built-in functionality, etc. Seam provides two basic
approaches to configuring components: configuration via property settings in a properties file or
in web. xm , and configuration via conponent s. xn .

6.1. Configuring components via property settings

Seam components may be provided with configuration properties either via servlet context
parameters, via system properties, or via a properties file named seam properti es in the root
of the classpath.

The configurable Seam component must expose JavaBeans-style property setter methods
for the configurable attributes. If a Seam component named com j boss. nyapp. settings
has a setter method named setlLocale(), we can provide a property named
com j boss. nmyapp. settings. | ocal e in the seam properties file, a system property named
org.j boss. seam properties. comjboss. nyapp. settings.|ocal e via -D at startup, or as a
servlet context parameter, and Seam will set the value of the | ocal e attribute whenever it
instantiates the component.

The same mechanism is used to configure Seam itself. For example, to set the conversation
timeout, we provide a value for org.jboss.seam core. manager. conversationTi meout
in web.xml, seamproperties, or via a system property prefixed with
org.jboss.seam properties. (There is a built-in Seam component named
org. j boss. seam cor e. manager with a setter method named set Conver sati onTi neout () .)

6.2. Configuring components via conponents. xni
The conponent s. xm file is a bit more powerful than property settings. It lets you:

» Configure components that have been installed automatically — including both built-in
components, and application components that have been annotated with the @ame annotation
and picked up by Seam's deployment scanner.

« Install classes with no @ane annotation as Seam components — this is most useful for certain
kinds of infrastructural components which can be installed multiple times with different names
(for example Seam-managed persistence contexts).

* Install components that do have a @ane annotation but are not installed by default because of
an @ nst al | annotation that indicates the component should not be installed.

» Override the scope of a component.

A conponent s. xn file may appear in one of three different places:

115

Chapter 6. Configuring Seam c...

e The VEB- | NF directory of a war .
* The META- | NF directory of a j ar .
* Any directory of aj ar that contains classes with an @ane annotation.

Usually, Seam components are installed when the deployment scanner discovers a class
with a @lame annotation sitting in an archive with a seam properties file or a META- | NF/
component s. xni file. (Unless the component has an @ nst al | annotation indicating it should not
be installed by default.) The conponent s. xnl file lets us handle special cases where we need
to override the annotations.

For example, the following conponent s. xni file installs jBPM:

<components xmlns="http://jboss.org/schema/seam/components"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:bpm="http://jpboss.org/schema/seam/bpm">
<bpm:jbpm/>
</components>

This example does the same thing:

<components>
<component class="org.jboss.seam.bpm.Jbpm"/>
</components>

This one installs and configures two different Seam-managed persistence contexts:

<components xmlns="http://jpboss.org/schema/seam/components"
xmins:persistence="http://jpboss.org/schema/seam/persistence"

<persistence:managed-persistence-context name="customerDatabase"
persistence-unit-jndi-name="java:/customerEntityManagerFactory"/>

<persistence:managed-persistence-context name="accountingDatabase"
persistence-unit-jndi-name="java:/accountingEntityManagerFactory"/>

</components>

As does this one:

<components>

116

Configuring components via components.xml

<component name="customerDatabase"
class="org.jboss.seam.persistence.ManagedPersistenceContext">
<property name="persistenceUnitJndiName">java:/customerEntityManagerFactory</
property>
</component>

<component name="accountingDatabase"
class="org.jboss.seam.persistence.ManagedPersistenceContext">
<property name="persistenceUnitJndiName">java:/accountingEntityManagerFactory</
property>
</component>
</components>

This example creates a session-scoped Seam-managed persistence context (this is not
recommended in practice):

<components xmlns="http://jboss.org/schema/seam/components"
xmins:persistence="http://jpboss.org/schema/seam/persistence"

<persistence:managed-persistence-context name="productDatabase"
scope="session"
persistence-unit-jndi-name="java:/productEntityManagerFactory"/>

</components>

<components>

<component name="productDatabase"
scope="session"
class="org.jboss.seam.persistence.ManagedPersistenceContext">
<property name="persistenceUnitJndiName">java:/productEntityManagerFactory</property>
</component>

</components>

It is common to use the aut o- cr eat e option for infrastructural objects like persistence contexts,
which saves you from having to explicitly specify cr eat e=t r ue when you use the @ n annotation.

<components xmlns="http://jpboss.org/schema/seam/components"
xmlns:persistence="http://jpboss.org/schema/seam/persistence"

117

Chapter 6. Configuring Seam c...

<persistence:managed-persistence-context name="productDatabase"
auto-create="true"
persistence-unit-jndi-name="java:/productEntityManagerFactory"/>

</components>

<components>
<component name="productDatabase"
auto-create="true"
class="org.jboss.seam.persistence.ManagedPersistenceContext">
<property name="persistenceUnitJndiName">java:/productEntityManagerFactory</property>

</component>

</components>

The <f act or y> declaration lets you specify a value or method binding expression that will be
evaluated to initialize the value of a context variable when it is first referenced.

<components>

<factoryname="contact"method="#{contactManager.loadContact}'scope="CONVERSATION"/
>

</components>

You can create an "alias" (a second name) for a Seam component like so:

<components>

<factory name="user" value="#{actor}" scope="STATELESS"/>

</components>

You can even create an "alias" for a commonly used expression:

<components>

118

Fine-grained configuration files

<factory name="contact" value="#{contactManager.contact}" scope="STATELESS"/>

</components>
It is especially common to see the use of aut o- creat e="true" with the <f act or y> declaration:

<components>

<factory name="session" value="#{entityManager.delegate}" scope="STATELESS" auto-
create="true"/>

</components>

Sometimes we want to reuse the same conponents.xnl file with minor changes during
both deployment and testing. Seam lets you place wildcards of the form @i | dcard@in the
component s. xni file which can be replaced either by your Ant build script (at deployment time) or
by providing a file named conponent s. properti es in the classpath (at development time). You'll
see this approach used in the Seam examples.

6.3. Fine-grained configuration files

If you have a large number of components that need to be configured in XML, it makes much
more sense to split up the information in conponent s. xm into many small files. Seam lets you
put configuration for a class named, for example, com hel | owor | d. Hel | o in a resource named
com hel | owor | d/ Hel | 0. conponent . xni . (You might be familiar with this pattern, since it is the
same one we use in Hibernate.) The root element of the file may be either a <conponent s> or
<conponent > element.

The first option lets you define multiple components in the file:

<components>
<component class="com.helloworld.Hello" name="hello">
<property name="name">#{user.name}</property>
</component>
<factory name="message" value="#{hello.message}"/>
</components>

The second option only lets you define or configure one component, but is less noisy:

<component name="hello">

119

Chapter 6. Configuring Seam c...

<property name="name">#{user.name}</property>
</component>

In the second option, the class name is implied by the file in which the component definition
appears.

Alternatively, you may put configuration for all classes in the com hel | owor | d package in cont
hel | owor | d/ conponent s. xm .

6.4. Configurable property types

Properties of string, primitive or primitive wrapper type may be configured just as you would expect:

org.jboss.seam.core.manager.conversationTimeout 60000

<core:manager conversation-timeout="60000"/>

<component name="org.jboss.seam.core.manager">
<property name="conversationTimeout">60000</property>
</component>

Arrays, sets and lists of strings or primitives are also supported:

org.jboss.seam.bpm.jbpm.processDefinitions order.jpdl.xml, return.jpdl.xml, inventory.jpdl.xml

<bpm:jbpm>
<bpm:process-definitions>
<value>order.jpdl.xml</value>
<value>return.jpdl.xml</value>
<value>inventory.jpdl.xml</value>
</bpm:process-definitions>
</bpm:jbpm>

<component name="org.jboss.seam.bpm.jopm">
<property name="processDefinitions">
<value>order.jpdl.xml</value>

120

Configurable property types

<value>return.jpdl.xml</value>
<value>inventory.jpdl.xml</value>
</property>
</component>

Even maps with String-valued keys and string or primitive values are supported:

<component name="issueEditor">
<property name="issueStatuses">
<key>open</key> <value>open issue</value>
<key>resolved</key> <value>issue resolved by developer</value>
<key>closed</key> <value>resolution accepted by user</value>
</property>
</component>

When configuring multi-valued properties, by default, Seam will preserve the order in which you
place the attributes in conponent s. xml (unless you use a Sort edSet /Sor t edMap then Seam will
use Tr eeMap/Tr eeSet). If the property has a concrete type (for example Li nkedLi st) Seam will
use that type.

You can also override the type by specifying a fully qualified class name:

<component name="issueEditor">
<property name="issueStatusOptions" type="java.util.LinkedHashMap">
<key>open</key> <value>open issue</value>
<key>resolved</key> <value>issue resolved by developer</value>
<key>closed</key> <value>resolution accepted by user</value>
</property>
</component>

Finally, you may wire together components using a value-binding expression. Note that this is
quite different to injection using @ n, since it happens at component instantiation time instead of
invocation time. It is therefore much more similar to the dependency injection facilities offered by
traditional IoC containers like JSF or Spring.

<drools:managed-working-memory hame="policyPricingWorkingMemory"
rule-base="#{policyPricingRules}"/>

<component name="policyPricingWorkingMemory"

121

Chapter 6. Configuring Seam c...

class="org.jboss.seam.drools.ManagedWorkingMemory">
<property name="ruleBase">#{policyPricingRules}</property>
</component>

Seam also resolves an EL expression string prior to assigning the initial value to the bean property
of the component. So you can inject some contextual data into your components.

<component name="greeter" class="com.example.action.Greeter">
<property name="message">Nice to see you, #{identity.username}</property>
</component>

However, there is one important exception. If the type of the property to which the initial value is
being assigned is either a Seam Val ueExpr essi on or Met hodExpr essi on, then the evaluation of
the EL is deferred. Instead, the appropriate expression wrapper is created and assigned to the
property. The message templates on the Home component from the Seam Application Framework
serve as an example.

<framework:entity-home name="myEntityHome"
class="com.example.action.MyEntityHome" entity-class="com.example.model.MyEntity"
created-message="#{myEntityHome.instance.name}' has been successfully added."/>

Inside the component, you can access the expression string by calling get Expr essi onStri ng()
on the Val ueExpr essi on or Met hodExpr essi on. If the property is a Val ueExpr essi on, you can
resolve the value using get Val ue() and if the property is a Met hodExpr essi on, you can invoke
the method usingi nvoke(Obj ect args. . .).Obviously, to assign a value to a Met hodExpr essi on
property, the entire initial value must be a single EL expression.

6.5. Using XML Namespaces

Throughout the examples, there have been two competing ways of declaring components: with
and without the use of XML namespaces. The following shows a typical conponent s. xnl file
without namespaces:

<?xml version="1.0" encoding="UTF-8"?>

<components xmlns="http://jboss.org/schema/seam/components"
xsi:schemalocation="http://jboss.org/schema/seam/components http://jboss.org/schema/

seam/components-2.3.xsd">

<component class="org.jboss.seam.core.init">
<property name="debug">true</property>
<property name="jndiPattern">@jndiPattern@</property>

122

Using XML Namespaces

</component>

</components>

As you can see, this is somewhat verbose. Even worse, the component and attribute names
cannot be validated at development time.

The version with using namespaces looks like this:

<?xml version="1.0" encoding="UTF-8"?>
<components xmlns="http://jboss.org/schema/seam/components"
xmlins:core="http://jboss.org/schema/seam/core"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation=
"http://jboss.org/schema/seam/core http://jboss.org/schema/seam/core-2.3.xsd
http://jboss.org/schema/seam/components http://jboss.org/schema/seam/
components-2.3.xsd">

<core:init debug="true" jndi-pattern="@jndiPattern@"/>

</components>

Even though the schema declarations are verbose, the actual XML content is lean and easy to
understand. The schemas provide detailed information about each component and the attributes
available, allowing XML editors to offer intelligent autocomplete. The use of namespaced elements
makes generating and maintaining correct conponent s. xm files much simpler.

Now, this works great for the built-in Seam components, but what about user components? There
are two options. First, Seam supports mixing the two models, allowing the use of the generic
<conponent > declarations for user components, along with namespaced declarations for built-
in components. But even better, Seam allows you to quickly declare namespaces for your own
components.

Any Java package can be associated with an XML namespace by annotating the package with
the @lanespace annotation. (Package-level annotations are declared in a file nhamed package-
i nf 0. j ava in the package directory.) Here is an example from the seampay demo:

@Namespace(value="http://jposs.org/schema/seam/examples/seampay")
package org.jpboss.seam.example.seampay;

import org.jboss.seam.annotations.Namespace;

123

Chapter 6. Configuring Seam c...

That is all you need to do to use the namespaced style in conponent s. xm ! Now we can write:

<components xmlns="http://jboss.org/schema/seam/components"
xmlns:pay="http://jpboss.org/schema/seam/examples/seampay
">

<pay:payment-home new-instance="#{newPayment}"
created-message="Created a new payment to #{newPayment.payee}" />

<pay:payment name="newPayment"
payee="Somebody"
account="#{selectedAccount}"
payment-date="#{currentDatetime}"
created-date="#{currentDatetime}" />

</components>

<components xmlns="http://jpboss.org/schema/seam/components"
xmlns:pay="http://jpboss.org/schema/seam/examples/seampay"
o>

<pay:payment-home>
<pay:new-instance>"#{newPayment}"</pay:new-instance>
<pay:created-message>Created a new payment to #{newPayment.payee}</pay:created-
message>
</pay:payment-home>

<pay:payment name="newPayment">
<pay:payee>Somebody"</pay:payee>
<pay:account>#{selectedAccount}</pay:account>
<pay:payment-date>#{currentDatetime}</pay:payment-date>
<pay:created-date>#{currentDatetime}</pay:created-date>
</pay:payment>

</components>

These examples illustrate the two usage models of a namespaced element. In the first declaration,
the <pay: paynent - hone> references the payment Hone component:

124

Using XML Namespaces

package org.jpboss.seam.example.seampay;

@Name("paymentHome™")
public class PaymentController
extends EntityHome<Payment>

The element name is the hyphenated form of the component name. The attributes of the element
are the hyphenated form of the property names.

In the second declaration, the <pay: payment > element refers to the Payment class in the
org. j boss. seam exanpl e. seanpay package. In this case Payment is an entity that is being
declared as a Seam component:

package org.jpboss.seam.example.seampay;

@Entity
public class Payment
implements Serializable

If we want validation and autocompletion to work for user-defined components, we will need a
schema. Seam does not yet provide a mechanism to automatically generate a schema for a set of
components, so it is necessary to generate one manually. The schema definitions for the standard
Seam packages can be used for guidance.

The following are the namespaces used by Seam:

e components — htt p: //j boss. or g/ schenma/ seanif conponent s
e core—http://jboss. org/schema/ seani core

e drools — http://jboss. org/ schema/ seam drool s

» framework — htt p://j boss. or g/ schema/ seant f r amewor k

e jms —http://jboss. org/ schema/ seam j ns

e remoting — http://jboss. org/ schenma/ seant r enot i ng

e theme — http://jboss. org/ schema/ sean t hene

125

Chapter 6. Configuring Seam c...

e security — http://jboss. org/ schema/ seam security
e mail —http://jboss. org/ schena/ seani ni |

e web —http://jboss. org/ schena/ seani web

e pdf —http://jboss. org/ schema/ seant pdf

e spring — http://jboss. org/ schema/ seani spri ng

126

Chapter 7.

Events, interceptors and exception
handling

Complementing the contextual component model, there are two further basic concepts that
facilitate the extreme loose-coupling that is the distinctive feature of Seam applications. The first
is a strong event model where events may be mapped to event listeners via JSF-like method
binding expressions. The second is the pervasive use of annotations and interceptors to apply
cross-cutting concerns to components which implement business logic.

7.1. Seam events

The Seam component model was developed for use with event-driven applications, specifically to
enable the development of fine-grained, loosely-coupled components in a fine-grained eventing
model. Events in Seam come in several types, most of which we have already seen:

JSF events

jBPM transition events

e Seam page actions

e Seam component-driven events
* Seam contextual events

All of these various kinds of events are mapped to Seam components via JSF EL method binding
expressions. For a JSF event, this is defined in the JSF template:

<h:commandButton value="Click me!" action="#{hellowWorld.sayHello}"/>

For a jBPM transition event, it is specified in the jBPM process definition or pageflow definition:

<start-page name="hello" view-id="/hello.xhtml|">
<transition to="hello">
<action expression="#{helloWorld.sayHello}"/>
</transition>
</start-page>

You can find out more information about JSF events and jBPM events elsewhere. Let's
concentrate for now upon the two additional kinds of events defined by Seam.

127

Chapter 7. Events, intercepto...

7.2. Page actions

A Seam page action is an event that occurs just before we render a page. We declare page actions
in VEB- | NF/ pages. xnl . We can define a page action for either a particular JSF view id:

<pages>
<page view-id="/hello.xhtml" action="#{helloWorld.sayHello}"/>
</pages>

Or we can use a * wildcard as a suffix to the vi ew- i d to specify an action that applies to all view
ids that match the pattern:

<pages>
<page view-id="/hello/*" action="#{helloWorld.sayHello}"/>
</pages>

Keep in mind that if the <page> element is defined in a fine-grained page descriptor, the vi ew
i d attribute can be left off since it is implied.

If multiple wildcarded page actions match the current view-id, Seam will call all the actions, in
order of least-specific to most-specific.

The page action method can return a JSF outcome. If the outcome is non-null, Seam will use the
defined navigation rules to navigate to a view.

Furthermore, the view id mentioned in the <page> element need not correspond to a real JSP or
Facelets page! So, we can reproduce the functionality of a traditional action-oriented framework
like Struts or WebWork using page actions. This is quite useful if you want to do complex things
in response to non-faces requests (for example, HTTP GET requests).

Multiple or conditional page actions my be specified using the <act i on> tag:

<pages>
<page view-id="/hello.xhtml[">
<action execute="#{helloWorld.sayHello}" if="#{not validation.failed}"/>
<action execute="#{hitCount.increment}"/>
</page>
</pages>

Page actions are executed on both an initial (hon-faces) request and a postback (faces) request.
If you are using the page action to load data, this operation may conflict with the standard JSF

128

Page parameters

action(s) being executed on a postback. One way to disable the page action is to setup a condition
that resolves to true only on an initial request.

<pages>
<page view-id="/dashboard.xhtml|">
<action execute="#{dashboard.loadData}"
if="#{not facesContext.renderKit.responseStateManager.isPostback(facesContext)}"/>
</page>
</pages>

This condition consults the ResponseSt at eManager #i sPost back(FacesCont ext) to determine
if the request is a postback. The ResponseStateManager is accessed using
FacesCont ext . get Current | nstance(). get RenderKi t (). get ResponseSt at eManager () .

To save you from the verbosity of JSF's API, Seam offers a built-in condition that allows you to
accomplish the same result with a heck of a lot less typing. You can disable a page action on
postback by simply setting the on- post back to f al se:

<pages>
<page view-id="/dashboard.xhtml|">
<action execute="#{dashboard.loadData}" on-postback="false"/>
</page>
</pages>

For backwards compatibility reasons, the default value of the on- post back attribute is true, though
likely you will end up using the opposite setting more often.

7.3. Page parameters

A JSF faces request (a form submission) encapsulates both an "action" (a method binding) and
"parameters" (input value bindings). A page action might also needs parameters!

Since GET requests are bookmarkable, page parameters are passed as human-readable request
parameters. (Unlike JSF form inputs, which are anything but!)

You can use page parameters with or without an action method.

7.3.1. Mapping request parameters to the model

Seam lets us provide a value binding that maps a named request parameter to an attribute of a
model object.

<pages>

129

Chapter 7. Events, intercepto...

<page view-id="/hello.xhtmlI" action="#{helloWorld.sayHello}">
<param name="firstName" value="#{person.firstName}"/>
<param name="lastName" value="#{person.lastName}"/>
</page>
</pages>

The <par ane declaration is bidirectional, just like a value binding for a JSF input:

* When a non-faces (GET) request for the view id occurs, Seam sets the value of the named
request parameter onto the model object, after performing appropriate type conversions.

e Any <s: |ink> or <s: but t on> transparently includes the request parameter. The value of the
parameter is determined by evaluating the value binding during the render phase (when the
<s: |i nk> is rendered).

e Any navigation rule with a <redirect/> to the view id transparently includes the request
parameter. The value of the parameter is determined by evaluating the value binding at the end
of the invoke application phase.

» The value is transparently propagated with any JSF form submission for the page with the given
view id. This means that view parameters behave like PAGE-scoped context variables for faces
requests.

The essential idea behind all this is that however we get from any other page to / hel | 0. xht ni
(or from/ hel | 0. xht Ml backto / hel | 0. xht m), the value of the model attribute referred to in the
value binding is "remembered", without the need for a conversation (or other server-side state).

7.4. Propagating request parameters

If just the nane attribute is specified then the request parameter is propagated using the PAGE
context (it isn't mapped to model property).

<pages>
<page view-id="/hello.xhtml" action="#{helloWorld.sayHello}">
<param name="firstName" />
<param name="lastName" />
</page>
</pages>

Propagation of page parameters is especially useful if you want to build multi-layer master-detail
CRUD pages. You can use it to "remember" which view you were previously on (e.g. when
pressing the Save button), and which entity you were editing.

e Any<s:|ink>or<s: button>transparently propagates the request parameter if that parameter
is listed as a page parameter for the view.

130

URL rewriting with page parameters

« The value is transparently propagated with any JSF form submission for the page with the given
view id. (This means that view parameters behave like PAGE-scoped context variables for faces
requests.

This all sounds pretty complex, and you're probably wondering if such an exotic construct is really
worth the effort. Actually, the idea is very natural once you "get it". It is definitely worth taking the
time to understand this stuff. Page parameters are the most elegant way to propagate state across
a non-faces request. They are especially cool for problems like search screens with bookmarkable
results pages, where we would like to be able to write our application code to handle both POST
and GET requests with the same code. Page parameters eliminate repetitive listing of request
parameters in the view definition and make redirects much easier to code.

7.5. URL rewriting with page parameters

Rewriting occurs based on rewrite patterns found for views in pages. xnl . Seam URL rewriting
does both incoming and outgoing URL rewriting based on the same pattern. Here's a simple
pattern:

<page view-id="/home.xhtm|">
<rewrite pattern="/home" />
</page>

In this case, any incoming request for / home will be sent to / home. xht nl . More interestingly,
any link generated that would normally point to / hone. seamwill instead be rewritten as / hone.
Rewrite patterns only match the portion of the URL before the query parameters. So, / hone. seanf
conver sati onl d=13 and / hone. seanfcol or =r ed will both be matched by this rewrite rule.

Rewrite rules can take these query paramters into consideration, as shown with the following rules.

<page view-id="/home.xhtml|">
<rewrite pattern="/home/{color}" />
<rewrite pattern="/home" />
</page>

In this case, an incoming request for / honme/ red will be served as if it were a request for /
hone. seanfcol or=red. Similarly, if color is a page parameter an outgoing URL that would
normally show as / hone. seanfcol or =bl ue would instead be output as / hone/ bl ue. Rules are
processed in order, so it is important to list more specific rules before more general rules.

131

Chapter 7. Events, intercepto...

Default Seam query parameters can also be mapped using URL rewriting, allowing for
another option for hiding Seam's fingerprints. In the following example, /search. sean?
conver sat i onl d=13 would be written as / sear ch- 13.

<page view-id="/search.xhtml">
<rewrite pattern="/search-{conversationld}" />
<rewrite pattern="/search" />

</page>

Seam URL rewriting provides simple, bidirectional rewriting on a per-view basis. For more complex
rewriting rules that cover non-seam components, Seam applications can continue to use the
org.tuckey URLRewriteFilter orapply rewriting rules at the web server.

URL rewriting requires the Seam rewrite filter to be enable. Rewrite filter configuration is discussed
in Section 31.1.3.3, “URL rewriting”.

7.6. Conversion and Validation

You can specify a JSF converter for complex model properties:

<pages>
<page view-id="/calculator.xhtml" action="#{calculator.calculate}">
<param name="x" value="#{calculator.lhs}"/>
<param name="y" value="#{calculator.rhs}"/>

<paranmname="op'converterld="com.my.calculator.OperatorConverter'value="#{calculator.op}"/
>

</page>
</pages>

Alternatively:

<pages>
<page view-id="/calculator.xhtml" action="#{calculator.calculate}">
<param name="x" value="#{calculator.lhs}"/>
<param name="y" value="#{calculator.rhs}"/>
<param name="op" converter="#{operatorConverter}" value="#{calculator.op}"/>
</page>
</pages>

132

Navigation

JSF validators, and r equi r ed="t r ue" may also be used:

<pages>
<page view-id="/blog.xhtml|">
<param name="date"
value="#{blog.date}"
validatorld="com.my.blog.PastDate"
required="true"/>
</page>
</pages>

Alternatively:

<pages>
<page view-id="/blog.xhtml">
<param name="date"
value="#{blog.date}"
validator="#{pastDateValidator}"
required="true"/>
</page>
</pages>

Even better, model-based Hibernate validator annotations are automatically recognized and
validated. Seam also provides a default date converter to convert a string parameter value to a
date and back.

When type conversion or validation fails, a global FacesMessage is added to the FacesCont ext .

7.7. Navigation

You can use standard JSF navigation rules defined in f aces- confi g. xnl in a Seam application.
However, JSF navigation rules have a number of annoying limitations:

« Itis not possible to specify request parameters to be used when redirecting.
« Itis not possible to begin or end conversations from a rule.

« Rules work by evaluating the return value of the action method; it is not possible to evaluate
an arbitrary EL expression.

A further problem is that "orchestration" logic gets scattered between pages. xml and f aces-
confi g. xnl . It's better to unify this logic into pages. xm .

This JSF navigation rule:

133

Chapter 7. Events, intercepto...

<navigation-rule>
<from-view-id>/editDocument.xhtml</from-view-id>

<navigation-case>
<from-action>#{documentEditor.update}</from-action>
<from-outcome>success</from-outcome>
<to-view-id>/viewDocument.xhtml</to-view-id>
<redirect/>

</navigation-case>

</navigation-rule>

Can be rewritten as follows:

<page view-id="/editDocument.xhtml">

<navigation from-action="#{documentEditor.update}">
<rule if-outcome="success">
<redirect view-id="/viewDocument.xhtml"/>
</rule>
</navigation>

</page>

But it would be even nicer if we didn't have to pollute our Docurent Edi t or component with string-
valued return values (the JSF outcomes). So Seam lets us write:

<page view-id="/editDocument.xhtm|">

<navigation from-action="#{documentEditor.update}"
evaluate="#{documentEditor.errors.size}">
<rule if-outcome="0">
<redirect view-id="/viewDocument.xhtml|"/>
</rule>
</navigation>

</page>

Or even:

134

Navigation

<page view-id="/editDocument.xhtml">

<navigation from-action="#{documentEditor.update}">
<rule if="#{documentEditor.errors.empty}">
<redirect view-id="/viewDocument.xhtml|"/>
</rule>
</navigation>

</page>

The first form evaluates a value binding to determine the outcome value to be used by the
subsequent rules. The second approach ignores the outcome and evaluates a value binding for
each possible rule.

Of course, when an update succeeds, we probably want to end the current conversation. We can
do that like this:

<page view-id="/editDocument.xhtml">

<navigation from-action="#{documentEditor.update}">
<rule if="#{documentEditor.errors.empty}">
<end-conversation/>
<redirect view-id="/viewDocument.xhtml["/>
</rule>
</navigation>

</page>

As we've ended conversation any subsequent requests won't know which document we are
interested in. We can pass the document id as a request parameter which also makes the view
bookmarkable:

<page view-id="/editDocument.xhtm|">

<navigation from-action="#{documentEditor.update}">
<rule if="#{documentEditor.errors.empty}">
<end-conversation/>
<redirect view-id="/viewDocument.xhtm|">
<param name="documentld" value="#{documentEditor.documentld}"/>
</redirect>
</rule>

135

Chapter 7. Events, intercepto...

</navigation>

</page>

Null outcomes are a special case in JSF. The null outcome is interpreted to mean "redisplay the
page". The following navigation rule matches any non-null outcome, but not the null outcome:

<page view-id="/editDocument.xhtml">
<navigation from-action="#{documentEditor.update}">
<rule>
<render view-id="/viewDocument.xhtml"/>
</rule>

</navigation>

</page>

If you want to perform navigation when a null outcome occurs, use the following form instead:

<page view-id="/editDocument.xhtml">
<navigation from-action="#{documentEditor.update}">
<render view-id="/viewDocument.xhtml"/>

</navigation>

</page>

The view-id may be given as a JSF EL expression:

<page view-id="/editDocument.xhtml">

<navigation>
<rule if-outcome="success">
<redirect view-id="/#{userAgent}/displayDocument.xhtml"/>
</rule>
</navigation>

</page>

136

Fine-grained files for definition of navigation, page actions and parameters

7.8. Fine-grained files for definition of navigation, page
actions and parameters

If you have a lot of different page actions and page parameters, or even just a lot of navigation
rules, you will almost certainly want to split the declarations up over multiple files. You can define
actions and parameters for a page with the view id / cal ¢/ cal cul ator. xhtm in a resource
named cal c/ cal cul at or. page. xnl . The root element in this case is the <page> element, and
the view id is implied:

<page action="#{calculator.calculate}">
<param name="x" value="#{calculator.lhs}"/>
<param name="y" value="#{calculator.rhs}"/>
<param name="op" converter="#{operatorConverter}" value="#{calculator.op}"/>

</page>

7.9. Component-driven events

Seam components can interact by simply calling each others methods. Stateful components may
even implement the observer/observable pattern. But to enable components to interact in a more
loosely-coupled fashion than is possible when the components call each others methods directly,
Seam provides component-driven events.

We specify event listeners (observers) in conponent s. xmi .

<components>
<event type="hello">
<action execute="#{helloListener.sayHelloBack}"/>
<action execute="#{logger.logHello}"/>
</event>
</components>

Where the event type is just an arbitrary string.

When an event occurs, the actions registered for that event will be called in the order they appear
in conponent s. xm . How does a component raise an event? Seam provides a built-in component
for this.

@Name("helloworld")
public class HelloWorld {
public void sayHello() {
FacesMessages.instance().add("Hello World!");

137

Chapter 7. Events, intercepto...

Events.instance().raiseEvent("hello");

Or you can use an annotation.

@Name("helloWorld")
public class HelloWorld {
@RaiseEvent("hello™)
public void sayHello() {
FacesMessages.instance().add("Hello World!");

Notice that this event producer has no dependency upon event consumers. The event listener
may now be implemented with absolutely no dependency upon the producer:

@Name("helloListener")
public class HelloListener {
public void sayHelloBack() {
FacesMessages.instance().add("Hello to you too!");

The method binding defined in conponent s. xnl above takes care of mapping the event to the
consumer. If you don't like futzing about in the conponent s. xni file, you can use an annotation
instead:

@Name("helloListener")
public class HelloListener {
@Observer("hello")
public void sayHelloBack() {
FacesMessages.instance().add("Hello to you too!");

You might wonder why I've not mentioned anything about event objects in this discussion. In
Seam, there is no need for an event object to propagate state between event producer and listener.
State is held in the Seam contexts, and is shared between components. However, if you really
want to pass an event object, you can:

138

Contextual events

@Name("helloworld")
public class HelloWorld {
private String name;
public void sayHello() {
FacesMessages.instance().add("Hello World, my name is #0.", name);
Events.instance().raiseEvent("hello", name);

@Name("helloListener")
public class HelloListener {
@Observer("hello")
public void sayHelloBack(String hame) {
FacesMessages.instance().add("Hello #0!", name);

7.10. Contextual events

Seam defines a number of built-in events that the application can use to perform special kinds of
framework integration. The events are:

e org.jboss.seam val i dati onFai | ed — called when JSF validation fails

e org.jboss. seam noConver sat i on — called when there is no long running conversation and
a long running conversation is required

e org.jboss. seam preSet Vari abl e. <nanme> — called when the context variable <name> is set
e org.jboss. seam post Set Vari abl e. <nane>— called when the context variable <name> is set

e org.jboss. seam preRenoveVari abl e. <name> — called when the context variable <name> is
unset

* org.jboss. seam post RenoveVari abl e. <nanme> — called when the context variable <name>
is unset

e org.jboss. seam preDest royCont ext . <SCOPE> — called before the <SCOPE> context is
destroyed

e org.jboss. seam post Dest royCont ext . <SCOPE> — called after the <SCOPE> context is
destroyed

e org.jboss.seam begi nConversation — called whenever a long-running conversation
begins

139

Chapter 7. Events, intercepto...

e org.jboss.seam endConversati on — called whenever a long-running conversation ends

* org.jboss.seam conversationTi mneout — called when a conversation timeout occurs. The
conversation id is passed as a parameter.

e org.jboss. seam begi nPagef| ow — called when a pageflow begins

e org.jboss. seam begi nPagef | ow. <name> — called when the pageflow <name> begins

e org.jboss. seam endPagef | ow — called when a pageflow ends

e org.jboss. seam endPagef | ow. <nane> — called when the pageflow <name> ends

e org.jboss.seam creat eProcess. <name> — called when the process <name> is created
e org.jboss. seam endProcess. <nane> — called when the process <name> ends

e org.jboss.seaminitProcess. <nane> — called when the process <name> is associated
with the conversation

e org.jboss.seaminitTask. <name> — called when the task <name> is associated with the
conversation

e org.jboss.seam start Task. <name> — called when the task <name> is started

* org.jboss. seam endTask. <nane> — called when the task <name> is ended

e org.jboss. seam post Cr eat e. <nane> — called when the component <name> is created

e org.jboss. seam preDestroy. <nanme> — called when the component <name> is destroyed
e org.jboss. seam bef orePhase — called before the start of a JSF phase

e org.jboss.seam aft er Phase — called after the end of a JSF phase

e org.jboss.seam postlinitialization — calledwhen Seam has initialized and started up
all components

e org.jboss.seam postRelnitialization — called when Seam has re-initialized and started
up all components after a redeploy

e org.jboss. seam excepti onHandl ed. <type> — called when an uncaught exception is
handled by Seam

e org.jboss. seam excepti onHandl ed — called when an uncaught exception is handled by
Seam

e org.jboss. seam excepti onNot Handl ed — called when there was no handler for an uncaught
exception

e org.jboss.seam after Transacti onSuccess — called when a transaction succeeds in the
Seam Application Framework

e org.jboss.seam after Transacti onSuccess. <nane> — called when a transaction succeeds
in the Seam Application Framework which manages an entity called <name>

140

Seam interceptors

e org.jboss.seam security.| oggedOut — called when a user logs out
e org.jboss.seam security. | ogi nFai | ed — called when a user authentication attempt fails

e org.jboss.seam security.|ogi nSuccessful — called when a user is successfully
authenticated

e org.jboss.seam security. not Aut hori zed — called when an authorization check fails

e org.jboss.seam security.notLoggedln — called there is no authenticated user and
authentication is required

e org.jboss.seam security. post Aut henti cate. — called after a user is authenticated

e org.jboss.seam security. preAut henti cat e — called before attempting to authenticate a
user

Seam components may observe any of these events in just the same way they observe any other
component-driven events.

7.11. Seam interceptors

EJB 3.0 introduced a standard interceptor model for session bean components. To add an
interceptor to a bean, you need to write a class with a method annotated @\ oundl nvoke and
annotate the bean with an @ nt er cept or s annotation that specifies the name of the interceptor
class. For example, the following interceptor checks that the user is logged in before allowing
invoking an action listener method:

public class Loggedininterceptor {

@Aroundinvoke
public Object checkLoggedIn(InvocationContext invocation) throws Exception {

boolean isLoggedIn = Contexts.getSessionContext().get("loggedin")!=null;
if (isLoggedIn) {
/lthe user is already logged in
return invocation.proceed();
}
else {
/lthe user is not logged in, fwd to login page
return "login";

141

Chapter 7. Events, intercepto...

To apply this interceptor to a session bean which acts as an action listener, we must
annotate the session bean @ nt er cept or s(Logged! nl nt er cept or. cl ass) . This is a somewhat
ugly annotation. Seam builds upon the interceptor framework in EJB3 by allowing you
to use @nterceptors as a meta-annotation for class level interceptors (those annotated
@rar get (TYPE)). In our example, we would create an @ogged! n annotation, as follows:

@Target(TYPE)

@Retention(RUNTIME)
@Interceptors(LoggedIninterceptor.class)
public @interface Loggedin {}

We can now simply annotate our action listener bean with @ ogged! n to apply the interceptor.

@Stateless

@Name("changePasswordAction™)

@LoggediIn

@Interceptors(Seaminterceptor.class)

public class ChangePasswordAction implements ChangePassword {

public String changePassword() { ... }

If interceptor ordering is important (it usually is), you can add @ nt er cept or annotations to your
interceptor classes to specify a partial order of interceptors.

@Interceptor(around={Bijectioninterceptor.class,
ValidationInterceptor.class,
Conversationinterceptor.class},

within=Removelnterceptor.class)

public class Loggedininterceptor

{

You can even have a "client-side" interceptor, that runs around any of the built-in functionality
of EJB3:

142

Managing exceptions

@Interceptor(type=CLIENT)
public class Loggedininterceptor

{

EJB interceptors are stateful, with a lifecycle that is the same as the component they intercept. For
interceptors which do not need to maintain state, Seam lets you get a performance optimization
by specifying @ nt er cept or (st at el ess=true).

Much of the functionality of Seam is implemented as a set of built-in Seam interceptors, including
the interceptors named in the previous example. You don't have to explicitly specify these
interceptors by annotating your components; they exist for all interceptable Seam components.

You can even use Seam interceptors with JavaBean components, not just EJB3 beans!

EJB defines interception not only for business methods (using @r oundl nvoke), but also for
the lifecycle methods @ost Const ruct , @r eDest r oy, @r ePassi vat e and @ost Acti ve. Seam
supports all these lifecycle methods on both component and interceptor not only for EJB3 beans,
but also for JavaBean components (except @r eDest r oy which is not meaningful for JavaBean
components).

7.12. Managing exceptions

JSF is surprisingly limited when it comes to exception handling. As a partial workaround for this
problem, Seam lets you define how a particular class of exception is to be treated by annotating
the exception class, or declaring the exception class in an XML file. This facility is meant to
be combined with the EJB 3.0-standard @\ppl i cati onExcepti on annotation which specifies
whether the exception should cause a transaction rollback.

7.12.1. Exceptions and transactions

EJB specifies well-defined rules that let us control whether an exception immediately
marks the current transaction for rollback when it is thrown by a business method of the
bean: system exceptions always cause a transaction rollback, application exceptions do not
cause a rollback by default, but they do if @\pplicationException(rollback=true) is
specified. (An application exception is any checked exception, or any unchecked exception
annotated @\ppl i cati onExcepti on. A system exception is any unchecked exception without an
@\ppl i cati onExcepti on annotation.)

Note that there is a difference between marking a transaction for rollback, and actually rolling it
back. The exception rules say that the transaction should be marked rollback only, but it may still
be active after the exception is thrown.

Seam applies the EJB 3.0 exception rollback rules also to Seam JavaBean components.

143

Chapter 7. Events, intercepto...

But these rules only apply in the Seam component layer. What about an exception that is uncaught
and propagates out of the Seam component layer, and out of the JSF layer? Well, it is always
wrong to leave a dangling transaction open, so Seam rolls back any active transaction when an
exception occurs and is uncaught in the Seam component layer.

7.12.2. Enabling Seam exception handling

To enable Seam's exception handling, we need to make sure we have the master servlet filter
declared in web. xm :

<filter>
<filter-name>Seam Filter</filter-name>
<filter-class>org.jboss.seam.servlet. SeamFilter</filter-class>
<ffilter>

<filter-mapping>
<filter-name>Seam Filter</filter-name>
<url-pattern>*.seam</url-pattern>
<[filter-mapping>

As the second requirement is to add web: excepti on-fil t er configuration component into WEB-
I NF/ conponent s. xm . More details are in Section 31.1.3.1, “Exception handling”

You need to disable Facelets development mode in web. xml too and Seam debug mode in
conponent s. xn if you want your exception handlers to fire.

7.12.3. Using annotations for exception handling

The following exception results in a HTTP 404 error whenever it propagates out of the Seam
component layer. It does not roll back the current transaction immediately when thrown, but the
transaction will be rolled back if it the exception is not caught by another Seam component.

@HttpError(errorCode=404)
public class ApplicationException extends Exception { ... }

This exception results in a browser redirect whenever it propagates out of the Seam component
layer. It also ends the current conversation. It causes an immediate rollback of the current
transaction.

@Redirect(viewld="/failure.xhtml", end=true)
@ApplicationException(rollback=true)
public class UnrecoverableApplicationException extends RuntimeException { ... }

144

Using XML for exception handling

You can also use EL to specify the vi ewl d to redirect to.

This exception results in a redirect, along with a message to the user, when it propagates out of
the Seam component layer. It also immediately rolls back the current transaction.

@Redirect(viewld="/error.xhtml", message="Unexpected error")
public class SystemException extends RuntimeException { ... }

7.12.4. Using XML for exception handling

Since we can't add annotations to all the exception classes we are interested in, Seam also lets
us specify this functionality in pages. xm .

<pages>

<exception class="javax.persistence.EntityNotFoundException">
<http-error error-code="404"/>
</exception>

<exception class="javax.persistence.PersistenceException">
<end-conversation/>
<redirect view-id="/error.xhtml|">
<message>Database access failed</message>
</redirect>
</exception>

<exception>
<end-conversation/>
<redirect view-id="/error.xhtm|">
<message>Unexpected failure</message>
</redirect>
</exception>

</pages>

145

Chapter 7. Events, intercepto...

The last <except i on> declaration does not specify a class, and is a catch-all for any exception
for which handling is not otherwise specified via annotations or in pages. xn .

You can also use EL to specify the vi ew- i d to redirect to.

You can also access the handled exception instance through EL, Seam places it in the
conversation context, e.g. to access the message of the exception:

throw new AuthorizationException("You are not allowed to do this!");
<pages>

<exception class="org.jboss.seam.security.AuthorizationException">
<end-conversation/>
<redirect view-id="/error.xhtml|">
<message severity="WARN">#{org.jboss.seam.handledException.message}</message>
</redirect>
</exception>

</pages>

org. j boss. seam handl edExcepti on holds the nested exception that was actually handled
by an exception handler. The outermost (wrapper) exception is also available, as
org.j boss. seam caught Excepti on.

7.12.4.1. Suppressing exception logging

For the exception handlers defined in pages. xni , it is possible to declare the logging level at
which the exception will be logged, or to even suppress the exception being logged altogether. The
attributes | og and | og- | evel can be used to control exception logging. By setting | og="f al se"
as per the following example, then no log message will be generated when the specified exception
occurs:

<exception class="org.jboss.seam.security.NotLoggedInException" log="false">
<redirect view-id="/register.xhtm|">
<message severity="warn">You must be a member to use this feature</message>
</redirect>
</exception>

If the | og attribute is not specified, then it defaults to true (i.e. the exception will be logged).
Alternatively, you can specify the | og- | evel to control at which log level the exception will be
logged:

146

Some common exceptions

<exception class="org.jboss.seam.security.NotLoggedInException" log-level="info">
<redirect view-id="/register.xhtml|">
<message severity="warn">You must be a member to use this feature</message>
</redirect>
</exception>

The acceptable values for | og-1 evel are:fatal, error, warn, info, debugortrace. If the
| og- | evel is not specified, or if an invalid value is configured, then it will default to err or.

7.12.5. Some common exceptions

If you are using JPA:

<exception class="javax.persistence.EntityNotFoundException">
<redirect view-id="/error.xhtm|">
<message>Not found</message>
</redirect>
</exception>

<exception class="javax.persistence.OptimisticLockException">
<end-conversation/>
<redirect view-id="/error.xhtml">
<message>Another user changed the same data, please try again</message>
</redirect>
</exception>

If you are using the Seam Application Framework:

<exception class="org.jboss.seam.framework.EntityNotFoundException">
<redirect view-id="/error.xhtml|">
<message>Not found</message>
</redirect>
</exception>

If you are using Seam Security:

<exception class="org.jboss.seam.security.AuthorizationException">
<redirect>
<message>You don't have permission to do this</message>
</redirect>

147

Chapter 7. Events, intercepto...

</exception>

<exception class="org.jboss.seam.security.NotLoggedInException">
<redirect view-id="/login.xhtm|">
<message>Please log in first</message>
</redirect>
</exception>

And, for JSF:

<exception class="javax.faces.application.ViewExpiredException">
<redirect view-id="/error.xhtml">
<message>Your session has timed out, please try again</message>
</redirect>
</exception>

A Vi ewExpi redExcepti on occurs if the user posts back to a page once their session has
expired. The conversati on-requi red and no-conversation-vi ewid settings in the Seam
page descriptor, discussed in Section 8.4, “Requiring a long-running conversation”, give you finer-
grained control over session expiration if you are accessing a page used within a conversation.

148

Chapter 8.

Conversations and workspace
management

It's time to understand Seam's conversation model in more detail.

Historically, the notion of a Seam "conversation" came about as a merger of three different ideas:

» Theidea of a workspace, which | encountered in a project for the Victorian government in 2002.
In this project | was forced to implement workspace management on top of Struts, an experience
| pray never to repeat.

» Theidea of an application transaction with optimistic semantics, and the realization that existing
frameworks based around a stateless architecture could not provide effective management of
extended persistence contexts. (The Hibernate team is truly fed up with copping the blame for
Lazyl nitializati onExcepti ons, which are not really Hibernate's fault, but rather the fault of
the extremely limiting persistence context model supported by stateless architectures such as
the Spring framework or the traditional stateless session facade (anti)pattern in J2EE.)

* The idea of a workflow task.

By unifying these ideas and providing deep support in the framework, we have a powerful construct
that lets us build richer and more efficient applications with less code than before.

8.1. Seam's conversation model

The examples we have seen so far make use of a very simple conversation model that follows
these rules:

e There is always a conversation context active during the apply request values, process
validations, update model values, invoke application and render response phases of the JSF
request lifecycle.

« At the end of the restore view phase of the JSF request lifecycle, Seam attempts to restore
any previous long-running conversation context. If none exists, Seam creates a new temporary
conversation context.

« When an @egi n method is encountered, the temporary conversation context is promoted to
a long running conversation.

« When an @nd method is encountered, any long-running conversation context is demoted to
a temporary conversation.

« Atthe end of the render response phase of the JSF request lifecycle, Seam stores the contents
of a long running conversation context or destroys the contents of a temporary conversation
context.

149

Chapter 8. Conversations and ...

« Any faces request (a JSF postback) will propagate the conversation context. By default, non-
faces requests (GET requests, for example) do not propagate the conversation context, but see
below for more information on this.

« If the JSF request lifecycle is foreshortened by a redirect, Seam transparently stores and
restores the current conversation context — unless the conversation was already ended via
@End(bef or eRedi rect =t rue) .

Seam transparently propagates the conversation context (including the temporary conversation
context) across JSF postbacks and redirects. If you don't do anything special, a non-faces request
(a GET request for example) will not propagate the conversation context and will be processed in
a new temporary conversation. This is usually - but not always - the desired behavior.

If you want to propagate a Seam conversation across a non-faces request, you need to explicitly

code the Seam conversation id as a request parameter:

Continue

Or, the more JSF-ish:

<h:outputLink value="main.jsf">
<f:param name="#{manager.conversationldParameter}" value="#{conversation.id}"/>
<h:outputText value="Continue"/>

</h:outputLink>

If you use the Seam tag library, this is equivalent:

<h:outputLink value="main.jsf">
<s:conversationld/>
<h:outputText value="Continue"/>
</h:outputLink>

If you wish to disable propagation of the conversation context for a postback, a similar trick is used:

<h:commandLink action="main" value="Exit">
<f:param name="conversationPropagation” value="none"/>
</h:commandLink>

If you use the Seam tag library, this is equivalent:

150

Seam's conversation model

<h:commandLink action="main" value="Exit">
<s:conversationPropagation type="none"/>
</h:commandLink>

Note that disabling conversation context propagation is absolutely not the same thing as ending
the conversation.

The conver sat i onPropagat i on request parameter, or the <s: conver sat i onPr opagat i on> tag
may even be used to begin a conversation, end the current conversation, destroy the entire
conversation stack, or begin a nested conversation.

<h:commandLink action="main" value="Exit">
<s:conversationPropagation type="end"/>
</h:commandLink>

<h:commandLink action="main" value="Exit">
<s:conversationPropagation type="endRoot"/>
</h:commandLink>

<h:commandLink action="main" value="Select Child">
<s:conversationPropagation type="nested"/>
</h:commandLink>

<h:commandLink action="main" value="Select Hotel">
<s:conversationPropagation type="begin"/>
</h:commandLink>

<h:commandLink action="main" value="Select Hotel">
<s:conversationPropagation type="join"/>
</h:commandLink>

This conversation model makes it easy to build applications which behave correctly with respect
to multi-window operation. For many applications, this is all that is needed. Some complex
applications have either or both of the following additional requirements:

151

Chapter 8. Conversations and ...

< A conversation spans many smaller units of user interaction, which execute serially or even
concurrently. The smaller nested conversations have their own isolated set of conversation
state, and also have access to the state of the outer conversation.

« The user is able to switch between many conversations within the same browser window. This
feature is called workspace management.

8.2. Nested conversations

A nested conversation is created by invoking a method marked @egi n(nest ed=t r ue) inside the
scope of an existing conversation. A nested conversation has its own conversation context, but
can read values from the outer conversation's context. The outer conversation's context is read-
only within a nested conversation, but because objects are obtained by reference, changes to the
objects themselves will be reflected in the outer context.

« Nesting a conversation through initializes a context that is stacked on the context of the original,
or outer, conversation. The outer conversation is considered the parent.

* Any values outjected or directly set into the nested conversation’s context do not affect the
objects accessible in the parent conversation’s context.

« Injection or a context lookup from the conversation context will first lookup the value in the
current conversation context and, if no value is found, will proceed down the conversation stack
if the conversation is nested. As you will see in moment, this behavior can be overriden.

When an @nd is subsequently encountered, the nested conversation will be destroyed, and
the outer conversation will resume, by "popping"” the conversation stack. Conversations may be
nested to any arbitrary depth.

Certain user activity (workspace management, or the back button) can cause the outer
conversation to be resumed before the inner conversation is ended. In this case it is possible
to have multiple concurrent nested conversations belonging to the same outer conversation.
If the outer conversation ends before a nested conversation ends, Seam destroys all nested
conversation contexts along with the outer context.

The conversation at the bottom of the conversation stack is the root conversation. Destroying
this conversation always destroy all of its descendents. You can achieve this declaratively by
specifying @nd(r oot =t r ue) .

A conversation may be thought of as a continuable state. Nested conversations allow the
application to capture a consistent continuable state at various points in a user interaction, thus
ensuring truly correct behavior in the face of backbuttoning and workspace management.

As mentioned previously, if a component exists in a parent conversation of the current nested
conversation, the nested conversation will use the same instance. Occasionally, it is useful to
have a different instance in each nested conversation, so that the component instance that exists

152

Starting conversations with GET requests

in the parent conversation is invisible to its child conversations. You can achieve this behavior by
annotating the component @&er Nest edConver sat i on.

8.3. Starting conversations with GET requests

JSF does not define any kind of action listener that is triggered when a page is accessed via a
non-faces request (for example, a HTTP GET request). This can occur if the user bookmarks the
page, or if we navigate to the page via an <h: out put Li nk>.

Sometimes we want to begin a conversation immediately the page is accessed. Since there is ho
JSF action method, we can't solve the problem in the usual way, by annotating the action with
@Begi n.

A further problem arises if the page needs some state to be fetched into a context variable. We've
already seen two ways to solve this problem. If that state is held in a Seam component, we can
fetch the state in a @r eat e method. If not, we can define a @act ory method for the context
variable.

If none of these options works for you, Seam lets you define a page action in the pages. xni file.

<pages>
<page view-id="/messageList.xhtml" action="#{messageManager.list}"'/>

</pages>

This action method is called at the beginning of the render response phase, any time the page
is about to be rendered. If a page action returns a non-null outcome, Seam will process any
appropriate JSF and Seam navigation rules, possibly resulting in a completely different page being
rendered.

If all you want to do before rendering the page is begin a conversation, you could use a built-in

action method that does just that:

<pages>
<page view-id="/messageList.xhtml" action="#{conversation.begin}"/>

</pages>

Note that you can also call this built-in action from a JSF control, and, similarly, you can use
#{ conver sat i on. end} to end conversations.

If you want more control, to join existing conversations or begin a nested conversion, to begin a
pageflow or an atomic conversation, you should use the <begi n- conver sat i on> element.

153

Chapter 8. Conversations and ...

<pages>
<page view-id="/messageList.xhtm|">
<begin-conversation nested="true" pageflow="Addltem"/>
<page>

</pages>
There is also an <end- conver sat i on> element.

<pages>
<page view-id="/home.xhtml|">
<end-conversation/>
<page>

</pages>

To solve the first problem, we now have five options:

Annotate the @r eat e method with @egi n

Annotate the @act or y method with @egi n

Annotate the Seam page action method with @egi n
» Use <begi n- conver sati on> in pages. xni .

» Use #{conversati on. begi n} as the Seam page action method

8.4. Requiring a long-running conversation

Certain pages are only relevant in the context of a long-running conversation. One way to "protect”
such a page is to require a long-running conversation as a prerequisite to rendering the page.
Fortunately, Seam has a built-in mechanism for enforcing this requirement.

In the Seam page descriptor, you can indicate that the current conversation must be long-running
(or nested) in order for a page to be rendered using the conversati on-requi red attribute as
follows:

<page view-id="/book.xhtml" conversation-required="true"/>

154

Using <s:link> and <s:button>

Note

)

The only downside is there's no built-in way to indicate which long-running
conversation is required. You can build on this basic authorization by dually
checking if a specific value is present in the conversation within a page action.

When Seam determines that this page is requested outside of a long-running conversation, the
following actions are taken:

« A contextual event named or g. j boss. seam noConver sati on is raised

« A warning status message is registered using the bundle key
org. j boss. seam NoConver sati on

« The user is redirected to an alternate page, if defined

The alternate page is defined in the no- conver sati on- vi ew i d attribute on a <pages> element
in the Seam page descriptor as follows:

<pages no-conversation-view-id="/main.xhtml"/>

At the moment, you can only define one such page for the entire application.

8.5. USing <s:link> @and <s: button>

JSF command links always perform a form submission via JavaScript, which breaks the web
browser's "open in new window" or "open in new tab" feature. In plain JSF, you need to
use an <h: out put Li nk> if you need this functionality. But there are two major limitations to
<h: out put Li nk>.

« JSF provides no way to attach an action listener to an <h: out put Li nk>.

« JSF does not propagate the selected row of a Dat aMbdel since there is no actual form
submission.

Seam provides the notion of a page action to help solve the first problem, but this does nothing to
help us with the second problem. We could work around this by using the RESTful approach of
passing a request parameter and requerying for the selected object on the server side. In some
cases — such as the Seam blog example application — this is indeed the best approach. The
RESTful style supports bookmarking, since it does not require server-side state. In other cases,
where we don't care about bookmarks, the use of @at aMbdel and @at aMbdel Sel ecti on is just
so convenient and transparent!

155

Chapter 8. Conversations and ...

To fill in this missing functionality, and to make conversation propagation even simpler to manage,
Seam provides the <s: | i nk> JSF tag.

The link may specify just the JSF view id:

<s:link view="/login.xhtml|" value="Login"/>

Or, it may specify an action method (in which case the action outcome determines the page that
results):

<s:link action="#{login.logout}" value="Logout"/>

If you specify both a JSF view id and an action method, the 'view' will be used unless the action
method returns a non-null outcome:

<s:link view="/loggedOut.xhtml" action="#{login.logout}" value="Logout"/>

The link automatically propagates the selected row of a Dat aMbdel using inside <h: dat aTabl e>:

<s:link view="/hotel.xhtml" action="#{hotelSearch.selectHotel}" value="#{hotel.name}"/>

You can leave the scope of an existing conversation:

<s:link view="/main.xhtml" propagation="none"/>

You can begin, end, or nest conversations:

<s:link action="#{issueEditor.viewComment}" propagation="nested"/>

If the link begins a conversation, you can even specify a pageflow to be used:

<s:link action="#{documentEditor.getDocument}" propagation="begin"
pageflow="EditDocument"/>

The t askl nst ance attribute is for use in jBPM task lists:

156

Success messages

<s:link action="#{documentApproval.approveOrReject}" taskinstance="#{task}"/>

(See the DVD Store demo application for examples of this.)

Finally, if you need the "link" to be rendered as a button, use <s: butt on>:

<s:button action="#{login.logout}" value="Logout"/>

8.6. Success messages

It is quite common to display a message to the user indicating success or failure of an action. Itis
convenient to use a JSF FacesMessage for this. Unfortunately, a successful action often requires
a browser redirect, and JSF does not propagate faces messages across redirects. This makes it
quite difficult to display success messages in plain JSF.

The built in conversation-scoped Seam component named f acesMessages solves this problem.
(You must have the Seam redirect filter installed.)

@Name("editDocumentAction")

@Stateless

public class EditDocumentBean implements EditDocument {
@In EntityManager em;
@In Document document;
@In FacesMessages facesMessages;

public String update() {
em.merge(document);
facesMessages.add("Document updated");

Any message added to f acesMessages is used in the very next render response phase for the
current conversation. This even works when there is no long-running conversation since Seam
preserves even temporary conversation contexts across redirects.

You can even include JSF EL expressions in a faces message summary:

facesMessages.add("Document #{document.title} was updated");

You may display the messages in the usual way, for example:

157

Chapter 8. Conversations and ...

<h:messages globalOnly="true"/>

8.7. Natural conversation ids

When working with conversations that deal with persistent objects, it may be desirable to use the
natural business key of the object instead of the standard, "surrogate" conversation id:

Easy redirect to existing conversation

It can be useful to redirect to an existing conversation if the user requests the same operation
twice. Take this example: “ You are on ebay, half way through paying for an item you just won as
a Christmas present for your parents. Lets say you're sending it straight to them - you enter your
payment details but you can't remember their address. You accidentally reuse the same browser
window finding out their address. Now you need to return to the payment for the item. ”

With a natural conversation it's really easy to have the user rejoin the existing conversation, and
pick up where they left off - just have them to rejoin the payForltem conversation with the itemlid
as the conversation id.

User friendly URLs

For me this consists of a havigable hierarchy (I can navigate by editing the url) and a meaningful
URL (like this Wiki uses - so don't identify things by random ids). For some applications user
friendly URLSs are less important, of course.

With a natural conversation, when you are building your hotel booking system (or, of
course, whatever your app is) you can generate a URL like htt p: // seam hot el s/ book. sean?
hot el =Best West er nAnt wer pen (of course, whatever parameter hot el maps to on your domain
model must be unique) and with URLRewrite easily transform this to http://seam-hotels/book/
BestWesternAntwerpen.

Much better!

8.8. Creating a natural conversation

Natural conversations are defined in pages. xni :

<conversation name="PlaceBid"
parameter-name="auctionld"
parameter-value="#{auction.auctionld}"/>

The first thing to note from the above definition is that the conversation has a name, in this case
Pl aceBi d. This name uniquely identifies this particular named conversation, and is used by the
page definition to identify a named conversation to participate in.

158

Redirecting to a natural conversation

The next attribute, par anet er - nane defines the request parameter that will contain the natural
conversation id, in place of the default conversation id parameter. In this example, the par anet er -
nane is auct i onl d. This means that instead of a conversation parameter like ci d=123 appearing
in the URL for your page, it will contain auct i onl d=765432 instead.

The last attribute in the above configuration, par anet er - val ue, defines an EL expression used
to evaluate the value of the natural business key to use as the conversation id. In this example,
the conversation id will be the primary key value of the auct i on instance currently in scope.

Next, we define which pages will participate in the named conversation. This is done by specifying
the conver sat i on attribute for a page definition:

<page view-id="/bid.xhtml" conversation="PlaceBid" login-required="true">
<navigation from-action="#{bidAction.confirmBid}">
<rule if-outcome="success">
<redirect view-id="/auction.xhtml">
<param name="id" value="#{bidAction.bid.auction.auctionld}"/>
</redirect>
</rule>
</navigation>
</page>

8.9. Redirecting to a natural conversation

When starting, or redirecting to, a natural conversation there are a number of options for specifying
the natural conversation name. Let's start by looking at the following page definition:

<page view-id="/auction.xhtml|">
<param name="id" value="#{auctionDetail.selectedAuctionld}"/>

<navigation from-action="#{bidAction.placeBid}">
<redirect view-id="/bid.xhtml"/>
</navigation>
</page>

From here, we can see that invoking the action #{bi dActi on. pl aceBi d} from our auction view
(by the way, all these examples are taken from the seamBay example in Seam), that we will be
redirected to/ bi d. xht nl , which, as we saw previously, is configured with the natural conversation
Pl aceBi d. The declaration for our action method looks like this:

@Begin(join = true)

159

Chapter 8. Conversations and ...

public void placeBid()

When named conversations are specified in the <page/ > element, redirection to the named
conversation occurs as part of navigation rules, after the action method has already been invoked.
This is a problem when redirecting to an existing conversation, as redirection needs to be occur
before the action method is invoked. Therefore it is necessary to specify the conversation name
when the action is invoked. One way of doing this is by using the s: conver sat i onNane tag:

<h:commandButton id="placeBidWithAmount" styleClass="placeBid"
action="#{bidAction.placeBid}">
<s:conversationName value="PlaceBid"/>
</h:commandButton>

Another alternative is to specify the conversati onNanme attribute when using either s: 1i nk or
S: button:

<s:link value="Place Bid" action="#{bidAction.placeBid}" conversationName="PlaceBid"/>

8.10. Workspace management

Workspace management is the ability to "switch" conversations in a single window. Seam
makes workspace management completely transparent at the level of the Java code. To enable
workspace management, all you need to do is:

» Provide description text for each view id (when using JSF or Seam navigation rules) or page
node (when using jPDL pageflows). This description text is displayed to the user by the
workspace switchers.

« Include one or more of the standard workspace switcher JSF or Facelets fragments in your
pages. The standard fragments support workspace management via a drop down menu, a list
of conversations, or breadcrumbs.

8.10.1. Workspace management and JSF navigation

When you use JSF or Seam navigation rules, Seam switches to a conversation by restoring
the current vi ew i d for that conversation. The descriptive text for the workspace is defined in
a file called pages. xm that Seam expects to find in the WEB- | NF directory, right next to f aces-
config.xm:

<pages>
<page view-id="/main.xhtml">
<description>Search hotels: #{hotelBooking.searchString}</description>

160

Workspace management and jPDL pageflow

</page>
<page view-id="/hotel.xhtm|">

<description>View hotel: #{hotel.name}</description>
</page>
<page view-id="/book.xhtml">

<description>Book hotel: #{hotel.name}</description>
</page>
<page view-id="/confirm.xhtm|">

<description>Confirm: #{booking.description}</description>
</page>
</pages>

Note that if this file is missing, the Seam application will continue to work perfectly! The only
missing functionality will be the ability to switch workspaces.

8.10.2. Workspace management and jPDL pageflow

When you use a jPDL pageflow definition, Seam switches to a conversation by restoring the
current jBPM process state. This is a more flexible model since it allows the same vi ew i d to have
different descriptions depending upon the current <page> node. The description text is defined
by the <page> node:

<pageflow-definition name="shopping">

<start-state name="start">
<transition to="browse"/>
</start-state>

<page name="browse" view-id="/browse.xhtml">
<description>DVD Search: #{search.searchPattern}</description>
<transition to="browse"/>
<transition name="checkout" to="checkout"/>

</page>

<page name="checkout" view-id="/checkout.xhtml">
<description>Purchase: $#{cart.total}</description>
<transition to="checkout"/>
<transition name="complete" to="complete"/>
</page>

<page name="complete" view-id="/complete.xhtml">
<end-conversation />
</page>

161

Chapter 8. Conversations and ...

</pageflow-definition>

8.10.3. The conversation switcher

Include the following fragment in your JSF page to get a drop-down menu that lets you switch to
any current conversation, or to any other page of the application:

<h:selectOneMenu value="#{switcher.conversationldOrOutcome}">
<f:selectltem itemLabel="Find Issues" itemValue="findlssue"/>
<f:selectltem itemLabel="Create Issue" itemValue="editlssue"/>
<f:selectltems value="#{switcher.selectltems}"/>

</h:selectOneMenu>

<h:commandButton action="#{switcher.select}" value="Switch"/>

In this example, we have a menu that includes an item for each conversation, together with two
additional items that let the user begin a new conversation.

Only conversations with a description (specified in pages. xm) will be included in the drop-down
menu.

Cnmmentnnlssue[‘I]fmF‘rmect[HHH] =

Find Issues
Create lssue
Browse Projects
Create Project
M& | |5sue [1] for Project [HHH]

an K Project [HHH
Comment on Issue [1] for Project [HHH]

8.10.4. The conversation list

The conversation list is very similar to the conversation switcher, except that it is displayed as
a table:

<h:dataTable value="#{conversationList}" var="entry"
rendered="#{not empty conversationList}">
<h:column>
<f.facet name="header">Workspace</f:facet>
<h:commandLink action="#{entry.select}" value="#{entry.description}"/>
<h:outputText value="[current]" rendered="#{entry.current}"/>

162

Breadcrumbs

</h:column>
<h:column>
<f.facet name="header">Activity</f.facet>
<h:outputText value="#{entry.startDatetime}">
<f:convertDateTime type="time" pattern="hh:mm a"/>
</h:outputText>
<h:outputText value=" - "/>
<h:outputText value="#{entry.lastDatetime}">
<f:convertDateTime type="time" pattern="hh:mm a"/>
</h:outputText>
</h:column>
<h:column>
<f:.facet name="header">Action</f:facet>
<h:commandButton action="#{entry.select}" value="#{msg.Switch}"/>
<h:commandButton action="#{entry.destroy}" value="#{msg.Destroy}"/>
</h:column>
</h:dataTable>

We imagine that you will want to customize this for your own application.

Workspace Workspace activity Action

Comment on Issue [1] for Project [HHH] 01:18 PM - 01:18 PM | switch || Destroy |
Issue [1] for Project [HHH] 01:18 PM - 01:18 PM | Switch || Destroy |
Project [HHH] 01:18 PM - 01:18 PM | switch || Destroy |

Only conversations with a description will be included in the list.

Notice that the conversation list lets the user destroy workspaces.
8.10.5. Breadcrumbs

Breadcrumbs are useful in applications which use a nested conversation model. The breadcrumbs
are a list of links to conversations in the current conversation stack:

<ui:repeat value="#{conversationStack}" var="entry">
<h:outputText value=" | "/>

<h:commandLink value="#{entry.description}" action="#{entry.select}"/>
</ui:repeat

Home | Find Issues | Create Issue | Project [HHH] | Issue [1] for Project [HHH]
—lssue Attributes ,

163

Chapter 8. Conversations and ...

8.11. Conversational components and JSF component
bindings

Conversational components have one minor limitation: they cannot be used to hold bindings to
JSF components. (We generally prefer not to use this feature of JSF unless absolutely necessary,
since it creates a hard dependency from application logic to the view.) On a postback request,
component bindings are updated during the Restore View phase, before the Seam conversation
context has been restored.

To work around this use an event scoped component to store the component bindings and inject
it into the conversation scoped component that requires it.

@Name("grid")
@Scope(ScopeType.EVENT)
public class Grid

{
private HtmIPanelGrid htmlPanelGrid;

/I getters and setters

@Name("gridEditor")
@Scope(ScopeType. CONVERSATION)
public class GridEditor
{

@In(required=false)

private Grid grid;

Also, you can't inject a conversation scoped component into an event scoped component which
you bind a JSF control to. This includes Seam built in components like f acesMessages.

Alternatively, you can access the JSF component tree through the implicit ui Conponent handle.
The following example accesses get Rowi ndex() of the Ul Dat a component which backs the data
table during iteration, it prints the current row number:

<h:dataTable id="lineltemTable" var="lineltem" value="#{orderHome.lineltems}">

164

Concurrent calls to conversational components

<h:column>
Row: #{uiComponent['lineltemTable".rowindex}
</h:column>

</h:dataTable>

JSF Ul components are available with their client identifier in this map.

8.12. Concurrent calls to conversational components

A general discussion of concurrent calls to Seam components can be found in Section 5.1.10,
“Concurrency model”. Here we will discuss the most common situation in which you will encounter
concurrency — accessing conversational components from AJAX requests. We're going to
discuss the options that a Ajax client library should provide to control events originating at the
client — and we'll look at the options RichFaces gives you.

Conversational components don't allow real concurrent access therefore Seam queues each
request to process them serially. This allows each request to be executed in a deterministic
fashion. However, a simple queue isn't that great — firstly, if a method is, for some reason, taking a
very long time to complete, running it over and over again whenever the client generates a request
is bad idea (potential for Denial of Service attacks), and, secondly, AJAX is often to used to provide
a quick status update to the user, so continuing to run the action after a long time isn't useful.

Therefore, when you are working inside a long running conversation, Seam queues the action
event for a period of time (the concurrent request timeout); if it can't process the event in time, it
creates a temporary conversation and prints out a message to the user to let them know what's
going on. It's therefore very important not to flood the server with AJAX events!

We can set a sensible default for the concurrent request timeout (in ms) in components.xmil:
<core:manager concurrent-request-timeout="500" />
We can also fine tune the concurrent request timeout on a page-by-page basis:

<page view-id="/book.xhtml"
conversation-required="true"
login-required="true"
concurrent-request-timeout="2000" />

So far we've discussed AJAX requests which appear serial to the user - the client tells the server
that an event has occur, and then rerenders part of the page based on the result. This approach
is great when the AJAX request is lightweight (the methods called are simple e.g. calculating the

165

Chapter 8. Conversations and ...

sum of a column of numbers). But what if we need to do a complex computation that is going
to take a minute?

For heavy computation we should use a poll based approach — the client sends an AJAX request
to the server, which causes action to be executed asynchronously on the server (the response
to the client is immediate) and the client then polls the server for updates. This is good approach
when you have a long-running action for which it is important that every action executes (you don't
want some to timeout).

8.12.1. How should we design our conversational AJAX
application?

Well first, you need to decide whether you want to use the simpler "serial" request or whether you
want to use a polling approach.

If you go for a "serial" requests, then you need to estimate how long your request will take to
complete - is it much shorter than the concurrent request timeout? If not, you probably want to alter
the concurrent request timeout for this page (as discussed above). You probably want a queue
on the client side to prevent flooding the server with requests. If the event occurs often (e.g. a
keypress, onblur of input fields) and immediate update of the client is not a priority you should set
a request delay on the client side. When working out your request delay, factor in that the event
may also be queued on the server side.

Finally, the client library may provide an option to abort unfinished duplicate requests in favor of
the most recent.

Using a poll-style design requires less fine-tuning. You just mark your action method
@synchr onous and decide on a polling interval:

int total;

/I This method is called when an event occurs on the client
/I It takes a really long time to execute
@Asynchronous
public void calculateTotal() {
total = someReallyComplicatedCalculation();

}

/I This method is called as the result of the poll
/'It's very quick to execute
public int getTotal() {

return total;

166

Dealing with errors

8.12.2. Dealing with errors

However carefully you design your application to queue concurrent requests to your
conversational component, there is a risk that the server will become overloaded and be unable to
process all the requests before the request will have to wait longer than the concur r ent - r equest -
ti meout . In this case Seam will throw a Concur r ent Request Ti meout Except i on which can be
handled in pages. xn . We recommend sending an HTTP 503 error:

<exception class="org.jboss.seam.ConcurrentRequestTimeoutException" log-level="trace">
<http-error error-code="503" />
</exception>

503 Service Unavailable (HTTP/1.1 RFC)

j=deo

The server is currently unable to handle the request due to a temporary overloading
or maintenance of the server. The implication is that this is a temporary condition
which will be alleviated after some delay.

Alternatively you could redirect to an error page:

<exception class="org.jboss.seam.ConcurrentRequestTimeoutException" log-level="trace">
<end-conversation/>
<redirect view-id="/error.xhtml|">
<message>The server is too busy to process your request, please try again later</message>
</redirect>
</exception>

Seam Remoting and JSF 2 can both handle HTTP error codes. Seam Remoting will pop up a
dialog box showing the HTTP error. JSF 2 provides support for handling HTTP errors by providing
a user definable callback. For example, to show the error message to the user:

<script type="text/javascript">
jsf.ajax.addOnError(function(data) {
alert("An error occurred");

D

</script>

167

Chapter 8. Conversations and ...

http://

javaserverfaces.java.net/nonav/docs/2.0/jsdocs/symbols/jsf.ajax.html

If instead of an error code, the server reports that the view has expired, perhaps
because the session timed out, you can use a standard javax.faces.context.ExceptionHandler
[http://docs.oracle.com/javaee/6/api/javax/faces/context/ExceptionHandler.html] to handle this
scenario.

168

http://javaserverfaces.java.net/nonav/docs/2.0/jsdocs/symbols/jsf.ajax.html
http://javaserverfaces.java.net/nonav/docs/2.0/jsdocs/symbols/jsf.ajax.html
http://docs.oracle.com/javaee/6/api/javax/faces/context/ExceptionHandler.html
http://docs.oracle.com/javaee/6/api/javax/faces/context/ExceptionHandler.html

Chapter 9.

Pageflows and business processes

JBoss jBPM is a business process management engine for any Java SE or EE environment. jBPM
lets you represent a business process or user interaction as a graph of nodes representing wait
states, decisions, tasks, web pages, etc. The graph is defined using a simple, very readable, XML
dialect called jPDL, and may be edited and visualised graphically using an eclipse plugin. jPDL
is an extensible language, and is suitable for a range of problems, from defining web application
page flow, to traditional workflow management, all the way up to orchestration of services in a
SOA environment.

Seam applications use jBPM for two different problems:

« Defining the pageflow involved in complex user interactions. A jPDL process definition defines
the page flow for a single conversation. A Seam conversation is considered to be a relatively
short-running interaction with a single user.

« Defining the overarching business process. The business process may span multiple
conversations with multiple users. Its state is persistent in the jJBPM database, so it is considered
long-running. Coordination of the activities of multiple users is a much more complex problem
than scripting an interaction with a single user, so jBPM offers sophisticated facilities for task
management and dealing with multiple concurrent paths of execution.

Don't get these two things confused! They operate at very different levels or granularity. Pageflow,
conversation and task all refer to a single interaction with a single user. A business process spans
many tasks. Futhermore, the two applications of jBPM are totally orthogonal. You can use them
together or independently or not at all.

You don't have to know jPDL to use Seam. If you're perfectly happy defining pageflow using JSF
or Seam navigation rules, and if your application is more data-driven that process-driven, you
probably don't need jBPM. But we're finding that thinking of user interaction in terms of a well-
defined graphical representation is helping us build more robust applications.

9.1. Pageflow in Seam

There are two ways to define pageflow in Seam:

* Using JSF or Seam navigation rules - the stateless navigation model
» Using jPDL - the stateful navigation model

Very simple applications will only need the stateless navigation model. Very complex applications
will use both models in different places. Each model has its strengths and weaknesses!

9.1.1. The two navigation models

The stateless model defines a mapping from a set of named, logical outcomes of an event directly
to the resulting page of the view. The navigation rules are entirely oblivious to any state held by the

169

Chapter 9. Pageflows and busi...

application other than what page was the source of the event. This means that your action listener
methods must sometimes make decisions about the page flow, since only they have access to
the current state of the application.

Here is an example page flow definition using JSF navigation rules:

<navigation-rule>
<from-view-id>/numberGuess.xhtml</from-view-id>

<navigation-case>
<from-outcome>guess</from-outcome>
<to-view-id>/numberGuess.xhtml</to-view-id>
<redirect/>

</navigation-case>

<navigation-case>
<from-outcome>win</from-outcome>
<to-view-id>/win.xhtml</to-view-id>
<redirect/>

</navigation-case>

<navigation-case>
<from-outcome>lose</from-outcome>
<to-view-id>/lose.xhtml</to-view-id>
<redirect/>

</navigation-case>

</navigation-rule>

Here is the same example page flow definition using Seam navigation rules:

<page view-id="/numberGuess.xhtml">

<navigation>
<rule if-outcome="guess">
<redirect view-id="/numberGuess.xhtml"/>
</rule>
<rule if-outcome="win">
<redirect view-id="/win.xhtml"/>
</rule>
<rule if-outcome="lose">
<redirect view-id="/lose.xhtml|"/>
</rule>

170

The two navigation models

</navigation>

</page>

If you find navigation rules overly verbose, you can return view ids directly from your action listener
methods:

public String guess() {
if (guess==randomNumber) return "/win.xhtml";
if (++guessCount==maxGuesses) return "/lose.xhtml";
return null;

Note that this results in a redirect. You can even specify parameters to be used in the redirect:

public String search() {
return "/searchResults.xhtml?searchPattern=#{searchAction.searchPattern}";

The stateful model defines a set of transitions between a set of named, logical application states.
In this model, it is possible to express the flow of any user interaction entirely in the jPDL
pageflow definition, and write action listener methods that are completely unaware of the flow of
the interaction.

Here is an example page flow definition using jPDL:

<pageflow-definition name="numberGuess">

<start-page name="displayGuess" view-id="/numberGuess.xhtml|">
<redirect/>
<transition name="guess" to="evaluateGuess">
<action expression="#{numberGuess.guess}" />
</transition>
</start-page>

<decision name="evaluateGuess" expression="#{numberGuess.correctGuess}">
<transition name="true" to="win"/>
<transition name="false" to="evaluateRemainingGuesses"/>

</decision>

<decision name="evaluateRemainingGuesses" expression="#{numberGuess.lastGuess}">

171

Chapter 9. Pageflows and busi...

<transition

name="true" to="lose"/>

<transition name="false" to="displayGuess"/>

</decision>

<page name="win" view-id="/win.xhtm|">

<redirect/>

<end-conversation />

</page>

<page name="lose" view-id="/lose.xhtm|">

<redirect/>

<end-conversation />

</page>

</pageflow-definition>

=8

[x Select
1 Marguee

2 Start

hDecision
5| Page

—+ Transition

==Siart State==
G start

==Pgge==

'Eldisplayﬁuess

guess

o =<0acisiors= false
" evaluateGuess

frue

EE ==Pgge==
win

false

ot

evaluateRemainingGuesses

==[lacisioh=»

rue

@ ==Fage==
lose

Diagram | Design | Source

There are two things we notice immediately here:

0= Outline 22

+- 3 rnumberGuess

e The JSF/Seam navigation rules are much simpler. (However, this obscures the fact that the
underlying Java code is more complex.)

» The jPDL makes the user interaction immediately understandable, without us needing to even
look at the facelets template or Java code.

172

=

Seam and the back button

In addition, the stateful model is more constrained. For each logical state (each step in the page
flow), there are a constrained set of possible transitions to other states. The stateless model is
an ad hoc model which is suitable to relatively unconstrained, freeform navigation where the user
decides where he/she wants to go next, not the application.

The stateful/stateless navigation distinction is quite similar to the traditional view of modal/
modeless interaction. Now, Seam applications are not usually modal in the simple sense of
the word - indeed, avoiding application modal behavior is one of the main reasons for having
conversations! However, Seam applications can be, and often are, modal at the level of a particular
conversation. It is well-known that modal behavior is something to avoid as much as possible; it
is very difficult to predict the order in which your users are going to want to do things! However,
there is no doubt that the stateful model has its place.

The biggest contrast between the two models is the back-button behavior.

9.1.2. Seam and the back button

When JSF or Seam navigation rules are used, Seam lets the user freely navigate via the back,
forward and refresh buttons. It is the responsibility of the application to ensure that conversational
state remains internally consistent when this occurs. Experience with the combination of web
application frameworks like Struts or WebWork - that do not support a conversational model -
and stateless component models like EJB stateless session beans or the Spring framework has
taught many developers that this is close to impossible to do! However, our experience is that
in the context of Seam, where there is a well-defined conversational model, backed by stateful
session beans, it is actually quite straightforward. Usually it is as simple as combining the use
of no- conversati on-vi ew i d with null checks at the beginning of action listener methods. We
consider support for freeform navigation to be almost always desirable.

In this case, the no-conversation-vi ewi d declaration goes in pages. xm . It tells Seam to
redirect to a different page if a request originates from a page rendered during a conversation,
and that conversation no longer exists:

<page view-id="/checkout.xhtml"
no-conversation-view-id="/main.xhtml"/>

On the other hand, in the stateful model, using the back button is interpreted as an undefined
transition back to a previous state. Since the stateful model enforces a defined set of transitions
from the current state, the back button is not permitted by default in the stateful model! Seam
transparently detects the use of the back button, and blocks any attempt to perform an action from
a previous, "stale" page, and simply redirects the user to the "current” page (and displays a faces
message). Whether you consider this a feature or a limitation of the stateful model depends upon
your point of view: as an application developer, it is a feature; as a user, it might be frustrating!
You can enable backbutton navigation from a particular page node by setting back="enabl ed".

173

Chapter 9. Pageflows and busi...

<page name="checkout"
view-id="/checkout.xhtml|"
back="enabled">
<redirect/>
<transition to="checkout"/>
<transition name="complete" to="complete"/>
</page>

This allows navigation via the back button from the checkout state to any previous state!

Of course, we still need to define what happens if a request originates from a page rendered
during a pageflow, and the conversation with the pageflow no longer exists. In this case, the no-
conversati on-vi ew i d declaration goes into the pageflow definition:

<page name="checkout"
view-id="/checkout.xhtml"
back="enabled"
no-conversation-view-id="/main.xhtml|">
<redirect/>
<transition to="checkout"/>
<transition name="complete" to="complete"/>
</page>

In practice, both navigation models have their place, and you'll quickly learn to recognize when
to prefer one model over the other.

9.2. Using jPDL pageflows

9.2.1. Installing pageflows

We need to install the Seam jBPM-related components, and place the pageflow definitions
(using the standard . j pdl . xm extension) inside a Seam archive (an archive which contains a
seam properti es file):

174

Starting pageflows

<bpm:jbpm />

We can also explicitly tell Seam where to find our pageflow definition. We specify this in

conponents. xmi :

<bpm:jbpm>
<bpm:pageflow-definitions>
<value>pageflow.jpdl.xml</value>
</bpm:pageflow-definitions>
</bpm:jbpm>

9.2.2. Starting pageflows

We "start" a jPDL-based pageflow by specifying the name of the process definition using a @egi n,
@egi nTask or @t art Task annotation:

@Begin(pageflow="numberguess")
public void begin() { ... }

Alternatively we can start a pageflow using pages.xml:

<page>
<begin-conversation pageflow="numberguess"/>
</page>

If we are beginning the pageflow during the RENDER_RESPONSE phase — during a @act ory or
@r eat e method, for example — we consider ourselves to be already at the page being rendered,
and use a <st art - page> node as the first node in the pageflow, as in the example above.

But if the pageflow is begun as the result of an action listener invocation, the outcome of the action
listener determines which is the first page to be rendered. In this case, we use a <start - st at e>
as the first node in the pageflow, and declare a transition for each possible outcome:

<pageflow-definition name="viewEditDocument">

<start-state name="start">
<transition name="documentFound" to="displayDocument"/>
<transition name="documentNotFound" to="notFound"/>
</start-state>

175

Chapter 9. Pageflows and busi...

<page name="displayDocument" view-id="/document.jsp">
<transition name="edit" to="editDocument"/>
<transition name="done" to="main"/>

</page>

<page name="notFound" view-id="/404.jsp">
<end-conversation/>
</page>

</pageflow-definition>

9.2.3. Page nodes and transitions

Each <page> node represents a state where the system is waiting for user input:

<page name="displayGuess" view-id="/numberGuess.jsp">
<redirect/>
<transition name="guess" to="evaluateGuess">
<action expression="#{numberGuess.guess}" />
</transition>
</page>

The vi ewi d is the JSF view id. The <r edi r ect / > element has the same effect as <r edi rect/
> in a JSF navigation rule: namely, a post-then-redirect behavior, to overcome problems with the
browser's refresh button. (Note that Seam propagates conversation contexts over these browser
redirects. So there is no need for a Ruby on Rails style "flash" construct in Seam!)

The transition name is the name of a JSF outcome triggered by clicking a command button or
command link in nunber Guess. j sp.

<h:commandButton type="submit" value="Guess" action="guess"/>

When the transition is triggered by clicking this button, jBPM will activate the transition action
by calling the guess() method of the nunber Guess component. Notice that the syntax used for
specifying actions in the jPDL is just a familiar JSF EL expression, and that the transition action
handler is just a method of a Seam component in the current Seam contexts. So we have exactly
the same event model for jBPM events that we already have for JSF events! (The One Kind of
Stuff principle.)

176

Controlling the flow

In the case of a null outcome (for example, a command button with no act i on defined), Seam will
signal the transition with no name if one exists, or else simply redisplay the page if all transitions
have names. So we could slightly simplify our example pageflow and this button:

<h:commandButton type="submit" value="Guess"/>

Would fire the following un-named transition:

<page name="displayGuess" view-id="/numberGuess.jsp">
<redirect/>
<transition to="evaluateGuess">
<action expression="#{numberGuess.guess}" />
</transition>
</page>

It is even possible to have the button call an action method, in which case the action outcome will
determine the transition to be taken:

<h:commandButton type="submit" value="Guess" action="#{numberGuess.guess}'/>

<page name="displayGuess" view-id="/numberGuess.jsp">
<transition name="correctGuess" to="win"/>
<transition name="incorrectGuess" to="evaluateGuess"/>
</page>

However, this is considered an inferior style, since it moves responsibility for controlling the flow
out of the pageflow definition and back into the other components. It is much better to centralize
this concern in the pageflow itself.

9.2.4. Controlling the flow

Usually, we don't need the more powerful features of jPDL when defining pageflows. We do need
the <deci si on> node, however:

<decision name="evaluateGuess" expression="#{numberGuess.correctGuess}">
<transition name="true" to="win"/>
<transition name="false" to="evaluateRemainingGuesses"/>

</decision>

177

Chapter 9. Pageflows and busi...

A decision is made by evaluating a JSF EL expression in the Seam contexts.

9.2.5. Ending the flow

We end the conversation using <end- conver sat i on> or @nd. (In fact, for readability, use of both
is encouraged.)

<page name="win" view-id="/win.jsp">
<redirect/>
<end-conversation/>

</page>

Optionally, we can end a task, specify a jJBPM transi ti on name. In this case, Seam will signal
the end of the current task in the overarching business process.

<page name="win" view-id="/win.jsp">
<redirect/>
<end-task transition="success"/>
</page>

9.2.6. Pageflow composition

It is possible to compose pageflows and have one pageflow pause pause while another pageflow
executes. The <process- st at e> node pauses the outer pageflow, and begins execution of a
named pageflow:

<process-state name="cheat">
<sub-process name="cheat"/>
<transition to="displayGuess"/>
</process-state>

The inner flow begins executing at a <st art - st at e> node. When it reaches an <end- st at e>
node, execution of the inner flow ends, and execution of the outer flow resumes with the transition
defined by the <pr ocess- st at e> element.

9.3. Business process management in Seam

A business process is a well-defined set of tasks that must be performed by users or software
systems according to well-defined rules about who can perform a task, and when it should
be performed. Seam's |BPM integration makes it easy to display lists of tasks to users and
let them manage their tasks. Seam also lets the application store state associated with the

178

Business process management in Seam

business process in the BUSI NESS_PROCESS context, and have that state made persistent via jBPM
variables.

A simple business process definition looks much the same as a page flow definition (One Kind
of Stuff), except that instead of <page> nodes, we have <t ask- node> nodes. In a long-running
business process, the wait states are where the system is waiting for some user to log in and
perform a task.

<process-definition name="todo">

<start-state name="start">
<transition to="todo"/>
</start-state>

<task-node name="todo">
<task name="todo" description="#{todoList.description}">
<assignment actor-id="#{actor.id}"/>
</task>
<transition to="done"/>
</task-node>

<end-state name="done"/>

</process-definition>

[s Select |E

£ Marquee .
+ perty Value
2 start O <<Start State>>

start MName
e State . Source start
End

Target todo
of}2 Fork

< Join . <<Task Node=>
7 Decision todo

i Node

™ Task Node

It

—+ Transition

=<fEnd State==

done

Diagram | Swimlanes Design | Source

179

Chapter 9. Pageflows and busi...

It is perfectly possible that we might have both jPDL business process definitions and jPDL
pageflow definitions in the same project. If so, the relationship between the two is that a single
<t ask> in a business process corresponds to a whole pageflow <pagef | ow defi niti on>

9.4. Using jPDL business process definitions

9.4.1. Installing process definitions

We need to install BPM, and tell it where to find the business process definitions:

<bpm:jbpm>
<bpm:process-definitions>
<value>todo.jpdl.xml</value>
</bpm:process-definitions>
</bpm:jbpm>

As jBPM processes are persistent across application restarts, when using Seam in a production
environment you won't want to install the process definition every time the application starts.
Therefore, in a production environment, you'll need to deploy the process to jBPM outside of
Seam. In other words, only install process definitions from conponent s. xmi when developing your
application.

9.4.2. Initializing actor ids

We always need to know what user is currently logged in. jBPM "knows" users by their actor id and
group actor ids. We specify the current actor ids using the built in Seam component named act or :

@In Actor actor;
public String login() {

actor.setld(user.getUserName());
actor.getGroupActorlds().addAll(user.getGroupNames());

9.4.3. Initiating a business process

To initiate a business process instance, we use the @r eat ePr ocess annotation:

@CreateProcess(definition="todo")

180

Task assignment

public void createTodo() { ... }

Alternatively we can initiate a business process using pages.xml:

<page>
<create-process definition="todo" />
</page>

9.4.4. Task assighment

When a process reaches a task node, task instances are created. These must be assigned to
users or user groups. We can either hardcode our actor ids, or delegate to a Seam component:

<task name="todo" description="#{todoList.description}">
<assignment actor-id="#{actor.id}"/>
</task>

In this case, we have simply assigned the task to the current user. We can also assign tasks to
a pool:

<task name="todo" description="#{todoList.description}">
<assignment pooled-actors="employees"/>
</task>

9.4.5. Task lists

Several built-in Seam components make it easy to display task lists. The
pool edTaskl nst ancelLi st is a list of pooled tasks that users may assign to themselves:

<h:dataTable value="#{pooledTasklInstanceList}" var="task">
<h:column>
<f.facet name="header">Description</f:facet>
<h:outputText value="#{task.description}"/>
</h:column>
<h:column>
<s:link action="#{pooledTask.assignToCurrentActor}" value="Assign" taskinstance="#{task}"/

</h:column>

181

Chapter 9. Pageflows and busi...

</h:dataTable>

Note that instead of <s: | i nk> we could have used a plain JSF <h: commandLi nk>:

<h:commandLink action="#{pooledTask.assignToCurrentActor}">
<f:param name="taskld" value="#{task.id}"/>
</h:commandLink>

The pool edTask component is a built-in component that simply assigns the task to the current
user.

The t askl nst anceli st For Type component includes tasks of a particular type that are assigned
to the current user:

<h:dataTable value="#{taskinstanceListForType['todo']}" var="task">
<h:column>
<f.facet name="header">Description</f.facet>
<h:outputText value="#{task.description}"/>
</h:column>
<h:column>
<s:link action="#{todoList.start}" value="Start Work" taskinstance="#{task}"/>
</h:column>
</h:dataTable>

9.4.6. Performing a task

To begin work on a task, we use either @t art Task or @egi nTask on the listener method:

@StartTask
public String start() { ... }

Alternatively we can begin work on a task using pages.xmil:

<page>
<start-task />
</page>

182

Performing a task

These annotations begin a special kind of conversation that has significance in terms of the
overarching business process. Work done by this conversation has access to state held in the
business process context.

If we end the conversation using @ndTask, Seam will signal the completion of the task:

@EndTask(transition="completed")
public String completed() { ... }

Alternatively we can use pages.xml:

<page>
<end-task transition="completed" />
</page>

You can also use EL to specify the transition in pages.xml.

At this point, jBPM takes over and continues executing the business process definition. (In more
complex processes, several tasks might need to be completed before process execution can
resume.)

Please refer to the jBPM documentation for a more thorough overview of the sophisticated features
that jBPM provides for managing complex business processes.

183

184

Chapter 10.

Seam and Object/Relational Mapping

Seam provides extensive support for the two most popular persistence architectures for Java:
Hibernate, and the Java Persistence APl 2.0 introduced with EJB 3.1. Seam's unique state-
management architecture allows the most sophisticated ORM integration of any web application
framework.

10.1. Introduction

Seam grew out of the frustration of the Hibernate team with the statelessness typical of
the previous generation of Java application architectures. The state management architecture
of Seam was originally designed to solve problems relating to persistence — in particular
problems associated with optimistic transaction processing. Scalable online applications always
use optimistic transactions. An atomic (database/JTA) level transaction should not span a user
interaction unless the application is designed to support only a very small number of concurrent
clients. But almost all interesting work involves first displaying data to a user, and then, slightly
later, updating the same data. So Hibernate was designed to support the idea of a persistence
context which spanned an optimistic transaction.

Unfortunately, the so-called "stateless" architectures that preceded Seam and EJB 3.0 had no
construct for representing an optimistic transaction. So, instead, these architectures provided
persistence contexts scoped to the atomic transaction. Of course, this resulted in many problems
for users, and is the cause of the number one user complaint about Hibernate: the dreaded
Lazyl nitializationException. What we need is a construct for representing an optimistic
transaction in the application tier.

EJB 3.0 recognizes this problem, and introduces the idea of a stateful component (a stateful
session bean) with an extended persistence context scoped to the lifetime of the component. This
is a partial solution to the problem (and is a useful construct in and of itself) however there are
two problems:

» The lifecycle of the stateful session bean must be managed manually via code in the web tier
(it turns out that this is a subtle problem and much more difficult in practice than it sounds).

» Propagation of the persistence context between stateful components in the same optimistic
transaction is possible, but tricky.

Seam solves the first problem by providing conversations, and stateful session bean components
scoped to the conversation. (Most conversations actually represent optimistic transactions in the
data layer.) This is sufficient for many simple applications (such as the Seam booking demo) where
persistence context propagation is not needed. For more complex applications, with many loosely-
interacting components in each conversation, propagation of the persistence context across
components becomes an important issue. So Seam extends the persistence context management
model of EJB 3.0, to provide conversation-scoped extended persistence contexts.

185

Chapter 10. Seam and Object/R...

10.2. Seam managed transactions

EJB session beans feature declarative transaction management. The EJB container is able to start
a transaction transparently when the bean is invoked, and end it when the invocation ends. If we
write a session bean method that acts as a JSF action listener, we can do all the work associated
with that action in one transaction, and be sure that it is committed or rolled back when we finish
processing the action. This is a great feature, and all that is needed by some Seam applications.

However, there is a problem with this approach. A Seam application may not perform all data
access for a request from a single method call to a session bean.

» The request might require processing by several loosely-coupled components, each of which
is called independently from the web layer. It is common to see several or even many calls per
request from the web layer to EJB components in Seam.

» Rendering of the view might require lazy fetching of associations.

The more transactions per request, the more likely we are to encounter atomicity and isolation
problems when our application is processing many concurrent requests. Certainly, all write
operations should occur in the same transaction!

Hibernate users developed the "open session in view" pattern to work around this problem. In
the Hibernate community, "open session in view" was historically even more important because
frameworks like Spring use transaction-scoped persistence contexts. So rendering the view would
cause Lazyl nitial i zati onExcepti ons when unfetched associations were accessed.

This pattern is usually implemented as a single transaction which spans the entire request. There
are several problems with this implementation, the most serious being that we can never be sure
that a transaction is successful until we commit it — but by the time the "open session in view"
transaction is committed, the view is fully rendered, and the rendered response may already have
been flushed to the client. How can we notify the user that their transaction was unsuccessful?

Seam solves both the transaction isolation problem and the association fetching problem, while
working around the problems with "open session in view". The solution comes in two parts:

e use an extended persistence context that is scoped to the conversation, instead of to the
transaction

* use two transactions per request; the first spans the beginning of the restore view phase (some
transaction managers begin the transaction later at the beginning of the apply request values
phase) until the end of the invoke application phase; the second spans the render response
phase

In the next section, we'll tell you how to set up a conversation-scope persistence context. But
first we need to tell you how to enable Seam transaction management. Note that you can use
conversation-scoped persistence contexts without Seam transaction management, and there are
good reasons to use Seam transaction management even when you're not using Seam-managed

186

Disabling Seam-managed transactions

persistence contexts. However, the two facilities were designed to work together, and work best
when used together.

Seam transaction management is useful even if you're using EJB 3.0 container-managed
persistence contexts. But it is especially useful if you use Seam outside a Java EE environment,
or in any other case where you would use a Seam-managed persistence context.

10.2.1. Disabling Seam-managed transactions

Seam transaction management is enabled by default for all JSF requests. If you want to disable
this feature, you can do it in conponent s. xn :

<core:init transaction-management-enabled="false"/>

<transaction:no-transaction />

10.2.2. Configuring a Seam transaction manager

Seam provides a transaction management abstraction for beginning, committing, rolling back,
and synchronizing with a transaction. By default Seam uses a JTA transaction component that
integrates with Container Managed and programmatic EJB transactions. If you are working in a
Java EE environment, you should install the EJB synchronization component in conponent s. xn :

<transaction:ejb-transaction />

However, if you are working in a non EE 5 container, Seam will try auto detect the transaction
synchronization mechanism to use. However, if Seam is unable to detect the correct transaction
synchronization to use, you may find you need configure one of the following:

« JPA RESOURCE_LOCAL transactions with the javax. persi stence. EntityTransacti on
interface. EntityTransacti on begins the transaction at the beginning of the apply request
values phase.

e Hibernate managed transactions with the org. hibernate. Transaction interface.
H ber nat eTr ansact i on begins the transaction at the beginning of the apply request values
phase.

* Spring managed transactions with the
org. springframework. transaction. Pl at f or nifr ansact i onManager interface. The Spring
Pl at f or niTr ansact i onManagenent manager may begin the transaction at the beginning of the
apply request values phase if the user Conver sat i onCont ext attribute is set.

» Explicitly disable Seam managed transactions

187

Chapter 10. Seam and Object/R...

Configure JPA RESOURCE_LOCAL transaction management by adding the following to your
components.xml where #{ en} is the hame of the per si st ence: managed- per si st ence- cont ext
component. If your managed persistence context is named ent i t yManager , you can opt to leave
out the enti ty- nanager attribute. (see Seam-managed persistence contexts)

<transaction:entity-transaction entity-manager="#{em}"/>

To configure Hibernate managed transactions declare the following in your components.xml where
#{ hi ber nat eSessi on} is the name of the project's per si st ence: nanaged- hi ber nat e- sessi on
component. If your managed hibernate session is hamed sessi on, you can opt to leave out the
sessi on attribute. (see Seam-managed persistence contexts)

<transaction:hibernate-transaction session="#{hibernateSession}"/>
To explicitly disable Seam managed transactions declare the following in your components.xml:
<transaction:no-transaction />

For configuring Spring managed transactions see using Spring PlatformTransactionManagement .

10.2.3. Transaction synchronization

Transaction synchronization provides callbacks for transaction related events such as
bef oreConpl eti on() and after Conpl etion(). By default, Seam uses it's own transaction
synchronization component which requires explicit use of the Seam transaction component when
committing a transaction to ensure synchronization callbacks are correctly executed. If in a
Java EE environment the <transacti on: ej b-transacti on/ > component should be declared
in conponents. xm to ensure that Seam synchronization callbacks are correctly called if the
container commits a transaction outside of Seam's knowledge.

10.3. Seam-managed persistence contexts

If you're using Seam outside of a Java EE environment, you can't rely upon the container to
manage the persistence context lifecycle for you. Even if you are in an EE 5 environment, you
might have a complex application with many loosly coupled components that collaborate together
in the scope of a single conversation, and in this case you might find that propagation of the
persistence context between component is tricky and error-prone.

In either case, you'll need to use a managed persistence context (for JPA) or a managed session
(for Hibernate) in your components. A Seam-managed persistence context is just a built-in Seam
component that manages an instance of Ent i t yManager or Sessi on in the conversation context.
You can inject it with @ n.

188

Using a Seam-managed persistence context with JPA

Seam-managed persistence contexts are extremely efficient in a clustered environment. Seam
is able to perform an optimization that EJB 3.0 specification does not allow containers to use
for container-managed extended persistence contexts. Seam supports transparent failover of
extended persistence contexts, without the need to replicate any persistence context state
between nodes. (We hope to fix this oversight in the next revision of the EJB spec.)

10.3.1. Using a Seam-managed persistence context with JPA

Configuring a managed persistence context is easy. In conponent s. xnl , we can write:

<persistence:managed-persistence-context name="bookingDatabase"
auto-create="true"
persistence-unit-jndi-name="java:/EntityManagerFactories/bookingData"/>

This configuration creates a conversation-scoped Seam component named booki ngDat abase
that manages the lifecycle of EntityManager instances for the persistence unit
(Enti tyManager Factory instance) with JNDI name java:/EntityManagerFactories/
booki ngDat a.

Of course, you need to make sure that you have bound the Ent i t yManager Fact ory into JNDI. In
JBoss, you can do this by adding the following property setting to per si st ence. xmi .

<property name="jboss.entity.manager.factory.jndi.name"
value="java:/EntityManagerFactories/bookingData"/>

Now we can have our Ent i t yManager injected using:

@In EntityManager bookingDatabase;

If you are using EJB3 and mark your class or method @ ansacti onAt t ri but e(REQUI RES_NEW
then the transaction and persistence context shouldn't be propagated to method calls on this
object. However as the Seam-managed persistence context is propagated to any component
within the conversation, it will be propagated to methods marked REQUI RES_NEW Therefore,
if you mark a method REQUI RES_NEW then you should access the entity manager using
@PersistenceContext.

10.3.2. Using a Seam-managed Hibernate session

Seam-managed Hibernate sessions are similar. In conponent s. xni :

<persistence:hibernate-session-factory name="hibernateSessionFactory"/>

189

Chapter 10. Seam and Object/R...

<persistence:managed-hibernate-session name="bookingDatabase"
auto-create="true"
session-factory-jndi-name="java:/bookingSessionFactory"/>

Where java:/booki ngSessi onFactory is the name of the session factory specified in
hi bernate. cfg. xm .

<session-factory name="java:/bookingSessionFactory">
<property name="transaction.flush_before_completion">true</property>
<property name="connection.release_mode">after_statement</property>

negettgnsaction.manager_lookup_class">org.hibernate.transaction.JBossTransactionManagerLookup</
property>

<propertyname="transaction.factory_class">org.hibernate.transaction.JTATransactionFactory</
property>
<property name="connection.datasource">java:/bookingDatasource</property>

</session-factory>

Note that Seam does not flush the session, so you should always enable
hi bernat e. transacti on. fl ush_bef or e_conpl et i on to ensure that the session is automatically
flushed before the JTA transaction commits.

We can now have a managed Hibernate Sessi on injected into our JavaBean components using
the following code:

@In Session bookingDatabase;

10.3.3. Seam-managed persistence contexts and atomic
conversations

Persistence contexts scoped to the conversation allows you to program optimistic transactions
that span multiple requests to the server without the need to use the ner ge() operation , without
the need to re-load data at the beginning of each request, and without the need to wrestle with
the Lazyl niti al i zati onExcepti on or NonUni queQbj ect Excepti on.

As with any optimistic transaction management, transaction isolation and consistency can be
achieved via use of optimistic locking. Fortunately, both Hibernate and EJB 3.0 make it very easy
to use optimistic locking, by providing the @/er si on annotation.

190

Seam-managed persistence contexts and atomic conversations

By default, the persistence context is flushed (synchronized with the database) at the end of
each transaction. This is sometimes the desired behavior. But very often, we would prefer
that all changes are held in memory and only written to the database when the conversation
ends successfully. This allows for truly atomic conversations. As the result of a truly stupid
and shortsighted decision by certain non-JBoss, non-Sun and non-Sybase members of the EJB
3.0 expert group, there is currently no simple, usable and portable way to implement atomic
conversations using EJB 3.0 persistence. However, Hibernate provides this feature as a vendor
extension to the Fl ushMbdeTypes defined by the specification, and it is our expectation that other
vendors will soon provide a similar extension.

Seam lets you specify Fl ushMbdeType. MANUAL when beginning a conversation. Currently, this
works only when Hibernate is the underlying persistence provider, but we plan to support other
equivalent vendor extensions.

@In EntityManager em; //a Seam-managed persistence context

@Begin(flushMode=MANUAL)
public void beginClaimWizard() {
claim = em.find(Claim.class, claimld);

Now, the cl ai m object remains managed by the persistence context for the rest ot the
conversation. We can make changes to the claim:

public void addPartyToClaim() {
Party party =;
claim.addParty(party);

But these changes will not be flushed to the database until we explicitly force the flush to occur:

@End
public void commitClaim() {
em.flush();

Of course, you could set the f | ushibde to MANUAL from pages.xml, for example in a navigation
rule:

191

Chapter 10. Seam and Object/R...

<begin-conversation flush-mode="MANUAL" />

You can set any Seam Managed Persistence Context to use manual flush mode:

<components xmlns="http://jpboss.org/schema/seam/components"
xmins:core="http://jboss.org/schema/seam/core">
<core:manager conversation-timeout="120000" default-flush-mode="manual" />
</components>

Warning

if you use SMPC in your Stateful bean, manual flush mode is ignored as this mode
is specific Hibernate extension to JPA specification. Seam can’t control the flush
mode of the persistence context on an SFSB - that means no manual flushing on
SFSB!

10.4. Using the JPA "delegate"

The EntityManager interface lets you access a vendor-specific APl via the get Del egat e()
method. Naturally, the most interesting vendor is Hibernate, and the most powerful delegate
interface is or g. hi ber nat e. Sessi on. You'd be nuts to use anything else. Trust me, I'm not biased
at all. If you must use a different JPA provider see Using Alternate JPA Providers.

But regardless of whether you're using Hibernate (genius!) or something else (masochist, or just
not very bright), you'll almost certainly want to use the delegate in your Seam components from
time to time. One approach would be the following:

@In EntityManager entityManager;

@Create
public void init() {
((Session) entityManager.getDelegate()).enableFilter("currentVersions");

But typecasts are unquestionably the ugliest syntax in the Java language, so most people avoid
them whenever possible. Here's a different way to get at the delegate. First, add the following
line to conponent s. xni ;

<factory name="session"

192

Using EL in EJB-QL/HQL

scope="STATELESS"
auto-create="true"
value="#{entityManager.delegate}"/>

Now we can inject the session directly:

@In Session session;
@Create

public void init() {
session.enableFilter("currentVersions");

10.5. Using EL in EJB-QL/HQL

Seam proxies the EntityManager or Session object whenever you use a Seam-
managed persistence context or inject a container managed persistence context using
@er si stenceCont ext . This lets you use EL expressions in your query strings, safely and
efficiently. For example, this:

User user = em.createQuery("from User where username=#{user.username}")
.getSingleResult();

is equivalent to:

User user = em.createQuery("from User where username=:username")
.setParameter("username", user.getUsername())
.getSingleResult();

Of course, you should never, ever write it like this:

User user = em.createQuery("from User where username=" + user.getUsername()) /BAD!
.getSingleResult();

(It is inefficient and vulnerable to SQL injection attacks.)

193

Chapter 10. Seam and Object/R...

10.6. Using Hibernate filters

The coolest, and most unique, feature of Hibernate is filters. Filters let you provide a restricted view
of the data in the database. You can find out more about filters in the Hibernate documentation.
But we thought we'd mention an easy way to incorporate filters into a Seam application, one that
works especially well with the Seam Application Framework.

Seam-managed persistence contexts may have a list of filters defined, which will be enabled
whenever an Enti t yManager or Hibernate Sessi on is first created. (Of course, they may only be
used when Hibernate is the underlying persistence provider.)

<persistence:filter name="regionFilter">
<persistence:name>region</persistence:name>
<persistence:parameters>
<key>regionCode</key>
<value>#{region.code}</value>
</persistence:parameters>
</persistence:filter>

<persistence:filter name="currentFilter">
<persistence:name>current</persistence:name>
<persistence:parameters>
<key>date</key>
<value>#{currentDate}</value>
</persistence:parameters>
</persistence:filter>

<persistence:managed-persistence-context name="personDatabase"
persistence-unit-jndi-name="java:/EntityManagerFactories/personDatabase">
<persistence:filters>
<value>#{regionFilter}</value>
<value>#{currentFilter}</value>
</persistence:filters>
</persistence:managed-persistence-context>

194

Chapter 11.

JSF form validation in Seam

In plain JSF, validation is defined in the view:

<h:form>
<h:messages/>

<div>
Country:
<h:inputText value="#{location.country}" required="true">
<my:validateCountry/>
</h:inputText>
</div>

<div>
Zip code:
<h:inputText value="#{location.zip}" required="true">
<my:validateZip/>
</h:inputText>
</div>

<h:commandButton/>
</h:form>

In practice, this approach usually violates DRY, since most "validation" actually enforces
constraints that are part of the data model, and exist all the way down to the database schema
definition. Seam provides support for model-based constraints defined using Bean Validation.

Let's start by defining our constraints, on our Locat i on class:

public class Location {
private String country;
private String zip;

@NotNull

@Size(max=30)

public String getCountry() { return country; }
public void setCountry(String c) { country =c; }

@NotNull
@Size(max=6)
@Pattern("MN\d*$")

195

Chapter 11. JSF form validati...

public String getZip() { return zip; }
public void setZip(String z) { zip = z; }

Well, that's a decent first cut, but in practice it might be more elegant to use custom constraints
instead of the ones built into Bean Validation:

public class Location {
private String country;
private String zip;

@NotNull

@Country

public String getCountry() { return country; }
public void setCountry(String c) { country = c; }

@NotNull

@ZipCode

public String getZip() { return zip; }
public void setZip(String z) { zip = z; }

Whichever route we take, we no longer need to specify the type of validation to be used in the
JSF page. Instead, we can use <s: val i dat e> to validate against the constraint defined on the
model object.

<h:form>
<h:messages/>

<div>
Country:
<h:inputText value="#{location.country}" required="true">
<s:validate/>
</h:inputText>
</div>

<div>
Zip code:
<h:inputText value="#{location.zip}" required="true">
<s:validate/>
</h:inputText>
</div>

196

<h:commandButton/>

</h:form>
Note: specifying @ot Nul | on the model does not eliminate the requirement for r equi r ed="t r ue"
to appear on the control! This is due to a limitation of the JSF validation architecture.

This approach defines constraints on the model, and presents constraint violations in the view —
a significantly better design.

However, it is not much less verbose than what we started with, so let's try <s: val i dat eAl | >:

<h:form>

<h:messages/>

<s:validateAll>

<div>

Country:

<h:inputText value="#{location.country}" required="true"/>
</div>

<div>

Zip code:

<h:inputText value="#{location.zip}" required="true"/>
</div>

<h:commandButton/>

</s:validateAll>

</h:form>

This tag simply adds an <s: val i dat e> to every input in the form. For a large form, it can save
a lot of typing!

Now we need to do something about displaying feedback to the user when validation fails.
Currently we are displaying all messages at the top of the form. In order for the user to correlate
the message with an input, you need to define a label using the standard | abel attribute on the
input component.

197

Chapter 11. JSF form validati...

<h:inputText value="#{location.zip}" required="true" label="Zip:">
<s:validate/>
</h:inputText>

You can then inject this value into the message string using the placeholder {0} (the first and only
parameter passed to a JSF message for a Bean Validation restriction). See the internationalization
section for more information regarding where to define these messages.

validator.length={0} length must be between {min} and {max}

What we would really like to do, though, is display the message next to the field with the error (this
is possible in plain JSF), highlight the field and label (this is not possible) and, for good measure,
display some image next to the field (also not possible). We also want to display a little colored
asterisk next to the label for each required form field. Using this approach, the identifying label
is not necessary.

That's quite a lot of functionality we need for each field of our form. We wouldn't want to have to
specify highlighting and the layout of the image, message and input field for every field on the
form. So, instead, we'll specify the common layout in a facelets template:

<ui:composition xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:ui="http://java.sun.com/jsf/facelets"
xmins:h="http://java.sun.com/jsf/ntml"
xmins:f="http://java.sun.com/jsf/core"
xmins:s="http://jboss.org/schema/seam/taglib">

<div>

<s:label styleClass="#{invalid?'error""}">

<ui:insert name="label"/>

<s:span styleClass="required" rendered="#{required}">*</s:span>
</s:label>

<h:graphiclmage value="/img/error.gif" rendered="#{invalid}"/>
<s:validateAll>
<ui:insert/>
</s:validateAll>

<s:message styleClass="error"/>

198

</div>

</ui:composition>

We can include this template for each of our form fields using <s: decor at e>.

<h:form>

<h:messages globalOnly="true"/>

<s:decorate template="edit.xhtml">
<ui:define name="label">Country:</ui:define>
<h:inputText value="#{location.country}" required="true"/>
</s:decorate>

<s:decorate template="edit.xhtml|">
<ui:define name="label">Zip code:</ui:define>
<h:inputText value="#{location.zip}" required="true"/>
</s:decorate>

<h:commandButton/>

</h:form>

Finally, we can use RichFaces Ajax to display validation messages as the user is navigating
around the form:

<h:form>

<h:messages globalOnly="true"/>

<s:decorate id="countryDecoration" template="edit.xhtm[">
<ui:define name="label">Country:</ui:define>
<h:inputText value="#{location.country}" required="true">
<a:ajax event="blur" render="countryDecoration" bypassUpdates="true"/>
</h:inputText>
</s:decorate>

<s:decorate id="zipDecoration" template="edit.xhtm|">
<ui:define name="label">Zip code:</ui:define>
<h:inputText value="#{location.zip}" required="true">

199

Chapter 11. JSF form validati...

<a:ajax event="blur" render="zipDecoration" bypassUpdates="true"/>
</h:inputText>
</s:decorate>

<h:commandButton/>

</h:form>

It's better style to define explicit ids for important controls on the page, especially if you want to
do automated testing for the Ul, using some toolkit like Selenium. If you don't provide explicit ids,
JSF will generate them, but the generated values will change if you change anything on the page.

<h:form id="form">

<h:messages globalOnly="true"/>

<s:decorate id="countryDecoration" template="edit.xhtml">
<ui:define name="label">Country:</ui:define>
<h:inputText id="country" value="#{location.country}" required="true">
<a:ajax event="blur" render="countryDecoration" bypassUpdates="true"/>
</h:inputText>
</s:decorate>

<s:decorate id="zipDecoration" template="edit.xhtm|">
<ui:define name="label">Zip code:</ui:define>
<h:inputText id="zip" value="#{location.zip}" required="true">
<a:ajax event="blur" render="zipDecoration" bypassUpdates="true"/>
</h:inputText>
</s:decorate>

<h:commandButton/>

</h:form>

And what if you want to specify a different message to be displayed when validation fails? You
can use the Seam message bundle (and all it's goodies like el expressions inside the message,
and per-view message bundles) with the Bean Validation:

public class Location {
private String name;
private String zip;

200

/I Getters and setters for name

@NotNull

@Size(max=6)
@ZipCode(message="#{messages|['location.zipCode.invalid]}")
public String getZip() { return zip; }

public void setZip(String z) { zip = z; }

location.zipCode.invalid = The zip code is not valid for #{location.name}

201

202

Chapter 12.

Groovy integration

One aspect of JBoss Seam is its RAD (Rapid Application Development) capability. While not
synonymous with RAD, one interesting tool in this space is dynamic languages. Until recently,
choosing a dynamic language was required choosing a completely different development platform
(a development platform with a set of APIs and a runtime so great that you would no longer want to
use you old legacy Java [sic] APIs anymore, which would be lucky because you would be forced to
use those proprietary APls anyway). Dynamic languages built on top of the Java Virtual Machine,
and Groovy [http://groovy.codehaus.org] in particular broke this approach in silos.

JBoss Seam now unites the dynamic language world with the Java EE world by seamlessly
integrating both static and dynamic languages. JBoss Seam lets the application developer use
the best tool for the task, without context switching. Writing dynamic Seam components is exactly
like writing regular Seam components. You use the same annotations, the same APIs, the same
everything.

12.1. Groovy introduction

Groovy is an agile dynamic language based on the Java language but with additional features
inspired by Python, Ruby and Smalltalk. The strengths of Groovy are twofold:

« Java syntax is supported in Groovy: Java code is Groovy code, making the learning curve very
smooth

» Groovy objects are Java objects, and Groovy classes are Java classes: Groovy integrates
smoothly with existing Java libraries and frameworks.

12.2. Writing Seam applications in Groovy

There is not much to say about it. Since a Groovy object is a Java object, you can virtually write
any Seam component, or any class for what it worth, in Groovy and deploy it. You can also mix
Groovy classes and Java classes in the same application.

12.2.1. Writing Groovy components

As you should have noticed by now, Seam uses annotations heavily. Be sure to use Groovy 1.1 or
above for annotation support. Here are some example of groovy code used in a Seam application.

12.2.1.1. Entity

@Entity
@Name("hotel")
class Hotel implements Serializable

203

http://groovy.codehaus.org
http://groovy.codehaus.org

Chapter 12. Groovy integration

@ld @GeneratedValue
Long id

@Size(max=50) @NotNull
String name

@Size(max=100) @NotNull
String address

@Size(max=40) @NotNull
String city

@Size(min=2, max=10) @NotNull
String state

@Size(min=4, max=6) @NotNull
String zip

@Size(min=2, max=40) @NotNull
String country

@Column(precision=6, scale=2)
BigDecimal price

@Override
String toString()

{
return "Hotel(${name},${address},${city}, ${zip})"

Groovy natively support the notion of properties (getter/setter), so there is no need to explicitly
write verbose getters and setters: in the previous example, the hotel class can be accessed from
Java as hot el . get G ty(), the getters and setters being generated by the Groovy compiler. This
type of syntactic sugar makes the entity code very concise.

12.2.1.2. Seam component

Writing Seam components in Groovy is in no way different than in Java: annotations are used to
mark the class as a Seam component.

@Scope(ScopeType.SESSION)
@Name("bookingList")

204

seam-gen

class BookingListAction implements Serializable
{
@In EntityManager em
@In User user
@DataModel List<Booking> bookings
@DataModelSelection Booking booking
@Logger Log log

@Factory public void getBookings()
{

bookings = em.createQuery(
select b from Booking b
where b.user.username = :username
order by b.checkinDate™)
.setParameter("username", user.username)
.getResultList()

public void cancel()

{

log.info("Cancel booking: #{bookingList.booking.id} for #{user.username}")
Booking cancelled = em.find(Booking.class, booking.id)
if (cancelled != null) em.remove(cancelled)
getBookings()
FacesMessages.instance().add("Booking cancelled for confirmation number
#{bookingList.booking.id}", new Object[0])
}

12.2.2. seam-gen

Seam gen has a transparent integration with Groovy. You can write Groovy code in seam-gen
backed projects without any additional infrastructure requirement. When writing a Groovy entity,
simply place your . gr oovy files in sr ¢/ mai n. Unsurprisingly, when writing an action, simply place
your . gr oovy filesin src/ hot.

12.3. Deployment

Deploying Groovy classes is very much like deploying Java classes (surprisingly, no need to
write nor comply with a 3-letter composite specification to support a multi-language component
framework).

Beyond standard deployments, JBoss Seam has the ability, at development time, to redeploy
JavaBeans Seam component classes without having to restart the application, saving a lot of time

205

Chapter 12. Groovy integration

in the development/ test cycle. The same support is provided for GroovyBeans Seam components
when the . gr oovy files are deployed.

12.3.1. Deploying Groovy code

A Groovy class is a Java class, with a bytecode representation just like a Java class. To deploy,
a Groovy entity, a Groovy Session bean or a Groovy Seam component, a compilation step is
necessary. A common approach is to use the gmaven-plugin [http://docs.codehaus.org/display/
GMAVEN/Home] maven plugin. Once compiles, a Groovy class is in no way different than a Java
class and the application server will treat them equally. Note that this allow a seamless mix of
Groovy and Java code.

12.3.2. Native .groovy file deployment at development time

JBoss Seam natively supports the deployment of . groovy files (ie without compilation) in
incremental hotdeployment mode (development only). This enables a very fast edit/test cycle. To
set up .groovy deployments, follow the configuration at Section 2.8, “Seam and incremental hot
deployment” and deploy your Groovy code (. gr oovy files) into the WEB- | NF/ dev directory. The
GroovyBean components will be picked up incrementally with no need to restart the application
(and obviously not the application server either).

Be aware that the native .groovy file deployment suffers the same limitations as the regular Seam
hotdeployment:

» The components must be JavaBeans or GroovyBeans. They cannot be EJB3 bean

 Entities cannot be hotdeployed

« The hot-deployable components will not be visible to any classes deployed outside of WEB- | NF/
dev

« Seam debug mode must be enabled

12.3.3. seam-gen

Seam-gen transparently supports Groovy files deployment and compilation. This includes the
native . gr oovy file deployment in development mode (compilation-less). If you create a seam-
gen project of type WAR, Java and Groovy classes in src/ hot will automatically be candidate
for the incremental hot deployment. If you are in production mode, the Groovy files will simply be
compiled before deployment.

You will find a live example of the Booking demo written completely in Groovy and supporting
incremental hot deployment in exanpl es/ gr oovybooki ng.

206

http://docs.codehaus.org/display/GMAVEN/Home
http://docs.codehaus.org/display/GMAVEN/Home
http://docs.codehaus.org/display/GMAVEN/Home

Chapter 13.

Writing your presentation layer
using Apache Wicket

Seam supports Wicket as an alternative presentation layer to JSF. Take a look at the wi cket
example in Seam which shows the Booking Example ported to Wicket.

Note

j=do

Wicket support is new to Seam, so some features which are available in JSF are
not yet available when you use Wicket (e.g. pageflow). You'll also notice that the
documentation is very JSF-centric and needs reorganization to reflect the first class
support for Wicket.

13.1. Adding Seam to your wicket application

The features added to your Wicket application can be split into two categories: bijection and
orchestration; these are discussed in detail below.

Extensive use of inner classes is common when building Wicket applications, with the component
tree being built in the constructor. Seam fully supports the use of annotation based control in inner
classes and constructors (unlike regular Seam components).

Annotations are processed after any call to a superclass. This mean's that any injected attributes
cannot be passed as an argument in a call to t hi s() or super () .

When a method is called in an inner class, bijection occurs for any class which encloses it. This
allows you to place your bijected variables in the outer class, and refer to them in any inner class.

13.1.1. Bijection

A Seam enabled Wicket application has full access to the all the standard Seam contexts (EVENT
, CONVERSATI ON, SESSI ON, APPLI CATI ON and BUSI NESS_PROCESS).

To access Seam component's from Wicket, you just need to inject it using @n :

@In(create=true)
private HotelBooking hotelBooking;

207

Chapter 13. Writing your pres...

As your Wicket class isn't a full Seam component, there is no need to annotate
it @lane .

You can also outject an object into the Seam contexts from a Wicket component:

@Out(scope=ScopeType.EVENT, required=false)
private String verify;

TODO Make this more use case driven

13.1.2. Orchestration

You can secure a Wicket component by using the @Restri ct annotation. This can be placed
on the outer component or any inner components. If @Rest ri ct is specified, the component will
automatically be restricted to logged in users. You can optionally use an EL expression in the
val ue attribute to specify a restriction to be applied. For more refer to the Chapter 16, Security .

For example:

@Restrict
public class Main extends WebPage

{

Tip

Seam will automatically apply the restriction to any nested classes.

You can demarcate conversations from within a Wicket component through the use of @egi n and
@nd . The semantics for these annotations are the same as when used in a Seam component.
You can place @egi n and @nd on any method.

For example:

208

Setting up your project

item.add(new Link("viewHotel") {

@Override
@Begin
public void onClick() {
hotelBooking.selectHotel(hotel);
setResponsePage(org.jboss.seam.example.wicket.Hotel.class);
}
K

You may have pages in your application which can only be accessed when the user has a long-
running conversation active. To enforce this you can use the @oConver sat i onPage annotation:

@Restrict
@NoConversationPage(Main.class)
public class Hotel extends WebPage

{

If you want to further decouple your application classes, you can use Seam events. Of course,
you can raise an event using Event s. i nst ance() . rai seEvent ("foo") . Alternatively, you can
annotate a method @Rrai seEvent ("foo") ; if the method returns a non-null outcome without
exception, the event will be raised.

You can also control tasks and processes in Wicket classes through the use of @r eat ePr ocess
, @ResuneTask , @egi nTask , @ndTask , @t art Task and @r ansition.

13.2. Setting up your project

Seam needs to instrument the bytecode of your Wicket classes to be able to intercept the
annotations you use. The first decision to make is: do you want your code instrumented at
runtime as your app is running, or at compile time? The former requires no integration with your
build environment, but has a performance penalty when loading each instrumented class for the
first time. The latter is faster, but requires you to integrate this instrumentation into your build
environment.

13.2.1. Runtime instrumentation

There are two ways to achieve runtime instrumentation. One relies on placing wicket components
to be instrumented in a special folder in your WAR deployment. If this is not acceptable or possible,
you can also use an instrumentation "agent,” which you specify in the command line for launching
your container.

209

Chapter 13. Writing your pres...

13.2.1.1. Location-specific instrumentation

Any classes placed in the VEB-INF/ wi cket folder within your WAR deployment will be
automatically instrumented by the seam-wicket runtime. You can arrange to place your wicket
pages and components here by specifying a separate output folder for those classes in your IDE,
or through the use of ant scripts.

13.2.1.2. Runtime instrumentation agent

The jar file j boss- seam wi cket . j ar can be used as an instrumentation agent through the Java
Instrumentation api. This is accomplished through the following steps:

« Arrange for the j boss- seam wi cket . j ar file to live in a location for which you have an absolute
path, as the Java Instrumentation API does not allow relative paths when specifying the location
of an agent lib.

e Add j avaagent:/path/to/jboss-seamwi cket.jar to the command line options when
launching your webapp container:

« In addition, you will need to add an environment variable that specifies packages that the agent
should instrument. This is accomplished by a comma separated list of package names:

-Dorg.jboss.seam.wicket.instrumented-packages=my.package.one,my.other.package

Note that if a package A is specified, classes in subpackages of A are also examined. The
classes chosen for instrumentation can be further limited by specifying:

-Dorg.jboss.seam.wicket.scanAnnotations=true

and then marking instrumentable classes with the @eam cket Conponent annotation, see
Section 13.2.3, * The @SeamWicketComponent annotation " .

13.2.2. Compile-time instrumentation
Seam supports instrumentation at compile time through either Apache Ant or Apache Maven.
13.2.2.1. Instrumenting with ant

Seam provides an ant task in the j boss- seam wi cket -ant.jar . This is used in the following
manner:

<taskdef name="instrumentWicket"
classname="org.jboss.seam.wicket.ioc.WicketIinstrumentationTask">
<classpath>

210

Compile-time instrumentation

<pathelement location="lib/jboss-seam-wicket-ant.jar"/>
<pathelement location="web/WEB-INF/lib/jboss-seam-wicket.jar"/>
<pathelement location="lib/javassist.jar"/>
<pathelement location="lib/jboss-seam.jar"/>
</classpath>
</taskdef>

<instrumentWicket outputDirectory="${build.instrumented}" useAnnotations="true">
<classpath refid="build.classpath"/>
<fileset dir="${build.classes}" includes="**/*.class"/>

</instrumentWicket>

This results in the instrumented classes being placed in the directory specified by
${bui l d.instrunented} . You will then need to instruct ant to copy these classes into W\EB-
I NF/ cl asses . If you want to hot deploy the Wicket components, you can copy the instrumented
classes to VEB- | NF/ dev ; if you use hot deploy, make sure that your W cket Appl i cati on class is
also hot-deployed. Upon a reload of hot-deployed classes, the entire WicketApplication instance
has to be re-initialized, in order to pick up new references to the classes of mounted pages.

The useAnnotations attribute is used to make the ant task only include classes that
have been marked with the @eanWW cket Conponent annotation, see Section 13.2.3, “ The
@SeamWicketComponent annotation ” .

13.2.2.2. Instrumenting with maven

The jboss maven repository repository.jboss.org provides a plugin named seam
i nstrunent -wi cket with a process-cl asses mojo. An example configuration in your pom.xml
might look like:

<build>
<plugins>
<plugin>
<groupld>org.jboss.seam</groupld>
<artifactld>seam-instrument-wicket</artifactld>
<version>2.2.0</version>
<configuration>
<scanAnnotations>true</scanAnnotations>
<includes>
<include>your.package.name</include>
</includes>
</configuration>
<executions>
<execution>
<id>instrument</id>

211

Chapter 13. Writing your pres...

<phase>process-classes</phase>
<goals>
<goal>instrument</goal>
</goals>
</execution>
</executions>
</plugin>
</plugins>
</build>

The above example illustrates that the instrumentation is limited to classes specified by the
i ncl udes element. In this example, the scanAnnot at i ons is specified, see Section 13.2.3, “ The
@SeamWicketComponent annotation ” .

13.2.3. The @ean cket Conponent annotation

Classes placed in WEB-INF/wicket will unconditionally be instrumented. The other instrumentation
mechanisms all allow you to specify that instrumentation should only be applied to classes
annotated with the @eam cket Conponent annotation. This annotation is inherited, which means
all subclasses of an annotated class will also be instrumented. An example usage is:

import org.jboss.seam.wicket.ioc.SeamWicketComponent;

@SeamWicketComponent
public class MyPage extends WebPage

{

13.2.4. Defining the Application

A Wicket web application which uses Seam should use SeamAbApplication as the base
class; this creates hooks into the Wicket lifecycle allowing Seam to automagically propagate the
conversation as needed. It also adds status messages to the page.

For example:

The Seamaut hor i zat i onSt r at egy delegates authorization to Seam Security, allowing the use of
@estrict on Wicket components. Seam\AbAppl i cat i on installs the authorization strategy for
you. You can specify the login page by implementing the get Logi nPage() method.

You'll also need to set the home page of the application by implementing the get HonmePage()
method.

212

Defining the Application

public class WicketBookingApplication extends SeamWebApplication

{

@Override
public Class getHomePage()
{

return Home.class;

@Override
protected Class getLoginPage()
{

return Home.class;

Seam automatically installs the Wicket filter for you (ensuring that it is inserted in the correct place
for you). But you still need to tell Wicket which WebAppl i cati on class to use.

<components xmlns="http://jpboss.org/schema/seam/components"
xmlns:wicket="http://jboss.org/schema/seam/wicket"
xsi:schemalLocation=
"http://jboss.org/schema/seam/wicket
http://jboss.org/schema/seam/wicket-2.3.xsd">

<wicket:web-application
application-class="org.jboss.seam.example.wicket.WicketBookingApplication" />
</components

In addition, if you plan to use JSF-based pages in the same application as wicket pages, you'll
need to ensure that the jsf exception filter is only enabled for jsf urls:

<components xmlns="http://jpboss.org/schema/seam/components"
xmlns:web="http://jboss.org/schema/seam/web"
xmlns:wicket="http://jboss.org/schema/seam/wicket"
xsi:schemalLocation=
"http://jboss.org/schema/seam/web
http://jboss.org/schema/seam/web-2.3.xsd">

<!I-- Only map the seam jsf exception filter to jsf paths, which we identify with the *.seam path -->
<web:exception-filter url-pattern="*.seam"/>

213

Chapter 13. Writing your pres...

</components

Tip

Take a look at the Wicket documentation for more on authorization strategies and
other methods you can override on the Appl i cati on class.

214

Chapter 14.

The Seam Application Framework

Seam makes it really easy to create applications by writing plain Java classes with annotations,
which don't need to extend any special interfaces or superclasses. But we can simplify some
common programming tasks even further, by providing a set of pre-built components which can
be re-used either by configuration in conponent s. xm (for very simple cases) or extension.

The Seam Application Framework can reduce the amount of code you need to write when doing
basic database access in a web application, using either Hibernate or JPA.

We should emphasize that the framework is extremely simple, just a handful of simple classes
that are easy to understand and extend. The "magic" is in Seam itself — the same magic you use
when creating any Seam application even without using this framework.

14.1. Introduction

The components provided by the Seam application framework may be used in one of two
different approaches. The first way is to install and configure an instance of the component
in component s. xni , just like we have done with other kinds of built-in Seam components. For
example, the following fragment from conponent s. xm installs a component which can perform
basic CRUD operations for a Per son entity:

<framework:entity-home name="personHome"
entity-class="eg.Person”
entity-manager="#{personDatabase}">
<framework:id>#{param.personld}</framework:id>
</framework:entity-home>

If that looks a bit too much like "programming in XML" for your taste, you can use extension instead:

@Name("personHome")
public class PersonHome extends EntityHome<Person> {

@In EntityManager personDatabase;

public EntityManager getEntityManager() {
return personDatabase;

215

Chapter 14. The Seam Applicat...

The second approach has one huge advantage: you can easily add extra functionality, and
override the built-in functionality (the framework classes were carefully designed for extension
and customization).

A second advantage is that your classes may be EJB stateful session beans, if you like. (They
do not have to be, they can be plain JavaBean components if you prefer.) If you are using JBoss
AS, you'll need 4.2.2.GA or later:

@Stateful
@Name("personHome")
public class PersonHome extends EntityHome<Person> implements LocalPersonHome {

You can also make your classes stateless session beans. In this case you must use injection to
provide the persistence context, even if it is called ent i t yManager :

@Stateless
@Name("personHome")
public class PersonHome extends EntityHome<Person> implements LocalPersonHome {

@In EntityManager entityManager;

public EntityManager getPersistenceContext() {
entityManager;

At this time, the Seam Application Framework provides four main built-in components:
EntityHome and HibernateEntityHome for CRUD, along with EntityQuery and
Hi ber nat eEnt i t yQuery for queries.

The Home and Query components are written so that they can function with a scope of session,
event or conversation. Which scope you use depends upon the state model you wish to use in
your application.

The Seam Application Framework only works with Seam-managed persistence contexts. By
default, the components will look for a persistence context named ent i t yManager .

216

Home objects

14.2. Home objects

A Home object provides persistence operations for a particular entity class. Suppose we have our
trusty Per son class:

@Entity

public class Person {
@Id private Long id;
private String firstName;
private String lastName;
private Country nationality;

/lgetters and setters...

We can define a per sonHome component either via configuration:
<framework:entity-home name="personHome" entity-class="eg.Person" />
Or via extension:

@Name("personHome")
public class PersonHome extends EntityHome<Person> {}

A Home object provides the following operations: persist(), renove(), update() and
get I nst ance() . Before you can call the r enove() , or updat e() operations, you must first set the
identifier of the object you are interested in, using the set | d() method.

We can use a Home directly from a JSF page, for example:

<h1>Create Person</h1>

<h:form>
<div>First name: <h:inputText value="#{personHome.instance.firstName}"/></div>
<div>Last name: <h:inputText value="#{personHome.instance.lastName}"/></div>
<div>

<h:commandButton value="Create Person" action="#{personHome.persist}"/>

</div>

</h:form>

217

Chapter 14. The Seam Applicat...

Usually, it is much nicer to be able to refer to the Per son merely as per son, so let's make that
possible by adding a line to conmponent s. xni :

<factory name="person"
value="#{personHome.instance}"/>

<framework:entity-home name="personHome"
entity-class="eg.Person" />

(If we are using configuration.) Or by adding a @act or y method to Per sonHone:

@Name("personHome")
public class PersonHome extends EntityHome<Person> {

@Factory("person™)
public Person initPerson() { return getinstance(); }

(If we are using extension.) This change simplifies our JSF page to the following:

<h1>Create Person</h1>
<h:form>
<div>First name: <h:inputText value="#{person.firstName}"/></div>
<div>Last name: <h:inputText value="#{person.lastName}"/></div>
<div>
<h:commandButton value="Create Person" action="#{personHome.persist}"/>
</div>
</h:form>

Well, that lets us create new Per son entries. Yes, that is all the code that is required! Now, if we
want to be able to display, update and delete pre-existing Per son entries in the database, we
need to be able to pass the entry identifier to the Per sonHore. Page parameters are a great way
to do that:

<pages>
<page view-id="/editPerson.xhtml|">
<param name="personld" value="#{personHome.id}"/>
</page>

218

Home objects

</pages>

Now we can add the extra operations to our JSF page:

<h1>
<h:outputText rendered="#{!personHome.managed}" value="Create Person"/>
<h:outputText rendered="#{personHome.managed}" value="Edit Person"/>
</h1>
<h:form>
<div>First name: <h:inputText value="#{person.firstName}"/></div>
<div>Last name: <h:inputText value="#{person.lastName}"/></div>
<div>
<h:commandButton value="Create Person" action="#{personHome.persist}" rendered="#{!
personHome.managed}"/>
<h:commandButton value="Update Person" action="#{personHome.update}"
rendered="#{personHome.managed}"/>
<h:commandButton value="Delete Person" action="#{personHome.remove}"
rendered="#{personHome.managed}"/>
</div>
</h:form>

When we link to the page with no request parameters, the page will be displayed as a "Create
Person” page. When we provide a value for the per sonl d request parameter, it will be an "Edit
Person" page.

Suppose we need to create Per son entries with their nationality initialized. We can do that easily,
via configuration:

<factory name="person"
value="#{personHome.instance}"/>

<framework:entity-home name="personHome"
entity-class="eg.Person"
new-instance="#{newPerson}"/>

<component name="newPerson"
class="eg.Person">
<property name="nationality">#{country}</property>
</component>

Or by extension:

219

Chapter 14. The Seam Applicat...

@Name("personHome")
public class PersonHome extends EntityHome<Person> {

@In Country country;

@Factory("person")
public Person initPerson() { return getinstance(); }

protected Person createlnstance() {
return new Person(country);

Of course, the Country could be an object managed by another Home object, for example,
Count r yHone.

To add more sophisticated operations (association management, etc), we can just add methods
to Per sonHone.

@Name("personHome")
public class PersonHome extends EntityHome<Person> {

@In Country country;

@Factory("person")
public Person initPerson() { return getinstance(); }

protected Person createlnstance() {
return new Person(country);

public void migrate()

{

getinstance().setCountry(country);
update();

The Home object raises an org.jboss. seam afterTransacti onSuccess event when a
transaction succeeds (a call to persi st (), updat e() orrenove() succeeds). By observing this

220

Home objects

event we can refresh our queries when the underlying entities are changed. If we only want to
refresh certain queries when a particular entity is persisted, updated or removed we can observe
the org. j boss. seam af t er Transact i onSuccess. <nane> event (where <nane> is the simple
name of the entity, e.g. an entity called "org.foo.myEntity" has "myEntity" as simple name).

The Home object automatically displays faces messages when an operation is successful. To
customize these messages we can, again, use configuration:

<factory name="person"
value="#{personHome.instance}"/>

<framework:entity-home name="personHome"
entity-class="eg.Person"
new-instance="#{newPerson}">
<framework:created-message>New person #{person.firstName} #{person.lastName} created</
framework:created-message>
<framework:deleted-message>Person #{person.firstName} #{person.lastName} deleted</
framework:deleted-message>
<framework:updated-message>Person #{person.firstName} #{person.lastName} updated</
framework:updated-message>
</framework:entity-home>

<component name="newPerson"
class="eg.Person">

<property name="nationality">#{country}</property>
</component>

Or extension:

@Name("personHome")
public class PersonHome extends EntityHome<Person> {

@In Country country;

@Factory("person")
public Person initPerson() { return getinstance(); }

protected Person createlnstance() {

return new Person(country);

protected String getCreatedMessage() { return createValueExpression("New person
#{person.firstName} #{person.lastName} created"); }

221

Chapter 14. The Seam Applicat...

protected String getUpdatedMessage() { return createValueExpression("Person
#{person.firstName} #{person.lastName} updated"); }

protected String getDeletedMessage() { return createValueExpression("Person
#{person.firstName} #{person.lastName} deleted"); }

But the best way to specify the messages is to put them in a resource bundle known to Seam (the
bundle named nessages, by default).

Person_created=New person #{person.firstName} #{person.lastName} created
Person_deleted=Person #{person.firstName} #{person.lastName} deleted
Person_updated=Person #{person.firstName} #{person.lastName} updated

This enables internationalization, and keeps your code and configuration clean of presentation
concerns.

The final step is to add validation functionality to the page, using <s:validateAl | > and
<s: decor at e>, but I'll leave that for you to figure out.

14.3. Query objects

If we need a list of all Per son instance in the database, we can use a Query object. For example:

<framework:entity-query name="people"
ejbql="select p from Person p"/>

We can use it from a JSF page:

<hl>List of people</h1>
<h:dataTable value="#{people.resultList}" var="person">
<h:column>
<s:link view="/editPerson.xhtml" value="#{person.firstName} #{person.lastName}">
<f:param name="personld" value="#{person.id}"/>
</s:link>
</h:column>
</h:dataTable>

We probably need to support pagination:

222

Query objects

<framework:entity-query name="people"
ejbgl="select p from Person p"
order="lastName"
max-results="20"/>

We'll use a page parameter to determine the page to display:

<pages>
<page view-id="/searchPerson.xhtm|">
<param name="firstResult" value="#{people.firstResult}"/>
</page>
</pages>

The JSF code for a pagination control is a bit verbose, but manageable:

<h1>Search for people</h1>
<h:dataTable value="#{people.resultList}" var="person">
<h:column>
<s:link view="/editPerson.xhtml" value="#{person.firstName} #{person.lastName}">
<f:param name="personld" value="#{person.id}"/>
</s:link>
</h:column>
</h:dataTable>

<s:link view="/search.xhtml" rendered="#{people.previousExists}" value="First Page">
<f:param name="firstResult" value="0"/>
</s:link>

<s:link view="/search.xhtml" rendered="#{people.previousExists}" value="Previous Page">
<f:param name="firstResult" value="#{people.previousFirstResult}"'/>
</s:link>

<s:link view="/search.xhtml" rendered="#{people.nextExists}" value="Next Page">
<f:param name="firstResult" value="#{people.nextFirstResult}"/>
</s:link>

<s:link view="/search.xhtml" rendered="#{people.nextExists}" value="Last Page">
<f:param name="firstResult" value="#{people.lastFirstResult}"/>
</s:link>

223

Chapter 14. The Seam Applicat...

Real search screens let the user enter a bunch of optional search criteria to narrow the list of
results returned. The Query object lets you specify optional "restrictions" to support this important
usecase:

<component name="examplePerson" class="Person"/>

<framework:entity-query name="people"
ejbql="select p from Person p"
order="lastName"
max-results="20">
<framework:restrictions>
<value>lower(firstName) like lower(concat(#{examplePerson.firstName},'%"))</value>
<value>lower(lastName) like lower(concat(#{examplePerson.lastName},'%"))</value>
</framework:restrictions>
</framework:entity-query>

Notice the use of an "example" object.

<h1>Search for people</h1>

<h:form>
<div>First name: <h:inputText value="#{examplePerson.firstName}"/></div>
<div>Last name: <h:inputText value="#{examplePerson.lastName}"/></div>
<div><h:commandButton value="Search" action="/search.xhtml"/></div>

</h:form>

<h:dataTable value="#{people.resultList}" var="person">
<h:column>
<s:link view="/editPerson.xhtml" value="#{person.firstName} #{person.lastName}">
<f:param name="personld" value="#{person.id}"/>
</s:link>
</h:column>
</h:dataTable>

To refresh the query when the underlying entities change we observe the
org.j boss. seam aft er Transact i onSuccess event:

<event type="org.jboss.seam.afterTransactionSuccess">
<action execute="#{people.refresh}" />
</event>

224

Controller objects

Or, to just refresh the query when the person entity is persisted, updated or removed through
Per sonHone:

<event type="org.jboss.seam.afterTransactionSuccess.Person">
<action execute="#{people.refresh}" />
</event>

Unfortunately Query objects don't work well with join fetch queries - the use of pagination with
these queries is not recommended, and you'll have to implement your own method of calculating
the total number of results (by overriding get Count Ej bgl () .

The examples in this section have all shown reuse by configuration. However, reuse by extension
is equally possible for Query objects.

14.4. Controller objects

A totally optional part of the Seam Application Framework is the class
Controller and its subclasses EntityController HibernateEntityController and
Busi nessProcessControl | er. These classes provide nothing more than some convenience
methods for access to commonly used built-in components and methods of built-in components.
They help save a few keystrokes (characters can add up!) and provide a great launchpad for new
users to explore the rich functionality built in to Seam.

For example, here is what Regi st er Act i on from the Seam registration example would look like:

@Stateless
@Name("register")
public class RegisterAction extends EntityController implements Register

{

@In private User user;

public String register()
{
List existing = createQuery("select u.username from User u where u.username=:username")
.setParameter("username", user.getUsername())
.getResultList();

if (existing.size()==0)

{
persist(user);
info("Registered new user #{user.username}");
return "/registered.xhtmlx";

225

Chapter 14. The Seam Applicat...

else

{

addFacesMessage("User #{user.username} already exists");
return null;

As you can see, its not an earthshattering improvement...

226

Chapter 15.

Seam and JBoss Rules

Seam makes it easy to call JBoss Rules (Drools) rulebases from Seam components or jBPM
process definitions.

15.1. Installing rules

The first step is to make an instance of org. drool s. Rul eBase available in a Seam context
variable. For testing purposes, Seam provides a built-in component that compiles a static set of
rules from the classpath. You can install this component via conponent s. xm :

<drools:rule-base name="policyPricingRules">
<drools:rule-files>
<value>policyPricingRules.drl</value>
</drools:rule-files>
</drools:rule-base>

This component compiles rules from a set of DRL (. dr |) or decision table (. x! s) files and caches
an instance of or g. dr ool s. Rul eBase in the Seam APPLI CATI ON context. Note that it is quite likely
that you will need to install multiple rule bases in a rule-driven application.

If you want to use a Drools DSL, you also need to specify the DSL definition:

<drools:rule-base name="policyPricingRules" dsl-file="policyPricing.dsl">
<drools:rule-files>
<value>policyPricingRules.drl</value>
</drools:rule-files>
</drools:rule-base>

Support for Drools RuleFlow is also available and you can simply add a . rf or a.rfmas part
of your rule files as:

<drools:rule-base name="policyPricingRules" rule-files="policyPricingRules.drl,
policyPricingRulesFlow.rf"/>

Note that when using the Drools 4.x RuleFlow (.rfm format, you need to specify the -
Ddrools.ruleflow.port=true system property on server startup. This is however still an experimental
feature and we advise to use the Drools5 (. r f) format if possible.

227

Chapter 15. Seam and JBoss Rules

If you want to register a custom consequence exception handler through the
RuleBaseConfiguration, you need to write the handler, for example:

@Scope(ScopeType.APPLICATION)

@Startup

@Name("'myConsequenceExceptionHandler")

public class MyConsequenceExceptionHandler implements ConsequenceExceptionHandler, Externalizable {

public void readExternal(Objectinput in) throws IOException, ClassNotFoundException {

}

public void writeExternal(ObjectOutput out) throws IOException {
}

public void handleException(Activation activation,
WorkingMemory workingMemory,
Exception exception) {
throw new ConsequenceException(exception,
activation.getRule());

and register it:

<drools:rule-base name="policyPricingRules" dsl-file="policyPricing.dsl
exception-handler="#{myConsequenceExceptionHandler}">
<drools:rule-files>
<value>policyPricingRules.drl</value>
</drools:rule-files>
</drools:rule-base>

consequence-

In most rules-driven applications, rules need to be dynamically deployable, so a production
application will want to use a Drools RuleAgent to manage the RuleBase. The RuleAgent can
connect to a Drools rule server (BRMS) or hot deploy rules packages from a local file repository.
The RulesAgent-managed RuleBase is also configurable in conponent s. xm :

<drools:rule-agent name="insuranceRules"
configurationFile="/WEB-INF/deployedrules.properties" />

228

Installing rules

The properties file contains properties specific to the RulesAgent. Here is an example
configuration file from the Drools example distribution.

newlnstance=true
url=http://localhost:8080/drools-jbrms/org.drools.brms.JBRMS/package/org.acme.insurance/
fmeyer
localCacheDir=/Users/fernandomeyer/projects/jbossrules/drools-examples/drools-examples-
brms/cache

poll=30

name=insuranceconfig

It is also possible to configure the options on the component directly, bypassing the configuration
file.

<drools:rule-agent name="insuranceRules"
url="http://localhost:8080/drools-jbrms/org.drools.brms.JBRMS/package/org.acme.insurance/
fmeyer"
local-cache-dir="/Users/fernandomeyer/projects/jbossrules/drools-examples/drools-
examples-brms/cache"
poll="30"
configuration-name="insuranceconfig" />

Next, we need to make an instance of org.drools. WrkingMenory available to each
conversation. (Each Wr ki ngMenor y accumulates facts relating to the current conversation.)

<drools:managed-working-memory name="policyPricingWorkingMemory" auto-
create="true" rule-base="#{policyPricingRules}"/>

Notice that we gave the pol i cyPri ci ngWor ki ngMenory a reference back to our rule base via the
rul eBase configuration property.

We can also add means to be notified of rule engine events, including rules firing, objects being
asserted, etc. by adding event listeners to WorkingMemory.

<drools:managed-working-memory name="policyPricingWorkingMemaory" auto-
create="true" rule-base="#{policyPricingRules}">
<drools:event-listeners>
<value>org.drools.event.DebugWorkingMemoryEventListener</value>
<value>org.drools.event.DebugAgendaEventListener</value>
</drools:event-listeners>

229

Chapter 15. Seam and JBoss Rules

</drools:managed-working-memory>

15.2. Using rules from a Seam component

We can now inject our Wor ki ngMenor y into any Seam component, assert facts, and fire rules:

@In WorkingMemory policyPricingWorkingMemory;

@In Policy policy;
@In Customer customer;

public void pricePolicy() throws FactException

{
policyPricingWorkingMemory.insert(policy);
policyPricingWorkingMemory.insert(customer);
Il if we have a ruleflow, start the process
policyPricingWorkingMemory.startProcess(startProcessld)
policyPricingWorkingMemory.fireAlIRules();

15.3. Using rules from a jBPM process definition

You can even allow a rule base to act as a jBPM action handler, decision handler, or assignment
handler — in either a pageflow or business process definition.

<decision name="approval">

<handler class="org.jboss.seam.drools.DroolsDecisionHandler">
<workingMemoryName>orderApprovalRulesWorkingMemory</workingMemoryName>
<!l-- if a ruleflow was added -->
<startProcessld>approvalruleflowid</startProcessld>
<assertObjects>
<element>#{customer}</element>
<element>#{order}</element>
<element>#{order.lineltems}</element>
</assertObjects>
</handler>

<transition name="approved" to="ship">
<action class="org.jboss.seam.drools.DroolsActionHandler">
<workingMemoryName>shippingRulesWorkingMemory</workingMemoryName>

230

Using rules from a jBPM process definition

<assertObjects>
<element>#{customer}</element>
<element>#{order}</element>
<element>#{order.lineltems}</element>
</assertObjects>
</action>
</transition>

<transition name="rejected" to="cancelled"/>

</decision>

The <assert Cbj ect s> element specifies EL expressions that return an object or collection of
objects to be asserted as facts into the Wor ki ngMenory.

The <r et r act Obj ect s> element on the other hand specifies EL expressions that return an object
or collection of objects to be retracted from the Wor ki ngMenory.

There is also support for using Drools for jBPM task assignments:

<task-node name="review">
<task name="review" description="Review Order">
<assignment handler="org.jboss.seam.drools.DroolsAssignmentHandler">
<workingMemoryName=>orderApprovalRulesWorkingMemory</workingMemoryName>
<assertObjects>
<element>#{actor}</element>
<element>#{customer}</element>
<element>#{order}</element>
<element>#{order.lineltems}</element>
</assertObjects>
</assignment>
</task>
<transition name="rejected" to="cancelled"/>
<transition name="approved" to="approved"/>
</task-node>

Certain objects are available to the rules as Drools globals, namely the jBPM Assi gnabl e, as
assi gnabl e and a Seam Deci si on object, as deci si on. Rules which handle decisions should call
deci si on. set Qut come("resul t") to determine the result of the decision. Rules which perform
assignments should set the actor id using the Assi gnabl e.

package org.jboss.seam.examples.shop

231

Chapter 15. Seam and JBoss Rules

import org.jboss.seam.drools.Decision

global Decision decision

rule "Approve Order For Loyal Customer"
when
Customer(loyaltyStatus == "GOLD")
Order(totalAmount <= 10000)
then
decision.setOutcome("approved");
end

package org.jboss.seam.examples.shop

import org.jopm.taskmgmt.exe.Assignable

global Assignable assignable

rule "Assign Review For Small Order"
when
Order(totalAmount <= 100)
then
assignable.setPooledActors(new String[] {"reviewers"});
end

http://www.drools.org

232

http://www.drools.org

Chapter 16.

Security

16.1. Overview

The Seam Security API provides a multitude of security-related features for your Seam-based
application, covering such areas as:

e Authentication - an extensible, JAAS-based authentication layer that allows users to
authenticate against any security provider.

« Identity Management - an API for managing a Seam application's users and roles at runtime.

« Authorization - an extremely comprehensive authorization framework, supporting user roles,
persistent and rule-based permissions, and a pluggable permission resolver for easily
implementing customised security logic.

» Permission Management - a set of built-in Seam components to allow easy management of an
application's security policy.

* CAPTCHA support - to assist in the prevention of automated software/scripts abusing your
Seam-based site.

¢ And much more

This chapter will cover each of these features in detail.

16.2. Disabling Security

In some situations it may be necessary to disable Seam Security, for instances during unit tests
or because you are using a different approach to security, such as native JAAS. Simply call the
static method 1 dent i ty. set Securit yEnabl ed(fal se) to disable the security infrastructure. Of
course, it's not very convenient to have to call a static method when you want to configure the
application, so as an alternative you can control this setting in components.xml:

 Entity Security

« Hibernate Security Interceptor
e Seam Security Interceptor

» Page restrictions

« Servlet API security integration

Assuming you are planning to take advantage of what Seam Security has to offer, the rest of this
chapter documents the plethora of options you have for giving your user an identity in the eyes of
the security model (authentication) and locking down the application by establishing constraints
(authorization). Let's begin with the task of authentication since that's the foundation of any security
model.

233

Chapter 16. Security

16.3. Authentication

The authentication features provided by Seam Security are built upon JAAS (Java Authentication
and Authorization Service), and as such provide a robust and highly configurable API for handling
user authentication. However, for less complex authentication requirements Seam offers a much
more simplified method of authentication that hides the complexity of JAAS.

16.3.1. Configuring an Authenticator component

Note

j=deo

If you use Seam's Identity Management features (discussed later in this chapter)
then it is not necessary to create an authenticator component (and you can skip
this section).

The simplified authentication method provided by Seam uses a built-in JAAS login module,
SeanlLogi nMbdul e, which delegates authentication to one of your own Seam components. This
login module is already configured inside Seam as part of a default application policy and as such
does not require any additional configuration files. It allows you to write an authentication method
using the entity classes that are provided by your own application, or alternatively to authenticate
with some other third party provider. Configuring this simplified form of authentication requires the
i denti ty component to be configured in conponent s. xmi :

<components xmlns="http://jboss.org/schema/seam/components"
xmlns:core="http://jboss.org/schema/seam/core"
xmlns:security="http://jboss.org/schema/seam/security"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation=
"http://jboss.org/schema/seam/components http://jboss.org/schema/seam/
components-2.3.xsd
http://jboss.org/schema/seam/security http://jboss.org/schema/seam/security-2.3.xsd">

<security:identity authenticate-method="#{authenticator.authenticate}"/>

</components>
The EL expression #{aut henti cat or. aut henti cate} is a method binding that indicates the
aut hent i cat e method of the aut hent i cat or component will be used to authenticate the user.

16.3.2. Writing an authentication method

The aut henti cat e- met hod property specified for identity in conmponents. xm specifies
which method will be used by Seaniogi nModul e to authenticate users. This method

234

Writing an authentication method

takes no parameters, and is expected to return a boolean, which indicates whether
authentication is successful or not. The user's username and password can be obtained from
Credenti al s. get User name() and Credenti al s. get Passwor d(), respectively (you can get a
reference to the credenti al s component via | dentity.instance().get Credential s()). Any
roles that the user is a member of should be assigned using | dentity. addRol e(). Here's a
complete example of an authentication method inside a POJO component:

@Name("authenticator")

public class Authenticator {
@In EntityManager entityManager;
@In Credentials credentials;
@In Identity identity;

public boolean authenticate() {
try {
User user = (User) entityManager.createQuery(
"from User where username = :username and password = :password")
.setParameter("username", credentials.getUsername())
.setParameter("password", credentials.getPassword())
.getSingleResult();

if (user.getRoles() != null) {
for (UserRole mr : user.getRoles())
identity.addRole(mr.getName());

return true;

}

catch (NoResultException ex) {
return false;

In the above example, both User and User Rol e are application-specific entity beans. The r ol es
parameter is populated with the roles that the user is a member of, which should be added
to the Set as literal string values, e.g. "admin”, "user". In this case, if the user record is not
found and a NoResul t Except i on thrown, the authentication method returns f al se to indicate the

authentication failed.

235

Chapter 16. Security

Tip

When writing an authenticator method, it is important that it is kept minimal and free
from any side-effects. This is because there is no guarantee as to how many times
the authenticator method will be called by the security API, and as such it may be
invoked multiple times during a single request. Because of this, any special code
that should execute upon a successful or failed authentication should be written
by implementing an event observer. See the section on Security Events further
down in this chapter for more information about which events are raised by Seam
Security.

16.3.2.1. Identity.addRole()

Theldentity. addRol e() method behaves differently depending on whether the current session
is authenticated or not. If the session is not authenticated, then addRol e() should only be called
during the authentication process. When called here, the role name is placed into a temporary
list of pre-authenticated roles. Once authentication is successful, the pre-authenticated roles then
become "real" roles, and calling 1 denti ty. hasRol e() for those roles will then return true. The
following sequence diagram represents the list of pre-authenticated roles as a first class object to
show more clearly how it fits in to the authentication process.

Lser ldenti Pre-authenticated roles JAAS LoginContext Authenticator

|
1: logi
' aging pL 1.1: clear) |

1.2: loging

| |
| |
| |
| |
Ph atimokeg |

»

|
|
! 1.2.1.1: addRole)
I
|

.

1.3 pre-auth roles becu:urllne real ralesd

F

236

Writing a login form

If the current session is already authenticated, then calling | dentity. addRol e() will have the
expected effect of immediately granting the specified role to the current user.

16.3.2.2. Writing an event observer for security-related events

Say for example, that upon a successful login that some wuser statistics must
be updated. This would be done by writng an event observer for the

org. j boss. seam security. | ogi nSuccessful event, like this:

@In UserStats userStats;

@Observer("org.jboss.seam.security.loginSuccessful")
public void updateUserStats()
{
userStats.setlLastLoginDate(new Date());
userStats.incrementLoginCount();

}

This observer method can be placed anywhere, even in the Authenticator component itself. You
can find more information about security-related events later in this chapter.

16.3.3. Writing a login form

The credent i al s component provides both user name and passwor d properties, catering for the
most common authentication scenario. These properties can be bound directly to the username
and password fields on a login form. Once these properties are set, calling i dentity. | ogi n()
will authenticate the user using the provided credentials. Here's an example of a simple login form:

<div>
<h:outputLabel for="name" value="Username"/>
<h:inputText id="name" value="#{credentials.username}"/>
</div>

<div>
<h:outputLabel for="password" value="Password"/>
<h:inputSecret id="password" value="#{credentials.password}"/>
</div>

<div>
<h:commandButton value="Login" action="#{identity.login}"/>
</div>

237

Chapter 16. Security

Similarly, logging out the user is done by calling #{i dentity. | ogout}. Calling this action will
clear the security state of the currently authenticated user, and invalidate the user's session.

16.3.4. Configuration Summary

So to sum up, there are the three easy steps to configure authentication:

» Configure an authentication method in conponent s. xm .

* Write an authentication method.

» Write a login form so that the user can authenticate.

16.3.5. Remember Me

Seam Security supports the same kind of "Remember Me" functionality that is commonly
encountered in many online web-based applications. It is actually supported in two different
"flavours", or modes - the first mode allows the username to be stored in the user's browser as a
cookie, and leaves the entering of the password up to the browser (many modern browsers are
capable of remembering passwords).

The second mode supports the storing of a unique token in a cookie, and allows a user to
authenticate automatically upon returning to the site, without having to provide a password.

Warning

Automatic client authentication with a persistent cookie stored on the client
machine is dangerous. While convenient for users, any cross-site scripting security
hole in your website would have dramatically more serious effects than usual.
Without the authentication cookie, the only cookie to steal for an attacker with XSS
is the cookie of the current session of a user. This means the attack only works
when the user has an open session - which should be a short timespan. However,
it is much more attractive and dangerous if an attacker has the possibility to steal a
persistent Remember Me cookie that allows him to login without authentication, at
any time. Note that this all depends on how well you protect your website against
XSS attacks - it's up to you to make sure that your website is 100% XSS safe - a
non-trivial achievement for any website that allows user input to be rendered on
a page.

Browser vendors recognized this issue and introduced a "Remember Passwords"
feature - today almost all browsers support this. Here, the browser remembers the
login username and password for a particular website and domain, and fills out the
login form automatically when you don't have an active session with the website.
If you as a website designer then offer a convenient login keyboard shortcut,
this approach is almost as convenient as a "Remember Me" cookie and much

238

Remember Me

safer. Some browsers (e.g. Safari on OS X) even store the login form data in
the encrypted global operation system keychain. Or, in a networked environment,
the keychain can be transported with the user (between laptop and desktop for
example), while browser cookies are usually not synchronized.

To summarize: While everyone is doing it, persistent "Remember Me" cookies with
automatic authentication are a bad practice and should not be used. Cookies that
"remember"” only the users login name, and fill out the login form with that username
as a convenience, are not an issue.

To enable the remember me feature for the default (safe, username only) mode, no special
configuration is required. In your login form, simply bind the remember me checkbox to
renmenber Me. enabl ed, like in the following example:

<div>
<h:outputLabel for="name" value="User name"/>
<h:inputText id="name" value="#{credentials.username}"/>
</div>

<div>

<h:outputLabel for="password" value="Password"/>

<h:inputSecret id="password" value="#{credentials.password}" redisplay="true"/>
</div>

<div class="loginRow">
<h:outputLabel for="rememberMe" value="Remember me"/>
<h:selectBooleanCheckbox id="rememberMe" value="#{rememberMe.enabled}"/>
</div>

16.3.5.1. Token-based Remember-me Authentication

To use the automatic, token-based mode of the remember me feature, you must first configure a
token store. The most common scenario is to store these authentication tokens within a database
(which Seam supports), however it is possible to implement your own token store by implementing
the org. j boss. seam securi ty. TokenSt or e interface. This section will assume you will be using
the provided JpaTokenSt or e implementation to store authentication tokens inside a database
table.

The first step is to create a new Entity which will contain the tokens. The following example shows
a possible structure that you may use:

@Entity
public class AuthenticationToken implements Serializable {

239

Chapter 16. Security

private Integer tokenld;
private String username;
private String value;

@ld @GeneratedValue
public Integer getTokenld() {
return tokenld;

public void setTokenld(Integer tokenld) {
this.tokenld = tokenld;

@TokenUsername
public String getUsername() {
return username;

public void setUsername(String username) {
this.username = username;

@TokenValue
public String getValue() {
return value;

public void setValue(String value) {
this.value = value;

As you can see from this listing, a couple of special annotations, @okenUser name and
@okenVval ue are used to configure the username and token properties of the entity. These
annotations are required for the entity that will contain the authentication tokens.

The next step is to configure JpaTokenStore to use this entity bean to store and retrieve
authentication tokens. This is done in conmponent s. xml by specifying the t oken- cl ass attribute:

<security:jpa-token-store token-
class="org.jboss.seam.example.seamspace.AuthenticationToken" />

240

Handling Security Exceptions

Once this is done, the last thing to do is to configure the Renenber M@ component in
conmponent s. xnl also. Its node should be set to aut oLogi n:

<security:remember-me mode="autoLogin"/>

That is all that is required - automatic authentication will now occur for users revisiting your site
(as long as they check the "remember me" checkbox).

To ensure that users are automatically authenticated when returning to the site, the following
section should be placed in components.xml:

<event type="org.jboss.seam.security.notLoggedIn">
<action execute="#{redirect.captureCurrentView}"/>
<action execute="#{identity.tryLogin()}"/>
</event>
<event type="org.jboss.seam.security.loginSuccessful">
<action execute="#{redirect.returnToCapturedView}"/>
</event>

16.3.6. Handling Security Exceptions

To prevent users from receiving the default error page in response to a security error, it's
recommended that pages. xm is configured to redirect security errors to a more "pretty" page.
The two main types of exceptions thrown by the security API are:

* Not LoggedIl nExcept i on - This exception is thrown if the user attempts to access a restricted
action or page when they are not logged in.

e Aut hori zati onExcepti on - This exception is only thrown if the user is already logged in, and
they have attempted to access a restricted action or page for which they do not have the
necessary privileges.

In the case of a Not Logged| nExcept i on, it is recommended that the user is redirected to either
a login or registration page so that they can log in. For an Aut hori zat i onExcept i on, it may be
useful to redirect the user to an error page. Here's an example of a pages. xnl file that redirects
both of these security exceptions:

<pages>

241

Chapter 16. Security

<exception class="org.jboss.seam.security.NotLoggedInException">
<redirect view-id="/login.xhtml|">
<message>You must be logged in to perform this action</message>
</redirect>
</exception>

<exception class="org.jboss.seam.security.AuthorizationException">
<end-conversation/>
<redirect view-id="/security_error.xhtml">
<message>You do not have the necessary security privileges to perform this action.</
message>
</redirect>
</exception>

</pages>

Most web applications require even more sophisticated handling of login redirection, so Seam
includes some special functionality for handling this problem.

16.3.7. Login Redirection

You can ask Seam to redirect the user to a login screen when an unauthenticated user tries to
access a particular view (or wildcarded view id) as follows:

<pages login-view-id="/login.xhtml">

<page view-id="/members/*" login-required="true"/>

</pages>

Tip

This is less of a blunt instrument than the exception handler shown above, but
should probably be used in conjunction with it.

After the user logs in, we want to automatically send them back where they came from, so they can
retry the action that required logging in. If you add the following event listeners to conponent s. xm ,

242

HTTP Authentication

attempts to access a restricted view while not logged in will be remembered, so that upon the
user successfully logging in they will be redirected to the originally requested view, with any page
parameters that existed in the original request.

<event type="org.jboss.seam.security.notLoggedIn">
<action execute="#{redirect.captureCurrentView}"/>
</event>

<event type="org.jboss.seam.security.postAuthenticate">
<action execute="#{redirect.returnToCapturedView}"/>
</event>

Note that login redirection is implemented as a conversation-scoped mechanism, so don't end the
conversation in your aut hent i cat e() method.

16.3.8. HTTP Authentication

Although not recommended for use unless absolutely necessary, Seam provides means for
authenticating using either HTTP Basic or HTTP Digest (RFC 2617) methods. To use either form
of authentication, the aut henti cati on-filter component must be enabled in components.xml;

<web:authentication-filter url-pattern="*.seam" auth-type="basic"/>

To enable the filter for basic authentication, set aut h-t ype to basi c, or for digest authentication,
set it to di gest . If using digest authentication, the key and r eal mmust also be set:

<web:authentication-filter url-pattern="*.seam" auth-
type="digest" key="AA3JK34aSDIkj" realm="My App"/>

The key can be any String value. The real mis the name of the authentication realm that is
presented to the user when they authenticate.

16.3.8.1. Writing a Digest Authenticator

If using digest authentication, your authenticator class should extend the abstract class
org.j boss. seam security. di gest. Di gest Aut henti cat or, and use the val i dat ePasswor d()
method to validate the user's plain text password against the digest request. Here is an example:

243

Chapter 16. Security

public boolean authenticate()

{
try
{

User user = (User) entityManager.createQuery(
"from User where username = :username")
.setParameter("username", identity.getUsername())
.getSingleResult();

return validatePassword(user.getPassword());

}
catch (NoResultException ex)
{
return false;
}
}

16.3.9. Advanced Authentication Features

This section explores some of the advanced features provided by the security API for addressing
more complex security requirements.

16.3.9.1. Using your container's JAAS configuration

If you would rather not use the simplified JAAS configuration provided by the Seam Security API,
you may instead delegate to the default system JAAS configuration by providing a j aas- confi g-
nane property in conponent s. xnl . For example, if you are using JBoss AS and wish to use the
ot her policy (which uses the User sRol esLogi nMbdul e login module provided by JBoss AS), then
the entry in conponent s. xm would look like this:

<security:identity jaas-config-name="other"/>

Please keep in mind that doing this does not mean that your user will be authenticated in whichever
container your Seam application is deployed in. It merely instructs Seam Security to authenticate
itself using the configured JAAS security policy.

16.4. Identity Management

Identity Management provides a standard API for the management of a Seam application's users
and roles, regardless of which identity store (database, LDAP, etc) is used on the backend. At

244

Configuring ldentityManager

the center of the Identity Management API is the i denti t yManager component, which provides
all the methods for creating, modifying and deleting users, granting and revoking roles, changing
passwords, enabling and disabling user accounts, authenticating users and listing users and roles.

Before it may be used, the identityManager must first be configured with one or more
I dentityStores. These components do the actual work of interacting with the backend security
provider, whether it be a database, LDAP server, or something else.

IdentityManager |[——=| |dentityStore |——"=| (JPA, LDAP,

Security Provider

Kerberos, etc)

16.4.1. Configuring ldentityManager

The identityManager component allows for separate identity stores to be configured for
authentication and authorization operations. This means that it is possible for users to be
authenticated against one identity store, for example an LDAP directory, yet have their roles
loaded from another identity store, such as a relational database.

Seam provides two | dent i t ySt or e implementations out of the box; Jpal denti tySt ore uses a
relational database to store user and role information, and is the default identity store that is used
if nothing is explicitly configured in the i dent i t yManager component. The other implementation
that is provided is Ldapl dent i t ySt or e, which uses an LDAP directory to store users and roles.

There are two configurable properties for the i dentityManager component - i dentityStore
and rol el dentityStore. The value for these properties must be an EL expression referring
to a Seam component implementing the | denti t ySt or e interface. As already mentioned, if left
unconfigured then Jpal denti t ySt ore will be assumed by default. If only the i dentityStore
property is configured, then the same value will be used for rol el dentityStore also. For
example, the following entry in components. xm will configure i dentityManager to use an
Ldapl denti t ySt or e for both user-related and role-related operations:

<security:identity-manager identity-store="#{ldapldentityStore}"/>

The following example configures i dentityManager to use an Ldapl dentityStore for user-
related operations, and Jpal dent i t ySt or e for role-related operations:

245

Chapter 16. Security

<security:identity-manager
identity-store="#{ldapldentityStore}"
role-identity-store="#{jpaldentityStore}"/>

The following sections explain both of these identity store implementations in greater detail.

16.4.2. JpaldentityStore

This identity store allows for users and roles to be stored inside a relational database. It is designed
to be as unrestrictive as possible in regards to database schema design, allowing a great deal
of flexibility in the underlying table structure. This is achieved through the use of a set of special
annotations, allowing entity beans to be configured to store user and role records.

16.4.2.1. Configuring JpaldentityStore

Jpal denti t ySt or e requires that both the user - cl ass andr ol e- cl ass properties are configured.
These properties should refer to the entity classes that are to be used to store both user and role
records, respectively. The following example shows the configuration from conponents. xm in
the SeamSpace example:

<security:jpa-identity-store
user-class="org.jboss.seam.example.seamspace.MemberAccount"
role-class="org.jboss.seam.example.seamspace.MemberRole"/>

16.4.2.2. Configuring the Entities

As already mentioned, a set of special annotations are used to configure entity beans for storing
users and roles. The following table lists each of the annotations, and their descriptions.

Table 16.1. User Entity Annotations

Annotation Status Description

@Jser Pri nci pal Required This annotation marks the field or method containing the
user's username.

@Jser Password Required This annotation marks the field or method containing
the user's password. It allows a hash algorithm to be
specified for password hashing. Possible values for hash
are nd5, sha and none. E.Q:

246

JpaldentityStore

Annotation Status Description

@UserPassword (hash="md5")
public String getPasswordHash() {
return passwordHash;

}

If an application requires a hash algorithm that isn't
supported natively by Seam, it is possible to extend the
Passwor dHash component to implement other hashing
algorithms.

@Jser Fi rst Name Optional This annotation marks the field or method containing the
user's first name.

@Jser Last Nane Optional This annotation marks the field or method containing the
user's last name.

@Jser Enabl ed Optional This annotation marks the field or method containing the
enabled status of the user. This should be a boolean
property, and if not present then all user accounts are
assumed to be enabled.

@Jser Rol es Required This annotation marks the field or method containing the
roles of the user. This property will be described in more
detail further down.

Table 16.2. Role Entity Annotations

Annotation Status Description

@Rol eNane Required This annotation marks the field or method
containing the name of the role.

@Rol eG oups Optional This annotation marks the field or method
containing the group memberships of the role.

@Rol eCondi ti onal Optional This annotation marks the field or method
indicating whether the role is conditional or
not. Conditional roles are explained later in this
chapter.

16.4.2.3. Entity Bean Examples

As mentioned previously, Jpal denti t ySt or e is designed to be as flexible as possible when it
comes to the database schema design of your user and role tables. This section looks at a number
of possible database schemas that can be used to store user and role records.

247

Chapter 16. Security

16.4.2.3.1. Minimal schema example

In this bare minimal example, a simple user and role table are linked via a many-to-many
relationship using a cross-reference table named User Rol es.

User Role

- Username : String A . rolename ; String
- passwordHash @ String

- roles : et

@Entity

public class User {
private Integer userld;
private String username;
private String passwordHash;
private Set<Role> roles;

@ld @GeneratedValue
public Integer getUserld() { return userld; }
public void setUserld(Integer userld) { this.userld = userld; }

@UserPrincipal
public String getUsername() { return username; }
public void setUsername(String username) { this.username = username; }

@UserPassword(hash = "md5")
public String getPasswordHash() { return passwordHash; }
public void setPasswordHash(String passwordHash) { this.passwordHash = passwordHash; }

@UserRoles
@ManyToMany(targetEntity = Role.class)
@JoinTable(name = "UserRoles",
joinColumns = @JoinColumn(name = "Userld"),
inverseJoinColumns = @JoinColumn(name = "Roleld"))
public Set<Role> getRoles() { return roles; }
public void setRoles(Set<Role> roles) { this.roles = roles; }

}

248

JpaldentityStore

@Entity

public class Role {
private Integer roleld;
private String rolename;

@!d @Generated
public Integer getRoleld() { return roleld; }
public void setRoleld(Integer roleld) { this.roleld = roleld; }

@RoleName
public String getRolename() { return rolename; }

public void setRolename(String rolename) { this.rolename = rolename; }

16.4.2.3.2. Complex Schema Example

This example builds on the above minimal example by including all of the optional fields, and

allowing group memberships for roles.

User

- Username : 5tring
- passwordHash ; String
- roles : Set=Role=

-firsthame : 5tring e e 2 5

- lastname : String
- enahled : hoolean

@Entity

public class User {
private Integer userld;
private String username;
private String passwordHash;
private Set<Role> roles;
private String firsthname;
private String lastname;
private boolean enabled,;

@|d @GeneratedValue

Role

- rolename : String
- conditional : hoolean
- groups ; Set=Role=

-

249

Chapter 16. Security

public Integer getUserld() { return userld; }
public void setUserld(Integer userld) { this.userld = userld; }

@UserPrincipal
public String getUsername() { return username; }
public void setUsername(String username) { this.username = username; }

@UserPassword(hash = "md5")
public String getPasswordHash() { return passwordHash; }
public void setPasswordHash(String passwordHash) { this.passwordHash = passwordHash; }

@UserFirstName
public String getFirstname() { return firstname; }
public void setFirsthname(String firstname) { this.firstname = firsthname; }

@UserLastName
public String getLastname() { return lastname; }
public void setLastname(String lastname) { this.lastname = lastname; }

@UserEnabled
public boolean isEnabled() { return enabled; }
public void setEnabled(boolean enabled) { this.enabled = enabled; }

@UserRoles
@ManyToMany(targetEntity = Role.class)
@JoinTable(name = "UserRoles",
joinColumns = @JoinColumn(name = "Userld"),
inverseJoinColumns = @JoinColumn(name = "Roleld"))
public Set<Role> getRoles() { return roles; }
public void setRoles(Set<Role> roles) { this.roles = roles; }

}

@Entity

public class Role {
private Integer roleld;
private String rolename;
private boolean conditional;

@|d @Generated
public Integer getRoleld() { return roleld; }
public void setRoleld(Integer roleld) { this.roleld = roleld; }

@RoleName

250

JpaldentityStore

public String getRolename() { return rolename; }
public void setRolename(String rolename) { this.rolename = rolename; }

@RoleConditional
public boolean isConditional() { return conditional; }
public void setConditional(boolean conditional) { this.conditional = conditional; }

@RoleGroups

@ManyToMany(targetEntity = Role.class)

@JoinTable(name = "RoleGroups",
joinColumns = @JoinColumn(name = "Roleld"),
inverseJoinColumns = @JoinColumn(name = "Groupld"))

public Set<Role> getGroups() { return groups; }

public void setGroups(Set<Role> groups) { this.groups = groups; }

16.4.2.4. JpaldentityStore Events

When using Jpal dentitySt or e as the identity store implementation with 1 dent i t yManager, a
few events are raised as a result of invoking certain | dent i t yManager methods.

16.4.2.4.1. JpaldentityStore.EVENT_PRE_PERSIST_USER

This event is raised in response to calling | dent i t yManager . cr eat eUser () . Just before the user
entity is persisted to the database, this event will be raised passing the entity instance as an event
parameter. The entity will be an instance of the user - cl ass configured for Jpal denti tyStore.

Writing an observer for this event may be useful for setting additional field values on the entity,
which aren't set as part of the standard cr eat eUser () functionality.

16.4.2.4.2. JpaldentityStore.EVENT_USER_CREATED

This event is also raised in response to calling | dentityManager. createUser (). However,
it is raised after the user entity has already been persisted to the database. Like the
EVENT_PRE_PERSI ST_USER event, it also passes the entity instance as an event parameter. It may
be useful to observe this event if you also need to persist other entities that reference the user
entity, for example contact detail records or other user-specific data.

16.4.2.4.3. JpaldentityStore.EVENT_USER_AUTHENTICATED

This event is raised when calling | dent i t yManager . aut henti cat e() . It passes the user entity
instance as the event parameter, and is useful for reading additional properties from the user
entity that is being authenticated.

251

Chapter 16. Security

16.4.3. LdapldentityStore

This identity store implementation is designed for working with user records stored in an LDAP
directory. It is very highly configurable, allowing great flexibility in how both users and roles are
stored in the directory. The following sections describe the configuration options for this identity

store, and provide some configuration examples.

16.4.3.1. Configuring LdapldentityStore

The following table describes the available properties that can be configured in conponent s. xni

for Ldapl dentityStore.

Table 16.3. LdapldentityStore Configuration Properties

Property

server -

addr ess

server - port

user -
cont ext - DN

user - DN\-

prefix

user - DN
suf fix

rol e-
cont ext - DN

rol e- DN+
prefix

rol e- DN
suf fix

bi nd- DN

bi nd-
credentials

user-rol e-
attribute

rol e-
attribute-
i s-DN

Default Value

| ocal host

389

ou=Per son, dc=acne, dc=com

ui d=

, ou=Per son, dc=acne, dc=com

ou=Rol e, dc=acne, dc=com

cn=

, ou=Rol es, dc=acne, dc=com

cn=Manager, dc=acne, dc=com

secret

rol es

true

Description

The address of the LDAP server.

The port number that the LDAP server is
listening on.

The Distinguished Name (DN) of the context
containing user records.

This value is prefixed to the front of the
username to locate the user's record.

This value is appended to the end of the
username to locate the user's record.

The DN of the context containing role records.

This value is prefixed to the front of the role
name to form the DN for locating the role
record.

This value is appended to the role name to form
the DN for locating the role record.

This is the context used to bind to the LDAP
server.

These are the credentials (the password) used
to bind to the LDAP server.

This is the name of the attribute of the user
record that contains the list of roles that the
user is a member of.

This boolean property indicates whether the
role attribute of the user record is itself a
distinguished name.

252

LdapldentityStore

Property Default Value Description
user - name- uid Indicates which attribute of the user record
attribute contains the username.
user - user Password Indicates which attribute of the user record
passwor d- contains the user's password.
attribute
first-name- null Indicates which attribute of the user record
attribute contains the user's first name.
| ast - name- sn Indicates which attribute of the user record
attribute contains the user's last name.
full -nanme- cn Indicates which attribute of the user record
attribute contains the user's full (common) name.
enabl ed- nul | Indicates which attribute of the user record
attribute determines whether the user is enabled.
rol e- nane- cn Indicates which attribute of the role record
attribute contains the name of the role.
obj ect - obj ect O ass Indicates which attribute determines the class
cl ass- of an object in the directory.
attribute
rol e- or gani zati onal Rol e An array of the object classes that new role
obj ect - records should be created as.
cl asses
user - per son, ui dObj ect An array of the object classes that new user
obj ect - records should be created as.
cl asses
security- sinpl e The security level to use. Possible values are
aut henti cati on- "none", "simple" and "strong".
type

16.4.3.2. LdapldentityStore Configuration Example

The following configuration example shows how Ldapl dentityStore may be configured for
an LDAP directory running on fictional host di r ect ory. myconpany. com The users are stored
within this directory under the context ou=Per son, dc=nmyconpany, dc=com and are identified using
the ui d attribute (which corresponds to their username). Roles are stored in their own context,
ou=Rol es, dc=nyconpany, dc=comand referenced from the user's entry via the r ol es attribute.
Role entries are identified by their common name (the cn attribute) , which corresponds to the
role name. In this example, users may be disabled by setting the value of their enabl ed attribute
to false.

253

Chapter 16. Security

<security:ldap-identity-store
server-address="directory.mycompany.com"
bind-DN="cn=Manager,dc=mycompany,dc=com"
bind-credentials="secret"
user-DN-prefix="uid="
user-DN-suffix=",ou=Person,dc=mycompany,dc=com"
role-DN-prefix="cn="
role-DN-suffix=",ou=Roles,dc=mycompany,dc=com"
user-context-DN="ou=Person,dc=mycompany,dc=com"
role-context-DN="ou=Roles,dc=mycompany,dc=com"
user-role-attribute="roles"
role-name-attribute="cn"
user-object-classes="person,uidObject"
enabled-attribute="enabled"
/>

16.4.4. Writing your own IdentityStore

Writing your own identity store implementation allows you to authenticate and perform
identity management operations against security providers that aren't supported out of the
box by Seam. Only a single class is required to achieve this, and it must implement the
org.j boss. seam security. managenent . | denti t ySt or e interface.

Please refer to the JavaDoc for | dent it ySt ore for a description of the methods that must be
implemented.

16.4.5. Authentication with Identity Management

If you are using the Identity Management features in your Seam application, then it is not
required to provide an authenticator component (see previous Authentication section) to enable
authentication. Simply omit the aut henti cat e-method from the identity configuration in

conponent s. xnl , and the SeanlLogi nMbdul e will by default use | dent i t yManager to authenticate
your application's users, without any special configuration required.

16.4.6. Using IdentityManager

The I dentityManager can be accessed either by injecting it into your Seam component as
follows:

@In IdentityManager identityManager;

or by accessing it through its static i nst ance() method:

254

Using IdentityManager

IdentityManager identityManager = IdentityManager.instance();

The following table describes | dent i t yManager 's APl methods:

Table 16.4. Identity Management API

Method

createUser(String nane,

passwor d)

del et eUser (String nane)

createRol e(String role)

del et eRol e(String nane)

enabl eUser (String nane)

di sabl eUser (String name)

Returns

String bool ean

bool ean

bool ean

bool ean

bool ean

bool ean

Description

Creates a new user
account, with the
specified name and
password. Returns
true if successful, or
f al se if not.

Deletes the user
account with the
specified name.
Returns true if
successful, or f al se if
not.

Creates a new role,
with the specified
name. Returns t r ue if
successful, or f al se if
not.

Deletes the role
with the specified
name. Returns t r ue if
successful, or f al se if
not.

Enables the user
account with the
specified name.
Accounts that are
not enabled are not
able to authenticate.
Returns true if
successful, or f al se if
not.

Disables the wuser
account with the
specified name.
Returns true if

255

Chapter 16. Security

Method Returns
changePassword(String nane, String bool ean
passwor d)

i sUser Enabl ed(String name) bool ean
grantRol e(String nane, String role) bool ean
revokeRol e(String name, String role) bool ean
user Exi sts(String nane) bool ean
listUsers() Li st
listUsers(String filter) Li st

Description

successful, or f al se if
not.

Changes the
password for the
user account with
the specified name.
Returns true if
successful, or f al se if
not.

Returns true if the
specified user account
is enabled, or f al se if
itisn't.

Grants the specified
role to the specified
user or role. The
role must already exist
for it to be granted.
Returns true if the
role is successfully
granted, or f al se if it
is already granted to
the user.

Revokes the specified
role from the specified
user or role. Returns
true if the specified
user is a member of
the role and it is
successfully revoked,
or f al se if the user is
not a member of the
role.

Returns true if the
specified user exists,
or f al se if it doesn't.

Returns a list of all
user names, sorted in
alpha-numeric order.

Returns a list of all
user names filtered

256

Using IdentityManager

Method

I'i st Rol es()

get Grant edRol es(String nane)

get I npl i edRol es(String nane)

aut henticate(String
passwor d)

nane,

Returns

Li st

Li st

Li st

String bool ean

Description

by the specified filter
parameter, sorted in
alpha-numeric order.

Returns a list of all role
names.

Returns a list of the
names of all the
roles explicitly granted
to the specified user
name.

Returns a list of the
names of all the
roles implicitly granted
to the specified
user name. Implicitly
granted roles include
those that are not
directly granted to
a user, rather they
are granted to the
roles that the user
is a member of. For
example, is the admi n
role is a member of
the user role, and
a user is a member
of the admin role,
then the implied roles
for the user are both
the admi n, and user
roles.

Authenticates the
specified username
and password using
the configured Identity
Store. Returns true
if successful or f al se
if authentication
failed. Successful
authentication implies
nothing beyond the
return value of the

257

Chapter 16. Security

Method Returns Description

method. It does not
change the state
of the Identity
component - to
perform a proper
Seam login the
Identity. | ogin()

must be used instead.

addRol eToG oup(String role, String bool ean Adds the specified
gr oup) role as a member
of the specified
group. Returns true
if the operation is

successful.
r emoveRol eFr onGr oup(String rol e, bool ean Removes the
String group) specified role from

the specified group.
Returns true if
the operation s
successful.

li st Rol es() Li st Lists the names of all
roles.

Using the Identity Management API requires that the calling user has the appropriate authorization
to invoke its methods. The following table describes the permission requirements for each of the
methods in | dent i t yManager . The permission targets listed below are literal String values.

Table 16.5. Identity Management Security Permissions

Method Permission Target Permission
Action

createUser () seam user create
del et eUser () seam user del ete
creat eRol e() seamrol e create
del et eRol e() seamrol e del ete
enabl eUser () seam user updat e
di sabl eUser () seam user updat e
changePasswor d() seam user updat e
i sUser Enabl ed() seam user read

gr ant Rol e() seam user updat e

258

Error Messages

Method Permission Target Permission
Action
r evokeRol e() seam user updat e
user Exi st s() seam user read
l'istUsers() seam user read
l'i stRol es() seamrol e read
addRol eToG oup() seamrol e updat e
r emoveRol eFr omGr oup() seamrol e updat e

The following code listing provides an example set of security rules that grants access to all Identity
Management-related methods to members of the admni n role:

rule ManageUsers
no-loop
activation-group "permissions”
when
check: PermissionCheck(name == "seam.user", granted == false)
Role(name == "admin")
then
check.grant();
end

rule ManageRoles
no-loop
activation-group "permissions”
when
check: PermissionCheck(name == "seam.role", granted == false)
Role(name == "admin")
then
check.grant();
end

16.5. Error Messages

The security API produces a number of default faces messages for various security-related events.
The following table lists the message keys that can be used to override these messages by
specifying them in a message. properti es resource file. To suppress the message, just put the
key with an empty value in the resource file.

259

Chapter 16. Security

Table 16.6. Security Message Keys

Message Key Description

org. j boss. seam | ogi nSuccessful This message is produced when a user successfully logs
in via the security API.

org. j boss. seam | ogi nFai | ed This message is produced when the login process fails,
either because the user provided an incorrect username
or password, or because authentication failed in some
other way.

org. j boss. seam Not Logged! n This message is produced when a user attempts to
perform an action or access a page that requires
a security check, and the wuser is not currently
authenticated.

org. j boss. seam Al readyLoggedl n This message is produced when a user that is already
authenticated attempts to log in again.

16.6. Authorization

There are a number of authorization mechanisms provided by the Seam Security API for securing
access to components, component methods, and pages. This section describes each of these.
An important thing to note is that if you wish to use any of the advanced features (such as rule-
based permissions) then your conponent s. xm may need to be configured to support this - see
the Configuration section above.

16.6.1. Core concepts

Seam Security is built around the premise of users being granted roles and/or permissions,
allowing them to perform operations that may not otherwise be permissible for users without
the necessary security privileges. Each of the authorization mechanisms provided by the Seam
Security APl are built upon this core concept of roles and permissions, with an extensible
framework providing multiple ways to secure application resources.

16.6.1.1. What is arole?

A role is a group, or type, of user that may have been granted certain privileges for performing
one or more specific actions within an application. They are simple constructs, consisting of just
a name such as "admin”, "user", "customer", etc. They can be granted either to users (or in some
cases to other roles), and are used to create logical groups of users for the convenient assignment

of specific application privileges.

Role

- name : 5tring

260

Securing components

16.6.1.2. What is a permission?

A permission is a privilege (sometimes once-off) for performing a single, specific action. It is
entirely possible to build an application using nothing but permissions, however roles offer a higher
level of convenience when granting privileges to groups of users. They are slightly more complex
in structure than roles, essentially consisting of three "aspects"; a target, an action, and a recipient.
The target of a permission is the object (or an arbitrary name or class) for which a particular action
is allowed to be performed by a specific recipient (or user). For example, the user "Bob" may have
permission to delete customer objects. In this case, the permission target may be "customer", the
permission action would be "delete" and the recipient would be "Bob".

Permission

- target : Object
- action : String
- recipient : Principal

Within this documentation, permissions are generally represented in the form t ar get: acti on
(omitting the recipient, although in reality one is always required).

16.6.2. Securing components

Let's start by examining the simplest form of authorization, component security, starting with the
@Restrict annotation.

@Restrict vs Typesafe security annotations

j=do

While using the @Restri ct annotation provides a powerful and flexible method
for security component methods due to its ability to support EL expressions, it is
recommended that the typesafe equivalent (described later) be used, at least for
the compile-time safety it provides.

16.6.2.1. The @Restrict annotation

Seam components may be secured either at the method or the class level, using the @Restri ct
annotation. If both a method and it's declaring class are annotated with @Restrict, the
method restriction will take precedence (and the class restriction will not apply). If a method
invocation fails a security check, then an exception will be thrown as per the contract for
Identity.checkRestriction() (see Inline Restrictions). A @Restrict on just the component
class itself is equivalent to adding @rest ri ct to each of its methods.

An empty @Restrict implies a permission check of conponent Nane: net hodNane. Take for
example the following component method:

261

Chapter 16. Security

@Name("account")
public class AccountAction {
@Restrict public void delete() {

In this example, the implied permission required to call the delete()
method is account:delete. The equivalent of this would be to write
@Restrict("#{s: hasPernm ssion('account','delete')}"). Now let's look at another
example:

@Restrict @Name("account")
public class AccountAction {
public void insert() {

}
@Restrict("#{s:hasRole(‘admin’)}")
public void delete() {

This time, the component class itself is annotated with @Rest ri ct . This means that any methods
without an overriding @Restri ct annotation require an implicit permission check. In the case
of this example, the i nsert () method requires a permission of account:insert, while the
del et e() method requires that the user is a member of the adni n role.

Before we go any further, let's address the #{s: hasRol e()} expression seen in the above
example. Both s: hasRol e and s: hasPerni ssion are EL functions, which delegate to the
correspondingly named methods of the I dent i t y class. These functions can be used within any
EL expression throughout the entirety of the security API.

Being an EL expression, the value of the @est ri ct annotation may reference any objects that
exist within a Seam context. This is extremely useful when performing permission checks for a
specific object instance. Look at this example:

@Name("account")

public class AccountAction {
@In Account selectedAccount;
@Restrict("#{s:hasPermission(selectedAccount,'modify')}")
public void modify() {

262

Security in the user interface

selectedAccount.modify();

The interesting thing to note from this example is the reference to sel ect edAccount seen within
the hasPermi ssi on() function call. The value of this variable will be looked up from within the
Seam context, and passed to the hasPer mi ssi on() method in I denti ty, which in this case can
then determine if the user has the required permission for modifying the specified Account object.

16.6.2.2. Inline restrictions

Sometimes it might be desirable to perform a security check in code, without using the @Rest ri ct
annotation. In this situation, simply use I dentity. checkRestriction() to evaluate a security
expression, like this:

public void deleteCustomer() {
Identity.instance().checkRestriction("#{s:hasPermission(selectedCustomer,'delete")}");

If the expression specified doesn't evaluate to t r ue, either

« if the user is not logged in, a Not Logged| nExcept i on exception is thrown or
« if the user is logged in, an Aut hori zat i onExcept i on exception is thrown.

It is also possible to call the hasRol e() and hasPer i ssi on() methods directly from Java code:

if (!ldentity.instance().hasRole("admin"))
throw new AuthorizationException("Must be admin to perform this action");

if (!ldentity.instance().hasPermission("customer”, "create"))

throw new AuthorizationException("You may not create new customers");

16.6.3. Security in the user interface

One indication of a well designed user interface is that the user is not presented with options for
which they don't have the necessary privileges to use. Seam Security allows conditional rendering
of either 1) sections of a page or 2) individual controls, based upon the privileges of the user,
using the very same EL expressions that are used for component security.

Let's take a look at some examples of interface security. First of all, let's pretend that we
have a login form that should only be rendered if the user is not already logged in. Using the
i dentity.isLoggedl n() property, we can write this:

263

Chapter 16. Security

<h:form class="loginForm" rendered="#{not identity.loggedIin}">

If the user isn't logged in, then the login form will be rendered - very straight forward so far. Now let's
pretend there is a menu on the page that contains some actions which should only be accessible
to users in the nanager role. Here's one way that these could be written:

<h:outputLink action="#{reports.listManagerReports}" rendered="#{s:hasRole('manager')}">
Manager Reports
</h:outputLink>

This is also quite straight forward. If the user is not a member of the nmanager role, then the
outputLink will not be rendered. The r ender ed attribute can generally be used on the control itself,
or on a surrounding <s: di v> or <s: span> control.

Now for something more complex. Let's say you have a h: dat aTabl e control on a page listing
records for which you may or may not wish to render action links depending on the user's
privileges. The s: hasPer nmi ssi on EL function allows us to pass in an object parameter which can
be used to determine whether the user has the requested permission for that object or not. Here's
how a dataTable with secured links might look:

<h:dataTable value="#{clients}" var="cl">
<h:column>
<f:facet name="header">Name</f:.facet>
#{cl.name}
</h:column>
<h:column>
<f:facet name="header">City</f:facet>
#{cl.city}
</h:column>
<h:column>
<f:facet name="header">Action</f:facet>
<s:link value="Modify Client" action="#{clientAction.modify}"
rendered="#{s:hasPermission(cl,'modify")}"/>
<s:link value="Delete Client" action="#{clientAction.delete}"
rendered="#{s:hasPermission(cl,'delete")}"/>
</h:column>
</h:dataTable>

264

Securing pages

16.6.4. Securing pages

Page security requires that the application is using a pages. xni file, however is extremely simple
to configure. Simply include a <restri ct/> element within the page elements that you wish to
secure. If no explicit restriction is specified by the restri ct element, an implied permission of /
vi ew d. xht ni : r ender will be checked when the page is accessed via a non-faces (GET) request,
and a permission of /vi ewl d. xht nl : rest or e will be required when any JSF postback (form
submission) originates from the page. Otherwise, the specified restriction will be evaluated as a
standard security expression. Here's a couple of examples:

<page view-id="/settings.xhtm|">
<restrict/>
</page>

This page has an implied permission of /settings.xhtm :render required for non-faces
requests and an implied permission of / set ti ngs. xht m : r est or e for faces requests.

<page view-id="/reports.xhtml">
<restrict>#{s:hasRole(‘admin’)}</restrict>
</page>

Both faces and non-faces requests to this page require that the user is a member of the adni n role.

16.6.5. Securing Entities

Seam security also makes it possible to apply security restrictions to read, insert, update and
delete actions for entities.

To secure all actions for an entity class, add a @Rest ri ct annotation on the class itself:

@Entity
@Name("customer")
@Restrict

public class Customer {

If no expression is specified in the @estrict annotation, the default security check that is
performed is a permission check of entity: acti on, where the permission target is the entity
instance, and the acti on is either r ead, i nsert, updat e or del et e.

265

Chapter 16. Security

Itis also possible to only restrict certain actions, by placing a @Rest ri ct annotation on the relevant
entity lifecycle method (annotated as follows):

e @ost Load - Called after an entity instance is loaded from the database. Use this method to
configure a r ead permission.

e @rePersist - Called before a new instance of the entity is inserted. Use this method to
configure an i nsert permission.

e @relUpdate - Called before an entity is updated. Use this method to configure an updat e
permission.

e @reRenove - Called before an entity is deleted. Use this method to configure a del ete
permission.

Here's an example of how an entity would be configured to perform a security check for anyi nsert
operations. Please note that the method is not required to do anything, the only important thing
in regard to security is how it is annotated:

@PrePersist @Restrict
public void prePersist() {}

Using / META- I NF/ or m xni

j=deo

You can also specify the call back method in / META- | NF/ or m xm :

<?xml version="1.0" encoding="UTF-8"?>
<entity-mappings xmlns="http://java.sun.com/xml/ns/persistence/orm"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemal ocation="http://java.sun.com/xml/ns/persistence/orm http://
java.sun.com/xml/ns/persistence/orm_1_0.xsd"
version="1.0">

<entity class="Customer">
<pre-persist method-name="prePersist" />

</entity>

</entity-mappings>

266

Securing Entities

Of course, you still need to annotate the pr ePer si st () method on Cust oner with
@Restrict

And here's an example of an entity permission rule that checks if the authenticated user is allowed
to insert a new Menber Bl og record (from the seamspace example). The entity for which the
security check is being made is automatically inserted into the working memory (in this case
Menber Bl og):

rule InsertMemberBlog

no-loop

activation-group "permissions”
when

principal: Principal()

memberBlog: MemberBlog(member : member ->

(member.getUsername().equals(principal.getName())))

check: PermissionCheck(target == memberBlog, action == "insert", granted == false)
then

check.grant();
end;

This rule will grant the permission nmenber Bl og: i nsert if the currently authenticated user
(indicated by the Pri nci pal fact) has the same name as the member for which the blog entry is
being created. The "pri nci pal : Princi pal ()" structure that can be seen in the example code is
a variable binding - it binds the instance of the Pri nci pal object from the working memory (placed
there during authentication) and assigns it to a variable called pri nci pal . Variable bindings
allow the value to be referred to in other places, such as the following line which compares the
member's username to the Pri nci pal nhame. For more details, please refer to the JBoss Rules
documentation.

Finally, we need to install a listener class that integrates Seam security with your JPA provider.
16.6.5.1. Entity security with JPA

Security checks for EJB3 entity beans are performed with an Entit yLi st ener. You can install
this listener by using the following META- | NF/ or m xni file:

<?xml version="1.0" encoding="UTF-8"?>
<entity-mappings xmlns="http://java.sun.com/xml/ns/persistence/orm"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://java.sun.com/xml/ns/persistence/orm http://java.sun.com/
xml/ns/persistence/orm_1 0.xsd"
version="1.0">

267

Chapter 16. Security

<persistence-unit-metadata>
<persistence-unit-defaults>
<entity-listeners>
<entity-listener class="org.jboss.seam.security.EntitySecurityListener"/>
</entity-listeners>
</persistence-unit-defaults>
</persistence-unit-metadata>

</entity-mappings>

16.6.5.2. Entity security with a Managed Hibernate Session

If you are using a Hibernate Sessi onFact ory configured via Seam, and are using annotations,
or orm xn , then you don't need to do anything special to use entity security.

16.6.6. Typesafe Permission Annotations

Seam provides a number of annotations that may be used as an alternative to @Rest ri ct, which
have the added advantage of providing compile-time safety as they don't support arbitrary EL
expressions in the same way that @est ri ct does.

Out of the box, Seam comes with annotations for standard CRUD-based permissions, however
it is a simple matter to add your own. The following annotations are provided in the
org.j boss. seam annot ati ons. security package:

 @Insert
» @Read

e @Update

@Delete

To use these annotations, simply place them on the method or parameter for which you wish to
perform a security check. If placed on a method, then they should specify a target class for which
the permission will be checked. Take the following example:

@Insert(Customer.class)
public void createCustomer() {

In this example, a permission check will be performed for the user to ensure that they have the
rights to create new Cust oner objects. The target of the permission check will be Cust oner . cl ass

268

Typesafe Role Annotations

(the actual j ava. | ang. d ass instance itself), and the action is the lower case representation of
the annotation name, which in this example isi nsert.

It is also possible to annotate the parameters of a component method in the same way. If this is
done, then it is not required to specify a permission target (as the parameter value itself will be
the target of the permission check):

public void updateCustomer(@Update Customer customer) {

To create your own security annotation, you simply need to annotate it with @er ni ssi onCheck,
for example:

@Target(METHOD, PARAMETERY})
@Documented
@Retention(RUNTIME)
@Inherited
@PermissionCheck
public @interface Promote {

Class value() default void.class;

}

If you wish to override the default permission action name (which is the lower case version of the
annotation name) with another value, you can specify it within the @er mi ssi onCheck annotation:

@PermissionCheck("upgrade")

16.6.7. Typesafe Role Annotations

In addition to supporting typesafe permission annotation, Seam Security also provides typesafe
role annotations that allow you to restrict access to component methods based on the role
memberships of the currently authenticated user. Seam provides one such annotation out
of the box, org.jboss. seam annot ati ons. security. Admin, used to restrict access to a
method to users that are a member of the adnin role (so long as your own application
supports such a role). To create your own role annotations, simply meta-annotate them with
org. j boss. seam annot ati ons. securi ty. Rol eCheck, like in the following example:

@Target({METHODY})
@Documented

269

Chapter 16. Security

@Retention(RUNTIME)
@Inherited
@RoleCheck

public @interface User {

}

Any methods subsequently annotated with the @Jser annotation as shown in the above example
will be automatically intercepted and the user checked for the membership of the corresponding
role name (which is the lower case version of the annotation name, in this case user).

16.6.8. The Permission Authorization Model

Seam Security provides an extensible framework for resolving application permissions. The
following class diagram shows an overview of the main components of the permission framework:

270

The Permission Authorization Model

Identity

- permissionMapper : PermissionMapper

PermissionMapper

- resalverChains @ Map=Class Map=5tring, String==

+ getResolverChaind | ResoklerChain

V4
ResohrerChain

- tesalvers : List=PermissionResaolver=

+ getResolvers(| List=PermissionResoler=

A/

PermissionResolver

+ hasFermissionitarget : Ohject, action : String) ; boolean

The relevant classes are explained in more detail in the following sections.
16.6.8.1. PermissionResolver

This is actually an interface, which provides methods for resolving individual object permissions.
Seam provides the following built-in Per ni ssi onResol ver implementations, which are described
in more detail later in the chapter:

* Rul eBasedPer ni ssi onResol ver - This permission resolver uses Drools to resolve rule-based
permission checks.

* Persi st ent Perni ssi onResol ver - This permission resolver stores object permissions in a
persistent store, such as a relational database.

271

Chapter 16. Security

16.6.8.1.1. Writing your own PermissionResolver

It is very simple to implement your own permission resolver. The Per ni ssi onResol ver interface
defines only two methods that must be implemented, as shown by the following table. By deploying
your own Per i ssi onResol ver implementation in your Seam project, it will be automatically
scanned during deployment and registered with the default Resol ver Chai n.

Table 16.7. PermissionResolver interface

Return Method Description
type
bool ean hasPer m ssi on(Obj ect target, This method must resolve
String action) whether the currently authenticated

user (obtained via a call to
Identity.getPrincipal ()) has the
permission specified by the t ar get and
action parameters. It should return
true if the user has the permission, or
f al se if they don't.

voi d filterSetByAction(Set <Cbj ect > This method should remove any
targets, String action) objects from the specified set, that
would return true if passed to the
hasPer m ssion() method with the
same act i on parameter value.

16.6.8.2. ResolverChain

A Resol ver Chai n contains an ordered list of Per mi ssi onResol ver s, for the purpose of resolving
object permissions for a particular object class or permission target.

The default Resol ver Chai n consists of all permission resolvers discovered during application
deployment. The org. j boss. seam security. def aul t Resol ver Chai nCr eat ed event is raised
(and the Resol verChain instance passed as an event parameter) when the default

272

RuleBasedPermissionResolver

Resol ver Chai n is created. This allows additional resolvers that for some reason were not
discovered during deployment to be added, or for resolvers that are in the chain to be re-ordered
or removed.

The following sequence diagram shows the interaction between the components of the permission
framework during a permission check (explanation follows). A permission check can originate from
a number of possible sources, for example - the security interceptor, the s: hasPer ni ssi on EL
function, or via an API call to I dent i ty. checkPer ni ssi on:

Permission [demnti PermissionhMapper ResolverChain PermissionREesolver

check

' 1.1 resolePermissiong|

| |
! 1: hasPermissiond | ! |
B |

’J‘ 1.1.1: getResolvers
- — — — — — —
1.1.2: hasPermission()

1. A permission check is initiated somewhere (either in code or via an EL expression) resulting
inacalltoldentity. hasPermission().

1.1. I dentity invokes Per mi ssi onMapper . r esol vePer mi ssi on(), passing in the permission
to be resolved.

1.1.1. Per i ssi onMapper maintains a Map of Resol ver Chai n instances, keyed by class. It uses
this map to locate the correct Resol ver Chai n for the permission's target object. Once it has
the correct Resol ver Chai n, it retrieves the list of Per ni ssi onResol ver s it contains via a call
to Resol ver Chai n. get Resol vers().

1.1.2. For each Per i ssi onResol ver in the Resol ver Chai n, the Per i ssi onMapper invokes
its hasPer i ssi on() method, passing in the permission instance to be checked. If any of
the Per mi ssi onResol ver s return true, then the permission check has succeeded and the
Per i ssi onMapper alsoreturnstruetol denti ty. If none of the Per ni ssi onResol ver s return
true, then the permission check has failed.

16.6.9. RuleBasedPermissionResolver

One of the built-in permission resolvers provided by Seam, Rul eBasedPer ni ssi onResol ver
allows permissions to be evaluated based on a set of Drools (JBoss Rules) security rules. A couple
of the advantages of using a rule engine are 1) a centralized location for the business logic that

273

Chapter 16. Security

is used to evaluate user permissions, and 2) speed - Drools uses very efficient algorithms for
evaluating large numbers of complex rules involving multiple conditions.

16.6.9.1. Requirements

If using the rule-based permission features provided by Seam Security, the following jar files are
required by Drools to be distributed with your project:

» knowledge-api.jar

« drools-compiler.jar

* drools-core.jar

« drools-decisiontables.jar
« drools-templates.jar

* janino.jar
 antlr-runtime.jar

* mvel2.jar
16.6.9.2. Configuration

The configuration for Rul eBasedPer ni ssi onResol ver requires that a Drools rule base is first
configured in conponent s. xm . By default, it expects that the rule base is named securi t yRul es,
as per the following example:

<components xmlns="http://jpboss.org/schema/seam/components"
xmlns:core="http://jboss.org/schema/seam/core"
xmlns:security="http://jboss.org/schema/seam/security"
xmlns:drools="http://jboss.org/schema/seam/drools"
xmlins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation=
"http://jboss.org/schema/seam/core http://jboss.org/schema/seam/core-2.3.xsd
http://jboss.org/schema/seam/components http://jboss.org/schema/seam/
components-2.3.xsd
http://jboss.org/schema/seam/drools http://jboss.org/schema/seam/drools-2.3.xsd
http://jboss.org/schema/seam/security http://jboss.org/schema/seam/security-2.3.xsd">

<drools:rule-base nhame="securityRules">
<drools:rule-files>
<value>/META-INF/security.drl</value>
</drools:rule-files>
</drools:rule-base>

274

RuleBasedPermissionResolver

</components>

The default rule base name can be overridden by specifying the security-rul es property for
Rul eBasedPer m ssi onResol ver:

<security:rule-based-permission-resolver security-rules="#{prodSecurityRules}"/>

Once the Rul eBase component is configured, it's time to write the security rules.
16.6.9.3. Writing Security Rules

The first step to writing security rules is to create a new rule file in the / META- | NF directory of your
application's jar file. Usually this file would be named something like securi ty. drl, however you
can name it whatever you like as long as it is configured correspondingly in conponent s. xm .

So what should the security rules file contain? At this stage it might be a good idea to at least skim
through the Drools documentation, however to get started here's an extremely simple example:

package MyApplicationPermissions;

import org.jboss.seam.security.permission.PermissionCheck;
import org.jboss.seam.security.Role;

rule CanUserDeleteCustomers

when
c: PermissionCheck(target == "customer", action == "delete")
Role(nhame == "admin")

then
c.grant();

end

Let's break this down step by step. The first thing we see is the package declaration. A package in
Drools is essentially a collection of rules. The package name can be anything you want - it doesn't
relate to anything else outside the scope of the rule base.

The next thing we can notice is a couple of import statements for the Per i ssi onCheck and Rol e
classes. These imports inform the rules engine that we'll be referencing these classes within our
rules.

Finally we have the code for the rule. Each rule within a package should be given a
uniqgue name (usually describing the purpose of the rule). In this case our rule is called

275

Chapter 16. Security

CanUser Del et eCust oners and will be used to check whether a user is allowed to delete a
customer record.

Looking at the body of the rule definition we can notice two distinct sections. Rules have what is
known as a left hand side (LHS) and a right hand side (RHS). The LHS consists of the conditional
part of the rule, i.e. a list of conditions which must be satisfied for the rule to fire. The LHS is
represented by the when section. The RHS is the consequence, or action section of the rule that
will only be fired if all of the conditions in the LHS are met. The RHS is represented by the t hen
section. The end of the rule is denoted by the end line.

If we look at the LHS of the rule, we see two conditions listed there. Let's examine the first condition:

c: PermissionCheck(target == "customer”, action == "delete")

In plain english, this condition is stating that there must exist a Per mi ssi onCheck object with a
t ar get property equal to "customer”, and an act i on property equal to "delete" within the working
memory.

So what is the working memory? Also known as a "stateful session" in Drools terminology,
the working memory is a session-scoped object that contains the contextual information that
is required by the rules engine to make a decision about a permission check. Each time the
hasPer ni ssi on() method is called, a temporary Per ni ssi onCheck object, or Fact, is inserted
into the working memory. This Per i ssi onCheck corresponds exactly to the permission that
is being checked, so for example if you call hasPer ni ssi on("account", "create") then a
Per mi ssi onCheck object with a t ar get equal to "account" and act i on equal to "create" will be
inserted into the working memory for the duration of the permission check.

Besides the Per i ssi onCheck facts, there is also a org. j boss. seam security. Rol e fact for
each of the roles that the authenticated user is a member of. These Rol e facts are synchronized
with the user's authenticated roles at the beginning of every permission check. As a consequence,
any Rol e object that is inserted into the working memory during the course of a permission check
will be removed before the next permission check occurs, if the authenticated user is not actually
a member of that role. Besides the Per mi ssi onCheck and Rol e facts, the working memory also
contains the j ava. security. Princi pal objectthat was created as a result of the authentication
process.

It is also possible to insert additional long-lived facts into the working memory by calling
Rul eBasedPer ni ssi onResol ver. i nstance(). get SecurityContext().insert(), passing the
object as a parameter. The exception to this is Rol e objects, which as already discussed are
synchronized at the start of each permission check.

Getting back to our simple example, we can also notice that the first line of our LHS is prefixed with
c: . Thisis avariable binding, and is used to refer back to the object that is matched by the condition
(in this case, the Per mi ssi onCheck). Moving on to the second line of our LHS, we see this:

276

RuleBasedPermissionResolver

Role(hame == "admin")

This condition simply states that there must be a Rol e object with a nane of "admin” within the
working memory. As already mentioned, user roles are inserted into the working memory at the
beginning of each permission check. So, putting both conditions together, this rule is essentially
saying "l will fire if you are checking for the cust oner : del et e permission and the user is a member
of the adni n role".

So what is the consequence of the rule firing? Let's take a look at the RHS of the rule:

c.grant()

The RHS consists of Java code, and in this case is invoking the gr ant () method of the c object,
which as already mentioned is a variable binding for the Per ni ssi onCheck object. Besides the
nanme and acti on properties of the Per m ssi onCheck object, there is also a grant ed property
which is initially set to f al se. Calling gr ant () on a Per i ssi onCheck sets the gr ant ed property
to t rue, which means that the permission check was successful, allowing the user to carry out
whatever action the permission check was intended for.

16.6.9.4. Non-String permission targets

So far we have only seen permission checks for String-literal permission targets. It is of course
also possible to write security rules for permission targets of more complex types. For example,
let's say that you wish to write a security rule to allow your users to create blog comments. The
following rule demonstrates how this may be expressed, by requiring the target of the permission
check to be an instance of Menber Bl og, and also requiring that the currently authenticated user
is a member of the user role:

rule CanCreateBlogComment
no-loop
activation-group "permissions”
when
blog: MemberBlog()
check: PermissionCheck(target == blog, action == "create", granted == false)
Role(name == "user")
then
check.grant();
end

277

Chapter 16. Security

16.6.9.5. Wildcard permission checks

It is possible to implement a wildcard permission check (which allows all actions for a given
permission target), by omitting the act i on constraint for the Per mi ssi onCheck in your rule, like
this:

rule CanDoAnythingToCustomersifYouAreAnAdmin
when
c: PermissionCheck(target == "customer")
Role(name == "admin")
then
c.grant();
end;

This rule allows users with the adni n role to perform any action for any cust omer permission
check.

16.6.10. PersistentPermissionResolver

Another built-in permission resolver provided by Seam, Per si st ent Per mi ssi onResol ver allows
permissions to be loaded from persistent storage, such as a relational database. This permission
resolver provides ACL style instance-based security, allowing for specific object permissions to be
assigned to individual users and roles. It also allows for persistent, arbitrarily-named permission
targets (not necessarily object/class based) to be assigned in the same way.

16.6.10.1. Configuration

Before it can be used, Persi stent Perni ssionResol ver must be configured with a valid
Permi ssionStore in conponents. xm . If not configured, it will attempt to use the default
permission store, Jpal denti t ySt or e (see section further down for details). To use a permission
store other than the default, configure the per nmi ssi on- st or e property as follows:

<security:persistent-permission-resolver permission-store="#{myCustomPermissionStore}"/>

16.6.10.2. Permission Stores

A permission store is required for Per si st ent Per ni ssi onResol ver to connect to the backend
storage where permissions are persisted. Seam provides one Per i ssi onSt or e implementation
out of the box, JpaPer ni ssi onSt or e, which is used to store permissions inside a relational
database. It is possible to write your own permission store by implementing the Per mi ssi onSt or e
interface, which defines the following methods:

278

PersistentPermissionResolver

Table 16.8. PermissionStore interface

Return type

Li st <Per m ssi on>

Li st <Per m ssi on>

Li st <Per m ssi on>

bool ean

bool ean

bool ean

Method

| i st Permi ssions(Cbject target)

| i st Perm ssi ons(Obj ect
String action)

tar get,

| i st Perm ssi ons(Set <Obj ect >

targets, String action)

gr ant Per mi ssi on(Per m ssi on)

gr ant Per m ssi ons(Li st <Per mi ssi on>

per m ssi ons)

r evokePer m ssi on(Per ni ssi on

per mi ssi on)

Description
This method should
return a Li st of

Per ni ssi on objects
representing all the

permissions granted for

the specified target
object.

This method should
return a List of
Per ni ssi on objects

representing all the
permissions with the
specified action, granted
for the specified target
object.

This method should
return a Li st of
Per ni ssi on objects

representing all the
permissions with the
specified action, granted
for the specified set of
target objects.

This method should
persist the specified
Per mi ssi on object to
the backend storage,
returning true if
successful.

This method should
persist all of the
Per ni ssi on objects

contained in the specified
Li st, returning true if
successful.

This method
remove the

should
specified
Per mi ssi on object from
persistent storage.

279

Chapter 16. Security

Return type Method Description
bool ean revokePer ni ssi ons(Li st <Permni ssi on>This method should
per i ssi ons) remove all of the

Per mi ssi on objects in
the specified list from
persistent storage.

Li st<String> | i st Avai | abl eAct i ons(Obj ect This method should
target) return a list of all
the available actions
(as Strings) for the
class of the specified
target object. It s
used in conjunction with
permission management
to build the user interface
for granting specific class
permissions (see section
further down).

16.6.10.3. JpaPermissionStore

This is the default Per nmi ssi onSt or e implementation (and the only one provided by Seam), which
uses a relational database to store permissions. Before it can be used it must be configured with
either one or two entity classes for storing user and role permissions. These entity classes must
be annotated with a special set of security annotations to configure which properties of the entity
correspond to various aspects of the permissions being stored.

If you wish to use the same entity (i.e. a single database table) to store both user and role
permissions, then only the user - per ni ssi on- cl ass property is required to be configured. If you
wish to use separate tables for storing user and role permissions, then in addition to the user -
per mi ssi on- cl ass property you must also configure the r ol e- per i ssi on-cl ass property.

For example, to configure a single entity class to store both user and role permissions:

<security:jpa-permission-store user-permission-class="com.acme.model.AccountPermission" /
>

To configure separate entity classes for storing user and role permissions:

<security:jpa-permission-store user-permission-class="com.acme.model.UserPermission"
role-permission-class="com.acme.model.RolePermission" />

280

PersistentPermissionResolver

16.6.10.3.1. Permission annotations

As mentioned, the entity classes that contain the user and role permissions
must be configured with a special set of annotations, contained within the
org. j boss. seam annot ati ons. security. pernm ssi on package. The following table lists each
of these annotations along with a description of how they are used:

Table 16.9. Entity Permission annotations

Annotation Target Description

@er ni ssi onTar get FI ELD, METHOD This annotation identifies the property of
the entity that will contain the permission
target. The property should be of type
java.l ang. String.

@er ni ssi onActi on FI ELD, METHOD This annotation identifies the property of
the entity that will contain the permission
action. The property should be of type
java.lang. String.

@er ni ssi onUser FI ELD, METHOD This annotation identifies the property of the
entity that will contain the recipient user
for the permission. It should be of type
java.lang. String and contain the user's
username.

@Per ni ssi onRol e FI ELD, METHOD This annotation identifies the property of
the entity that will contain the recipient role
for the permission. It should be of type
j ava. | ang. St ri ng and contain the role name.

@er ni ssi onDi scrinminator Fl ELD, METHOD This annotation should be used when the same
entity/table is used to store both user and role
permissions. It identifies the property of the
entity that is used to discriminate between user
and role permissions. By default, if the column
value contains the string literal user, then the
record will be treated as a user permission. If
it contains the string literal r ol e, then it will be
treated as a role permission. It is also possible
to override these defaults by specifying the
user Val ue and rol eVal ue properties within
the annotation. For example, to use u and r
instead of user andr ol e, the annotation would
be written like this:

@PermissionDiscriminator

281

Chapter 16. Security

Annotation Target Description

(userValue="u", roleValue="r")

16.6.10.3.2. Example Entity

Here is an example of an entity class that is used to store both user and role permissions. The
following class can be found inside the SeamSpace example:

@Entity
public class AccountPermission implements Serializable {
private Integer permissionld,;
private String recipient;
private String target;
private String action;
private String discriminator;

@Ild @GeneratedValue
public Integer getPermissionlid() {
return permissionld;

}

public void setPermissionld(Integer permissionid) {
this.permissionld = permissionld;

}

@PermissionUser @PermissionRole
public String getRecipient() {
return recipient;

public void setRecipient(String recipient) {
this.recipient = recipient;

}

@PermissionTarget
public String getTarget() {
return target;

}

public void setTarget(String target) {
this.target = target;
}

282

PersistentPermissionResolver

@PermissionAction
public String getAction() {
return action;

public void setAction(String action) {
this.action = action;

@PermissionDiscriminator
public String getDiscriminator() {
return discriminator;

public void setDiscriminator(String discriminator) {
this.discriminator = discriminator;

As can be seen in the above example, the get Di scri mi nat or () method has been annotated
with the @Per ni ssi onDi scri ni nat or annotation, to allow JpaPer ni ssi onSt or e to determine
which records represent user permissions and which represent role permissions. In addition, it
can also be seen that the get Reci pi ent () method is annotated with both @Per ni ssi onUser
and @er i ssi onRol e annotations. This is perfectly valid, and simply means that the r eci pi ent
property of the entity will either contain the name of the user or the name of the role, depending
on the value of the di scri mi nat or property.

16.6.10.3.3. Class-specific Permission Configuration

A further set of class-specific annotations can be used to configure a specific set
of allowable permissions for a target class. These permissions can be found in the
org. j boss. seam annot ati on. security. perm ssi on package:

Table 16.10. Class Permission Annotations

Annotation Target Description

@er ni ssi ons TYPE A container annotation, this annotation may contain an
array of @er ni ssi on annotations.

@Per ni ssi on TYPE This annotation defines a single allowable permission
action for the target class. Its acti on property must be
specified, and an optional mask property may also be

283

Chapter 16. Security

Annotation Target Description

specified if permission actions are to be persisted as
bitmasked values (see next section).

Here's an example of the above annotations in action. The following class can also be found in
the SeamSpace example:

@Permissions({
@Permission(action = "view"),
@Permission(action = "comment")
D
@Entity
public class Memberimage implements Serializable {

This example demonstrates how two allowable permission actions, vi ew and comment can be
declared for the entity class Menber | mage.

16.6.10.3.4. Permission masks

By default, multiple permissions for the same target object and recipient will be persisted as a
single database record, with the acti on property/column containing a comma-separated list of
the granted actions. To reduce the amount of physical storage required to persist a large number
of permissions, it is possible to use a bitmasked integer value (instead of a comma-separated list)
to store the list of permission actions.

For example, if recipient "Bob" is granted both the vi ewand comment permissions for a particular
Menber | mage (an entity bean) instance, then by default the acti on property of the permission
entity will contain "vi ew, comment ", representing the two granted permission actions. Alternatively,
if using bitmasked values for the permission actions, as defined like so:

@Permissions({
@Permission(action = "view", mask = 1),
@Permission(action = "comment", mask = 2)

)

@Entity

public class Memberimage implements Serializable {

The act i on property will instead simply contain "3" (with both the 1 bit and 2 bit switched on).
Obviously for a large number of allowable actions for any particular target class, the storage
required for the permission records is greatly reduced by using bitmasked actions.

Obviously, it is very important that the mask values specified are powers of 2.

284

PersistentPermissionResolver

16.6.10.3.5. Identifier Policy

When storing or looking up permissions, JpaPer ni ssi onSt or e must be able to uniquely identify
specific object instances to effectively operate on its permissions. To achieve this, an identifier
strategy may be assigned to each target class for the generation of unique identifier values. Each
identifier strategy implementation knows how to generate unique identifiers for a particular type
of class, and it is a simple matter to create new identifier strategies.

The I denti fier Strat egy interface is very simple, declaring only two methods:

public interface IdentifierStrategy {
boolean canldentify(Class targetClass);
String getldentifier(Object target);

}

The first method, canldentify() simply returns true if the identifier strategy is capable
of generating a unique identifier for the specified target class. The second method,
getldentifier() returns the unique identifier value for the specified target object.

Seam provides two IdentifierStrategy implementations, C assldentifierStrategy and
EntityldentifierStrategy (see next sections for details).

To explicitly configure a specific identifier strategy to use for a particular class, it should be
annotated with org. j boss. seam annot ati ons. security. pernission.ldentifier, and the
value should be set to a concrete implementation of the I dentifierStrategy interface. An
optional name property can also be specified, the effect of which is dependent upon the actual
I dentifierStrategy implementation used.

16.6.10.3.6. ClassldentifierStrategy

This identifier strategy is used to generate unique identifiers for classes, and will use the value
of the nane (if specified) in the @denti fi er annotation. If there is no name property provided,
then it will attempt to use the component name of the class (if the class is a Seam component), or
as a last resort it will create an identifier based on the name of the class (excluding the package
name). For example, the identifier for the following class will be "cust omer ":

@Identifier(name = "customer")
public class Customer {

The identifier for the following class will be "cust omer Acti on":

@Name("customerAction")
public class CustomerAction {

285

Chapter 16. Security

Finally, the identifier for the following class will be "Cust omer "

public class Customer {

16.6.10.3.7. EntityldentifierStrategy

This identifier strategy is used to generate unique identifiers for entity beans. It does so by
concatenating the entity name (or otherwise configured name) with a string representation of the
primary key value of the entity. The rules for generating the name section of the identifier are similar
tod assl dentifierStrategy. The primary key value (i.e. the id of the entity) is obtained using the
Per si st encePr ovi der component, which is able to correctly determine the value regardless of
which persistence implementation is used within the Seam application. For entities not annotated
with @ntity, it is necessary to explicitly configure the identifier strategy on the entity class itself,
for example:

@Ildentifier(value = EntityldentifierStrategy.class)
public class Customer {

For an example of the type of identifier values generated, assume we have the following entity
class:

@Entity

public class Customer {
private Integer id;
private String firstName;
private String lastName;

@lId
public Integer getld() { return id; }
public void setld(Integer id) { this.id = id; }

public String getFirstName() { return firstName; }
public void setFirstName(String firstName) { this.firstName = firstName; }

public String getLastName() { return lastName; }
public void setLastName(String lastName) { this.lastName = lastName; }

}

For a Cust oner instance with an i d value of 1, the value of the identifier would be "Cust oner: 1".
If the entity class is annotated with an explicit identifier name, like so:

286

Permission Management

@Entity

@Ildentifier(name = "cust")

public class Customer {

Then a Cust oner with ani d value of 123 would have an identifier value of "cust : 123",

16.7. Permission Management

In much the same way that Seam Security provides an ldentity Management API for the
management of users and roles, it also provides a Permissions Management API for the
management of persistent user permissions, via the Per mi ssi onManager component.

16.7.1. PermissionManager

The Per mi ssi onManager component is an application-scoped Seam component that provides a
number of methods for managing permissions. Before it can be used, it must be configured with a
permission store (although by default it will attempt to use JpaPer ni ssi onSt or e if it is available).
To explicitly configure a custom permission store, specify the perni ssi on-store property in

components.xml:

<security:permission-manager permission-store="#{ldapPermissionStore}"/>

The following table describes each of the available methods provided by Per ni ssi onManager :

Table 16.11. PermissionManager APl methods

Return type

Li st <Per m ssi on>

Li st <Per m ssi on>

bool ean

Method

|i st Pernmi ssi ons(Chj ect
target, String action)

| i st Perni ssi ons(Cbj ect
target)

gr ant Per mi ssi on(Per mi ssi on
per m ssi on)

Description

Returns a list of Permi ssion
objects representing all of the
permissions that have been
granted for the specified target and
action.

Returns a list of Pernission
objects representing all of the
permissions that have been
granted for the specified target and
action.

Persists (grants) the specified
Perm ssion to the backend

287

Chapter 16. Security

Return type Method Description

permission store. Returns true if
the operation was successful.

bool ean gr ant Per mi ssi ons(Li st <Per ni ssiPersists (grants) the specified list
per ni ssi ons) of Pernmi ssions to the backend
permission store. Returns true if

the operation was successful.

bool ean r evokePer i ssi on(Per mi ssi on Removes (revokes) the specified
per mi ssi on) Permi ssion from the backend
permission store. Returns true if

the operation was successful.

bool ean r evokePer i ssi ons(Li st <Per ni ssRemoves (revokes) the specified
per mi ssi ons) list of Permissions from

the backend permission store.

Returns true if the operation was

successful.
Li st<String> | i st Avai | abl eActions(Object Returns a list of the available
target) actions for the specified target

object. The actions that this
method returns are dependent
on the @er m ssi on annotations
configured on the target object's
class.

16.7.2. Permission checks for PermissionManager operations
Invoking the methods of Per mi ssi onManager requires that the currently-authenticated user has

the appropriate authorization to perform that management operation. The following table lists the
required permissions that the current user must have.

Table 16.12. Permission Management Security Permissions

Method Permission Target Permission
Action
| i st Permissions() The specified t ar get seam r ead-

per mi ssi ons

gr ant Per mi ssi on() The target of the specified Perni ssion, or seam grant -
each of the targets for the specified list of perni ssion
Per ni ssi ons (depending on which method is
called).

gr ant Per mi ssi on() The target of the specified Per mi ssi on. seam grant -
perni ssi on

288

SSL Security

Method Permission Target Permission
Action
gr ant Per mi ssi ons() Each of the targets of the specified list of seam grant -
Per m ssi ons. permi ssi on
r evokePer mi ssi on() The target of the specified Per mi ssi on. seam r evoke-

perni ssi on

r evokePer mi ssi ons() Each of the targets of the specified list of seam revoke-
Per m ssi ons. per m ssi on

16.8. SSL Security

Seam includes basic support for serving sensitive pages via the HTTPS protocol. This is easily
configured by specifying a schene for the page in pages. xnil . The following example shows how
the view / | ogi n. xht ml is configured to use HTTPS:

<page view-id="/login.xhtml" scheme="https"/>

This configuration is automatically extended to both s: i nk and s: but t on JSF controls, which
(when specifying the vi ew) will also render the link using the correct protocol. Based on the
previous example, the following link will use the HTTPS protocol because /1 ogi n. xhtnl is
configured to use it:

<s:link view="/login.xhtmlI" value="Login"/>

Browsing directly to a view when using the incorrect protocol will cause a redirect to the same
view using the correct protocol. For example, browsing to a page that has schene="ht t ps" using
HTTP will cause a redirect to the same page using HTTPS.

It is also possible to configure a default scheme for all pages. This is useful if you wish to use
HTTPS for a only few pages. If no default scheme is specified then the normal behavior is to
continue use the current scheme. So once the user accessed a page that required HTTPS, then
HTTPS would continue to be used after the user navigated away to other non-HTTPS pages.
(While this is good for security, it is not so great for performance!). To define HTTP as the default
schene, add this line to pages. xni :

<page view-id="*" scheme="http" />

Of course, if none of the pages in your application use HTTPS then it is not required to specify
a default scheme.

289

Chapter 16. Security

You may configure Seam to automatically invalidate the current HTTP session each time the
scheme changes. Just add this line to conponent s. xm :

<web:session invalidate-on-scheme-change="true"/>

This option helps make your system less vulnerable to sniffing of the session id or leakage of
sensitive data from pages using HTTPS to other pages using HTTP.

16.8.1. Overriding the default ports

If you wish to configure the HTTP and HTTPS ports manually, they may be configured in
pages. xnl by specifying the htt p- port and ht t ps- port attributes on the pages element:

<pages xmlns="http://jpboss.org/schema/seam/pages"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://jboss.org/schema/seam/pages http://jpboss.org/schema/seam/
pages-2.3.xsd"
no-conversation-view-id="/home.xhtml"
login-view-id="/login.xhtml|"
http-port="8080"
https-port="8443">

16.9. CAPTCHA

Though strictly not part of the security API, Seam provides a built-in CAPTCHA (Completely
Automated Public Turing test to tell Computers and Humans Apart) algorithm to prevent
automated processes from interacting with your application.

16.9.1. Configuring the CAPTCHA Servlet

To get up and running, it is necessary to configure the Seam Resource Servlet, which will provide
the Captcha challenge images to your pages. This requires the following entry in web. xni :

<servlet>
<servlet-name>Seam Resource Servlet</servlet-name>
<servlet-class>org.jboss.seam.servlet. SeamResourceServlet</serviet-class>
</servlet>

<servlet-mapping>
<servlet-name>Seam Resource Servlet</servlet-name>

290

Adding a CAPTCHA to a form

<url-pattern>/seam/resource/*</url-pattern>
</servlet-mapping>

16.9.2. Adding a CAPTCHA to a form

Adding a CAPTCHA challenge to a form is extremely easy. Here's an example:

<h:graphiclmage value="/seam/resource/captcha"/>

<h:inputText id="verifyCaptcha" value="#{captcha.response}" required="true">
<s:validate />

</h:inputText>

<h:message for="verifyCaptcha"/>

That's all there is to it. The gr aphi cl mage control displays the CAPTCHA challenge, and the
i nput Text receives the user's response. The response is automatically validated against the
CAPTCHA when the form is submitted.

16.9.3. Customising the CAPTCHA algorithm

You may customize the CAPTCHA algorithm by overriding the built-in component:

@Name("org.jboss.seam.captcha.captcha”)
@Scope(SESSION)
public class HitchhikersCaptcha extends Captcha
{
@Override @Create
public void init()
{
setChallenge("What is the answer to life, the universe and everything?");
setCorrectResponse('42");

}

@Override

public Bufferedimage renderChallenge()

{
Bufferedimage img = super.renderChallenge();
img.getGraphics().drawOval(5, 3, 60, 14); //add an obscuring decoration
return img;

291

Chapter 16. Security

16.10. Security Events

The following table describes a number of events (see Chapter 7, Events, interceptors and
exception handling) raised by Seam Security in response to certain security-related events.

Table 16.13. Security Events

Event Key
org.j boss. seam security. | ogi nSuccessf ul
org.j boss. seam security.| ogi nFail ed
org.j boss.seam security. al readyLoggedl n
org.j boss. seam security. not Loggedl n
org.j boss. seam security. not Aut hori zed
org.j boss. seam security. preAuthenticate
org.j boss. seam security. post Aut henti cate
org.j boss. seam security. | oggedCut
org.j boss. seam security. credential sUpdat ed
org.j boss. seam security. renenber M
16.11. Run As

Description

Raised when a login attempt is
successful.

Raised when a login attempt fails.

Raised when a user that is already
authenticated attempts to log in
again.

Raised when a security check fails

when the user is not logged in.

Raised when a security check fails
when the user is logged in however
doesn't have sufficient privileges.

Raised just
authentication.

prior to user

Raised just after user authentication.
Raised after the user has logged out.

Raised when the user's credentials
have been changed.

Raised when the Identity's
rememberMe property is changed.

Sometimes it may be necessary to perform certain operations with elevated privileges, such
as creating a new user account as an unauthenticated user. Seam Security supports such a
mechanism via the RunAsQper at i on class. This class allows either the Pri nci pal or Subj ect,
or the user's roles to be overridden for a single set of operations.

The following code example demonstrates how RunAsQper at i on is used, by calling its addRol e()
method to provide a set of roles to masquerade as for the duration of the operation. The execut e()
method contains the code that will be executed with the elevated privileges.

new RunAsOperation() {
public void execute() {

292

Extending the Identity component

executePrivilegedOperation();

}
}.addRole("admin")

.run();

In a similar way, the get Pri nci pal () or get Subj ect () methods can also be overriden to specify
the Pri nci pal and Subj ect instances to use for the duration of the operation. Finally, the r un()

method is used to carry out the RunAsQper at i on.

16.12. Extending the Identity component

Sometimes it might be necessary to extend the Identity component if your application has
special security requirements. The following example (contrived, as credentials would normally be
handled by the Cr edent i al s component instead) shows an extended Identity component with an
additional conpanyCode field. The install precedence of APPLI CATI ON ensures that this extended
Identity gets installed in preference to the built-in Identity.

@Name("org.jboss.seam.security.identity™)
@Scope(SESSION)

@Install(precedence = APPLICATION)
@BypasslInterceptors

@Startup

public class Customldentity extends Identity

{

private static final LogProvider log = Logging.getLogProvider(Customldentity.class);

private String companyCode;

public String getCompanyCode()
{

return companyCode;

}

public void setCompanyCode(String companyCode)
{

this.companyCode = companyCode;

}

@Override

public String login()

{
log.info("#######H# CUSTOM LOGIN CALLED ####H##");
return super.login();

293

Chapter 16. Security

Warning

Note thatan | dent i t y component must be marked @t ar t up, so that it is available
immediately after the SESSI ON context begins. Failing to do this may render certain
Seam functionality inoperable in your application.

16.13. OpeniD

OpenlID is a community standard for external web-based authentication. The basic idea is that
any web application can supplement (or replace) its local handling of authentication by delegating
responsibility to an external OpenID server of the user's choose. This benefits the user, who
no longer has to remember a name and password for every web application he uses, and the
developer, who is relieved of some of the burden of maintaining a complex authentication system.

When using OpenlD, the user selects an OpenID provider, and the provider assigns the user an
OpenlD. The id will take the form of a URL, for example ht t p: / / maxi noburrit 0. nyopeni d. com
however, it's acceptable to leave off the ht t p: // part of the identifier when logging into a site. The
web application (known as a relying party in OpenID-speak) determines which OpenID server to
contact and redirects the user to the remote site for authentication. Upon successful authentication
the user is given the (cryptographically secure) token proving his identity and is redirected back
to the original web application.The local web application can then be sure the user accessing the
application controls the OpenlID he presented.

It's important to realize at this point that authentication does not imply authorization. The web
application still needs to make a determination of how to use that information. The web application
could treat the user as instantly logged in and give full access to the system or it could try and map
the presented OpenlD to a local user account, prompting the user to register if he hasn't already.
The choice of how to handle the OpenlD is left as a design decision for the local application.

16.13.1. Configuring OpenID

Seam uses the openid4java package and requires four additional JARs to make use of the
Seam integration. These are: ht m parser.jar, openi d4j ava. j ar, openxri-client.jar and
openxri-syntax.jar.

OpenlID processing requires the use of the Openl dPhaselLi st ener, which should be added to
your f aces-confi g. xm file. The phase listener processes the callback from the OpenlD provider,
allowing re-entry into the local application.

<lifecycle>

294

Presenting an OpenldDLogin form

<phase-listener>org.jboss.seam.security.openid.OpenldPhaseListener</phase-listener>
</lifecycle>

With this configuration, OpenID support is available to your application. The OpenID
support component, or g. j boss. seam securi ty. openi d. openi d, is installed automatically if the
openid4java classes are on the classpath.

16.13.2. Presenting an OpenldDLogin form

To initiate an OpenlD login, you can present a simply form to the user asking for the user's OpenlD.
The #{ openi d. i d} value accepts the user's OpenID and the #{ openi d. | ogi n} action initiates
an authentication request.

<h:form>

<h:inputText value="#{openid.id}" />

<h:commandButton action="#{openid.login}" value="OpenlID Login"/>
</h:form>

When the user submits the login form, he will be redirected to his OpenID provider. The user
will eventually return to your application through the Seam pseudo-view / openi d. xht ml , which
is provided by the Openl dPhaseLi st ener . Your application can handle the OpenID response by
means of a pages. xnl navigation from that view, just as if the user had never left your application.

16.13.3. Logging in immediately

The simplest strategy is to simply login the user immediately. The following navigation rule shows
how to handle this using the #{ openi d. | ogi nl nredi at el y()} action.

<page view-id="/openid.xhtml">
<navigation evaluate="#{openid.loginimmediately()}">
<rule if-outcome="true">
<redirect view-id="/main.xhtml">
<message>0OpenID login successful...</message>
</redirect>
</rule>
<rule if-outcome="false">
<redirect view-id="/main.xhtml">
<message>0penID login rejected...</message>
</redirect>
</rule>
</navigation>
</page>

295

Chapter 16. Security

This | ogi nl nredi atel y() action checks to see if the OpenID is valid. If it is valid, it
adds an OpenlIDPrincipal to the identity component, marks the user as logged in (i.e.
#{identity. | oggedl n} will be true) and returns true. If the OpenlID was not validated, the method
returns false, and the user re-enters the application un-authenticated. If the user's OpenlID is valid,
it will be accessible using the expression #{ openi d. val i dat edl d} and #{ openi d. val i d} will
be true.

16.13.4. Deferring login

You may not want the user to be immediately logged in to your application. In that case,
your navigation should check the #{openid.valid} property and redirect the user to a
local registration or processing page. Actions you might take would be asking for more
information and creating a local user account or presenting a captcha to avoid programmatic
registrations. When you are done processing, if you want to log the user in, you can call the
| ogi nl medi at el y method, either through EL as shown previously or by directly interaction with
the org.j boss. seam security. openi d. Openl d component. Of course, nothing prevents you
from writing custom code to interact with the Seam identity component on your own for even more
customized behaviour.

16.13.5. Logging out

Logging out (forgetting an OpenID association) is done by calling #{ openi d. | ogout }. If you are
not using Seam security, you can call this method directly. If you are using Seam security, you
should continue to use #{i dentity.| ogout} and install an event handler to capture the logout
event, calling the OpenlID logout method.

<event type="org.jboss.seam.security.loggedOut">
<action execute="#{openid.logout}" />
</event>

It's important that you do not leave this out or the user will not be able to login again in the same
session.

296

Chapter 17.

Internationalization, localization and
themes

Seam makes it easy to build internationalized applications. First, let's walk through all the stages
needed to internationalize and localize your app. Then we'll take a look at the components Seam
bundles.

17.1. Internationalizing your app

A JEE application consists of many components and all of them must be configured properly for
your application to be localized.

° Note

Note that all i18n features in Seam work only in JSF context.

Starting at the bottom, the first step is to ensure that your database server and client is using the
correct character encoding for your locale. Normally you'll want to use UTF-8. How to do this is
outside the scope of this tutorial.

17.1.1. Application server configuration

To ensure that the application server receives the request parameters in the correct
encoding from client requests you have to configure the tomcat connector. If you use
JBoss AS, add the system properties org.apache.catalina.connector.URI_ENCODING and
org.apache.catalina.connector. USE_BODY_ENCODING_FOR_QUERY_STRING to the server
configuration. For JBoss AS 7.1.1 change ${JBOSS_HOME}/ st andal one/ confi gurati on/
st andal one. xni :

<system-properties>
<property name="org.apache.catalina.connector.URI_ENCODING" value="UTF-8"/>

<proenig="org.apache.catalina.connector. USE_BODY_ENCODING_FOR_QUERY_STRHI@G="true"/
>

</system-properties>

297

Chapter 17. Internationalizat...

17.1.2. Translated application strings

You'll also need localized strings for all the messages in your application (for example field labels
on your views). First you need to ensure that your resource bundle is encoded using the desired
character encoding. By default ASCII is used. Although ASCII is enough for many languages, it
doesn't provide characters for all languages.

Resource bundles must be created in ASCII, or use Unicode escape codes to represent Unicode
characters. Since you don't compile a property file to byte code, there is no way to tell the JVM
which character set to use. So you must use either ASCII characters or escape characters not in
the ASCII character set. You can represent a Unicode character in any Java file using \uxXxXXxX,
where XXXX is the hexadecimal representation of the character.

You can write your translation of labels (Section 17.3, “Labels”) to your messages resource bundle
in the native encoding and then convert the content of the file into the escaped format through the
tool nat i ve2asci i provided in the JDK. This tool will convert a file written in your native encoding
to one that represents non-ASCII characters as Unicode escape sequences.

Usage of this tool is described here for Java 5 [http://java.sun.com/j2se/1.5.0/docs/tooldocs/
index.html#intl] or here for Java 6 [http://java.sun.com/javase/6/docs/technotes/tools/#intl]. For
example, to convert a file from UTF-8:

$ nati ve2asci i -encodi ng UTF- 8 nessages_cs. properties >
nmessages_cs_escaped. properties

17.1.3. Other encoding settings

We need to make sure that the view displays your localized data and messages using the correct
character set and also any data submitted uses the correct encoding.

To set the display character encoding, you need to use the <f : vi ew | ocal e="cs_Cz"/ >tag (here
we tell JSF to use the Czech locale). You may want to change the encoding of the xml document
itself if you want to embed localized strings in the xml. To do this alter the encoding attribute in
xml declaration <?xml versi on="1. 0" encodi ng="UTF- 8" ?> as required.

Also JSF/Facelets should submit any requests using the specified character encoding, but to
make sure any requests that don't specify an encoding you can force the request encoding using
a servlet filter. Configure this in conponents. xni :

<web:character-encoding-filter encoding="UTF-8"
override-client="true"
url-pattern="*.seam" />

298

http://java.sun.com/j2se/1.5.0/docs/tooldocs/index.html#intl
http://java.sun.com/j2se/1.5.0/docs/tooldocs/index.html#intl
http://java.sun.com/j2se/1.5.0/docs/tooldocs/index.html#intl
http://java.sun.com/javase/6/docs/technotes/tools/#intl
http://java.sun.com/javase/6/docs/technotes/tools/#intl

Locales

17.2. Locales

Each user login session has an associated instance of java.util.Local e (available to the
application as a component named | ocal e). Under normal circumstances, you won't need to do
any special configuration to set the locale. Seam just delegates to JSF to determine the active
locale:

« If there is a locale associated with the HTTP request (the browser locale), and that locale is in
the list of supported locales from f aces- conf i g. xn , use that locale for the rest of the session.

« Otherwise, if a default locale was specified in the faces-config.xnl, use that locale for the
rest of the session.

» Otherwise, use the default locale of the server.

It is possible to set the locale manually via the Seam
configuration properties org.j boss.seaminternational .l ocal eSel ector. | anguage,
org.j boss.seaminternational .l ocal eSel ector. country and

org.j boss.seaminternational.local eSel ector.variant, but we can't think of any good
reason to ever do this.

Itis, however, useful to allow the user to set the locale manually via the application user interface.
Seam provides built-in functionality for overriding the locale determined by the algorithm above.
All you have to do is add the following fragment to a form in your JSP or Facelets page:

<h:selectOneMenu value="#{localeSelector.language}">
<f:selectltem itemLabel="English" itemValue="en"/>
<f:selectltem itemLabel="Deutsch" itemValue="de"/>
<f:selectltem itemLabel="Francais" itemValue="fr"/>

</h:selectOneMenu>

<h:commandButton action="#{localeSelector.select}"
value="#{messages['ChangelLanguage’]}"/>

Or, if you want a list of all supported locales from faces-config. xm , just use:

<h:selectOneMenu value="#{localeSelector.localeString}">
<f:selectltems value="#{localeSelector.supportedLocales}"'/>

</h:selectOneMenu>

<h:commandButton action="#{localeSelector.select}"
value="#{messages['ChangelLanguage']}"/>

When the user selects an item from the drop-down, then clicks the command button, the Seam
and JSF locales will be overridden for the rest of the session.

299

Chapter 17. Internationalizat...

The brings us to the question of where the supported locales are defined. Typically, you provide a
list of locales for which you have matching resource bundles in the <l ocal e- conf i g> element of
the JSF configuration file (/META-INF/faces-config.xml). However, you have learned to appreciate
that Seam's component configuration mechanism is more powerful than what is provided in Java
EE. For that reason, you can configure the supported locales, and the default locale of the server,
using the built-in component named or g. j boss. seam i nt ernati onal . | ocal eConfi g. To use
it, you first declare an XML namespace for Seam's international package in the Seam component
descriptor. You then define the default locale and supported locales as follows:

<international:locale-config default-locale="fr_CA" supported-locales="en fr_CA fr_FR"/>

Naturally, if you pronounce that you support a locale, you better provide a resource bundle to
match it! Up next, you'll learn how to define the language-specific labels.

17.3. Labels

JSF supports internationalization of user interface labels and descriptive text via the use of
<f: 1 oadBundl e />. You can use this approach in Seam applications. Alternatively, you can take
advantage of the Seam nessages component to display templated labels with embedded EL
expressions.

17.3.1. Defining labels

Seam provides a java.util.ResourceBundle (available to the application as a
org.j boss. seam core. resour ceBundl e). You'll need to make your internationalized labels
available via this special resource bundle. By default, the resource bundle used by Seam is
named nessages and so you'll need to define your labels in files named nessages. properti es,
messages_en. properties, messages_en_AU. properti es, etc. These files usually belong in the
VIEB- | NF/ ¢l asses directory.

So, in messages_en. properti es:

Hello=Hello

And in mnessages_en_AU. properti es:

Hello=G'day

You can select a different name for the resource bundle by setting the Seam configuration property
named org.jboss. seam core. resour ceLoader. bundl eNanes. You can even specify a list of
resource bundle names to be searched (depth first) for messages.

300

Displaying labels

<core:resource-loader>
<core:bundle-names>
<value>mycompany_messages</value>
<value>standard_messages</value>
</core:bundle-names>
</core:resource-loader>

If you want to define a message just for a particular page, you can specify it in a resource bundle
with the same name as the JSF view id, with the leading / and trailing file extension removed.
So we could put our message in wel cone/ hel | o_en. properti es if we only needed to display
the message on / wel cone/ hel | 0. j sp.

You can even specify an explicit bundle name in pages. xni ;

<page view-id="/welcome/hello.jsp" bundle="HelloMessages"/>

Then we could use messages defined in Hel | oMessages. properties on /wel cone/
hell o.j sp.

17.3.2. Displaying labels

If you define your labels using the Seam resource bundle, you'll be able to use them without having
totype <f:loadBundle ... />on every page. Instead, you can simply type:

<h:outputText value="#{messages['Hello"]}"/>

or:

<h:outputText value="#{messages.Hello}"/>

Even better, the messages themselves may contain EL expressions:

Hello=Hello, #{user.firstName} #{user.lastName}

Hello=G'day, #{user.firstName}

You can even use the messages in your code:

301

Chapter 17. Internationalizat...

@In private Map<String, String> messages;

@In("#{messages['Hello"]}") private String helloMessage;

17.3.3. Faces messages

The f acesMessages component is a super-convenient way to display success or failure messages
to the user. The functionality we just described also works for faces messages:

@Name("hello")

@Stateless

public class HelloBean implements Hello {
@In FacesMessages facesMessages;

public String saylt() {
facesMessages.addFromResourceBundle("Hello");

This will display Hel | o, Gavin King or G day, Gavi n, depending upon the user's locale.

17.4. Timezones

There is also a session-scoped instance of java.util.Timezone, named
org.j boss. seaminternational.tinezone,and a Seam component for changing the timezone
named org.jboss.seaminternational.timezoneSel ector. By default, the timezone is the
default timezone of the server. Unfortunately, the JSF specification says that all dates and times
should be assumed to be UTC, and displayed as UTC, unless a timezone is explicitly specified
using <f : convert Dat eTi ne>. This is an extremely inconvenient default behavior.

Note

)

You can use application parameter to set up different default time zone for JSF
2 inweb. xm .

<context-param>

<param-
name>javax.faces. DATETIMECONVERTER_DEFAULT_TIMEZONE_IS_SYSTEM_TIMEZONE</
param-name>

302

Themes

<param-value>true</param-value>
</context-param>

Seam overrides this behavior, and defaults all dates and times to the Seam timezone.

Seam also provides a default date converter to convert a string value to a date. This saves you
from having to specify a converter on input fields that are simply capturing a date. The pattern is
selected according the the user's locale and the time zone is selected as described above.

17.5. Themes

Seam applications are also very easily skinnable. The theme API is very similar to the localization
API, but of course these two concerns are orthogonal, and some applications support both
localization and themes.

First, configure the set of supported themes:

<theme:theme-selector cookie-enabled="true">
<theme:available-themes>
<value>default</value>
<value>accessible</value>
<value>printable</value>
</theme:available-themes>
</theme:theme-selector>

Note that the first theme listed is the default theme.

Themes are defined in a properties file with the same name as the theme. For example,
the default theme is defined as a set of entries in default.properties. For example,
def aul t. properti es might define:

css ../screen.css
template /template.xhtml

Usually the entries in a theme resource bundle will be paths to CSS styles or images and names
of facelets templates (unlike localization resource bundles which are usually text).

Now we can use these entries in our JSP or facelets pages. For example, to theme the stylesheet
in a facelets page:

<link href="#{theme.css}" rel="stylesheet" type="text/css" />

303

Chapter 17. Internationalizat...

Or, when the page definition resides in a subdirectory:

<link href="#{facesContext.externalContext.requestContextPath}#{theme.css}"
rel="stylesheet" type="text/css" />

Most powerfully, facelets lets us theme the template used by a <ui : conposi ti on>:

<ui:composition xmlns="http://www.w3.0rg/1999/xhtml"
xmins:ui="http://java.sun.com/jsf/facelets"
xmins:h="http://java.sun.com/jsf/html"
xmins:f="http://java.sun.com/jsf/core"
template="#{theme.template}">

Just like the locale selector, there is a built-in theme selector to allow the user to freely switch
themes:

<h:selectOneMenu value="#{themeSelector.theme}">
<f:selectltems value="#{themeSelector.themes}"/>
</h:selectOneMenu>
<h:commandButton action="#{themeSelector.select}" value="Select Theme"/>

17.6. Persisting locale and theme preferences via
cookies

The locale selector, theme selector and timezone selector all support persistence of locale and
theme preference to a cookie. Simply set the cooki e- enabl ed property in conponents. xm :

<theme:theme-selector cookie-enabled="true">
<theme:available-themes>
<value>default</value>
<value>accessible</value>
<value>printable</value>
</theme:available-themes>
</theme:theme-selector>

<international:locale-selector cookie-enabled="true"/>

304

Chapter 18.

Seam Text

Collaboration-oriented websites require a human-friendly markup language for easy entry
of formatted text in forum posts, wiki pages, blogs, comments, etc. Seam provides the
<s: formatt edText/> control for display of formatted text that conforms to the Seam Text
language. Seam Text is implemented using an ANTLR-based parser. You don't need to know
anything about ANTLR to use it, however.

18.1. Basic fomatting

Here is a simple example:

It's easy to make *emphasis*, [monospace|,
~deleted text~, super”~scripts”® or _underlines_.

If we display this using <s: f or mat t edText / >, we will get the following HTML produced:

<p>
It's easy to make <i>emphasis</i>, <tt>monospace</tt>

deleted text, super^{scripts} or <u>underlines</u>.
</p>

We can use a blank line to indicate a new paragraph, and + to indicate a heading:

+This is a big heading
You /must/ have some text following a heading!

++This is a smaller heading
This is the first paragraph. We can split it across multiple
lines, but we must end it with a blank line.

This is the second paragraph.

(Note that a simple newline is ignored, you need an additional blank line to wrap text into a new
paragraph.) This is the HTML that results:

<h1>This is a big heading</h1>
<p>
You <i>must</i> have some text following a heading!

305

Chapter 18. Seam Text

</p>

<h2>This is a smaller heading</h2>

<p>

This is the first paragraph. We can split it across multiple
lines, but we must end it with a blank line.

</p>

<p>
This is the second paragraph.
</p>

Ordered lists are created using the # character. Unordered lists use the = character:

An ordered list:

#first item
#second item
#and even the /third/ item

An unordered list:

=an item
=another item

<p>
An ordered list:
</p>

first item

second item

and even the <i>third</i> item

<p>
An unordered list:
</p>

an item

306

Entering code and text with special characters

another item

Quoted sections should be surrounded in double quotes:

The other guy said:

"Nyeah nyeah-nee
/nyeah/ nyeah!"

But what do you think he means by "nyeah-nee"?

<p>
The other guy said:
</p>

<g>Nyeah nyeah-nee
<i>nyeah</i> nyeah!</q>

<p>
But what do you think he means by <g>nyeah-nee</q>?
</p>

18.2. Entering code and text with special characters

Special characters such as *, | and #, along with HTML characters such as <, > and & may be
escaped using \ :

You can write down equations like 2*3\=6 and HTML tags
like \<body\> using the escape character: \\.

<p>
You can write down equations like 2*3=6 and HTML tags
like &It;body> using the escape character: \.

</p>

And we can quote code blocks using backticks:

307

Chapter 18. Seam Text

My code doesn't work:

“for (int i=0; i<100; i--)
{
doSomething();

y

Any ideas?

<p>
My code doesn't work:
</p>
<pre>for (int i=0; i&It;100; i--)
{
doSomething();
}</pre>
<p>
Any ideas?
</p>

Note that inline monospace formatting always escapes (most monospace formatted text is in fact
code or tags with many special characters). So you can, for example, write:

This is a |<tag attribute="value"/>| example.

without escaping any of the characters inside the monospace bars. The downside is that you can't
format inline monospace text in any other way (italics, underscore, and so on).

18.3. Links

A link may be created using the following syntax:

Go to the Seam website at [=>http://jboss.org/schema/seam].

Or, if you want to specify the text of the link:

308

Entering HTML

Go to [the Seam website=>http://jboss.org/schema/seam].

For advanced users, it is even possible to customize the Seam Text parser to understand wikiword
links written using this syntax.

18.4. Entering HTML

Text may even include a certain limited subset of HTML (don't worry, the subset is chosen to be
safe from cross-site scripting attacks). This is useful for creating links:

You might want to link to something
cool, or even include an image:

And for creating tables:

<table>
<tr><td>First name:</td><td>Gavin</td></tr>
<tr><td>Last name:</td><td>King</td></tr>
</table>

But you can do much more if you want!

18.5. Using the SeamTextParser

The <s: formattedText/> JSF component internally uses the
org. j boss. seam t ext . SeanText Par ser. You can use that class directly and implement your
own text parsing, rendering, or HTML sanitation procedure. This is especially useful if you have
a custom frontend for entering rich text, such as a Javascript-based HTML editor, and you want
to validate user input to protect your website against Cross-Site Scripting (XSS) attacks. Another
usecase are custom wiki text parsing and rendering engines.

The following example defines a custom text parser that overrides the default HTML sanitizer:

public class MyTextParser extends SeamTextParser {

public MyTextParser(String myText) {
super(new SeamTextLexer(new StringReader(myText)));

setSanitizer(
new DefaultSanitizer() {

309

Chapter 18. Seam Text

@Override
public void validateHtmlElement(Token element) throws SemanticException {
/l TODO: | want to validate HTML elements myself!

/I Customizes rendering of Seam text links such as [Some Text=>http://example.com]
@Override
protected String linkTag(String descriptionText, String linkText) {

return "My Custom Link: " + descriptionText + "";

/I Renders a <p> or equivalent tag

@Override

protected String paragraphOpenTag() {
return "<p class=\"myCustomsStyle\">";

public void parse() throws ANTLREXxception {
startRule();

The 1i nkTag() and par agr aphOpenTag() methods are just some of many you can override to
customize rendered output. These methods generally return Stri ng. See the Javadoc for more
details.

Also consult the Javadoc of org. j boss. seam t ext . Seanilext Par ser . Def aul t Sani ti zer for
more information on what HTML elements, attributes, and attribute values or filtered by default.

310

Chapter 19.

IText PDF generation

Seam now includes a component set for generating documents using iText. The primary focus
of Seam's iText document support is for the generation of PDF documents, but Seam also offers
basic support for RTF document generation.

19.1. Using PDF Support

iText support is provided by j boss-seam pdf. j ar. This JAR contains the iText JSF controls,
which are used to construct views that can render to PDF, and the DocumentStore component,
which serves the rendered documents to the user. To include PDF support in your application,
put j boss-seam pdf . j ar in your VEB- | NF/ | i b directory along with the iText JAR file. There is
no further configuration needed to use Seam's iText support.

The Seam iText module requires the use of Facelets as the view technology. Future versions of the
library may also support the use of JSP. Additionally, it requires the use of the seam-ui package.

The exanpl es/ i t ext project contains an example of the PDF support in action. It demonstrates
proper deployment packaging, and it contains a number examples that demonstrate the key PDF
generation features current supported.

19.1.1. Creating a document

<p: docunent > Description

Documents are generated by facelet XHTML files using tags in
the http://jboss. org/ schema/ seanmf pdf namespace. Documents
should always have the docunent tag at the root of the document.
The docunent tag prepares Seam to generate a document into the
DocumentStore and renders an HTML redirect to that stored content.

Attributes

» type — The type of the document to be produced. Valid values
are PDF, RTF and HTM. modes. Seam defaults to PDF generation,
and many of the features only work correctly when generating PDF
documents.

* pageSize — The size of the page to be generate. The
most commonly used values would be LETTER and A4.
A full list of supported pages sizes can be found in
com | owagi e. t ext . PageSi ze class. Alternatively, pageSize can
provide the width and height of the page directly. The value "612 792",
for example, is equivalent to the LETTER page size.

311

Chapter 19. iText PDF generation

e orientati on — The orientation of the page. Valid values are
portrait and | andscape. In landscape mode, the height and width
page size values are reversed.

* mar gi ns — The left, right, top and bottom margin values.

e marginMrroring — Indicates that margin settings should be
reversed an alternating pages.

e di sposition — When generating PDFs in a web browser, this
determines the HTTP Content-Disposition of the document.
Valid values are i nl i ne, which indicates the document should be
displayed in the browser window if possible, and at t achment , which
indicates that the document should be treated as a download. The
default value is i nli ne.

* fil eName — For attachments, this value overrides the downloaded
file name.

Metadata Attributes

e title

* subj ect
* keywords
* aut hor

e creator

Usage

<p:document xmins:p="http://jboss.org/schema/seam/pdf">
The document goes here.

</p:document>

19.1.2. Basic Text Elements

Useful documents will need to contain more than just text; however, the standard Ul components
are geared towards HTML generation and are not useful for generating PDF content. Instead,
Seam provides a special Ul components for generating suitable PDF content. Tags like <p: i mage>
and <p: par agr aph> are the basic foundations of simple documents. Tags like <p: f ont > provide
style information to all the content surrounding them.

312

Basic Text Elements

<p: par agr aph>

<p:text>

Description

Most uses of text should be sectioned into paragraphs so that text
fragments can be flowed, formatted and styled in logical groups.

Attributes

e firstLinel ndent

* extraPar agraphSpace
* | eadi ng

e multipliedLeading

e spaci ngBefore — The blank space to be inserted before the
element.

» spaci ngAft er — The blank space to be inserted after the element.
* indentationLeft

* indentationRi ght

* keepToget her

Usage

<p:paragraph alignment="justify">
This is a simple document. It isn't very fancy.
</p:paragraph>

Description

The t ext tag allows text fragments to be produced from application
data using normal JSF converter mechanisms. It is very similar to the
out put Text tag used when rendering HTML documents.

Attributes
» val ue — The value to be displayed. This will typically be a value
binding expression.

Usage

<p:paragraph>
The item costs <p:text value="#{product.price}">

313

Chapter 19. iText PDF generation

<p: htnm >

<p: font >

<f:convertNumber type="currency" currencySymbol="$"/>
</p:text>
</p:paragraph>

Description

The ht nl tag renders HTML content into the PDF.

Attributes

» val ue — The text to be displayed.

Usage

<p:html value="This is HTML with some markup." />
<p:html>
<h1>This is more complex HTML</h1>

one
two
three

</p:html>

<p:html>
<s:formattedText value="*This* is |[Seam Text| as HTML. |It's
very~coolr." />
</p:htmI>
Description
The font tag defines the default font to be used for all text inside of it.
Attributes
e nane — The font name, for example: COURI ER, HELVETI CA, TI MES-
ROVAN, SYMBCL or ZAPFDI NGBATS.

» si ze — The point size of the font.

» styl e — The font styles. Any combination of : NORVAL, BOLD, | TALI C,
OBLI QUE, UNDERLI NE, LI NE- THROUGH

314

Basic Text Elements

<p:textcol um>

<p: newPage>

<p:i mage>

e col or — The font color. (see Section 19.1.7.1, “Color Values” for
color values)

* encodi ng — The character set encoding.

Usage

<p:font name="courier" style="bold" size="24">
<p:paragraph>My Title</p:paragraph>
</p:font>

Description

p: t ext col umm inserts a text column that can be used to control the flow
of text. The most common case is to support right to left direction fonts.

Attributes

» | eft — The left bounds of the text column
e ri ght — The right bounds of the text column

e directi on — The run direction of the text in the column: RTL, LTR,
NO- Bl DI , DEFAULT

Usage

<p:textcolumn left="400" right="600" direction="rtl">
<p:font name="/Library/Fonts/Arial Unicode.ttf"
encoding="ldentity-H"
embedded="true">#{phrases.arabic}</p:font>
</p:textcolumn>

Description

p: newPage inserts a page break.

Usage

<p:newPage />

Description

315

Chapter 19. iText PDF generation

p: i mage inserts an image into the document. Images can be loaded
from the classpath or from the web application context using the val ue
attribute.

Resources can also be dynamically generated by application code.
The i mageDat a attribute can specify a value binding expression whose
value is aj ava. awt . | mage object.

Attributes

* val ue — A resource name or a method expression binding to an
application-generated image.

e rotati on — The rotation of the image in degrees.

» hei ght — The height of the image.

e wi dt h — The width of the image.

* al i gnment — The alignment of the image. (see Section 19.1.7.2,
“Alignment Values” for possible values)

e alt — Alternative text representation for the image.
* indentationLeft
* indentationRi ght

» spaci ngBefore — The blank space to be inserted before the
element.

* spaci ngAft er — The blank space to be inserted after the element.
* wi dt hPer cent age

* initial Rotation

* dpi

» scal ePercent — The scaling factor (as a percentage) to use for
the image. This can be expressed as a single percentage value or
as two percentage values representing separate x and y scaling
percentages.

» scal eToFi t — Specifies the X any Y size to scale the image to. The
image will be scale to fit those dimensions as closely as possible
while preserving the XY ratio of the image.

e wap

316

Headers and Footers

<p: anchor >

* underlying

Usage

<p:image value="/jboss.jpg" />

<p:image value="#{images.chart}" />

Description

p: anchor defines clickable links from a document. It supports the
following attributes:

Attributes

* nanme — The name of an in-document anchor destination.

» ref erence — The destination the link refers to. Links to other points
in the document should begin with a "#". For example, "#link1" to refer
to an anchor position with a nane of I i nk1. Links may also be a full
URL to point to a resource outside of the document.

Usage

<p:listitem><p:anchor reference="#reasonl">Reason 1</p:anchor></
p:listitem>

<p:paragraph>
<p:anchor name="reasonl">It's the quickest way to get "rich"</

p:anchor>

</p:paragraph>

19.1.3. Headers and Footers

<p: header >

<p: footer>

Description

The p: header and p: f oot er components provide the ability to place
header and footer text on each page of a generated document. Header
and footer declarations should appear at the beginning of a document.

Attributes

317

Chapter 19. iText PDF generation

<p: pageNunber >

19.1.4. Chapters
<p: chapter>

<p: section>

e al i gnment — The alignment of the header/footer box section. (see
Section 19.1.7.2, “Alignment Values” for alignment values)

» backgroundCol or — The background color of the header/footer box.
(see Section 19.1.7.1, “Color Values” for color values)

e borderColor — The border color of the header/footer box.
Individual border sides can be set using border Col orLeft,
bor der Col or Ri ght, borderCol or Top and border Col or Bott om
(see Section 19.1.7.1, “Color Values” for color values)

* borderwWdth — The width of the border. Individual border sides
can be specified using borderWdthLeft, border Wdt hRi ght,
bor der W dt hTop and bor der W dt hBot t om

Usage

<f:.facet name="header">
<p:font size="12">
<p:footer borderWidthTop="1" borderColorTop="blue"
borderWidthBottom="0" alignment="center">
Why Seam? [<p:pageNumber />]
</p:footer>
</p:font>
</f:facet>

Description

The current page number can be placed inside of a header or footer
using the p: pageNunber tag. The page number tag can only be used
in the context of a header or footer and can only be used once.

Usage

<p:footer borderWidthTop="1" borderColorTop="blue"
borderWidthBottom="0" alignment="center">
Why Seam? [<p:pageNumber />]
</p:footer>

and Sections

Description

If the generated document follows a book/article structure, the
p: chapt er and p: sect i on tags can be used to provide the necessary

318

Chapters and Sections

structure. Sections can only be used inside of chapters, but they may
be nested arbitrarily deep. Most PDF viewers provide easy navigation
between chapters and sections in a document.

° Note

You cannot include a chapter into another chapter, this
can be done only with section(s).

Attributes

» al i gnment — The alignment of the header/footer box section. (see
Section 19.1.7.2, “Alignment Values” for alignment values)

* nunber — The chapter/section number. Every chapter/section should
be assigned a number.

e nunber Dept h — The depth of numbering for chapter/section. All
sections are numbered relative to their surrounding chapter/sections.
The fourth section of the first section of chapter three would be section
3.1.4, if displayed at the default number depth of three. To omit the
chapter number, a number depth of 2 should be used. In that case,
the section number would be displayed as 1.4.

° Note

Chapter(s) can have a number or without it by setting
numberDepth to 0.

Usage

<p:document xmlIns:p="http://jboss.org/schema/seam/pdf"
titte="Hello">

<p:chapter number="1">
<p:title><p:paragraph>Hello</p:paragraph></p:title>
<p:paragraph>Hello #{user.name}!</p:paragraph>
</p:chapter>

<p:chapter number="2">
<p:title><p:paragraph>Goodbye</p:paragraph></p:title>
<p:paragraph>Goodbye #{user.name}.</p:paragraph>

319

Chapter 19. iText PDF generation

<p: header >

19.1.5. Lists

</p:chapter>

</p:document>

Description

Any chapter or section can containap: ti t | e. The title will be displayed
next to the chapter/section number. The body of the title may contain
raw text or may be a p: par agr aph.

List structures can be displayed using the p:1ist and p:listltemtags. Lists may contain
arbitrarily-nested sublists. List items may not be used outside of a list. The following document
uses the ui : r epeat tag to display a list of values retrieved from a Seam component.

<p:document xmlIns:p="http://jboss.org/schema/seam/pdf"
xmlins:ui="http://java.sun.com/jsf/facelets"

title="Hello">

<p:list style="numbered">
<ui:repeat value="#{documents}" var="doc">
<p:listitem>#{doc.name}</p:listitem>

</ui:repeat>
</p:list>
</p:document>

<p:list>

Attributes

styl e — The ordering/bulleting style of list. One of: NUMBERED,
LETTERED, GREEK, ROMAN, ZAPFDI NGBATS, ZAPFDI NGBATS_NUMBER. If
no style is given, the list items are bulleted.

Ii st Symbol — For bulleted lists, specifies the bullet symbol.
i ndent — The indentation level of the list.

| ower Case — For list styles using letters, indicates whether the letters
should be lower case.

char Number — For ZAPFDINGBATS, indicates the character code
of the bullet character.

nunber Type — For ZAPFDINGBATS NUMBER, indicates the
numbering style.

320

Tables

Usage

<p:list style="numbered">
<ui:repeat value="#{documents}" var="doc">
<p:listitem>#{doc.name}</p:listitem>
</ui:repeat>
</p:list>
<p:listltemr Description
p: 1'i st1temsupports the following attributes:
Attributes
* alignment — The alignment of the list item. (See Section 19.1.7.2,
“Alignment Values” for possible values)
e indentationLeft — The left indentation amount.
* indentati onRi ght — The right indentation amount.

* |istSynbol — Overrides the default list symbol for this list item.

Usage

19.1.6. Tables

Table structures can be created using the p: t abl e and p: cel | tags. Unlike many table structures,
there is no explicit row declaration. If a table has 3 columns, then every 3 cells will automatically
form a row. Header and footer rows can be declared, and the headers and footers will be repeated
in the event a table structure spans multiple pages.

<p:tabl e> Description
p: t abl e supports the following attributes.

Attributes

* col ums — The number of columns (cells) that make up a table row.

* wi dt hs — The relative widths of each column. There should be one
value for each column. For example: widths="2 1 1" would indicate

321

Chapter 19. iText PDF generation

that there are 3 columns and the first column should be twice the size
of the second and third column.

* header Rows — The initial number of rows which are considered to
be headers or footer rows and should be repeated if the table spans
multiple pages.

e footerRows — The number of rows that are considered to be
footer rows. This value is subtracted from the header Rows value. If
document has 2 rows which make up the header and one row that
makes up the footer, header Rows should be set to 3 and f oot er Rows
should be setto 1

e wi dt hPer cent age — The percentage of the page width that the table
spans.

» horizontal Ali gnment — The horizontal alignment of the table. (See
Section 19.1.7.2, “Alignment Values” for possible values)

e ski pFirst Header
* runDirection

* | ockedWdth

* splitRows

e spaci ngBefore — The blank space to be inserted before the
element.

» spaci ngAft er — The blank space to be inserted after the element.
e extendLast Row

* header sl nEvent

e splitlLate

* keepToget her

Usage

<p:table columns="3" headerRows="1">
<p:cell>name</p:cell>
<p:cell>owner</p:cell>
<p:cell>size</p:cell>
<ui:repeat value="#{documents}" var="doc">
<p:cell>#{doc.name}</p:cell>
<p:cell>#{doc.user.name}</p:cell>

322

Tables

<p:cel |l >

<p:cell>#{doc.size}</p:cell>

</ui:repeat>

</p:table>

Description
p: cel I supports the following attributes.

Attributes

col span — Cells can span more than one column by declaring a
col span greater than 1. Tables do not have the ability to span across

multiple rows.

hori zont al Ali gnnent — The horizontal alignment of the cell. (see

Section 19.1.7.2, “Alignment Values” for possible values)

vertical Alignnent — The vertical alignment of the cell. (see

Section 19.1.7.2, “Alignment Values” for possible values)

paddi ng — Padding on a given side can also be specified using
paddi ngLef t, paddi ngRi ght, paddi ngTop and paddi ngBot t om

useBor der Paddi ng
| eadi ng

mul tipliedLeadi ng
i ndent
vertical Ali gnment
ext raPar agr aphSpace
fi xedHei ght

noW ap

m ni munHei ght

fol | owi ngl ndent

ri ghtl ndent
spaceCharRati o
runDirection

ar abi cOpti ons

323

Chapter 19. iText PDF generation

e useAscender
e grayFill
e rotation

Usage

<p:cell>...</p:cell>

19.1.7. Document Constants
This section documents some of the constants shared by attributes on multiple tags.
19.1.7.1. Color Values

Several ways of specifying colors are provided. A limited number of colors are supported by name.
They are: whi t e, gray, | i ght gray, dar kgr ay, bl ack, red, pi nk, yel | ow, gr een, magent a, cyan
and bl ue. Colors can be specified as an integer value, as defined by j ava. awt . Col or. Finally
a color value may be specified as rgb(r, g, b) orrgb(r, g, b, a) with the red, green, blue alpha
values specified as an integer between 0 and 255 or as a floating point percentages followed by
a '%' sign.

19.1.7.2. Alignment Values

Where alignment values are used, the Seam PDF supports the following horizontal alignment
values: | eft, right, center,justify andjustifyall. The vertical alignment values are t op,
m ddl e, bot t om and basel i ne.

19.2. Charting

Charting support is also provided with jboss-seam pdf.jar. Charts can be used in PDF
documents or can be used as images in an HTML page. Charting requires the JFreeChart library
(jfreechart.jar and jcomon.jar) to be added to the VEB- | NF/ | i b directory. Four types of
charts are currently supported: pie charts, bar charts and line charts. Where greater variety or
control is needed, it is possible to construct charts using Java code.

<p: chart> Description
Displays a chart created in Java by a Seam component.

Attributes

* chart — The chart object to display.

» hei ght — The height of the chart.

324

Charting

<p: barchart >

e wi dt h — The width of the chart.

Usage

<p:chart chart="#{mycomponent.chart}" width="500" height="500" />

Description

Displays a bar chart.

Attributes

e chart — The chart object to display, if programmatic chart creation
is being used.

» dataset — The dataset to be displayed, if programmatic dataset is
being used.

* border Vi si bl e — Controls whether or not a border is displayed
around the entire chart.

* border Pai nt — The color of the border, if visible;

* border BackgroundPai nt — The default background color of the
chart.

e border Stroke —
e dommi nAxi sLabel — The text label for the domain axis.

* donmi nLabel Posi ti on — The angle of the domain axis category
labels. Valid values are STANDARD, UP_45, UP_90, DOWN 45 and
DOWN_90. Alternatively, the value can the positive or negative angle
in radians.

* domai nAxi sPai nt — The color of the domain axis label.

e domai nGri dl i nesVi si bl e— Controls whether or not gridlines for the
domain axis are shown on the chart.

* domai nGri dl i nePai nt — The color of the domain gridlines, if visible.

e donmi nGi dl i neSt r oke — The stroke style of the domain gridlines,
if visible.

* hei ght — The height of the chart.

325

Chapter 19. iText PDF generation

wi dt h — The width of the chart.

i s3D— A boolean value indicating that the chart should be rendered
in 3D instead of 2D.

| egend — A boolean value indicating whether or not the chart should
include a legend.

| egendl t enPai nt — The default color of the text labels in the legend.

| egendl t emBackgoundPai nt — The background color for the legend,
if different from the chart background color.

| egendQut | i nePai nt — The color of the border around the legend.

orientati on — The orientation of the plot, either vertical (the
default) or hori zont al .

pl ot Backgr oundPai nt — The color of the plot background.

pl ot Backgr oundAl pha— The alpha (transparency) level of the
plot background. It should be a number between 0 (completely
transparent) and 1 (completely opaque).

pl ot For egr oundAl pha— The alpha (transparency) level of the plot.
It should be a number between 0 (completely transparent) and 1
(completely opaque).

pl ot Qut | i nePai nt — The color of the range gridlines, if visible.

pl ot QutlineStroke — The stroke style of the range gridlines, if
visible.

rangeAxi sLabel — The text label for the range axis.
rangeAxi sPai nt — The color of the range axis label.

rangeG i dl i nesVi si bl e— Controls whether or not gridlines for the
range axis are shown on the chart.

rangeG i dl i nePai nt — The color of the range gridlines, if visible.

rangeGidl i neSt roke — The stroke style of the range gridlines, if
visible.

titl e — The chart title text.
titl ePai nt — The color of the chart title text.

titl eBackgroundPai nt — The background color around the chart
title.

326

Charting

<p:linechart>

e wi dt h — The width of the chart.

Usage

<p:barchart titte="Bar Chart" legend="true"

width="500" height="500">
<p:series key="Last Year">
<p:data columnKey="Joe" value="100" />
<p:data columnKey="Bob" value="120" />
</p:series> <p:series key="This Year">
<p:data columnKey="Joe" value="125" />
<p:data columnKey="Bob" value="115" />
</p:series>

</p:barchart>

Description
Displays a line chart.

Attributes

chart — The chart object to display, if programmatic chart creation
is being used.

dat aset — The dataset to be displayed, if programmatic dataset is
being used.

bor der Vi si bl e — Controls whether or not a border is displayed
around the entire chart.

bor der Pai nt — The color of the border, if visible;

bor der Backgr oundPai nt — The default background color of the
chart.

bor der St r oke —
domai nAxi sLabel — The text label for the domain axis.

domai nLabel Posi ti on — The angle of the domain axis category
labels. Valid values are STANDARD, UP_45, UP_90, DOWN 45 and
DOWN_90. Alternatively, the value can the positive or negative angle
in radians.

domai nAxi sPai nt — The color of the domain axis label.

327

Chapter 19. iText PDF generation

domai nGri dl i nesVi si bl e— Controls whether or not gridlines for the
domain axis are shown on the chart.

donmai nG'i dl i nePai nt — The color of the domain gridlines, if visible.

domai nGri dl i neSt r oke — The stroke style of the domain gridlines,
if visible.

hei ght — The height of the chart.
wi dt h — The width of the chart.

i s3D— A boolean value indicating that the chart should be rendered
in 3D instead of 2D.

| egend — A boolean value indicating whether or not the chart should
include a legend.

| egendl t enPai nt — The default color of the text labels in the legend.

| egendl t emBackgoundPai nt — The background color for the
legend, if different from the chart background color.

| egendQut | i nePai nt — The color of the border around the legend.

orientati on — The orientation of the plot, either verti cal (the
default) or hori zont al .

pl ot Backgr oundPai nt — The color of the plot background.

pl ot Backgr oundAl pha — The alpha (transparency) level of the
plot background. It should be a number between 0 (completely
transparent) and 1 (completely opaque).

pl ot For egr oundAl pha — The alpha (transparency) level of the plot.
It should be a number between 0 (completely transparent) and 1
(completely opaque).

pl ot Qut | i nePai nt — The color of the range gridlines, if visible.

pl ot Qutli neStroke — The stroke style of the range gridlines, if
visible.

rangeAxi sLabel — The text label for the range axis.
rangeAxi sPai nt — The color of the range axis label.

rangeG i dl i nesVi si bl e — Controls whether or not gridlines for the
range axis are shown on the chart.

rangeG i dl i nePai nt — The color of the range gridlines, if visible.

328

Charting

<p: pi echart >

e rangeGidl i neStroke — The stroke style of the range gridlines, if
visible.

e titl e — The chart title text.
* titlePai nt — The color of the chart title text.

e titleBackgroundPai nt — The background color around the chart
title.

e wi dt h — The width of the chart.

Usage

<p:linechart title="Line Chart"
width="500" height="500">
<p:series key="Prices">
<p:data columnKey="2003" value="7.36" />
<p:data columnKey="2004" value="11.50" />
<p:data columnKey="2005" value="34.625" />
<p:data columnKey="2006" value="76.30" />
<p:data columnKey="2007" value="85.05" />
</p:series>
</p:linechart>

Description

Displays a pie chart.

Attributes

e titl e — The chart title text.

e chart — The chart object to display, if programmatic chart creation
is being used.

» dataset — The dataset to be displayed, if programmatic dataset is
being used.

* | abel — The default label text for pie sections.

* | egend — A boolean value indicating whether or not the chart should
include a legend. Default value is true

* i s3D—A boolean value indicating that the chart should be rendered
in 3D instead of 2D.

329

Chapter 19. iText PDF generation

| abel Li nkMar gi n — The link margin for labels.
| abel Li nkPai nt — The paint used for the label linking lines.
| abel Li nkSt r oke — he stroke used for the label linking lines.

| abel Li nksVi si bl e — A flag that controls whether or not the label
links are drawn.

| abel Qut | i nePai nt — The paint used to draw the outline of the
section labels.

| abel QutlineStroke — The stroke used to draw the outline of the
section labels.

| abel ShadowPai nt — The paint used to draw the shadow for the
section labels.

| abel Pai nt — The color used to draw the section labels

| abel Gap — The gap between the labels and the plot as a percentage
of the plot width.

| abel Backgr oundPai nt — The color used to draw the background
of the section labels. If this is null, the background is not filled.

st art Angl e — The starting angle of the first section.

circular — A boolean value indicating that the chart should be
drawn as a circle. If false, the chart is drawn as an ellipse. The default
is true.

directi on — The direction the pie section are drawn. One of:
cl ockwi se or anti cl ockwi se. The default is cl ockwi se.

secti onQut | i nePai nt — The outline paint for all sections.
sectionQut!ineStroke — The outline stroke for all sections

sectionQut!inesVisi bl e — Indicates whether an outline is drawn
for each section in the plot.

baseSecti onQut | i nePai nt — The base section outline paint.
baseSect i onPai nt — The base section paint.

baseSecti onQut | i neSt r oke — The base section outline stroke.

Usage

330

Charting

<p:series>

<p: dat a>

<p:piechart title="Pie Chart" circular="false" direction="anticlockwise"
startAngle="30" labelGap="0.1" labelLinkPaint="red">
<p:series key="Prices">
<p:data key="2003" columnKey="2003" value="7.36" />
<p:data key="2004" columnKey="2004" value="11.50" />
<p:data key="2005" columnKey="2005" value="34.625" />
<p:data key="2006" columnKey="2006" value="76.30" />
<p:data key="2007" columnKey="2007" value="85.05" />
</p:series>
</p:piechart>

Description

Category data can be broken down into series. The series tag is used
to categorize a set of data with a series and apply styling to the entire
series.

Attributes

» key — The series name.
* seriesPai nt — The color of each item in the series
e seriesQutlinePai nt — The outline color for each item in the series.

* seriesQutlineStroke — The stroke used to draw each item in the
series.

» seriesVisible — A boolean indicating if the series should be
displayed.

* seriesVisi bl el nLegend — A boolean indicating if the series should
be listed in the legend.

Usage

<p:series key="datal">
<ui:repeat value="#{data.pieDatal}" var="item">
<p:data columnKey="#{item.name}" value="#{item.value}" />
</ui:repeat>
</p:series>

Description

The data tag describes each data point to be displayed in the graph.

331

Chapter 19. iText PDF generation

Attributes

* key — The name of the data item.

» series — The series name, when not embedded inside a

<p:series>.
* val ue — The numeric data value.

» expl odedPer cent — For pie charts, indicates how exploded a from
the pie a piece is.

e sectionQutlinePai nt — For bar charts, the color of the section
outline.

* sectionQutlineStroke — For bar charts, the stroke type for the
section outline.

* sectionPai nt — For bar charts, the color of the section.

Usage

<p:data key="foo" value="20" sectionPaint="#111111"
explodedPercent=".2" />

<p:data key="bar" value="30" sectionPaint="#333333" />

<p:data key="baz" value="40" sectionPaint="#555555"
sectionOutlineStroke="my-dot-style" />

<p: col or > Description

The color component declares a color or gradient than can be
referenced when drawing filled shapes.

Attributes

» col or — The color value. For gradient colors, this the starting color.
Section 19.1.7.1, “Color Values”

* col or 2 — For gradient colors, this is the color that ends the gradient.

* poi nt — The co-ordinates where the gradient color begins.

e poi nt 2 — The co-ordinates where the gradient color ends.

Usage

332

Bar codes

<p:color id="foo" color="#0ff00f"/>
<p:color id="bar" color="#ffO0ff" color2="#00ff00"
point="50 50" point2="300 300"/>

<p: stroke> Description
Describes a stroke used to draw lines in a chart.

Attributes

wi dt h — The width of the stroke.
e cap — The line cap type. Valid values are but t, r ound and squar e
e joi n— The line join type. Valid values are i t er, r ound and bevel

* mterlLinmt — For miter joins, this value is the limit of the size of
the join.

e dash — The dash value sets the dash pattern to be used to draw
the line. The space separated integers indicate the length of each
alternating drawn and undrawn segments.

* dashPhase — The dash phase indicates the offset into the dash
pattern that the line should be drawn with.

Usage

<p:stroke id="dot2" width="2" cap="round" join="bevel" dash="2 3" />

19.3. Bar codes

Seam can use iText to generate barcodes in a wide variety of formats. These barcodes can be
embedded in a PDF document or displayed as an image on a web page. Note that when used
with HTML images, barcodes can not currently display barcode text in the barcode.

<p: bar Code> Description
Displays a barcode image.
Attributes
» type — A barcode type supported by iText. Valid values include:

EAN13, EAN8, UPCA, UPCE, SUPP2, SUPP5, POSTNET, PLANET, CODE128,
CODE128_UCC, CODE128_RAWand CODABAR.

333

Chapter 19. iText PDF generation

e code — The value to be encoded by the barcode.
» xpos — For PDFs, the absolute y position of the barcode on the page.
» ypos — For PDFs, the absolute y position of the barcode on the page.

* rot Degrees — For PDFs, the rotation factor of the barcode in
degrees.

* bar Hei ght — The height of the bars in the barCode
* mi nBar W dt h — The minimum bar width.

e barMuil tiplier — The bar multiplier for wide bars or the distance
between bars for PGSTNET and PLANET code.

* bar Col or — The color to draw the bars.

* text Col or — The color of any text on the barcode.
* text Si ze — The size of the barcode text, if any.

* altText — The al t text for HTML image links.

Usage

<p:barCode type="code128"
barHeight="80"
textSize="20"
code="(10)45566(17)040301"
codeType="codel28 ucc"
altText="My BarCode" />

19.4. Fill-in-forms

If you have a complex, pre-generated PDF with named fields, you can easily fill in the values from
your application and present it to the user.

<p: fornme Description
Defines a form template to populate
Attributes
* URL — An URL pointing to the PDF file to use as a template. If the
value has no protocol part (://), the file is read locally.

» fil enane — The filename to use for the generated PDF file.

334

Rendering Swing/AWT components

e exportKey — Place the generated PDF file in a DocumentData
object under the specified key in the event context. If set, no redirect
will occur.

<p:field> Description
Connects a field name to its value

Attributes

* name — The name of the field
* val ue — The value of the field

* readOnl y — Should the field be read-only? Defaults to true.

<p:form
xmlns:p="http://jpboss.org/schema/seam/pdf"
URL="http://localhost/Concept/form.pdf">
<p:field name="person.name" value="Me, myself and I"/>
</p:form>

19.5. Rendering Swing/AWT components

Seam now provides experimental support for rendering Swing components into a PDF image.
Some Swing look and feels supports, notably ones that use native widgets, will not render
correctly.

<p: swi ng> Description
Renders a Swing component into a PDF document.

Attributes

» wi dt h — The width of the component to be rendered.
» hei ght — The height of the component to be rendered.

e conponent — An expression whose value is a Swing or AWT
component.

Usage

335

Chapter 19. iText PDF generation

<p:swing width="310" height="120" component="#{aButton}" />

19.6. Configuring iText

Document generation works out of the box with no additional configuration needed. However,
there are a few points of configuration that are needed for more serious applications.

The default implementation serves PDF documents from a generic URL, / seam doc. seam
Many browsers (and users) would prefer to see URLs that contain the actual PDF name like
/ myDocurnent . pdf . This capability requires some configuration. To serve PDF files, all *. pdf
resources should be mapped to the DocumentStoreServlet:

<servlet>
<servlet-name>Document Store Servlet</serviet-name>
<servlet-class>org.jboss.seam.document.DocumentStoreServlet</serviet-class>
</servlet>

<servlet-mapping>
<servlet-name>Document Store Servlet</serviet-name>
<url-pattern>*.pdf</url-pattern>

</servlet-mapping>

The use- ext ensi ons option on the document store component completes the functionality by
instructing the document store to generate URLs with the correct flename extension for the
document type being generated.

<components xmlns="http://jboss.org/schema/seam/components"
xmlns:document="http://jboss.org/schema/seam/document"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="
http://jboss.org/schema/seam/document http://jboss.org/schema/seam/document-2.3.xsd
http://jboss.org/schema/seam/components http://jboss.org/schema/seam/
components-2.3.xsd">
<document:document-store use-extensions="true"/>
</components>

The document store stores documents in conversation scope, and documents will expire when
the conversation ends. At that point, references to the document will be invalid. You can specify
a default view to be shown when a document does not exist using the error - page property of
the docunent St or e.

336

Further documentation

<document:document-store use-extensions="true" error-page="/documentMissing.seam" />

19.7. Further documentation

For further information on iText, see:

 iText Home Page [http://www.lowagie.com/iText/]

 iText in Action [http://www.manning.com/lowagie/]

337

http://www.lowagie.com/iText/
http://www.lowagie.com/iText/
http://www.manning.com/lowagie/
http://www.manning.com/lowagie/

338

Chapter 20.

The Microsoft® Excel® spreadsheet
application

Seam also supports generation of the Microsoft® Excel® spreadsheet application spreadsheets
through the excellent JExcelAPl [http://jexcelapi.sourceforge.net/] library. The generated
document is compatible with the Microsoft® Excel® spreadsheet application versions 95, 97,
2000, XP and 2003. Currently a limited subset of the library functionality is exposed but the
ultimate goal is to be able to do everything the library allows for. Please refer to the JExcelAPI
documentation for more information on capabilities and limitations.

20.1. The Microsoft® Excel® spreadsheet application
support

The Microsoft® Excel® spreadsheet application j boss- seam excel . j ar. This JAR contains the
the Microsoft® Excel® spreadsheet application JSF controls, which are used to construct views
that can render the document, and the DocumentStore component, which serves the rendered
document to the user. To include the Microsoft® Excel® spreadsheet application support in
your application, include j boss- seam excel . j ar in your VEB- | NF/ | i b directory along with the
j xI.jar JAR file. Furthermore, you need to configure the DocumentStore servlet in your web.xml

The Microsoft® Excel® spreadsheet application Seam module requires the use of Facelets as the
view technology. Additionally, it requires the use of the seam-ui package.

The exanpl es/ excel project contains an example of the Microsoft® Excel® spreadsheet
application support in action. It demonstrates proper deployment packaging, and it shows the
exposed functionality.

Customizing the module to support other kinds of the Microsoft® Excel® spreadsheet application
spreadsheet API's has been made very easy. Implement the Excel Wor kbook interface, and
register in components.xml.

<excel:excelFactory>
<property name="implementations">
<key>myExcelExporter</key>
<value>my.excel.exporter.ExcelExport</value>
</property>
</excel:excelFactory>

and register the excel namespace in the components tag with

339

http://jexcelapi.sourceforge.net/
http://jexcelapi.sourceforge.net/

Chapter 20. The Microsoft® EX...

xmins:excel="http://jboss.org/schema/seam/excel"

Then set the UIWorkbook type to nyExcel Export er and your own exporter will be used. Default
is "jxI", but support for CSV has also been added, using the type "csv".

See Section 19.6, “Configuring iText” for information on how to configure the document servlet for
serving the documents with an .xls extension.

If you are having problems accessing the generated file under IE (especially with https), make
sure you are not using too strict restrictions in the browser, too strict security constraint in web.xml
or a combination of both.

20.2. Creating a simple workbook

Basic usage of the worksheet support is simple; it is used like a familiar <h: dat aTabl e> and you
can bind to a Li st, Set, Map, Array or Dat avbdel .

<e:workbook xmlIns:e="http://jpboss.org/schema/seam/excel">
<e:worksheet>
<e:cell column="0" row="0" value="Hello world!"/>
</e:worksheet>
</e:workbook>

That's not terribly useful, so lets have a look at a more common case:

<e:workbook xmlIns:e="http://jpboss.org/schema/seam/excel">
<e:worksheet value="#{data}" var="item">
<e:column>
<e:cell value="#{item.value}"/>
</e:column>
</e:worksheet>
</e:workbook>

340

Workbooks

First we have the top-level workbook element which serves as the container and it doesn't have
any attributes. The child-element worksheet has two attributes; value="#{data}" is the EL-binding
to the data and var="item" is the name of the current item. Nested inside the worksheet is a single
column and within it you see the cell which is the final bind to the data within the currently iterated

item

This is all you know to get started dumping your data to worksheets!

20.3. Workbooks

Workbooks are the top-level parents of worksheets and stylesheet links.

<e: wor kbook>

Attributes

t ype — Defines which export module to be used. The value is a string
and can be either "jxI" or "csv". The default is "jxI".

tenpl at eURI — A template that should be used as a basis for the
workbook. The value is a string (URI).

arrayG owSi ze — The amount of memory by which to increase
the amount of memory allocated to storing the workbook data. For
processes reading many small workbooks inside a WAS it might be
necessary to reduce the default size. Default value is 1 megabyte.
The value is a number (bytes).

aut oFi | ter Di sabl ed — Should autofiltering be disabled?. The
value is a boolean.

cel | val i dati onDi sabl ed — Should cell validation be ignored? The
value is a boolean.

charact erSet — The character set. This is only used when the
spreadsheet is read, and has no effect when the spreadsheet is
written. The value is a string (character set encoding).

dr awi ngsDi sabl ed — Should drawings be disabled? The value is a
boolean.

excel Di spl ayLanguage — The language in which the generated file
will display. The value is a string (two character ISO 3166 country
code).

excel Regi onal Set ti ngs — The regional settings for the generated
excel file. The value is a string (two character ISO 3166 country code).

f or mul aAdj ust — Should formulas be adjusted? The value is a
boolean.

341

Chapter 20. The Microsoft® EX...

gcDhi sabl ed — Should garbage collection be disabled? The value is
a boolean.

i gnor eBl anks — Should blanks be ignored? The value is a boolean.

i nitial FileSize— The initial amount of memory allocated to store
the workbook data when reading a worksheet. For processes reading
many small workbooks inside a WAS it might be necessary to reduce
the default size. Default value is 5 megabytes. The value is a number
(bytes).

| ocal e — The locale used by JExcelApi to generate the spreadsheet.
Setting this value has no effect on the language or region of the
generated excel file. The value is a string.

mer gedCel | Checki ngDi sabl ed — Should merged cell checking be
disabled? The value is a boolean.

namesDi sabl ed — Should handling of names be disabled? The value
is a boolean.

propertySets — Should any property sets be enabled (such as
macros) to be copied along with the workbook? Leaving this feature
enabled will result in the JXL process using more memory. The value
is a boolean.

rational i zati on — Should the cell formats be rationalized before
writing out the sheet? The value is a boolean. Default is true.

supr ess\ar ni ngs — Should warnings be suppressed?. Due to the
change in logging in version 2.4, this will now set the warning
behaviour across the JVM (depending on the type of logger used).
The value is a boolean.

tenporaryFileDuringWiteDirectory — Used in conjunction
with the useTenporaryFi | eDuri ngWite setting to set the target
directory for the temporary files. This value can be NULL, in which
case the normal system default temporary directory is used instead.
The value is a string (the directory to which temporary files should
be written).

useTenpor ar yFi | eDuri ngW it e — Should a temporary file is used
during the generation of the workbook. If not set, the workbook
will take place entirely in memory. Setting this flag involves
an assessment of the trade-offs between memory usage and
performance. The value is a boolean.

342

Worksheets

e wor kbookPr ot ected — Should the workbook be protected? The
value is a boolean.

» fil enane — The filename to use for the download. The value is a
string. Please note that if you map the DocumentServlet to some
pattern, this file extension must also match.

e exportKey — A key under which to store the resulting data in a
DocumentData object under the event scope. If used, there is no
redirection.

Child elements
e <e:link/>— Zero or more stylesheet links (see Section 20.14.1,
“Stylesheet links”).

* <e:wor ksheet/> — Zero or more worksheets (see Section 20.4,
“Worksheets”).

Facets

* none

<e:workbook>
<e:worksheet>
<e:cell value="Hello World" row="0" column="0"/>
</e:worksheet>
<e:workbook>

defines a workbook with a worksheet and a greeting at A1

20.4. Worksheets

Worksheets are the children of workbooks and the parent of columns and worksheet commands.
They can also contain explicitly placed cells, formulas, images and hyperlinks. They are the pages
that make up the workbook.

<e: wor ksheet > » value — An EL-expression to the backing data. The value is a
string. The target of this expression is examined for an Iterable. Note
that if the target is a Map, the iteration is done over the Map.Entry

343

Chapter 20. The Microsoft® EX...

entrySet(), so you should use a .key or .value to target in your
references.

var — The current row iterator variable name that can later be
referenced in cell value attributes. The value is a string.

nanme — The name of the worksheet. The value is a string. Defaults to
Sheet# where # is the worksheet index. If the given worksheet name
exists, that sheet is selected. This can be used for merging several
data sets into a single worksheet, just define the same name for them
(using st art Rowand st art Col to make sure that they don't occupy
the same space).

st art Row — Defines the starting row for the data. The value is a
number. Used for placing the data in other places than the upper-
left corner (especially useful if having multiple data sets for a single
worksheet). The defaults is 0.

st art Col unm — Defines the starting column for the data. The value
is a number. Used for placing the data in other places than the upper-
left corner (especially useful if having multiple data sets for a single
worksheet). The default is O.

aut omati cFormul aCal cul ation — Should formulas be
automatically calculated? The value is a boolean.

bottomvargin — The bottom margin. The value is a number
(inches).

copi es — The number of copies. The value is a number.

def aul t Col umW dt h — The default column width. The value is a
number (characters * 256).

def aul t RowHei ght — The default row height. The value is a number
(1/20 of a point).

di spl ayZer oVal ues — Should zero-values be displayed? The value
is a boolean.

fitHei ght — The number of pages vertically that this sheet will be
printed into. The value is a number.

fit ToPages — Should printing be fit to pages? The value is a
boolean.

fit W dt h— The number of pages widthwise which this sheet should
be printed into. The value is a number.

344

Worksheets

f oot er Mar gi n — The margin for any page footer. The value is a
number (inches).

header Mar gi n — The margin for any page headers. The value is a
number (inches).

hi dden — Should the worksheet be hidden? The value is a boolean.

hori zontal Centre — Should the worksheet be centered
horizontally? The value is a boolean.

hori zont al Freeze — The row at which the pane is frozen vertically.
The value is a number.

hori zont al Pri nt Resol uti on — The horizontal print resolution. The
value is a number.

| ef t Mar gi n — The left margin. The value is a number (inches).

nor nmal Magni fi cati on — The normal magnification factor (not zoom
or scale factor). The value is a number (percentage).

orientati on — The paper orientation for printing this sheet. The
value is a string that can be either "landscape" or "portrait".

pageBr eakPr evi ewivagni fication — The page break preview
magnification factor (not zoom or scale factors). The value is a
number (percentage).

pageBr eakPr evi ewivbde — Show page in preview mode? The value
is a boolean.

pageSt art — The page number at which to commence printing. The
value is a number.

paper Si ze — The paper size to be used when printing this sheet.
The value is a string that can be one of "a4", "a3", "letter", "legal”
etc (see |xl.format.PaperSize [http://jexcelapi.sourceforge.net/
resources/javadocs/current/docs/jxl/format/PaperSize.html]).

passwor d — The password for this sheet. The value is a string.

passwor dHash — The password hash - used only when copying
sheets. The value is a string.

print GidLi nes — Should grid lines be printed? The value is a
boolean.

pri nt Header s — Should headers be printed? The value is a boolean.

345

http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/format/PaperSize.html
http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/format/PaperSize.html
http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/format/PaperSize.html

Chapter 20. The Microsoft® EX...

e sheet Prot ect ed — Should the sheet be protected (read-only)? The
value is a boolean.

* recal cul at eFor nmul asBef or eSave — Should the formulas be re-
calculated when the sheet is saved? The value is a boolean. Default
value is false.

e ri ght Mar gi n — The right margin. The value is a number (inches).

» scal eFact or — The scale factor for this sheet to be used when
printing. The value is a number (percent).

* sel ected — Should the sheet be selected when the workbook
opens? The value is a boolean.

* showGidLi nes — Should gridlines be shown? The value is a
boolean.

e topMar gi n — The top margin. The value is a number (inches).
* verti cal Centre — Center vertically? The value is a boolean.

» vertical Freeze — The row at which the pane is frozen vertically.
The value is a number.

e vertical PrintResolution — The vertical print resolution. The
value is a number.

* zoonFact or — The zoom factor. Do not confuse zoom factor (which
relates to the on screen view) with scale factor (which refers to the
scale factor when printing). The value is a number (percentage).

Child elemenents
e <e:printArea/> — Zero or more print area definitions (see
Section 20.11, “Print areas and titles”).

e <erprintTitle/> — Zero or more print title definitions (see
Section 20.11, “Print areas and titles”).

e <e: header Foot er/ > — Zero or more header/footer definitions (see
Section 20.10, “Headers and footers”).

» Zero or more worksheet commands (see Section 20.12, “Worksheet
Commands”).

Facets

346

Columns

» header — Contents that will be placed at the top of the data block,
above the column headers (if any).

 f oot er — Contents that will be placed at the bottom of the data block,
below the column footers (if any).

<e:workbook>
<e:worksheet name="foo" startColumn="1" startRow="1">
<e:column value="#{personList}" var="person">
<f:facet name="header">
<e:cell value="Last name"/>
</f:facet>
<e:cell value="#{person.lastName}"/>
</e:column>
</e:worksheet>
<e:workbook>

defines a worksheet with the name "foo", starting at B2.

20.5. Columns

Columns are the children of worksheets and the parents of cells, images, formulas and hyperlinks.
They are the structure that control the iteration of the worksheet data. See Section 20.14.5,
“Column settings” for formatting.

<e: col um> Attributes

¢* none

Child elemenents

» <e:cel | />— Zero or more cells (see Section 20.6, “Cells”).

o <e:fornula/> — Zero or more formulas (see Section 20.7,
“Formulas™).

e <e:image/ > — Zero or more images (see Section 20.8, “Images”).

» <e: hyperLink/> — Zero or more hyperlinks (see Section 20.9,
“Hyperlinks”).

347

Chapter 20. The Microsoft® EX...

Facets

* header — This facet can/will contain one <e: cel | >, <e: f or nul a>
, <e: i mage> or <e: hyper Li nk> that will be used as header for the
column.

» footer — This facet can/will contain one <e: cel | >, <e: f or nul a>
, <e:image> or <e: hyper Li nk> that will be used as footer for the
column.

<e:workbook>
<e:worksheet value="#{personList}" var="person">
<e:column>
<f:facet name="header">
<e:cell value="Last name"/>
</f:facet>
<e:cell value="#{person.lastName}"/>
</e:column>
</e:worksheet>
<e:workbook>

defines a column with a header and an iterated output

20.6. Cells

Cells are nested within columns (for iteration) or inside worksheets (for direct placement using the
col umm and r ow attributes) and are responsible for outputting the value (usually through an EL-
expression involving the var -attribute of the datatable. See ???

<e:cell > Attributes

* col um — The column where to place the cell. The default is the
internal counter. The value is a number. Note that the value is 0-
based.

* row — The row where to place the cell. The default is the internal
counter. The value is number. Note that the value is 0-based.

» val ue — The value to display. Usually an EL-expression referencing
the var-attribute of the containing datatable. The value is a string.

348

Validation

e comment — A comment to add to the cell. The value is a string.

» conment Hei ght — The height of the comment. The value is a number
(in pixels).

e comment Wdt h — A width of the comment. The value is a number
(in pixels).

Child elemenents

» Zero or more validation conditions (see Section 20.6.1, “Validation™).

Facets

* none

<e:workbook>
<e:worksheet>
<e:column value="#{personList}" var="person">
<f:facet name="header">
<e:cell value="Last name"/>
</f:facet>
<e:cell value="#{person.lastName}"/>
</e:column>
</e:worksheet>
</e:workbook>

defines a column with a header and an iterated output

20.6.1. Validation

Validations are nested inside cells or formulas. They add constrains for the cell data.

<e: nuneri cVal i dat i onAttributes
* val ue — The limit (or lower limit where applicable) of the validation.
The value is a number.

* val ue2 — The upper limit (where applicable) of the validation. The
value is a number.

349

Chapter 20. The Microsoft® EX...

condi ti on — The validation condition. The value is a string.

"equal” - requires the cell value to match the one defined in the
value-attribute

"greater_equal" - requires the cell value to be greater than or equal
to the value defined in the value-attribute

"less_equal" - requires the cell value to be less than or equal to the
value defined in the value-attribute

"less_than" - requires the cell value to be less than the value
defined in the value-attribute

"not_equal" - requires the cell value to not match the one defined
in the value-attribute

"between" - requires the cell value to be between the values
defined in the value- and value2 attributes

"not_between" - requires the cell value not to be between the
values defined in the value- and value?2 attributes

Child elemenents

* none

Facets

* none

<e:workbook>
<e:worksheet>

<e:column value="#{personList}" var="person">
<e:cell value="#{person.age">
<e:numericValidation condition="between" value="4"
value2="18"/>

</e:cell>
</e:column>
</e:worksheet>
</e:workbook>

350

Validation

adds numeric validation to a cell specifying that the value must be between 4 and 18.

<e:rangeVal i dati on> Attributes

e start Col um — The starting column of the range of values to validate
against. The value is a number.

» start Row — The starting row of the range of values to validate
against. The value is a number.

* endCol umm — The ending column of the range of values to validate
against. The value is a number.

« endRow— The ending row of the range of values to validate against.
The value is a number.

Child elemenents

* none

Facets

* none

<e:workbook>
<e:worksheet>
<e:column value="#{personList}" var="person">
<e:cell value="#{person.position">
<e:rangeValidation startColumn="0" startRow="0"
endColumn="0" endRow="10"/>
</e:cell>
</e:column>
</e:worksheet>
</e:workbook>

adds validation to a cell specifying that the value must be in the values specified in range A1:A10.

<e:listValidation> Attributes

* none

351

Chapter 20. The Microsoft® EX...

Child elemenents

e Zero or nore list validation itens.

Facets

* none

e:listValidation is a just a container for holding multiple e:listValidationltem tags.

<e: | istValidationlteittributes

* val ue — A values to validate against.

Child elemenents

¢* none

Facets

¢* none

<e:workbook>
<e:worksheet>
<e:column value="#{personList}" var="person">
<e:cell value="#{person.position">
<e:listValidation>
<e:listValidationltem value="manager"/>
<e:listValidationltem value="employee"/>
</e:listValidation>
</e:cell>
</e:column>
</e:worksheet>
</e:workbook>

adds validation to a cell specifying that the value must be "manager” or "employee".

352

Format masks

20.6.2. Format masks

Format masks are defined in the mask attribute in cells or formulas. There are two types of format
masks, one for numbers and one for dates

20.6.2.1. Number masks

When encountering a format mask, first it is checked if it is in internal form, e.g "formatl",
"accounting_float" and so on (see jxl.write.NumberFormats [http://jexcelapi.sourceforge.net/
resources/javadocs/current/docs/jxl/write/NumberFormats.html]).

if the mask is not in the list, it is treated as a custom mask (see java.text.DecimalFormat [http://
java.sun.com/javase/6/docs/api/javal/text/DecimalFormat.html]). e.g "0.00" and automatically
converted to the closest match.

20.6.2.2. Date masks

When encountering a format mask, first it is checked if it is in internal form, e.g "formatl",
"format2" and so on (see jxl.write.DateFormats [http://jexcelapi.sourceforge.net/resources/
javadocs/current/docs/jxl/write/DateFormats.html]).

if the mask is not in the list, it is treated as a custom mask (see java.text.DateFormat
[http://java.sun.com/javase/6/docs/api/java/text/DateFormat.html])., e.g "dd.MM.yyyy" and
automatically converted to the closest match.

20.7. Formulas

Formulas are nested within columns (for iteration) or inside worksheets (for direct placement
using the col um and r ow attributes) and add calculations or functions to ranges of cells. They
are essentially cells, see Section 20.6, “Cells” for available attributes. Note that they can apply
templates and have own font definitions etc just as normal cells.

The formula of the cell is placed in the val ue -attribute as a normal the Microsoft® Excel®
spreadsheet application notation. Note that when doing cross-sheet formulas, the worksheets
must exist before referencing a formula against them. The value is a string.

<e:workbook>

<e:worksheet name="fooSheet">
<e:cell column="0" row="0" value="1"/>

</e:worksheet>

<e:worksheet name="barSheet">
<e:cell column="0" row="0" value="2"/>
<e:formula column="0" row="1"

value="fooSheet!Al+barSheetl!A1">

353

http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/write/NumberFormats.html
http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/write/NumberFormats.html
http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/write/NumberFormats.html
http://java.sun.com/javase/6/docs/api/java/text/DecimalFormat.html
http://java.sun.com/javase/6/docs/api/java/text/DecimalFormat.html
http://java.sun.com/javase/6/docs/api/java/text/DecimalFormat.html
http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/write/DateFormats.html
http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/write/DateFormats.html
http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/write/DateFormats.html
http://java.sun.com/javase/6/docs/api/java/text/DateFormat.html
http://java.sun.com/javase/6/docs/api/java/text/DateFormat.html

Chapter 20. The Microsoft® EX...

<e:font fontSize="12"/>
</e:formula>
</e:worksheet>
</e:workbook>

defines an formula in B2 summing cells Al in worksheets FooSheet and BarSheet

20.8. Images

Images are nested within columns (for iteration) or inside worksheets (for direct placement using
the st art Col unm/ st art Row and r owSpan/ col uimSpan attributes). The spans are optional and if
omitted, the image will be inserted without resizing.

<e: i mage> Attributes

* start Col um — The starting column of the image. The default is the
internal counter. The value is a number. Note that the value is 0-
based.

* st art Row— The starting row of the image. The default is the internal
counter. The value is a number. Note that the value is 0-based.

* col umSpan — The column span of the image. The default is one
resulting in the default width of the image. The value is a float.

e rowSpan — The row span of the image. The default is the one
resulting in the default height of the image. The value is a float.

* URI — The URI to the image. The value is a string.

Child elemenents

* none

Facets

* none

<e:workbook>
<e:worksheet>

354

Hyperlinks

<e:image startRow="0" startColumn="0" rowSpan="4"
columnSpan="4" URI="http://foo.org/logo.jpg"/>
</e:worksheet>
</e:workbook>

defines an image in A1:E5 based on the given data

20.9. Hyperlinks

Hyperlinks are nested within columns (for iteration) or inside worksheets (for direct placement
using the st art Col urm/ st art Row and endCol unm/ endRow attributes). They add link navigation
to URIs

<e: hyperlink> Attributes

e start Col um — The starting column of the hyperlink. The default is
the internal counter. The value is a number. Note that the value is
0-based.

e start Row — The starting row of the hyperlink. The default is the
internal counter. The value is a number. Note that the value is 0-
based.

¢ endCol unm — The ending column of the hyperlink. The default is the
internal counter. The value is a number. Note that the value is 0-
based.

» endRow— The ending row of the hyperlink. The default is the internal
counter. The value is a number. Note that the value is 0-based.

e URL — The URL to link. The value is a string.
e descri pti on — The description of the link. The value is a string.

Child elemenents

¢* none

Facets

¢* none

355

Chapter 20. The Microsoft® EX...

<e:workbook>
<e:worksheet>
<e:hyperLink startRow="0" startColumn="0" endRow="4"
endColumn="4" URL="http://seamframework.org"
description="The Seam Framework"/>
</e:worksheet>
</e:workbook>

defines a described hyperlink pointing to SFWK in the area A1:E5

20.10. Headers and footers

Headers and footers are children of worksheets and contain facets which in turn contains a string
with commands that are parsed.

<e: header > Attributes

* none

Child elemenents

* none

Facets

» | eft — The contents of the left header/footer part.
» center — The contents of the center header/footer part.
* ri ght — The contents of the right header/footer part.

<e:footer> Attributes

* none

Child elemenents

* none

Facets

» | eft — The contents of the left header/footer part.

356

Headers and footers

e cent er — The contents of the center header/footer part.

* ri ght — The contents of the right header/footer part.

The content of the facets is a string that can contain various #-delimited commands as follows:

#date#
#page_number#
#time#
#total_pages#
#worksheet_name#
#workbook name#
#bold#

#italics#
#underline#

#double_underline#

#outline#
#shadow#
#strikethrough#
#subscript#
#superscript#
#font_name#

#font_size#

<e:workbook>
<e:worksheet>
<e:header>

Inserts the current date

Inserts the current page number

Inserts the current time

Inserts the total page count

Inserts the worksheet name

Inserts the workbook name

Toggles bold font, use another #bold# to turn it off
Toggles italic font, use another #italic# to turn it off
Toggles underlining, use another #underline# to turn it off

Toggles double underlining, use another #double_underline# to turn it
off

Toggles outlined font, use another #outline# to turn it off

Toggles shadowed font, use another #shadow# to turn it off
Toggles strikethrough font, use another #strikethrough# to turn it off
Toggles subscripted font, use another #subscript# to turn it off
Toggles superscript font, use another #superscript# to turn it off
Sets font name, used like #font_name=Verdana"

Sets font size, use like #font_size=12#

<f:facet name="left">
This document was made on #date# and has #total_pages# pages

</f:facet>

<f:facet name="right">

#time#
</f:.facet>
</e:header>
<e:worksheet>
</e:workbook>

357

Chapter 20. The Microsoft® EX...

20.11. Print areas and titles

Print areas and titles childrens of worksheets and worksheet templates and provide... print areas
and titles.

<e: print Area> Attributes

e firstCol um — The column of the top-left corner of the area. The
parameter is a number. Note that the value is 0-based.

» first Row— The row of the top-left corner of the area. The parameter
is a number. Note that the value is 0-based.

* | ast Col utm — The column of the bottom-right corner of the area.
The parameter is a number. Note that the value is 0-based.

e | ast Row — The row of the bottom-right corner of the area. The
parameter is a number. Note that the value is 0-based.

Child elemenents

* none

Facets

* none

<e:workbook>
<e:worksheet>
<e:printTitles firstRow="0" firstColumn="0"
lastRow="0" lastColumn="9"/>
<e:printArea firstRow="1" firstColumn="0"
lastRow="9" lastColumn="9"/>
</e:worksheet>
</e:workbook>

defines a print title between A1:A10 and a print area between B2:J10.

358

Worksheet Commands

20.12. Worksheet Commands

Worksheet commands are children of workbooks and are usually executed only once.

20.12.1. Grouping

Provides grouping of columns and rows.

<e: gr oupRows> Attributes
e st art Row— The row to start the grouping at. The value is a number.
Note that the value is 0-based.

» endRow — The row to end the grouping at. The value is a number.
Note that the value is 0-based.

* col I apse — Should the grouping be collapsed initially? The value
is a boolean.

Child elements

* none

Facets

* none

<e: gr oupCol utms> Attributes
* start Col umm — The column to start the grouping at. The value is a
number. Note that the value is 0-based.

e endCol um — The column to end the grouping at. The value is a
number. Note that the value is 0-based.

» col | apse — Should the grouping be collapsed initially? The value
is a boolean.

Child elements

¢* none

Facets

¢* none

359

Chapter 20. The Microsoft® EX...

<e:workbook>
<e:worksheet>
<e:groupRows startRow="4" endRow="9" collapse="true"/>
<e:groupColumns startColumn="0" endColumn="9" collapse="false"/>
</e:worksheet>
</e:workbook>

groups rows 5 through 10 and columns 5 through 10 so that the rows are initially collapsed (but
not the columns).

20.12.2. Page breaks
Provides page breaks
<e: r owPageBr eak> Attributes
* row — The row to break at. The value is a number. Note that the
value is 0-based.

Child elements

¢* none

Facets

¢* none

<e:workbook>
<e:worksheet>
<e:rowPageBreak row="4"/>
</e:worksheet>
</e:workbook>

breaks page at row 5.

360

Merging

20.12.3. Merging
Provides cell merging

<e: mergeCel | s> Attributes
» start Row — The row to start the merging from. The value is a
number. Note that the value is 0-based.

* start Col umm — The column to start the merging from. The value is
a number. Note that the value is 0-based.

« endRow — The row to end the merging at. The value is a number.
Note that the value is 0-based.

* endCol um — The column to end the merging at. The value is a
number. Note that the value is 0-based.

Child elements

¢* none

Facets

¢* none

<e:workbook>
<e:worksheet>
<e:mergeCells startRow="0" startColumn="0" endRow="9" endColumn="9"/>
</e:worksheet>
</e:workbook>

merges the cells in the range A1:J10

20.13. Datatable exporter

If you prefer to export an existihg JSF datatable instead of writing a
dedicated XHTML document, this can also be achieved easily by executing the
org. j boss. seam excel . excel Exporter. export component, passing in the id of the datatable
as an Seam EL parameter. Consider you have a data table

361

Chapter 20. The Microsoft® EX...

<h:form id="theForm">
<h:dataTable id="theDataTable" value="#{personList.personList}"
var="person">

</h:dataTable>
</h:form>

that you want to view as an Microsoft® Excel® spreadsheet. Place a

<h:commandLink
value="Export"
action="#{excelExporter.export('theForm:theDataTable")}"
/>

in the form and you're done. You can of course execute the exporter with a button, s:link or other
preferred method. There are also plans for a dedicated export tag that can be placed inside the
datatable tag so you won't have to refer to the datatable by ID.

See Section 20.14, “Fonts and layout” for formatting.

20.14. Fonts and layout

Controlling how the output look is done with a combination of CSSish style attributes and tag
attributes. The most common ones (fonts, borders, backgrounds etc) are CSS and some more
general settings are in tag attributes.

The CSS attributes cascade down from parent to children and within one tag cascades over the
CSS classes referenced in the st yl ed ass attributes and finally over the CSS attributes defined
in the st yl e attribute. You can place them pretty much anywhere but e.g. placing a column width
setting in a cell nested within that column makes little sense.

If you have format masks or fonts that use special characters, such as spaces and semicolons,
you can escape the css string with " characters like xls-format-mask:'$;$'

362

Stylesheet links

20.14.1. Stylesheet links

External stylesheets are references with the e:link tag. They are placed as children of the

workbook.

<e:link>

<e:workbook>

Attributes

* URL — The URL to the stylesheet

Child elemenents

* none

Facets

* none

<e:link URL="/css/excel.css"/>

</e:workbook>

References a stylesheet that can be found at /css/excel.css

20.14.2. Fonts

This group of XLS-CSS attributes define a font and its attributes

xls-font-family

xls-font-size

xIs-font-color

xIs-font-bold
xIs-font-italic

xls-font-script-style

The name of the font. Make sure that it's one that is supported by your
system.

The font size. Use a plain number

The color of the font (see jxl.format.Colour [http://
jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/format/
Colour.html]).

Should the font be bold? Valid values are "true" and "false"
Should the font be italic? Valid values are "true" and "false"

The script style of the font (see jxl.format.ScriptStyle [http://
jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/format/
ScriptStyle.html]).

363

http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/format/Colour.html
http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/format/Colour.html
http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/format/Colour.html
http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/format/Colour.html
http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/format/ScriptStyle.html
http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/format/ScriptStyle.html
http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/format/ScriptStyle.html
http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/format/ScriptStyle.html

Chapter 20. The Microsoft® EX...

xls-font-underline-
style

xls-font-struck-out

xls-font

20.14.3. Borders

The underline style of the font (see
jxl.format.UnderlineStyle [http://jexcelapi.sourceforge.net/resources/

javadocs/current/docs/jxl/format/UnderlineStyle.html]).
Should the font be struck out? Valid values are "true" and “false"

A shorthand notation for setting all the values. Place the font name
last and use tick marks for fonts with spaces in them, e.g. 'Times New
Roman'. Use "italic", "bold" and "struckout".

Example style="xIs-font: red bold italic 22 Verdana"

This group of XLS-CSS attributes defines the borders of the cell

xIs-border-left-color

xIs-border-left-line-
style

xls-border-left

xls-border-top-color

xls-border-top-line-
style

xls-border-top

xls-border-right-color

xls-border-right-line-
style

xls-border-right

xIs-border-bottom-
color

The border color of the left edge of the cell (see
jxl.format.Colour [http://jexcelapi.sourceforge.net/resources/javadocs/
current/docs/jxl/format/Colour.html]).

The border line style of the left edge of the cell (see
jxl.format.BorderLineStyle [http://jexcelapi.sourceforge.net/resources/
javadocs/current/docs/jxl/format/BorderLineStyle.html]).

A shorthand for setting line style and color of the left edge of the cell,
e.g style="xIs-border-left: thick red"

The border color of the top edge of the cell (see
jxl.format.Colour [http://jexcelapi.sourceforge.net/resources/javadocs/
current/docs/jxl/format/Colour.html]).

The border line style of the top edge of the cell (see
jxl.format.BorderLineStyle [http://jexcelapi.sourceforge.net/resources/
javadocs/current/docs/jxl/format/BorderLineStyle.html]).

A shorthand for setting line style and color of the top edge of the cell,
e.g style="xIs-border-top: red thick"

The border color of the right edge of the cell (see
jxl.format.Colour [http://jexcelapi.sourceforge.net/resources/javadocs/
current/docs/jxl/format/Colour.html]).

The border line style of the right edge of the cell (see
jxl.format.BorderLineStyle [http://jexcelapi.sourceforge.net/resources/
javadocs/current/docs/jxl/format/BorderLineStyle.html]).

A shorthand for setting line style and color of the right edge of the cell,
e.g style="xIs-border-right: thick red"

The border color of the bottom edge of the cell (see
jxl.format.Colour [http://jexcelapi.sourceforge.net/resources/javadocs/
current/docs/jxl/format/Colour.html]).

364

http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/format/UnderlineStyle.html
http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/format/UnderlineStyle.html
http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/format/UnderlineStyle.html
http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/format/Colour.html
http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/format/Colour.html
http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/format/Colour.html
http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/format/BorderLineStyle.html
http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/format/BorderLineStyle.html
http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/format/BorderLineStyle.html
http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/format/Colour.html
http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/format/Colour.html
http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/format/Colour.html
http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/format/BorderLineStyle.html
http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/format/BorderLineStyle.html
http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/format/BorderLineStyle.html
http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/format/Colour.html
http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/format/Colour.html
http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/format/Colour.html
http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/format/BorderLineStyle.html
http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/format/BorderLineStyle.html
http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/format/BorderLineStyle.html
http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/format/Colour.html
http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/format/Colour.html
http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/format/Colour.html

Background

xls-border-bottom- The border line style of the bottom edge of the cell (see
line-style jxl.format.BorderLineStyle [http://jexcelapi.sourceforge.net/resources/
javadocs/current/docs/jxl/format/BorderLineStyle.html]).

xls-border-bottom A shorthand for setting line style and color of the bottom edge of the
cell, e.g style="xIs-border-bottom: thick red"

xls-border A shorthand for setting line style and color for all edges of the cell, e.g
style="xls-border: thick red"

20.14.4. Background

This group of XLS-CSS attributes defines the background of the cell

xls-background-color The color of the background (see jxl.format.BorderLineStyle [http://
jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/format/
BorderLineStyle.html]).

xls-background- The pattern of the background (see jxl.format.Pattern [http:/
pattern jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/format/
Pattern.html]).

xls-background A shorthand for setting the background color and pattern. See above
for rules.

20.14.5. Column settings

This group of XLS-CSS attributes defines the column widths etc.

xls-column-width The width of the column. Use largeish values (~5000) to start with. Used
by the e:column in xhtml mode.

xls-column-widths The width of the column. Use largeish values (~5000) to start with.
Used by the excel exporter, placed in the datatable style attribute. Use
numerical values or * to bypass a column.
Example style="xIs-column-widths: 5000, 5000, *, 10000"

xls-column-autosize Should an attempt be made to autosize the column? Valid values are
"true" and "false".

xls-column-hidden Should the column be hidden? Valid values are "true" and "false".

xls-column-export Should the column be shown in export? Valid values are "true" and
"false". Default is "true".

20.14.6. Cell settings

This group of XLS-CSS attributes defines the cell properties

xls-alignment The alignment of the cell value (see
jxl.format.Alignment [http://jexcelapi.sourceforge.net/resources/
javadocs/current/docs/jxl/format/Alignment.html]).

365

http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/format/BorderLineStyle.html
http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/format/BorderLineStyle.html
http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/format/BorderLineStyle.html
http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/format/BorderLineStyle.html
http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/format/BorderLineStyle.html
http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/format/BorderLineStyle.html
http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/format/BorderLineStyle.html
http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/format/Pattern.html
http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/format/Pattern.html
http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/format/Pattern.html
http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/format/Pattern.html
http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/format/Alignment.html
http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/format/Alignment.html
http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/format/Alignment.html

Chapter 20. The Microsoft® EX...

xls-force-type The forced type of the cell data. The value is a string that can be one

of "general", "number", "text", "date", "formula" or "bool". The type is
automatically detected so there is rarely any use for this attribute.

xls-format-mask The format mask of the cell, see Section 20.6.2, “Format masks”
xIs-indentation The indentation of the cell value. The value is numeric.
xIs-locked Should the cell be locked. Use with workbook level locked. Valid values

are "true" and "false".

xls-orientation The orientation of the cell value (see
jxl.format.Orientation [http://jexcelapi.sourceforge.net/resources/
javadocs/current/docs/jxl/format/Orientation.html]).

xls-vertical-alignment The vertical alignment of the cell value (see
jxl.format.VerticalAlignment [http://jexcelapi.sourceforge.net/
resources/javadocs/current/docs/jxl/format/VerticalAlignment.html]).

xIs-shrink-to-fit Should the cell values shrink to fit? Valid values are "true" and "false".

xls-wrap Should the cell wrap with newlines? Valid values are "true" and "false".

20.14.7. The datatable exporter

The datatable exporter uses the same xls-css attributes as the xhtml document with the exception
that column widths are defined with the xI s- col unmm- wi dt hs attribute on the datatable (since the
UIColumn doesn't support the style or styleClass attributes).

20.14.8. Layout examples
TODO

20.14.9. Limitations

In the current version there are some known limitations regarding CSS support

* When using .xhtml documents, stylesheets must be referenced through the <e: | i nk> tag

« When using the datatable exporter, CSS must be entered through style-attributes, external
stylesheets are not supported

20.15. Internationalization

There are only two resources bundle keys used, both for invalid data format and both take a
parameter (the invalid value)

e org.jboss.seam excel . not _a_nunber — When a value thought to be a number could not be
treated as such

366

http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/format/Orientation.html
http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/format/Orientation.html
http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/format/Orientation.html
http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/format/VerticalAlignment.html
http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/format/VerticalAlignment.html
http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/format/VerticalAlignment.html

Links and further documentation

e org.jboss.seam excel . not _a_dat e — When avalue thought to be a date could not be treated
as such

20.16. Links and further documentation

The core of the the Microsoft® Excel® spreadsheet application functionality is based on
the excellent JExcelAPI library which can be found on http://jexcelapi.sourceforge.net/ [http://
jexcelapi.sourceforge.net] and most features and possible limitations are inherited from here.

If you use the forum or mailing list, please remember that they don't know anything about Seam
and the usage of their library, any issues are best reported in the JBoss Seam JIRA under the
"excel" module.

367

http://jexcelapi.sourceforge.net
http://jexcelapi.sourceforge.net
http://jexcelapi.sourceforge.net

368

Chapter 21.

RSS support

It is now easy to integrate RSS feeds in Seam through the YARFRAW [http://
yarfraw.sourceforge.net/] library. The RSS support is currently in the state of "tech preview" in
the current release.

21.1. Installation

To enable RSS support, include the j boss-seamrss.jar in your applications VEB-I NF/ | i b
directory. The RSS library also has some dependent libraries that should be placed in the same
directory. See Section 39.2.6, “Seam RSS support” for a list of libraries to include.

The Seam RSS support requires the use of Facelets as the view technology.

21.2. Generating feeds

The exanpl es/ r ss project contains an example of RSS support in action. It demonstrates proper
deployment packaging, and it shows the exposed functionality.

A feed is a xhtml-page that consist of a feed and a list of nested entry items.

<r:feed
xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:ui="http://java.sun.com/jsf/facelets"
xmlns:r="http://jboss.org/schema/seam/rss"
title="#{rss.feed.title}"
uid="#{rss.feed.uid}"
subtitle="#{rss.feed.subtitle}"
updated="#{rss.feed.updated}"
link="#{rss.feed.link}">
<uirrepeat value="#{rss.feed.entries}" var="entry">
<r:entry
uid="#{entry.uid}"
title="#{entry.title}"
link="#{entry.link}"
author="#{entry.author}"
summary="#{entry.summary}"
published="#{entry.published}"
updated="#{entry.updated}"
/>
</ui:repeat>
</r:feed>

369

http://yarfraw.sourceforge.net/
http://yarfraw.sourceforge.net/
http://yarfraw.sourceforge.net/

Chapter 21. RSS support

21.3. Feeds

Feeds are the top-level entities that describe the properties of the information source. It contains
zero or more nested entries.

<r:feed> Attributes

e ui d — An optional unique feed id. The value is a string.

e titl e — The title of the feed. The value is a string.

* subtitl e — The subtitle of the feed. The value is a string.

* updat ed — When was the feed updated? The value is a date.

* | i nk — The link to the source of the information. The value is a string.

» feedFor mat — The feed format. The value is a string and defaults to
ATOML. Valid values are RSS10, RSS20, ATOMO03 and ATOM10.

Child elements

e Zero or nore feed entries

Facets

* none

21.4. Entries

Entries are the "headlines" in the feed.

<r:feed> Attributes

e ui d — An optional unigue entry id. The value is a string.
* titl e — The title of the entry. The value is a string.

* |ink — Alink to the item. The value is a string.

* aut hor — The author of the story. The value is a string.

e sunmary — The body of the story. The value is a string.

370

Links and further documentation

 text For mat — The format of the body and title of the story. The value
is a string and valid values are "text" and "html". Defaults to "html".

* publ i shed — When was the story first published? The value is a
date.

» updat ed — When was the story updated? The value is a date.

Child elements

* none

Facets

* none

21.5. Links and further documentation

The core of the RSs functionality is based on the YARFRAW library which can be found on http://
yarfraw.sourceforge.net/ and most features and possible limitations are inherited from here.

For details on the ATOM 1.0 format, have a look at the specs [http://atompub.org/2005/07/11/
draft-ietf-atompub-format-10.html]

For details on the RSS 2.0 format, have a look at the specs [http://cyber.law.harvard.edu/rss/
rss.html]

371

http://yarfraw.sourceforge.net/
http://yarfraw.sourceforge.net/
http://atompub.org/2005/07/11/draft-ietf-atompub-format-10.html
http://atompub.org/2005/07/11/draft-ietf-atompub-format-10.html
http://atompub.org/2005/07/11/draft-ietf-atompub-format-10.html
http://cyber.law.harvard.edu/rss/rss.html
http://cyber.law.harvard.edu/rss/rss.html
http://cyber.law.harvard.edu/rss/rss.html

372

Chapter 22.

Email

Seam now includes an optional components for templating and sending emails.

Email support is provided by j boss-seam mai | . j ar. This JAR contains the mail JSF controls,
which are used to construct emails, and the mai | Sessi on manager component.

The examples/mail project contains an example of the email support in action. It demonstrates
proper packaging, and it contains a number of example that demonstrate the key features currently
supported.

You can also test your mail's using Seam's integration testing environment. See Section 38.2.3.4,
“Integration Testing Seam Mail”.

22.1. Creating a message

You don't need to learn a whole new templating language to use Seam Mail — an email is just
facelet!

<m:message xmins="http://www.w3.0rg/1999/xhtml"
xmins:m="http://jpboss.org/schema/seam/mail"
xmlns:h="http://java.sun.com/jsf/html|">

<m:from name="Peter" address="peter@example.com" />
<m:to name="#{person.firsthame} #{person.lastname}">#{person.address}</m:to>
<m:subject>Try out Seam!</m:subject>

<m:body>
<p><h:outputText value="Dear #{person.firstname}" />,</p>
<p>You can try out Seam by visiting
http://labs.jboss.com/jbossseam.</p>
<p>Regards,</p>
<p>Pete</p>
</m:body>

</m:message>

The <m nessage> tag wraps the whole message, and tells Seam to start rendering an email. Inside
the <m message> tag we use an <m f r on» tag to set who the message is from, a <m t o> tag to
specify a sender (notice how we use EL as we would in a normal facelet), and a <m subj ect > tag.

The <m body> tag wraps the body of the email. You can use regular HTML tags inside the body
as well as JSF components.

373

Chapter 22. Email

So, now you have your email template, how do you go about sending it? Well, at the end of
rendering the m nessage the mai | Sessi on is called to send the email, so all you have to do is
ask Seam to render the view:

@In(create=true)
private Renderer renderer;

public void send() {

try {
renderer.render("/simple.xhtml");

facesMessages.add("Email sent successfully");

}

catch (Exception e) {
facesMessages.add("Email sending failed: " + e.getMessage());

If, for example, you entered an invalid email address, then an exception would be thrown, which
is caught and then displayed to the user.

22.1.1. Attachments

Seam makes it easy to attach files to an email. It supports most of the standard java types used
when working with files.
If you wanted to email the j boss- seam mai | . j ar:

<m:attachment value="/WEB-INF/lib/jboss-seam-mail.jar"/>

Seam will load the file from the classpath, and attach it to the email. By default it would be attached
asj boss-seam mai | . j ar ; if you wanted it to have another name you would just add the f i | eNane
attribute:

<m:attachment value="/WEB-INF/lib/jboss-seam-mail.jar" fileName="this-is-so-cool.jar"/>

You could also attach aj ava.io. Fil e, ajava. net. URL:

<m:attachment value="#{numbers}"/>

Orabyte[] orajava.io.lnputStream

374

Attachments

<m:attachment value="#{person.photo}" contentType="image/png"/>

You'll notice that for a byte[] and aj ava.i o. I nput St r eamyou need to specify the MIME type
of the attachment (as that information is not carried as part of the file).

And it gets even better, you can attach a Seam generated PDF, or any standard JSF view, just
by wrapping a <m at t achnment > around the normal tags you would use:

<m:attachment fileName="tiny.pdf">
<p:document>
A very tiny PDF
</p:document>
</m:attachment>

If you had a set of files you wanted to attach (for example a set of pictures loaded from a database)
you can just use a <ui : r epeat >:

<ui:repeat value="#{people}" var="person">

<m:attachment value="#{person.photo}" contentType="image/jpeg"
fileName="#{person.firstname}_#{person.lastname}.jpg"/>
</ui:repeat>

And if you want to display an attached image inline:

<m:attachment
value="#{person.photo}"
contentType="image/jpeg"
fileName="#{person.firstname}_#{person.lastname}.jpg"
status="personPhoto"
disposition="inline" />

You may be wondering what ci d: #{. ..} does. Well, the IETF specified that by putting this as
the src for your image, the attachments will be looked at when trying to locate the image (the
Cont ent - | D's must match) — magic!

You must declare the attachment before trying to access the status object.

375

Chapter 22. Email

22.1.2. HTML/Text alternative part

Whilst most mail readers nowadays support HTML, some don't, so you can add a plain text
alternative to your email body:

<m:body>

<f:.facet name="alternative">Sorry, your email reader can't show our fancy email,
please go to http://labs.jboss.com/jbossseam to explore Seam.</f:facet>
</m:body>

22.1.3. Multiple recipients
Often you'll want to send an email to a group of recipients (for example your users). All of the

recipient mail tags can be placed inside a <ui : r epeat >:

<uirrepeat value="#{allUsers} var="user">
<m:to name="#{user.firsthame} #{user.lastname}" address="#{user.emailAddress}" />
</ui:repeat>

22.1.4. Multiple messages
Sometimes, however, you need to send a slightly different message to each recipient (e.g. a

password reset). The best way to do this is to place the whole message inside a <ui : r epeat >:

<uicrepeat value="#{people}" var="p">
<m:message>
<m:from name="#{person.firstname} #{person.lastname}">#{person.address}</m:from>
<m:to name="#{p.firstname}">#{p.address}</m:to>

</m:message>
</uirepeat>

22.1.5. Templating

The mail templating example shows that facelets templating just works with the Seam mail tags.

Our t enpl at e. xht nl contains:

<m:message>
<m:from name="Seam" address="do-not-reply@jboss.com" />

376

Internationalisation

<m:to name="#{person.firstname} #{person.lastname}">#{person.address}</m:to>
<m:subject>#{subject}</m:subject>
<m:body>
<html>
<body>
<uicinsert name="body">This is the default body, specified by the template.</ui:insert>
</body>
</html|>
</m:body>
</m:message>

Ourtenpl ating. xht M contains:

<ui:param name="subject" value="Templating with Seam Mail"/>
<ui:define name="body">

<p>This example demonstrates that you can easily use <i>facelets templating</i> in email!'</p>
</ui:define>

You can also use facelets source tags in your email, but you must place them in a jar in WEB- | NF/
l'i b-referencingthe.taglib.xm fromweb. xn isn't reliable when using Seam Mail (if you send
your mail asynchronously Seam Mail doesn't have access to the full JSF or Servlet context, and
so doesn't know about web. xm configuration parameters).

If you do need more configure Facelets or JSF when sending mail, you'll need to override the
Renderer component and do the configuration programmatically - only for advanced users!

22.1.6. Internationalisation

Seam supports sending internationalised messages. By default, the encoding provided by JSF is
used, but this can be overridden on the template:

<m:message charset="UTF-8">

</m:message>

The body, subject and recipient (and from) name will be encoded. You'll need to make sure facelets
uses the correct charset for parsing your pages by setting encoding of the template:

<?xml version="1.0" encoding="UTF-8"?>

377

Chapter 22. Email

22.1.7. Other Headers

Sometimes you'll want to add other headers to your email. Seam provides support for some (see
Section 22.4, “Tags”). For example, we can set the importance of the email, and ask for a read
receipt:

<m:message xmins:m="http://jboss.org/schema/seam/mail"
importance="low"
requestReadReceipt="true"/>

Otherwise you can add any header to the message using the <m header > tag:

<m:header name="X-Sent-From" value="JBoss Seam"/>

22.2. Receiving emails

Warning

Please be reminded that this section is not updated for JBoss AS 7.x!

If you are using EJB then you can use a MDB (Message Driven Bean) to receive email. JBoss
provides a JCA adaptor — mai | -ra. rar — but the version distributed with JBoss AS 4.x has
a number of limitations (and isn't bundled in some versions) therefore we recommend using the
mai | -ra.rar distributed with Seam (it's in the extras/ directory in the Seam bundle). mai | -
ra.rar should be placed in $JBOSS_HOVE/ ser ver/ def aul t/ depl oy; if the version of JBoss AS
you use already has this file, replace it.

° Note

JBoss AS 5.x and newer has mail-ra.rar applied the patches, so there is no need
to copy the mail-ra.rar from Seam distribution.

You can configure it like this:

@MessageDriven(activationConfig={
@ActivationConfigProperty(propertyName="mailServer", propertyValue="localhost"),
@ActivationConfigProperty(propertyName="mailFolder", propertyValue="INBOX"),
@ActivationConfigProperty(propertyName="storeProtocol", propertyValue="pop3"),
@ActivationConfigProperty(propertyName="userName", propertyValue="seam"),
@ActivationConfigProperty(propertyName="password", propertyValue="seam")

378

Configuration

)

@ResourceAdapter("mail-ra.rar")
@Name("mailListener")
public class MailListenerMDB implements MailListener {

@In(create=true)
private OrderProcessor orderProcessor;

public void onMessage(Message message) {
/I Process the message
orderProcessor.process(message.getSubject());

}

Each message received will cause onMessage(Message nessage) to be called. Most Seam
annotations will work inside a MDB but you must not access the persistence context.

You can find more information on mail-ra.rar at http://www.jboss.org/community/wiki/
InboundJavaMail.

If you aren't using JBoss AS you can still use mai | -ra. r ar or you may find your application server
includes a similar adapter.

22.3. Configuration

To include Email support in your application, include j boss- seam mai | . j ar in your WEB- | NF/
l'i b directory. If you are using JBoss AS there is no further configuration needed to use Seam's
email support. Otherwise you need to make sure you have the JavaMail API, an implementation
of the JavaMail API present (the API and impl used in JBoss AS are distributed with seam as
lib/mail.jar), and a copy of the Java Activation Framework (distributed with Seam as |i b/

activation.jar.

Note

j=do

The Seam Mail module requires the use of Facelets as the view technology. This is
the default View technology in JSF 2. Additionally, it requires the use of the jboss-
seam-ui module.

The mai | Sessi on component uses JavaMalil to talk to a 'real' SMTP server.

22.3.1. mail Session

A JavaMail Session may be available via a INDI lookup if you are working in an JEE environment
or you can use a Seam configured Session.

379

http://www.jboss.org/community/wiki/InboundJavaMail
http://www.jboss.org/community/wiki/InboundJavaMail

Chapter 22. Email

The mailSession component's properties are described in more detail in Section 33.9, “Mail-
related components”.

22.3.1.1. INDI lookup in JBoss AS

The JBoss AS 7 Mail service is defined in standal one/ confi gurati on/ st andal one. xni
file. It configures a JavaMail session binding into JNDI. The default service configuration
will need altering for your network. Full article how to configure Mail system in
JBoss AS 7 [http://lwww.mastertheboss.com/jboss-application-server/379-jboss-mail-service-
configuration.html] describes the service in more detail.

<components xmlns="http://jpboss.org/schema/seam/components"
xmlns:core="http://jboss.org/schema/seam/core"
xmlns:mail="http://jboss.org/schema/seam/mail">

<mail:mail-session session-jndi-name="java:jboss/mail/Default"/>

</components>

Here we tell Seam to get the mail session bound to j ava: j boss/ mai | / Def aul t from JNDI.

22.3.1.2. Seam configured Session

A mail session can be configured via conponents.xm . Here we tell Seam to use
snt p. exanpl e. comas the smtp server:

<components xmlns="http://jpboss.org/schema/seam/components
xmlns:core="http://jboss.org/schema/seam/core"
xmlns:mail="http://jboss.org/schema/seam/mail">

<mail:mail-session host="smtp.example.com"/>

</components>

22.4. Tags

Emails are generated using tags in the http://jboss. org/ schema/ sean mai | namespace.
Documents should always have the nessage tag at the root of the message. The message tag
prepares Seam to generate an email.

The standard templating tags of facelets can be used as normal. Inside the body you can use
any JSF tag; if it requires access to external resources (stylesheets, javascript) then be sure to
set the ur | Base.

380

http://www.mastertheboss.com/jboss-application-server/379-jboss-mail-service-configuration.html
http://www.mastertheboss.com/jboss-application-server/379-jboss-mail-service-configuration.html
http://www.mastertheboss.com/jboss-application-server/379-jboss-mail-service-configuration.html
http://www.mastertheboss.com/jboss-application-server/379-jboss-mail-service-configuration.html

Tags

<m:message>
Root tag of a mail message

i mport ance — low, normal or high. By default normal, this sets the importance of the mail
message.

» precedence — sets the precedence of the message (e.g. bulk).

» request ReadRecei pt — by default false, if set, a read receipt request will be will be added,
with the read receipt being sent to the Fr om address.

« url Base — If set, the value is prepended to the r equest Cont ext Pat h allowing you to use
components such as <h: gr aphi cl mage> in your emails.

« messagel d — Sets the Message-ID explicitly

<m:from>
Set's the From: address for the email. You can only have one of these per email.

* nane — the name the email should come from.
* addr ess — the email address the email should come from.

<m:replyTo>
Set's the Reply-to: address for the email. You can only have one of these per email.

* addr ess — the email address the email should come from.

<m:to>
Add a recipient to the email. Use multiple <m:to> tags for multiple recipients. This tag can be
safely placed inside a repeat tag such as <ui:repeat>.

* name — the name of the recipient.
* addr ess — the email address of the recipient.

<m:cc>
Add a cc recipient to the email. Use multiple <m:cc> tags for multiple ccs. This tag can be
safely placed inside a iterator tag such as <ui:repeat>.

* name — the name of the recipient.
« address — the email address of the recipient.

<m:bcc>
Add a bcc recipient to the email. Use multiple <m:bcc> tags for multiple bccs. This tag can be
safely placed inside a repeat tag such as <ui:repeat>.

* nane — the name of the recipient.

* addr ess — the email address of the recipient.

381

Chapter 22. Email

<m:header>
Add a header to the email (e.g. X- Sent - From JBoss Seam)

« nane — The name of the header to add (e.g. X- Sent - Fr om).
« val ue — The value of the header to add (e.g. JBoss Sean).

<m:attachment>
Add an attachment to the email.

* val ue — The file to attach:
e String — A Stringis interpreted as a path to file within the classpath
e java.io. Fil e — An EL expression can reference a Fi | e object
* java. net.URL — An EL expression can reference a URL object

* java.io. I nput Stream— An EL expression can reference an | nput St r eam In this case
both a fi | eName and a cont ent Type must be specified.

e byte[] — An EL expression can reference an byt e[] . In this case both afi | eName and
a cont ent Type must be specified.

If the value attribute is ommitted:

« If this tag contains a <p: docunent > tag, the document described will be generated and
attached to the email. A fi | eNanme should be specified.

« If this tag contains other JSF tags a HTML document will be generated from them and
attached to the email. A fi | eName should be specified.

» fil eNane — Specify the file name to use for the attached file.
* cont ent Type — Specify the MIME type of the attached file

<m:subject>
Set's the subject for the email.

<m:body>
Set's the body for the email. Supports an al ter nati ve facet which, if an HTML email is
generated can contain alternative text for a mail reader which doesn't support html.

* type — If set to pl ai n then a plain text email will be generated otherwise an HTML email
is generated.

382

Chapter 23.

Asynchronicity and messaging

Seam makes it very easy to perform work asynchronously from a web request. When most people
think of asynchronicity in Java EE, they think of using JMS. This is certainly one way to approach
the problem in Seam, and is the right way when you have strict and well-defined quality of service
requirements. Seam makes it easy to send and receive JMS messages using Seam components.

But for cases when you are simply want to use a worker thread, JMS is overkill. Seam layers a
simple asynchronous method and event facility over your choice of dispatchers:

e java. util.concurrent. Schedul edThr eadPool Execut or (by default)
« the EJB timer service (for EJB 3.0 environments)
e Quartz

This chapter first covers how to leverage Seam to simplify JMS and then explains how to use the
simpler asynchronous method and event facility.

23.1. Messaging in Seam

Seam makes it easy to send and receive JMS messages to and from Seam components. Both
the message publisher and the message receiver can be Seam components.

You'll first learn to setup a queue and topic message publisher and then look at an example that
illustrates how to perform the message exchange.

23.1.1. Configuration

To configure Seam's infrastructure for sending JMS messages, you need to tell Seam about
any topics and queues you want to send messages to, and also tell Seam where to find the
QueueConnect i onFact or y and/or Topi cConnecti onFact ory.

Seam defaults to using U L2ConnectionFactory which is the wusual connection
factory for use with JBossMQ. If you are using some other JMS provider, you
need to set one or both of queueConnection. queueConnecti onFact oryJndi Nanme and
t opi cConnect i on. t opi cConnect i onFact oryJndi Name in seam properties, web.xm or
conponents. xmi .

You also need to list topics and queues in conponents.xnml to install Seam managed
Topi cPubl i sher s and QueueSender s:

<jms:managed-topic-publisher name="stockTickerPublisher"
auto-create="true"
topic-jndi-name="topic/stockTickerTopic"/>

<jms:managed-queue-sender name="paymentQueueSender"

383

Chapter 23. Asynchronicity an...

auto-create="true"
queue-jndi-name="queue/paymentQueue"/>

23.1.2. Sending messages

Now, you can inject a JMS Topi cPubl i sher and Topi cSessi on into any Seam component to
publish an object to a topic:

@Name("stockPriceChangeNotifier")
public class StockPriceChangeNotifier

{
@In private TopicPublisher stockTickerPublisher;

@In private TopicSession topicSession;

public void publish(StockPrice price)

{
try
{

stockTickerPublisher.publish(topicSession.createObjectMessage(price));

}

catch (Exception ex)

{

throw new RuntimeException(ex);

}

or to a queue:

@Name("paymentDispatcher")
public class PaymentDispatcher

{

@In private QueueSender paymentQueueSender;
@In private QueueSession queueSession;

public void publish(Payment payment)
{

try

{

paymentQueueSender.send(queueSession.createObjectMessage(payment));

384

Receiving messages using a message-driven bean

}

catch (Exception ex)

{
throw new RuntimeException(ex);
}
}
}

23.1.3. Receiving messages using a message-driven bean

You can process messages using any EJB 3 message-driven bean. The MDB can even be
a Seam component, in which case it's possible to inject other event- and application- scoped
Seam components. Here's an example of the payment receiver, which delegates to a payment

processor.

First, create an MDB to receive the message.

@MessageDriven(activationConfig = {
@ActivationConfigProperty(
propertyName = "destinationType",
propertyValue = "javax.jms.Queue"
),
@ActivationConfigProperty(
propertyName = "destination”,
propertyValue = "queue/paymentQueue”
)
)

@Name("paymentReceiver")
public class PaymentReceiver implements MessageListener

{
@Logger private Log log;

@In(create = true) private PaymentProcessor paymentProcessor;

@Override

385

Chapter 23. Asynchronicity an...

public void onMessage(Message message)
{

try

{

paymentProcessor.processPayment((Payment) ((ObjectMessage) message).getObject());

}
catch (JMSException ex)

{
log.error("Message payload did not contain a Payment object”, ex);
}
}
}

Then, implement the Seam component to which the receiver delegates processing of the payment.

@Name("paymentProcessor")
public class PaymentProcessor

{
@In private EntityManager entityManager;

public void processPayment(Payment payment)
{
/I perhaps do something more fancy
entityManager.persist(payment);
}
}

If you are going to be performing transaction operations in your MDB, you should ensure that you
are working with an XA datasource. Otherwise, it won't be possible to rollback database changes
if the database transaction commits and a subsequent operation being performed by the message
fails.

23.1.4. Receiving messages in the client

Seam Remoting lets you subscribe to a JMS topic from client-side JavaScript. This is described
in Chapter 26, Remoting.

23.2. Asynchronicity

Asynchronous events and method calls have the same quality of service expectations
as the underlying dispatcher mechanism. The default dispatcher, based upon a
Schedul edThr eadPool Execut or performs efficiently but provides no support for persistent

386

Asynchronous methods

asynchronous tasks, and hence no guarantee that a task will ever actually be executed. If you're
working in an environment that supports EJB 3.0, and add the following line to conponent s. xm :

<async:timer-service-dispatcher/>

then your asynchronous tasks will be processed by the container's EJB timer service. If you're not
familiar with the Timer service, don't worry, you don't need to interact with it directly if you want
to use asynchronous methods in Seam. The important thing to know is that any good EJB 3.0
implementation will have the option of using persistent timers, which gives some guarantee that
the tasks will eventually be processed.

Another alternative is to use the open source Quartz library to manage asynchronous method.
You need to bundle the Quartz library JAR (found in the | i b directory) in your EAR and declare
it as a Java module in appl i cati on. xm . The Quartz dispatcher may be configured by adding
a Quartz property file to the classpath. It must be named seam quart z. properti es. In addition,
you need to add the following line to conponent s. xni to install the Quartz dispatcher.

<async:quartz-dispatcher/>

The Seam API for the default Schedul edThr eadPool Execut or, the EJB3 Tiner, and the
Quartz Schedul er are largely the same. They can just "plug and play" by adding a line to
conponent s. xm .

23.2.1. Asynchronous methods

In simplest form, an asynchronous call just lets a method call be processed asynchronously (in a
different thread) from the caller. We usually use an asynchronous call when we want to return an
immediate response to the client, and let some expensive work be processed in the background.
This pattern works very well in applications which use AJAX, where the client can automatically
poll the server for the result of the work.

For EJB components, we annotate the local interface to specify that a method is processed
asynchronously.

@Local
public interface PaymentHandler

{

@Asynchronous
public void processPayment(Payment payment);

(For JavaBean components we have to annotate the component implementation class.)

387

Chapter 23. Asynchronicity an...

The use of asynchronicity is transparent to the bean class:

@Stateless

@Name("paymentHandler")

public class PaymentHandlerBean implements PaymentHandler
{

public void processPayment(Payment payment)

{

/l[do some work!

And also transparent to the client:

@ Stateful

@Name("paymentAction")

public class CreatePaymentAction

{
@In(create=true) PaymentHandler paymentHandler;
@1In Bill bill;

public String pay()
{

paymentHandler.processPayment(new Payment(bill));
return "success";

annotation

j avax. ej b. Asynchr onous

The asynchronous method is processed in a completely new event context and does not have
access to the session or conversation context state of the caller. However, the business process
context is propagated.

388

http://java.sun.com/developer/technicalArticles/JavaEE/JavaEE6Overview_Part3.html#asynejb
http://java.sun.com/developer/technicalArticles/JavaEE/JavaEE6Overview_Part3.html#asynejb
http://java.sun.com/developer/technicalArticles/JavaEE/JavaEE6Overview_Part3.html#asynejb
http://java.sun.com/developer/technicalArticles/JavaEE/JavaEE6Overview_Part3.html#asynejb

Asynchronous methods

Asynchronous method calls may be scheduled for later execution using the @urati on,
@xpi rationand @ nt erval Dur at i on annotations.

@Local
public interface PaymentHandler
{
@Asynchronous
public void processScheduledPayment(Payment payment, @Expiration Date date);

@Asynchronous

public void processRecurringPayment(Payment payment,
@Expiration Date date,
@IntervalDuration Long interval)'

@ Stateful

@Name("paymentAction™)

public class CreatePaymentAction

{
@In(create=true) PaymentHandler paymentHandler;
@!In Bill bill;

public String schedulePayment()

{
paymentHandler.processScheduledPayment(new Payment(bill), bill.getDueDate());
return "success";

public String scheduleRecurringPayment()
{
paymentHandler.processRecurringPayment(new Payment(bill), bill.getDueDate(),
ONE_MONTH);
return "success";

Both client and server may access the Ti mer object associated with the invocation. The Ti mer
object shown below is the EJB3 timer when you use the EJB3 dispatcher. For the default
Schedul edThr eadPool Execut or, the returned object is Fut ure from the JDK. For the Quartz
dispatcher, it returns Quart zTr i gger Handl e, which we will discuss in the next section.

389

Chapter 23. Asynchronicity an...

@Local
public interface PaymentHandler

{

@Asynchronous
public Timer processScheduledPayment(Payment payment, @Expiration Date date);

@Stateless
@Name("paymentHandler")
public class PaymentHandlerBean implements PaymentHandler

{

@In Timer timer;

public Timer processScheduledPayment(Payment payment, @Expiration Date date)

{

/l[do some work!

return timer; /note that return value is completely ignored

@Stateful
@Name("paymentAction”)
public class CreatePaymentAction

{

@In(create=true) PaymentHandler paymentHandler;
@In Bill bill;

public String schedulePayment()
{

Timer timer = paymentHandler.processScheduledPayment(new Payment(bill),
bill.getDueDate());
return "success";

Asynchronous methods cannot return any other value to the caller.

390

Asynchronous methods with the Quartz Dispatcher

23.2.2. Asynchronous methods with the Quartz Dispatcher

The Quartz dispatcher (see earlier on how to install it) allows you to use the @synchronous,
@ur ati on, @xpiration, and @nterval Duration annotations as above. But it has some
powerful additional features. The Quartz dispatcher supports three new annotations.

The @i nal Expi r ati on annotation specifies an end date for the recurring task. Note that you can
inject the Quart zTri gger Handl e.

@In QuartzTriggerHandle timer;

/I Defines the method in the "processor" component

@Asynchronous

public QuartzTriggerHandle schedulePayment(@Expiration Date when,
@IntervalDuration Long interval,
@FinalExpiration Date endDate,
Payment payment)

/I do the repeating or long running task until endDate

/I Schedule the task in the business logic processing code

/I Starts now, repeats every hour, and ends on May 10th, 2010

Calendar cal = Calendar.getinstance ();

cal.set (2010, Calendar.MAY, 10);

processor.schedulePayment(new Date(), 60*60*1000, cal.getTime(), payment);

Note that the method returns the Quart zTri gger Handl e object, which you can use later to stop,
pause, and resume the scheduler. The Quart zTri gger Handl e object is serializable, so you can
save it into the database if you need to keep it around for extended period of time.

QuartzTriggerHandle handle =
processor.schedulePayment(payment.getPaymentDate(),
payment.getPaymentCron(),
payment);
payment.setQuartzTriggerHandle(handle);
/I Save payment to DB

/Il later ...

391

Chapter 23. Asynchronicity an...

/I Retrieve payment from DB
/I Cancel the remaining scheduled tasks
payment.getQuartzTriggerHandle().cancel();

The @ nt er val Cr on annotation supports Unix cron job syntax for task scheduling. For instance,
the following asynchronous method runs at 2:10pm and at 2:44pm every Wednesday in the month
of March.

/I Define the method

@Asynchronous

public QuartzTriggerHandle schedulePayment(@Expiration Date when,
@IntervalCron String cron,
Payment payment)

/I do the repeating or long running task

/I Schedule the task in the business logic processing code
QuartzTriggerHandle handle =
processor.schedulePayment(new Date(), "0 10,44 14 ? 3 WED", payment);

The @ nt er val Busi nessDay annotation supports invocation on the "nth Business Day" scenario.
For instance, the following asynchronous method runs at 14:00 on the 2nd business day of each
month. By default, it excludes all weekends and US federal holidays until 2010 from the business
days.

/I Define the method

@Asynchronous

public QuartzTriggerHandle schedulePayment(@Expiration Date when,
@IntervalBusinessDay NthBusinessDay nth,
Payment payment)

/I do the repeating or long running task

/I Schedule the task in the business logic processing code

392

Asynchronous events

QuartzTriggerHandle handle =
processor.schedulePayment(new Date(),
new NthBusinessDay(2, "14:00", WEEKLY), payment);

The Nt hBusi nessDay object contains the configuration of the invocation trigger. You can specify
more holidays (e.g., company holidays, non-US holidays etc.) via the addi ti onal Hol i days
property.

public class NthBusinessDay implements Serializable
{

int n;

String fireAtTime;

List <Date> additionalHolidays;

BusinessDaylntervalType interval;

boolean excludeWeekends;

boolean excludeUsFederalHolidays;

public enum BusinessDaylntervalType { WEEKLY, MONTHLY, YEARLY }

public NthBusinessDay ()

{
n=1;
fireAtTime = "12:00";
additionalHolidays = new ArrayList <Date> ();
interval = BusinessDayIntervalType. WEEKLY;
excludeWeekends = true;
excludeUsFederalHolidays = true;

The @nterval Duration, @nterval Cron, and @ nterval Nt hBusi nessDay annotations are
mutually exclusive. If they are used in the same method, a Runt i neExcept i on will be thrown.

23.2.3. Asynchronous events

Component-driven events may also be asynchronous. To raise an event for asynchronous
processing, simply call the rai seAsynchronousEvent () method of the Events class. To
schedule a timed event, call the r ai seTi nedEvent () method, passing a schedule object (for the
default dispatcher or timer service dispatcher, use Ti ner Schedul e). Components may observe
asynchronous events in the usual way, but remember that only the business process context is
propagated to the asynchronous thread.

393

Chapter 23. Asynchronicity an...

23.2.4. Handling exceptions from asynchronous calls

Each asynchronous dispatcher behaves differently when an exception propagates through it. For
example, the j ava. uti | . concurrent dispatcher will suspend further executions of a call which
repeats, and the EJB3 timer service will swallow the exception. Seam therefore catches any
exception which propagates out of the asynchronous call before it reaches the dispatcher.

By default, any exception which propagates out from an asynchronous execution will be
caught and logged at error level. You can customize this behavior globally by overriding the
org. j boss. seam async. asynchronousExcept i onHandl er component:

@Scope(ScopeType.STATELESS)
@Name("org.jboss.seam.async.asynchronousExceptionHandler")
public class MyAsynchronousExceptionHandler extends AsynchronousExceptionHandler {

@Logger Log log;
@In Future timer;

@Override

public void handleException(Exception exception) {
log.debug(exception);
timer.cancel(false);

}

Here, for example, using j ava. util.concurrent dispatcher, we inject its control object and
cancel all future invocations when an exception is encountered

You can also alter this behavior for an individual component by implementing the method
public void handl eAsynchronousExcepti on(Excepti on exception); on the component.
For example:

public void handleAsynchronousException(Exception exception) {
log.fatal(exception);

}

394

Chapter 24.

Caching

In almost all enterprise applications, the database is the primary bottleneck, and the least scalable
tier of the runtime environment. People from a PHP/Ruby environment will try to tell you that so-
called "shared nothing" architectures scale well. While that may be literally true, | don't know of
many interesting multi-user applications which can be implemented with no sharing of resources
between different nodes of the cluster. What these silly people are really thinking of is a "share
nothing except for the database" architecture. Of course, sharing the database is the primary
problem with scaling a multi-user application — so the claim that this architecture is highly scalable
is absurd, and tells you a lot about the kind of applications that these folks spend most of their
time working on.

Almost anything we can possibly do to share the database less often is worth doing.

This calls for a cache. Well, not just one cache. A well designed Seam application will feature a
rich, multi-layered caching strategy that impacts every layer of the application:

« The database, of course, has its own cache. This is super-important, but can't scale like a cache
in the application tier.

* Your ORM solution (Hibernate, or some other JPA implementation) has a second-level cache
of data from the database. This is a very powerful capability, but is often misused. In a clustered
environment, keeping the data in the cache transactionally consistent across the whole cluster,
and with the database, is quite expensive. It makes most sense for data which is shared between
many users, and is updated rarely. In traditional stateless architectures, people often try to use
the second-level cache for conversational state. This is always bad, and is especially wrong
in Seam.

e The Seam conversation context is a cache of conversational state. Components you put into
the conversation context can hold and cache state relating to the current user interaction.

« In particular, the Seam-managed persistence context (or an extended EJB container-managed
persistence context associated with a conversation-scoped stateful session bean) acts as a
cache of data that has been read in the current conversation. This cache tends to have a
pretty high hitrate! Seam optimizes the replication of Seam-managed persistence contexts
in a clustered environment, and there is no requirement for transactional consistency with
the database (optimistic locking is sufficient) so you don't need to worry too much about the
performance implications of this cache, unless you read thousands of objects into a single
persistence context.

« The application can cache non-transactional state in the Seam application context. State kept
in the application context is of course not visible to other nodes in the cluster.

* The application can cache transactional state using the Seam cacheProvi der component,
which integrates JBossCache, JBoss POJO Cache, Infinispan or EHCache into the Seam

395

Chapter 24. Caching

environment. This state will be visible to other nodes if your cache supports running in a
clustered mode.

« Finally, Seam lets you cache rendered fragments of a JSF page. Unlike the ORM second-level
cache, this cache is not automatically invalidated when data changes, so you need to write
application code to perform explicit invalidation, or set appropriate expiration policies.

For more information about the second-level cache, you'll need to refer to the documentation of
your ORM solution, since this is an extremely complex topic. In this section we'll discuss the use
of caching directly, via the cachePr ovi der component, or as the page fragment cache, via the
<s: cache> control.

24.1. Using Caching in Seam

The built-in cachePr ovi der component manages an instance of:

Infinispan 5.x (suitable for use in JBoss AS 7.1.x or later and other containers)
org. i nfninispan.tree. TreeCache

JBoss Cache 1.x (suitable for use in JBoss 4.2.x or later and other containers)
org.j boss. cache. TreeCache

JBoss Cache 2.x (suitable for use in JBoss 5.x and other containers)
org.j boss. cache. Cache

JBoss POJO Cache 1.x (suitable for use in JBoss 4.2.x or later and other containers)

org.j boss. cache. aop. Poj oCache

EHCache (suitable for use in any container)
net . sf. ehcache. CacheManager

You can safely put any immutable Java object in the cache, and it will be stored in the cache and
replicated across the cluster (assuming that replication is supported and enabled). If you want
to keep mutable objects in the cache read the documentation of the underling caching project
documentation to discover how to notify the cache of changes to the cache.

To use cachePr ovi der, you need to include the jars of the cache implementation in your project:

Infinispan 5.x
e infinispan-core.jar - Infinispan Core 5.1.x.Final
i nfinispan-tree.jar - Infinispan TreeCache 5.1.x.Final
e jgroups.jar -JGroups 3.0
JBoss Cache 1.x
* jboss-cache.jar - JBoss Cache 1.4.1

* jgroups.jar -JGroups 2.4.1

396

Using Caching in Seam

JBoss Cache 2.x
e jboss-cache. jar - JBoss Cache 2.2.0
e jgroups.jar -JGroups 2.6.2
JBoss POJO Cache 1.x
e jboss-cache.jar - JBoss Cache 1.4.1
e jgroups.jar -JGroups 2.4.1
e jboss-aop.jar - JBoss AOP 1.5.0
EHCache

e ehcache. j ar - EHCache 1.2.3

Tip

If you would like to know more details about Infinispan, look at the Infinispan
Documentation [https://docs.jboss.org/author/display/ISPN/Home] page.

For an EAR deployment of Seam, we recommend that the infinispan jars and configuration go
directly into the EAR.

You'll also need to provide a configuration file for Infinispan. Place i nfi ni span. xm with an
appropriate cache configuration into the Web applicaiton classpath (e.g. the ejb jar or WEB- | NF/
cl asses). Infinispan has many configuration settings, so we won't discuss them here. Please refer
to the Infinispan documentation for more information.

You can find a sample configuration file i nfi ni span. xm in exanpl es- ee6/ bl og/ bl og- web/
src/ mai n/ resour ces/ i nfini span. xni .

EHCache will run in it's default configuration without a configuration file

To alter the configuration file in use, configure your cache in conponent s. xm :

<components xmIns="http://jboss.org/schema/seam/components"
xmlns:cache="http://jboss.org/schema/seam/cache">

397

https://docs.jboss.org/author/display/ISPN/Home
https://docs.jboss.org/author/display/ISPN/Home

Chapter 24. Caching

<cache:infinispan-cache-provider configuration="infinispan.xml" />
</components>

Now you can inject the cache into any Seam component:

@Name("chatroomUsers")
@Scope(ScopeType.STATELESS)
public class ChatroomUsers

{

@In CacheProvider cacheProvider;

@Unwrap
public Set<String> getUsers() throws CacheException {
Set<String> userList = (Set<String>) cacheProvider.get("chatroom", "userList");
if (userList==null) {
userList = new HashSet<String>();

cacheProvider.put("chatroom”, "userList”, userList);

}

return userList;

If you want to have multiple cache configurations in your application, use conponents. xnl to
configure multiple cache providers:

<components xmlns="http://jboss.org/schema/seam/components"
xmlns:cache="http://jboss.org/schema/seam/cache">
<cache:infinispan-cache-provider name="myCache" configuration="myown/cache.xml"/>
<cache:infinispan-cache-provider name="myOtherCache" configuration="myother/
cache.xml"/>
</components>

24.2. Page fragment caching

The most interesting use of caching in Seam is the <s: cache> tag, Seam's solution to the problem
of page fragment caching in JSF. <s: cache> uses poj oCache internally, so you need to follow
the steps listed above before you can use it. (Put the jars in the EAR, wade through the scary
configuration options, etc.)

<s: cache> is used for caching some rendered content which changes rarely. For example, the
welcome page of our blog displays the recent blog entries:

398

Page fragment caching

<s:cache key="recentEntries-#{blog.id}" region="welcomePageFragments">
<h:dataTable value="#{blog.recentEntries}" var="blogEntry">
<h:column>
<h3>#{blogEntry.title}</h3>
<div>
<s:formattedText value="#{blogEntry.body}"/>
</div>
</h:column>
</h:dataTable>
</s:cache>

The key let's you have multiple cached versions of each page fragment. In this case, there is one
cached version per blog. The r egi on determines the cache or region node that all version will be
stored in. Different nodes may have different expiry policies. (That's the stuff you set up using the
aforementioned scary configuration options.)

Of course, the big problem with <s: cache> is that it is too stupid to know when the underlying
data changes (for example, when the blogger posts a new entry). So you need to evict the cached
fragment manually:

public void post() {

entityManager.persist(blogEntry);
cacheProvider.remove("welcomePageFragments”, "recentEntries-" + blog.getld());

Alternatively, if it is not critical that changes are immediately visible to the user, you could set a
short expiry time on the cache node.

399

400

Chapter 25.

Web Services

Seam integrates with JBossWS to allow standard Java EE web services to take full advantage
of Seam's contextual framework, including support for conversational web services. This chapter
walks through the steps required to allow web services to run within a Seam environment.

25.1. Configuration and Packaging

To allow Seam to intercept web service requests so that the necessary Seam
contexts can be created for the request, a special SOAP handler must be configured;
org. j boss. seam webser vi ce. SOAPRequest Handl er is a SOAPHandl er implementation that
does the work of managing Seam's lifecycle during the scope of a web service request.

A special configuration file, soap- handl ers. xnml should be placed into the META- | NF directory of
the j ar file that contains the web service classes. This file contains the following SOAP handler
configuration:

<?xml version="1.0" encoding="UTF-8"?>
<handler-chains xmlns="http://java.sun.com/xml/ns/javaee">
<handler-chain>
<handler>
<handler-name>SOAP Request Handler</handler-name>
<handler-class>org.jboss.seam.webservice. SOAPRequestHandler</handler-class>
</handler>
</handler-chain>
</handler-chains>

25.2. Conversational Web Services

So how are conversations propagated between web service requests? Seam uses a SOAP header
element present in both the SOAP request and response messages to carry the conversation 1D
from the consumer to the service, and back again. Here's an example of a web service request
that contains a conversation ID:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:sb="http://seambay.example.seam.jboss.org/">
<soapenv:Header>
<seam:conversationld xmlns:seam="http://www.jboss.org/seam/webservice'>4</
seam:conversationld>
</soapenv:Header>
<soapenv:Body>
<sh:setAuctionPrice>

401

Chapter 25. Web Services

<arg0>100</arg0>
</sh:setAuctionPrice>
</soapenv:Body>
</soapenv:Envelope>

As you can see in the above SOAP message, there is a conversati onl d element within the
SOAP header that contains the conversation ID for the request, in this case 4. Unfortunately,
because web services may be consumed by a variety of web service clients written in a variety of
languages, it is up to the developer to implement conversation ID propagation between individual
web services that are intended to be used within the scope of a single conversation.

An important thing to note is that the conver sati onl d header element must be qualified with a
namespace of htt p: // www. j boss. or g/ seani webser vi ce, otherwise Seam will not be able to
read the conversation ID from the request. Here's an example of a response to the above request
message:

<soap:Envelope xmiIns:soap="http://schemas.xmlsoap.org/soap/envelope/">

<soap:Header>

<seam:conversationld xmlns:seam="http://www.jboss.org/seam/webservice">4</

seam:conversationld>

</soap:Header>

<soap:Body>

<ns2:setAuctionPriceResponse xmlns:ns2="http://seambay.example.seam.jboss.org/"/>

</soap:Body>

</soap:Envelope>

As you can see, the response message contains the same conversati onl d element as the
request.

25.2.1. A Recommended Strategy

As web services must be implemented as either a stateless session bean or POJO, it is
recommended that for conversational web services, the web service acts as a facade to a
conversational Seam component.

402

An example web service

Stateless/POJO Conversational
CONSUMER % \web Service _—— Seam
Component
@WWebService @ Scopa|CONVERSATION)
mStateless @Mame(foo”}
public class MySenvice { public class Foo |
}-.. }-..

If the web service is written as a stateless session bean, then it is also possible to make it a Seam
component by giving it a @lane. Doing this allows Seam's bijection (and other) features to be used
in the web service class itself.

25.3. An example web service

Let's walk through an example web service. The code in this section all comes from the seamBay
example application in Seam's / exanpl es directory, and follows the recommended strategy as
described in the previous section. Let's first take a look at the web service class and one of its
web service methods:

@Stateless
@Name("auctionService")
@WebService(name = "AuctionService")
@HandlerChain(file = "soap-handlers.xml")
public class AuctionService implements AuctionServiceRemote
{
@WebMethod
public boolean login(String username, String password)
{
Identity.instance().setUsername(username);
Identity.instance().setPassword(password);
Identity.instance().login();
return Identity.instance().isLoggedin();

}

/' snip

403

Chapter 25. Web Services

As you can see, our web service is a stateless session bean, and is annotated using the JWS
annotations from the j avax. j ws package, as defined by JSR-181. The @\ébSer vi ce annotation
tells the container that this class implements a web service, and the @\ebMet hod annotation on
the I ogi n() method identifies the method as a web service method. The name and ser vi ceNane
attributes in the @\ebSer vi ce annotation are optional.

As is required by the specification, each method that is to be exposed as a web service method
must also be declared in the remote interface of the web service class (when the web service
is a stateless session bean). In the above example, the Auct i onSer vi ceRenpt e interface must
declare the | ogi n() method as it is annotated as a @\ebMet hod.

As you can see in the above code, the web service implements a | ogi n() method that delegates
to Seam's built-in I dentity component. In keeping with our recommended strategy, the web
service is written as a simple facade, passing off the real work to a Seam component. This allows
for the greatest reuse of business logic between web services and other clients.

Let's look at another example. This web service method begins a new conversation by delegating
to the Aucti onActi on. cr eat eAuct i on() method:

@WebMethod

public void createAuction(String title, String description, int categoryld)

{
AuctionAction action = (AuctionAction) Component.getinstance(AuctionAction.class, true);
action.createAuction();
action.setDetails(title, description, categoryld);

And here's the code from Auct i onActi on:

@Begin

public void createAuction()

{
auction = new Auction();
auction.setAccount(authenticatedAccount);
auction.setStatus(Auction.STATUS_UNLISTED);
durationDays = DEFAULT_AUCTION_DURATION;

}

From this we can see how web services can participate in long running conversations, by acting
as a facade and delegating the real work to a conversational Seam component.

404

RESTful HTTP webservices with RESTEasy

25.4. RESTful HTTP webservices with RESTEasy

Seam integrates the RESTEasy implementation of the JAX-RS specification (JSR 311). You can
decide how "deep" the integration into your Seam application is going to be:

« Seamless integration of RESTEasy bootstrap and configuration, automatic detection of
resources and providers.

e Serving HTTP/REST requests with the SeamResourceServlet, no external servlet or
configuration in web.xml required.

« Writing resources as Seam components, with full Seam lifecycle management and interception
(bijection).

25.4.1. RESTEasy configuration and request serving

First, get the RESTEasy libraries and the j axr s- api . j ar, deploy them with the other libraries of
your application. Also deploy the integration library, j boss- seam rest easy. j ar.

In seam-gen based projects, this can be done by appending j axrs-api.jar, resteasy-
jaxrs.jar and j boss-seamresteasy.jar to the depl oyed-jars.list (war deployment) or
depl oyed-j ars-ear.|ist (ear deployment) file. For a JBoss Tools based project, copy the
libraries mentioned above to the Ear Content /i b (ear deployment) or WebCont ent / WEB- | NF/
I'i b (war deployment) folder and reload the project in the IDE.

On startup, all classes annotated @ avax.ws.rs. Path will be discovered automatically and
registered as HTTP resources. Seam automatically accepts and serves HTTP requests with its
built-in SeanResour ceSer vl et . The URI of a resource is build as follows:

« The URI starts with the host and context path of your application, e.g. ht t p: / / your . host nane/
myapp.

e Then the pattern mapped in web. xm for the SeanResour ceServl et, e.g / seant resour ce if
you follow the common examples, is appended. Change this setting to expose your RESTful
resources under a different base. Note that this is a global change and other Seam resources
(e.g. s: graphi cl mage and s: capt cha) are then also served under that base path.

« The RESTEasy integration for Seam then appends a configurable string to the base path, by
default this is / r est . Hence, the full base path of your resources would e.g. be / nyapp/ sean!
resour ce/ rest . We recommend that you change this string in your application (details below).
You could for example add a version number to prepare for a future REST API upgrade of your
services (old clients would keep the old URI base): / nyapp/ seant r esour ce/ rest vl.

« Finally, the actual resource is available under the defined @at h, e.g. a resource mapped with
@Pat h("/ cust oner") would be available under / myapp/ seani r esour ce/ r est / cust onmer .

405

Chapter 25. Web Services

As an example, the following resource definition would return a plaintext representation
for any GET requests using the URI http://your. host name/ nyapp/ sean resource/rest/
custoner/123:

@Path("/customer")
public class MyCustomerResource {

@GET

@Path("/{customerld}")

@Produces("text/plain")

public String getCustomer(@PathParam("customerld") int id) {
return ...;

No additional configuration is required; you do not have to edit web. xnl or any other setting if
these defaults are acceptable. However, you can configure RESTEasy in your Seam application.
Firstimport the r est easy hamespace into your XML configuration (conponent s. xm) file header:

<components
xmlns="http://jpboss.org/schema/seam/components"
xmlns:resteasy="http://jboss.org/schema/seam/resteasy"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation=
http://jboss.org/schema/seam/resteasy
http://jboss.org/schemal/seam/resteasy-2.3.xsd
http://jboss.org/schema/seam/components
http://jboss.org/schema/seam/components-2.3.xsd">

You can then change the / r est prefix as mentioned earlier:

<resteasy:application resource-path-prefix="/restv1"/>

The full base path to your resources is now / nyapp/ seant r esour ce/ rest vl/{resource} - note
that your @rat h definitions and mappings do NOT change. This is an application-wide switch
usually used for versioning of the HTTP interface.

Seam will scan your classpath for any deployed @ avax.ws.rs.Path resources and any
@ avax. ws. rs. ext.Provi der classes. You can disable scanning and configure these classes
manually:

406

RESTEasy configuration and request serving

<resteasy:application
scan-providers="false"
scan-resources="false"
use-builtin-providers="true">

<resteasy:resource-class-names>
<value>org.foo.MyCustomerResource</value>
<value>org.foo.MyOrderResource</value>
<value>org.foo.MyStatelessEJBImplementation</value>

</resteasy:resource-class-names>

<resteasy:provider-class-names>
<value>org.foo.MyFancyProvider</value>
</resteasy:provider-class-names>

</resteasy:application>

The use-built-in-providers switch enables (default) or disables the RESTEasy built-in
providers. We recommend you leave them enabled, as they provide plaintext, JSON, and JAXB
marshalling out of the box.

RESTEasy supports plain EJBs (EJBs that are not Seam components) as resources. Instead
of configuring the JNDI names in a non-portable fashion in web.xm (see RESTEasy
documentation), you can simply list the EJB implementation classes, not the business interfaces,
in conponent s. xnl as shown above. Note that you have to annotate the @ocal interface of the
EJB with @at h, @ET, and so on - not the bean implementation class. This allows you to keep
your application deployment-portable with the global Seam j ndi - pat t er n switchon <core:init/
>. Note that plain (hon-Seam component) EJB resources will not be found even if scanning of
resources is enabled, you always have to list them manually. Again, this whole paragraph is only
relevant for EJB resources that are not also Seam components and that do not have an @ame
annotation.

Finally, you can configure media type and language URI extensions:

<resteasy:application>

<resteasy:media-type-mappings>
<key>txt</key><value>text/plain</value>
</resteasy:media-type-mappings>

<resteasy:language-mappings>
<key>deutsch</key><value>de-DE</value>
</resteasy:language-mappings>

407

Chapter 25. Web Services

</resteasy:application>

This definition would map the URI suffix of . t xt. deut sch to additional Accept and Accept -
Language header values t ext / pl ai n and de- DE.

25.4.2. Resources as Seam components

Any resource and provider instances are managed by RESTEasy by default. That means a
resource class will be instantiated by RESTEasy and serve a single request, after which it will
be destroyed. This is the default JAX-RS lifecycle. Providers are instantiated once for the whole
application and are effectively singletons and supposed to be stateless.

You can write resources as Seam components and benefit from the richer lifecycle management
of Seam, and interception for bijection, security, and so on. Simply make your resource class a
Seam component:

@Name("customerResource")
@Path("/customer")
public class MyCustomerResource {

@In
CustomerDAO customerDAO;

@GET

@Path("/{customerld}")

@Produces("text/plain”)

public String getCustomer(@PathParam("customerld") int id) {
return customerDAO.find(id).getName();

An instance of cust onmer Resour ce is now handled by Seam when a request hits the server. This is
a Seam JavaBean component that is EVENT-scoped, hence no different than the default JAX-RS
lifecycle. You get full Seam injection and interception support, and all other Seam components and
contexts are available to you. Currently also supported are APPLI CATI ONand STATELESS resource
Seam components. These three scopes allow you to create an effectively stateless Seam middle-
tier HTTP request-processing application.

You can annotate an interface and keep the implementation free from JAX-RS annotations:

@Path("/customer")

408

Resources as Seam components

public interface MyCustomerResource {

@GET

@Path("/{customerld}")

@Produces("text/plain”)

public String getCustomer(@PathParam("customerld") int id);

@Name("customerResource")
@Scope(ScopeType.STATELESS)
public class MyCustomerResourceBean implements MyCustomerResource {

@In
CustomerDAO customerDAO;

public String getCustomer(int id) {
return customerDAO.find(id).getName();

You can use SESSI ON-scoped Seam components. By default, the session will however be
shortened to a single request. In other words, when an HTTP request is being processed by the
RESTEasy integration code, an HTTP session will be created so that Seam components can
utilize that context. When the request has been processed, Seam will look at the session and
decide if the session was created only to serve that single request (no session identifier has been
provided with the request, or no session existed for the request). If the session has been created
only to serve this request, the session will be destroyed after the request!

Assuming that your Seam application only uses event, application, or stateless components,
this procedure prevents exhaustion of available HTTP sessions on the server. The RESTEasy
integration with Seam assumes by default that sessions are not used, hence anemic sessions
would add up as every REST request would start a session that will only be removed when timed
out.

If your RESTful Seam application has to preserve session state across REST HTTP requests,
disable this behavior in your configuration file:

<resteasy:application destroy-session-after-request="false"/>

409

Chapter 25. Web Services

Every REST HTTP request will now create a new session that will only be removed by timeout
or explicit invalidation in your code through Sessi on.instance().invalidate(). It is your
responsibility to pass a valid session identifier along with your HTTP requests, if you want to utilize
the session context across requests.

CONVERSATI ON-scoped resource components and mapping of conversations to temporary HTTP
resources and paths is planned but currently not supported.

EJB Seam components are supported as REST resources. Always annotate the local business
interface, not the EJB implementation class, with JAX-RS annotations. The EJB has to be
STATELESS.

Sub-resources as defined in the JAX RS specification, section 3.4.1, can also be Seam component
instances:

@Path("/garage")
@Name("garage")
public class GarageService

{

@Path("/vehicles")
public VehicleService getVehicles() {
return (VehicleService) Component.getinstance(VehicleService.class);
}
}

Securing resources

25.4.3. Securing resources

You can enable the Seam authentication filter for HTTP Basic and Digest authentication in
conponents. xm :

<web:authentication-filter url-pattern="/seam/resource/rest/*" auth-type="basic"/>

See the Seam security chapter on how to write an authentication routine.

After successful authentication, authorization rules with the common @Restrict and
@er ni ssi onCheck annotations are in effect. You can also access the client | denti ty, work with
permission mapping, and so on. All regular Seam security features for authorization are available.

25.4.4. Mapping exceptions to HTTP responses

Section 3.3.4 of the JAX-RS specification defines how checked or unchecked exceptions are
handled by the JAX RS implementation. In addition to using an exception mapping provider as
defined by JAX-RS, the integration of RESTEasy with Seam allows you to map exceptions to
HTTP response codes within Seam's pages. xnl facility. If you are already using pages. xm
declarations, this is easier to maintain than potentially many JAX RS exception mapper classes.

Exception handling within Seam requires that the Seam filter is executed for your HTTP request.
Ensure that you do filter all requests in your web. xmi , not - as some Seam examples might show - a
request URI pattern that doesn't cover your REST request paths. The following example intercepts
all HTTP requests and enables Seam exception handling:

<filter>
<filter-name>Seam Filter</filter-name>
<filter-class>org.jboss.seam.servlet.SeamFilter</filter-class>
<ffilter>

<filter-mapping>
<filter-name>Seam Filter</filter-name>
<url-pattern>/*</url-pattern>
</[filter-mapping>

To convert the unchecked Unsuppor t edQper at i onExcept i on thrown by your resource methods
toa501 Not I npl enent ed HTTP status response, add the following to your pages. xm descriptor:

<exception class="java.lang.UnsupportedOperationException">
<http-error error-code="501">
<message>The requested operation is not supported</message>
</http-error>

411

Chapter 25. Web Services

</exception>

Custom or checked exceptions are handled the same:

<exception class="my.CustomException" log="false">
<http-error error-code="503">
<message>Service not available: #{org.jboss.seam.handledException.message}</message>
</http-error>
</exception>

You do not have to send an HTTP error to the client if an exception occurs. Seam allows you to
map the exception as a redirect to a view of your Seam application. As this feature is typically
used for human clients (web browsers) and not for REST API remote clients, you should pay extra
attention to conflicting exception mappings in pages. xni .

Note that the HTTP response still passes through the servlet container, so an additional mapping
might apply if you have <er r or - page> mappings in your web. xnl configuration. The HTTP status
code would then be mapped to a rendered HTML error page with status 200 K!

25.4.5. Exposing entities via RESTful API

Seam makes it really easy to use a RESTful approach for accessing application data. One of
the improvements that Seam introduces is the ability to expose parts of your SQL database
for remote access via plain HTTP calls. For this purpose, the Seam/RESTEasy integration
module provides two components: Resour ceHone and Resour ceQuer y, which benefit from the API
provided by the Seam Application Framework (Chapter 14, The Seam Application Framework).
These components allow you to bind domain model entity classes to an HTTP API.

25.4.5.1. ResourceQuery

ResourceQuery exposes entity querying capabilities as a RESTful web service. By default, a
simple underlying Query component, which returns a list of instances of a given entity class, is
created automatically. Alternatively, the ResourceQuery component can be attached to an existing
Query component in more sophisticated cases. The following example demonstrates how easily
ResourceQuery can be configured:

<resteasy:resource-query
path="/user"
name="userResourceQuery"
entity-class="com.example.User"/>

With this single XML element, a ResourceQuery component is set up. The configuration is
straightforward:

412

Exposing entities via RESTful API

e The component will return a list of com exanpl e. User instances.
« The component will handle HTTP requests on the URI path / user.

e The component will by default transform the data into XML or JSON (based on client's
preference). The set of supported mime types can be altered by using the nedi a-types
attribute, for example:

<resteasy:resource-query
path="/user"
name="userResourceQuery"
entity-class="com.example.User"
media-types="application/fastinfoset"/>

Alternatively, if you do not like configuring components using XML, you can set up the component
by extension:

@Name("userResourceQuery")
@Path("user")
public class UserResourceQuery extends ResourceQuery<User>

{
}

Queries are read-only operations, the resource only responds to GET requests. Furthermore,
ResourceQuery allows clients of a web service to manipulate the resultset of a query using the
following path parameters:

Parameter name Example Description

start /user?start=20 Returns a subset of a
database query result starting
with the 20th entry.

show /user?show=10 Returns a subset of the
database query result limited
to 10 entries.

For example, you can send an HTTP GET request to / user ?st art =30&how=10 to get a list of
entries representing 10 rows starting with row 30.

413

Chapter 25. Web Services

Note

)

RESTEasy uses JAXB to marshall entities. Thus, in order to be able to transfer
them over the wire, you need to annotate entity classes with @XM_Root El enent .
Consult the JAXB and RESTEasy documentation for more information.

25.4.5.2. ResourceHome

Just as ResourceQuery makes Query's API available for remote access, so does ResourceHome
for the Home component. The following table describes how the two APIs (HTTP and Home) are

bound together.

Table 25.1.
HTTP method Path Function
GET {path}/{id} Read
POST {path} Create
PUT {path}/{id} Update
DELETE {path}/{id} Delete

ResourceHome
method

getResource()
postResource()
putResource()

deleteResource()

* You can GET, PUT, and DELETE a particular user instance by sending HTTP requests to /

user/{userld}

« Sending a POST request to / user creates a new user entity instance and persists it. Usually,
you leave it up to the persistence layer to provide the entity instance with an identifier value
and thus an URI. Therefore, the URI is sent back to the client in the Locat i on header of the

HTTP response.

The configuration of ResourceHome is very similar to ResourceQuery except that you need to
explicitly specify the underlying Home component and the Java type of the entity identifier property.

<resteasy:resource-home
path="/user"
name="userResourceHome"
entity-home="#{userHome}"
entity-id-class="java.lang.Integer"/>

Again, you can write a subclass of ResourceHome instead of XML:

@Name("userResourceHome")

414

Testing resources and providers

@Path("user")
public class UserResourceHome extends ResourceHome<User, Integer>

{

@In
private EntityHome<User> userHome;

@Override
public Home<?, User> getEntityHome()

{

return userHome;

For more examples of ResourceHome and ResourceQuery components, take a look at the Seam
Tasks example application, which demonstrates how Seam/RESTEasy integration can be used
together with a jQuery web client. In addition, you can find more code example in the Restbay
example, which is used mainly for testing purposes.

25.4.6. Testing resources and providers

Seam includes a unit testing utility class that helps you create wunit tests
for a RESTful architecture. Extend the Seanifest class as wusual and use the
Resour ceRequest Envi r onnment . Resour ceRequest to emulate HTTP requests/response cycles:

import org.jboss.seam.mock.ResourceRequestEnvironment;

import org.jposs.seam.mock.EnhancedMockHttpServietRequest;

import org.jboss.seam.mock.EnhancedMockHttpServletResponse;

import static org.jposs.seam.mock.ResourceRequestEnvironment.ResourceRequest;
import static org.jposs.seam.mock.ResourceRequestEnvironment.Method,;

public class MyTest extends SeamTest {
ResourceRequestEnvironment sharedEnvironment;

@BeforeClass
public void prepareSharedEnvironment() throws Exception {
sharedEnvironment = new ResourceRequestEnvironment(this) {
@Override
public Map<String, Object> getDefaultHeaders() {
return new HashMap<String, Object>() {{
put("Accept”, "text/plain®);
1
}

415

Chapter 25. Web Services

@Test
public void test() throws Exception
{
/INot shared: new ResourceRequest(new ResourceRequestEnvironment(this), Method.GET,
“Imy/relative/uri)

new ResourceRequest(sharedEnvironment, Method.GET, "/my/relative/uri)
{
@Override
protected void prepareRequest(EnhancedMockHttpServietRequest request)
{
request.addQueryParameter("foo", "123");
request.addHeader("Accept-Language”, "en_US, de");
}

@Override
protected void onResponse(EnhancedMockHttpServietResponse response)
{

assert response.getStatus() == 200;

assert response.getContentAsString().equals("foobar");

}

}.run();
}
}

This test only executes local calls, it does not communicate with the SeanResour ceSer vl et
through TCP. The mock request is passed through the Seam servlet and filters and the response
is then available for test assertions. Overriding the get Def aul t Header s() method in a shared
instance of Resour ceRequest Envi ronment allows you to set request headers for every test
method in the test class.

Note that a Resour ceRequest has to be executed in a @est method or in a @ef or eMet hod
callback. You can not execute it in any other callback, such as @ef or eC ass.

416

Chapter 26.

Remoting

Seam provides a convenient method of remotely accessing components from a web page, using
AJAX (Asynchronous Javascript and XML). The framework for this functionality is provided with
almost no up-front development effort - your components only require simple annotating to
become accessible via AJAX. This chapter describes the steps required to build an AJAX-enabled
web page, then goes on to explain the features of the Seam Remoting framework in more detail.

26.1. Configuration

To use remoting, the Seam Resource servlet must first be configured in your web. xnm file:

<servlet>
<servlet-name>Seam Resource Servlet</servlet-name>
<servlet-class>org.jboss.seam.servlet. SeamResourceServlet</servlet-class>
</servlet>

<servlet-mapping>
<servlet-name>Seam Resource Servlet</servlet-name>
<url-pattern>/seam/resource/*</url-pattern>
</servlet-mapping>

The next step is to import the necessary Javascript into your web page. There are a minimum of
two scripts that must be imported. The first one contains all the client-side framework code that
enables remoting functionality:

<script type="text/javascript" src="seam/resource/remoting/resource/remote.js"></script>

The second script contains the stubs and type definitions for the components you wish to call.
It is generated dynamically based on the local interface of your components, and includes type
definitions for all of the classes that can be used to call the remotable methods of the interface.
The name of the script reflects the name of your component. For example, if you have a stateless
session bean annotated with @anme(" cust omer Acti on"), then your script tag should look like
this:

<script type="text/javascript"
src="seam/resource/remoting/interface.js?customerAction"></script>

If you wish to access more than one component from the same page, then include them all as
parameters of your script tag:

417

Chapter 26. Remoting

<script type="text/javascript"
src="seam/resource/remoting/interface.js?customerAction&accountAction"></script>

Alternatively, you may use the s: renot e tag to import the required Javascript. Separate each
component or class name you wish to import with a comma:

<s:remote include="customerAction,accountAction"/>

26.2. The "Seam" object

Client-side interaction with your components is all performed via the Seam Javascript object.
This object is defined in renmot e. j s, and you'll be using it to make asynchronous calls against
your component. It is split into two areas of functionality; Seam Conponent contains methods for
working with components and Seam Renot i ng contains methods for executing remote requests.
The easiest way to become familiar with this object is to start with a simple example.

26.2.1. A Hello World example

Let's step through a simple example to see how the Seamobject works. First of all, let's create a
new Seam component called hel | oActi on.

@Stateless
@Name("helloAction")
public class HelloAction {
@WebRemote
public String sayHello(String name) {
return "Hello, " + name;

Take special note of the @\ébRenot e annotation, as it's required to make our method accessible
via remoting:

That's all the server-side code we need to write.

° Note

If you are performing a persistence operation in the method marked @¢bRenot e
you will also need to add a @' ansact i onal annotation to the method. Otherwise,

418

A Hello World example

your method would execute outside of a transaction without this extra hint.That's
because unlike a JSF request, Seam does not wrap the remoting request in a
transaction automatically.

Now for our web page - create a new page and import the hel | oActi on component:

<s:remote include="helloAction"/>

To make this a fully interactive user experience, let's add a button to our page:

<button onclick="javascript:sayHello()">Say Hello</button>

We'll also need to add some more script to make our button actually do something wheniit's clicked:

<script type="text/javascript">
II<![CDATA[

function sayHello() {
var name = prompt("What is your name?");
Seam.Component.getinstance("helloAction").sayHello(hame, sayHelloCallback);

}

function sayHelloCallback(result) {
alert(result);

}

111>
</script>

We're done! Deploy your application and browse to your page. Click the button, and enter a
name when prompted. A message box will display the hello message confirming that the call was
successful. If you want to save some time, you'll find the full source code for this Hello World
example in Seam's / exanpl es/ renot i ng/ hel | owor | d directory.

So what does the code of our script actually do? Let's break it down into smaller pieces. To start
with, you can see from the Javascript code listing that we have implemented two methods - the first
method is responsible for prompting the user for their name and then making a remote request.
Take a look at the following line:

419

Chapter 26. Remoting

Seam.Component.getinstance("helloAction").sayHello(hname, sayHelloCallback);

The first section of this line, Seam Conponent . get | nst ance(" hel | oActi on") returns a proxy,
or "stub” for our hel | oActi on component. We can invoke the methods of our component
against this stub, which is exactly what happens with the remainder of the line: sayHel | o(nane,
sayHel | oCal | back); .

What this line of code in its completeness does, is invoke the sayHel | o0 method of our component,
passing in nane as a parameter. The second parameter, sayHel | oCal | back isn't a parameter
of our component's sayHel | o method, instead it tells the Seam Remoting framework that once
it receives the response to our request, it should pass it to the sayHel | oCal | back Javascript
method. This callback parameter is entirely optional, so feel free to leave it out if you're calling a
method with a voi d return type or if you don't care about the result.

The sayHel | oCal | back method, once receiving the response to our remote request then pops
up an alert message displaying the result of our method call.

26.2.2. Seam.Component

The Seam Conponent Javascript object provides a number of client-side methods for working
with your Seam components. The two main methods, newl nst ance() and get I nst ance() are
documented in the following sections however their main difference is that newl nst ance() will
always create a new instance of a component type, and get | nst ance() will return a singleton
instance.

26.2.2.1. Seam.Component.newlinstance()

Use this method to create a new instance of an entity or Javabean component. The object
returned by this method will have the same getter/setter methods as its server-side counterpart,
or alternatively if you wish you can access its fields directly. Take the following Seam entity
component for example:

@Name("customer")
@Entity
public class Customer implements Serializable
{
private Integer customerld;
private String firstName;
private String lastName;

@Column public Integer getCustomerld() {
return customerld;

}

420

Seam.Component

public void setCustomerld(Integer customerld} {
this.customerld = customerld;

}

@Column public String getFirstName() {
return firstName;

}

public void setFirstName(String firstName) {
this.firstName = firstName;

}

@Column public String getLastName() {
return lastName;

}

public void setLastName(String lastName) {
this.lastName = lastName;

}
}

To create a client-side Customer you would write the following code:

var customer = Seam.Component.newlnstance("customer");

Then from here you can set the fields of the customer object:

customer.setFirstName("John");
/I Or you can set the fields directly
customer.lastName = "Smith";

26.2.2.2. Seam.Component.getinstance()

The get I nst ance() method is used to get a reference to a Seam session bean component stub,
which can then be used to remotely execute methods against your component. This method
returns a singleton for the specified component, so calling it twice in a row with the same
component name will return the same instance of the component.

To continue our example from before, if we have created a new cust omer and we now wish to
save it, we would pass it to the saveCust oner () method of our cust oner Act i on component:

421

Chapter 26. Remoting

Seam.Component.getinstance("customerAction").saveCustomer(customer);

26.2.2.3. Seam.Component.getComponentName()

Passing an object into this method will return its component name if it is a component, or nul |
if it is not.

if (Seam.Component.getComponentName(instance) == "customer")
alert("Customer");

else if (Seam.Component.getComponentName(instance) == "staff")
alert("Staff member");

26.2.3. Seam.Remoting

Most of the client side functionality for Seam Remoting is contained within the Seam Renot i ng
object. While you shouldn't need to directly call most of its methods, there are a couple of important
ones worth mentioning.

26.2.3.1. Seam.Remoting.createType()

If your application contains or uses Javabean classes that aren't Seam components, you may
need to create these types on the client side to pass as parameters into your component method.
Use the cr eat eType() method to create an instance of your type. Pass in the fully qualified Java
class name as a parameter:

var widget = Seam.Remoting.createType("com.acme.widgets.MyWidget");

26.2.3.2. Seam.Remoting.getTypeName()

This method is the equivalent of Seam Conponent . get Conponent Name() but for non-component
types. It will return the name of the type for an object instance, or nul | if the type is not known.
The name is the fully qualified name of the type's Java class.

26.3. Client Interfaces

In the configuration section above, the interface, or "stub” for our component is imported into our
page either via seant resource/ renoti ng/interface.js: orusing the s: renot e tag:

<script type="text/javascript"
src="seam/resource/remoting/interface.js?customerAction"></script>

422

The Context

<s:remote include="customerAction"/>

By including this script in our page, the interface definitions for our component, plus any other
components or types that are required to execute the methods of our component are generated
and made available for the remoting framework to use.

There are two types of client stub that can be generated, "executable" stubs and "type" stubs.
Executable stubs are behavioural, and are used to execute methods against your session bean
components, while type stubs contain state and represent the types that can be passed in as
parameters or returned as a result.

The type of client stub that is generated depends on the type of your Seam component. If the
component is a session bean, then an executable stub will be generated, otherwise if it's an
entity or JavaBean, then a type stub will be generated. There is one exception to this rule; if your
component is a JavaBean (ie it is not a session bean nor an entity bean) and any of its methods
are annotated with @WebRemote, then an executable stub will be generated for it instead of a
type stub. This allows you to use remoting to call methods of your JavaBean components in a
non-EJB environment where you don't have access to session beans.

26.4. The Context

The Seam Remoting Context contains additional information which is sent and received as part
of a remoting request/response cycle. At this stage it only contains the conversation ID but may
be expanded in the future.

26.4.1. Setting and reading the Conversation ID

If you intend on wusing remote calls within the scope of a conversation then
you need to be able to read or set the conversation ID in the Seam
Remoting Context. To read the conversation ID after making a remote request call
Seam Renot i ng. get Cont ext (). get Conversationld(). To set the conversation ID before
making a request, call Seam Renot i ng. get Cont ext (). set Conversationld().

If the conversation ID hasn't been explicitly set with
Seam Renot i ng. get Cont ext (). set Conversationl d(), then it will be automatically assigned
the first valid conversation ID that is returned by any remoting call. If you are working with multiple
conversations within your page, then you may need to explicitly set the conversation ID before
each call. If you are working with just a single conversation, then you don't need to do anything
special.

26.4.2. Remote calls within the current conversation scope

In some circumstances it may be required to make a remote call within the scope of the current
view's conversation. To do this, you must explicitly set the conversation ID to that of the view

423

Chapter 26. Remoting

before making the remote call. This small snippet of JavaScript will set the conversation ID that
is used for remoting calls to the current view's conversation ID:

Seam.Remoting.getContext().setConversationld(#{conversation.id});

26.5. Batch Requests

Seam Remoting allows multiple component calls to be executed within a single request. It is
recommended that this feature is used wherever it is appropriate to reduce network traffic.

The method Seam Renoti ng. startBatch() will start a new batch, and any component calls
executed after starting a batch are queued, rather than being sent immediately. When all the
desired component calls have been added to the batch, the Seam Renot i ng. execut eBat ch()
method will send a single request containing all of the queued calls to the server, where they will
be executed in order. After the calls have been executed, a single response containning all return
values will be returned to the client and the callback functions (if provided) triggered in the same
order as execution.

If you start a new batch via the st art Bat ch() method but then decide you don't want to send
it, the Seam Renot i ng. cancel Bat ch() method will discard any calls that were queued and exit
the batch mode.

To see an example of a batch being used, take a look at / exanpl es/ r enot i ng/ chat r oom
26.6. Working with Data types

26.6.1. Primitives / Basic Types

This section describes the support for basic data types. On the server side these values are
generally compatible with either their primitive type or their corresponding wrapper class.

26.6.1.1. String
Simply use Javascript String objects when setting String parameter values.

26.6.1.2. Number

There is support for all number types supported by Java. On the client side, number values are
always serialized as their String representation and then on the server side they are converted
to the correct destination type. Conversion into either a primitive or wrapper type is supported for
Byt e, Doubl e, Fl oat, I nt eger, Long and Short types.

26.6.1.3. Boolean

Booleans are represented client side by Javascript Boolean values, and server side by a Java
boolean.

424

JavaBeans

26.6.2. JavaBeans

In general these will be either Seam entity or JavaBean components, or some other non-
component class. Use the appropriate method (either Seam Conponent . newl nst ance() for Seam
components or Seam Renot i ng. cr eat eType() for everything else) to create a new instance of
the object.

It is important to note that only objects that are created by either of these two methods should
be used as parameter values, where the parameter is not one of the other valid types mentioned
anywhere else in this section. In some situations you may have a component method where the
exact parameter type cannot be determined, such as:

@Name("myAction")
public class MyAction implements MyActionLocal {
public void doSomethingWithObject(Object obj) {
/I code
}
}

In this case you might want to pass in an instance of your nyW dget component, however the
interface for nyAct i on won'tinclude myW dget as itis not directly referenced by any of its methods.
To get around this, MyW dget needs to be explicitly imported:

<s:remote include="myAction,myWidget"/>

This will then allow a nyW dget object to be created with
Seam Conponent . new nst ance(" nyW dget "), which can then be passed to
nmyAct i on. doSonet hi ngW t hObj ect () .

26.6.3. Dates and Times

Date values are serialized into a String representation that is accurate to the millisecond. On the
client side, use a Javascript Date object to work with date values. On the server side, use any
java. util . Date (or descendent, such as j ava. sql . Dat e or j ava. sql . Ti nest anp class.

26.6.4. Enums

On the client side, enums are treated the same as Strings. When setting the value for an enum
parameter, simply use the String representation of the enum. Take the following component as
an example:

@Name("paintAction™)

425

Chapter 26. Remoting

public class paintAction implements paintLocal {
public enum Color {red, green, blue, yellow, orange, purple};

public void paint(Color color) {
/l code
}
}

To call the pai nt () method with the color r ed, pass the parameter value as a String literal:

Seam.Component.getinstance("paintAction”).paint("red");

The inverse is also true - that is, if a component method returns an enum parameter (or contains
an enum field anywhere in the returned object graph) then on the client-side it will be represented
as a String.

26.6.5. Collections

26.6.5.1. Bags

Bags cover all collection types including arrays, collections, lists, sets, (but excluding Maps - see
the next section for those), and are implemented client-side as a Javascript array. When calling a
component method that accepts one of these types as a parameter, your parameter should be a
Javascript array. If a component method returns one of these types, then the return value will also
be a Javascript array. The remoting framework is clever enough on the server side to convert the
bag to an appropriate type for the component method call.

26.6.5.2. Maps

As there is no native support for Maps within Javascript, a simple Map implementation is provided
with the Seam Remoting framework. To create a Map which can be used as a parameter to a
remote call, create a new Seam Renot i ng. Map object:

var map = new Seam.Remoting.Map();

This Javascript implementation provides basic methods for working with Maps: size(),
i SEnpty(), keySet(), values(), get(key), put(key, val ue), renove(key) and
cont ai ns(key) . Each of these methods are equivalent to their Java counterpart. Where the
method returns a collection, such as keySet () and val ues(), a Javascript Array object will be
returned that contains the key or value objects (respectively).

426

Debugging

26.7. Debugging
To aid in tracking down bugs, it is possible to enable a debug mode which will display the contents

of all the packets send back and forth between the client and server in a popup window. To enable
debug mode, either execute the set Debug() method in Javascript:

Seam.Remoting.setDebug(true);
Or configure it via components.xml:
<remoting:remoting debug="true"/>

To turn off debugging, call set Debug(fal se). If you want to write your own messages to the
debug log, call Seam Renot i ng. | og(message) .

26.8. Handling Exceptions

When invoking a remote component method, it is possible to specify an exception handler which
will process the response in the event of an exception during component invocation. To specify an
exception handler function, include a reference to it after the callback parameter in your JavaScript:

var callback = function(result) { alert(result); };
var exceptionHandler = function(ex) { alert("An exception occurred: " + ex.getMessage()); };
Seam.Component.getinstance("helloAction").sayHello(name, callback, exceptionHandler);

If you do not have a callback handler defined, you must specify nul | in its place:

var exceptionHandler = function(ex) { alert("An exception occurred: " + ex.getMessage()); };
Seam.Component.getinstance("helloAction").sayHello(hame, null, exceptionHandler);

The exception object that is passed to the exception handler exposes one method, get Message()
that returns the exception message which is produced by the exception thrown by the @\ébRenot e
method.

26.9. The Loading Message

The default loading message that appears in the top right corner of the screen can be modified,
its rendering customised or even turned off completely.

427

Chapter 26. Remoting

26.9.1. Changing the message

To change the message from the default "Please Wait..." to something different, set the value of
Seam Renot i ng. | oadi ngMessage:

Seam.Remoting.loadingMessage = "Loading...";

26.9.2. Hiding the loading message

To completely suppress the display of the loading message, override the implementation of
di spl ayLoadi ngMessage() and hi deLoadi ngMessage() with functions that instead do nothing:

/I don't display the loading indicator
Seam.Remoting.displayLoadingMessage = function() {};
Seam.Remoting.hideLoadingMessage = function() {};

26.9.3. A Custom Loading Indicator

It is also possible to override the loading indicator to display an animated icon, or anything else
that you want. To do this override the di spl ayLoadi ngMessage() and hi deLoadi ngMessage()
messages with your own implementation:

Seam.Remoting.displayLoadingMessage = function() {
/I ' Write code here to display the indicator

k

Seam.Remoting.hideLoadingMessage = function() {
/I Write code here to hide the indicator

k

26.10. Controlling what data is returned

When a remote method is executed, the result is serialized into an XML response that is returned
to the client. This response is then unmarshaled by the client into a Javascript object. For
complex types (i.e. Javabeans) that include references to other objects, all of these referenced
objects are also serialized as part of the response. These objects may reference other objects,
which may reference other objects, and so forth. If left unchecked, this object "graph” could
potentially be enormous, depending on what relationships exist between your objects. And as
a side issue (besides the potential verbosity of the response), you might also wish to prevent
sensitive information from being exposed to the client.

428

Constraining normal fields

Seam Remoting provides a simple means to "constrain” the object graph, by specifying the
excl ude field of the remote method's @\ébRenot e annotation. This field accepts a String array
containing one or more paths specified using dot notation. When invoking a remote method, the
objects in the result's object graph that match these paths are excluded from the serialized result
packet.

For all our examples, we'll use the following W dget class:

@Name("widget")
public class Widget
{
private String value;
private String secret;
private Widget child;
private Map<String,Widget> widgetMap;
private List<Widget> widgetList;

I getters and setters for all fields

26.10.1. Constraining normal fields

If your remote method returns an instance of W dget , but you don't want to expose the secr et
field because it contains sensitive information, you would constrain it like this:

@WebRemote(exclude = {"secret"})
public Widget getWidget();

The value "secret" refers to the secret field of the returned object. Now, suppose that we don't
care about exposing this particular field to the client. Instead, notice that the W dget value that
is returned has a field chi | d that is also a W dget . What if we want to hide the chi | d's secret
value instead? We can do this by using dot notation to specify this field's path within the result's
object graph:

@WebRemote(exclude = {"child.secret"})
public Widget getWidget();
26.10.2. Constraining Maps and Collections

The other place that objects can exist within an object graph are within a Map or some kind of
collection (Li st, Set, Array, etc). Collections are easy, and are treated like any other field. For

429

Chapter 26. Remoting

example, if our W dget contained a list of other W dget s in its wi dget Li st field, to constrain the
secr et field of the W dget s in this list the annotation would look like this:

@WebRemote(exclude = {"widgetList.secret"})
public Widget getWidget();

To constrain a Map's key or value, the notation is slightly different. Appending [key] after the Map's
field name will constrain the Map's key object values, while [val ue] will constrain the value object
values. The following example demonstrates how the values of the wi dget Map field have their
secr et field constrained:

@WebRemote(exclude = {"widgetMap|value].secret"})

public Widget getWidget();

26.10.3. Constraining objects of a specific type

There is one last notation that can be used to constrain the fields of a type of object no matter
where in the result's object graph it appears. This notation uses either the name of the component

(if the object is a Seam component) or the fully qualified class name (only if the object is not a
Seam component) and is expressed using square brackets:

@WebRemote(exclude = {"[widget].secret"})
public Widget getWidget();

26.10.4. Combining Constraints

Constraints can also be combined, to filter objects from multiple paths within the object graph:

@WebRemote(exclude = {"widgetList.secret”, "widgetMap[value].secret"})
public Widget getWidget();

26.11. Transactional Requests

By default there is no active transaction during a remoting request, so if you wish to perform
database updates during a remoting request, you need to annotate the @\ébRenot e method with
@r ansact i onal , like so:

@WebRemote @ Transactional(TransactionPropagationType.REQUIRED)

430

JMS Messaging

public void updateOrder(Order order) {
entityManager.merge(order);

}

26.12. JIMS Messaging

Seam Remoting provides experimental support for JIMS Messaging. This section describes the
JMS support that is currently implemented, but please note that this may change in the future. It
is currently not recommended that this feature is used within a production environment.

26.12.1. Configuration

Before you can subscribe to a JMS topic, you must first configure a list
of the topics that can be subscribed to by Seam Remoting. List the topics
under org.jboss. seam renoti ng. nessagi ng. subscri pti onRegi stry. al | onedTopi cs in
seam properties,web. xm or conponents. xn .

<remoting:remoting poll-timeout="5" poll-interval="1"/>

26.12.2. Subscribing to a JMS Topic

The following example demonstrates how to subscribe to a JMS Topic:

function subscriptionCallback(message)
{
if (message instanceof Seam.Remoting.TextMessage)
alert("Received message: " + message.getText());

Seam.Remoting.subscribe("topicName", subscriptionCallback);

The Seam Renoti ng. subscri be() method accepts two parameters, the first being the name of
the JMS Topic to subscribe to, the second being the callback function to invoke when a message
is received.

There are two types of messages supported, Text messages and Object messages. If you
need to test for the type of message that is passed to your callback function you can use
the i nst anceof operator to test whether the message is a Seam Renoti ng. Text Message or
Seam Renoti ng. Obj ect Message. A Text Message contains the text value in its text field (or
alternatively call get Text () on it), while an Obj ect Message contains its object value in its val ue
field (or call its get Val ue() method).

431

Chapter 26. Remoting

26.12.3. Unsubscribing from a Topic

To unsubscribe from a topic, call Seam Renot i ng. unsubscri be() and pass in the topic name:

Seam.Remoting.unsubscribe("topicName");

26.12.4. Tuning the Polling Process

There are two parameters which you can modify to control how polling occurs. The first one is
Seam Renoti ng. pol | I nterval , which controls how long to wait between subsequent polls for
new messages. This parameter is expressed in seconds, and its default setting is 10.

The second parameter is Seam Renoti ng. pol | Ti meout, and is also expressed as seconds. It
controls how long a request to the server should wait for a new message before timing out and
sending an empty response. Its default is 0 seconds, which means that when the server is polled,
if there are no messages ready for delivery then an empty response will be immediately returned.

Caution should be used when setting a high pol | Ti neout value; each request that has to wait for
a message means that a server thread is tied up until a message is received, or until the request
times out. If many such requests are being served simultaneously, it could mean a large number
of threads become tied up because of this reason.

Itis recommended that you set these options via components.xml, however they can be overridden
via Javascript if desired. The following example demonstrates how to configure the polling to occur
much more aggressively. You should set these parameters to suitable values for your application:

Via components.xmil:

<remoting:remoting poll-timeout="5" poll-interval="1"/>

Via JavaScript:

/I Only wait 1 second between receiving a poll response and sending the next poll request.
Seam.Remoting.pollinterval = 1;

// Wait up to 5 seconds on the server for new messages
Seam.Remoting.pollTimeout = 5;

432

Chapter 27.

Seam and the Google Web Toolkit

For those that prefer to use the Google Web Toolkit (GWT) to develop dynamic AJAX applications,
Seam provides an integration layer that allows GWT widgets to interact directly with Seam
components.

To use GWT, we assume that you are already familiar with the GWT tools - more information
can be found at http://code.google.com/webtoolkit/. This chapter does not attempt to explain how
GWT works or how to use it.

27.1. Configuration

There is no special configuration required to use GWT in a Seam application, however the Seam
resource servlet must be installed. See Chapter 31, Configuring Seam and packaging Seam
applications for details.

27.2. Preparing your component

The first step in preparing a Seam component to be called via GWT, is to create both synchronous
and asynchronous service interfaces for the methods you wish to call. Both of these interfaces
should extend the GWT interface com googl e. gwt . user. cli ent.rpc. Renot eSer vi ce:

public interface MyService extends RemoteService {
public String asklt(String question);

}

The asynchronous interface should be identical, except that it also contains an additional
AsyncCal | back parameter for each of the methods it declares:

public interface MyServiceAsync extends RemoteService {
public void asklt(String question, AsyncCallback callback);

}

The asynchronous interface, in this example MySer vi ceAsync, will be implemented by GWT and
should never be implemented directly.

The next step, is to create a Seam component that implements the synchronous interface:

@Name("org.jboss.seam.example.remoting.gwt.client.MyService")
public class Servicelmpl implements MyService {

@WebRemote

433

http://code.google.com/webtoolkit/

Chapter 27. Seam and the Goog...

public String asklt(String question) {

if ('validate(question)) {
throw new lllegalStateException("Hey, this shouldn't happen, | checked on the client, " +
"but its always good to double check.");

}

return "42. Its the real question that you seek now.";

}

public boolean validate(String q) {
ValidationUtility util = new ValidationUtility();
return util.isvValid(q);
}
}

The name of the seam component must match the fully qualified name of the GWT client interface
(as shown), or the seam resource servlet will not be able to find it when a client makes a GWT
call. The methods that are to be made accessible via GWT also need to be annotated with the
@e¢bRenot e annotation.

27.3. Hooking up a GWT widget to the Seam component

The next step, is to write a method that returns the asynchronous interface to the component.
This method can be located inside the widget class, and will be used by the widget to obtain a
reference to the asynchronous client stub:

private MyServiceAsync getService() {
String endpointURL = GWT.getModuleBaseURL() + "seam/resource/gwt";

MyServiceAsync svc = (MyServiceAsync) GWT.create(MyService.class);

((ServiceDefTarget) svc).setServiceEntryPoint(endpointURL);
return svc;

The final step is to write the widget code that invokes the method on the client stub. The following
example creates a simple user interface with a label, text input and a button:

public class AskQuestionWidget extends Composite {
private AbsolutePanel panel = new AbsolutePanel();

public AskQuestionWidget() {

434

Hooking up a GWT widget to the Seam component

Label Ibl = new Label("OK, what do you want to know?");
panel.add(lbl);
final TextBox box = new TextBox();
box.setText("What is the meaning of life?");
panel.add(box);
Button ok = new Button("Ask");
ok.addClickListener(new ClickListener() {
public void onClick(Widget w) {
ValidationUltility valid = new ValidationUtility();
if ('valid.isValid(box.getText())) {
Window.alert("A question has to end with a '?");
}else{
askServer(box.getText());
}
}
b
panel.add(ok);

initWidget(panel);
}

private void askServer(String text) {
getService().asklt(text, new AsyncCallback() {
public void onFailure(Throwable t) {
Window.alert(t.getMessage());

}

public void onSuccess(Object data) {
Window.alert((String) data);
}
)
}

When clicked, the button invokes the askServer () method passing the contents of the input
text (in this example, validation is also performed to ensure that the input is a valid question).
The askServer () method acquires a reference to the asynchronous client stub (returned by the
get Servi ce() method) and invokes the askl t () method. The result (or error message if the call
fails) is shown in an alert window.

435

Chapter 27. Seam and the Goog...

HelloWorld

This is an example of a host page for the HelloWorld application. You can attach a VWeb Toolkit module to any HTML page you like,
making it easy to add bits of AJAX functionality to existing pages without starting from scratch.

Qb wihat do you want to know?
What is the meaning of i

The complete code for this example can be found in the Seam distribution in the exanpl es/
renoti ng/ gwt directory.

27.4. GWT Ant Targets

For deployment of GWT apps, there is a compile-to-Javascript step (which compacts and
obfuscates the code). There is an ant utility which can be used instead of the command line or GUI
utility that GWT provides. To use this, you will need to have the ant task jar in your ant classpath,
as well as GWT downloaded (which you will need for hosted mode anyway).

Then, in your ant file, place (near the top of your ant file):

<taskdef uri="antlib:de.samaflost.gwttasks"
resource="de/samaflost/gwttasks/antlib.xml"
classpath="./lib/gwttasks.jar"/>

<property file="build.properties"/>
Create a bui | d. properti es file, which has the contents:
gwt.home=/gwt_home_dir
This of course should point to the directory where GWT is installed. Then to use it, create a target:

<!-- the following are are handy utilities for doing GWT development.
To use GWT, you will of course need to download GWT seperately -->
<target name="gwt-compile">
<!-- in this case, we are "re homing" the gwt generated stuff, so in this case
we can only have one GWT module - we are doing this deliberately to keep the URL short -->
<delete>
<fileset dir="view"/>
</delete>
<gwt:compile outDir="build/gwt"
gwtHome="${gwt.home}"

436

GWT Maven plugin

classBase="${gwt.module.name}"
sourceclasspath="src"/>
<copy todir="view">
<fileset dir="build/gwt/${gwt.module.name}"/>
</copy>
</target>

This target when called will compile the GWT application, and copy it to the specified directory
(which would be in the webapp part of your war - remember GWT generates HTML and Javascript
artifacts). You never edit the resulting code that gwt - conpi | e generates - you always edit in the
GWT source directory.

Remember that GWT comes with a hosted mode browser - you should be using that if you are
developing with GWT. If you aren't using that, and are just compiling it each time, you aren't getting
the most out of the toolkit (in fact, if you can't or won't use the hosted mode browser, | would go
far as to say you should NOT be using GWT at all - it's that valuable!).

27.5. GWT Maven plugin

For a deployment of GWT apps, there is a set of maven GWT goals which does everything what
GWT supports. The maven-gwt-plugin usage is in more details at GWT [http://mojo.codehaus.org/
gwt-maven-plugin/].

Basic set up is for instance here:

<build>
<plugins>
[...]
<plugin>
<groupld>org.codehaus.mojo</groupld>
<artifactld>gwt-maven-plugin</artifactld>
<version>1.2</version> <!-- version 1.2 allows us to specify gwt version by gwt-user
dependency -->
<configuration>
<generateDirectory>${project.build.outoutDirectory}/${project.build.finalName}</
generateDirectory>
<inplace>false</inplace>
<logLevel>TRACE</logLevel>
<extraJvmArgs>-Xmx512m -DDEBUG</extraJvmArgs>
<soyc>false</soyc>
</configuration>
<executions>
<execution>

437

http://mojo.codehaus.org/gwt-maven-plugin/
http://mojo.codehaus.org/gwt-maven-plugin/
http://mojo.codehaus.org/gwt-maven-plugin/

Chapter 27. Seam and the Goog...

<goals>
<goal>resources</goal>
<goal>compile</goal>
</goals>
</execution>
</executions>
</plugin>
[...]
</plugins>
[...]
</build>

More can be seen here http://mojo.codehaus.org/gwt-maven-plugin/user-guide/compile.html

438

http://mojo.codehaus.org/gwt-maven-plugin/user-guide/compile.html

Chapter 28.

Spring Framework integration

The Spring integration (part of the Seam |oC module) allows easy migration of Spring-based
projects to Seam and allows Spring applications to take advantage of key Seam features like
conversations and Seam's more sophisticated persistence context management.

Note! The Spring integration code is included in the jboss-seam-ioc library. This dependency is
required for all seam-spring integration techniques covered in this chapter.

Seam's support for Spring provides the ability to:

* inject Seam component instances into Spring beans

* inject Spring beans into Seam components

* turn Spring beans into Seam components

« allow Spring beans to live in any Seam context

« start a spring WebApplicationContext with a Seam component
» Support for Spring PlatformTransactionManagement

« provides a Seam managed replacement for Spring's OpenEnt i t yManager I nVi ewFi | t er and
OpenSessi onl nVi ewFi | ter

» Support for Spring TaskExecut or s to back @synchr onous calls

28.1. Injecting Seam components into Spring beans

Injecting Seam component instances into Spring beans is accomplished using the
<seam i nst ance/ > hamespace handler. To enable the Seam namespace handler, the Seam
namespace must be added to the Spring beans definition file:

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:seam="http://jpboss.org/schema/seam/spring-seam"
xmlins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemal ocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.0.xsd
http://jboss.org/schema/seam/spring-seam
http://jboss.org/schema/seam/spring-seam-2.3.xsd">

Now any Seam component may be injected into any Spring bean:

<bean id="someSpringBean" class="SomeSpringBeanClass" scope="prototype">

439

Chapter 28. Spring Framework ...

<property name="someProperty">
<seam:instance name="someComponent"/>
</property>
</bean>

An EL expression may be used instead of a component name:

<bean id="someSpringBean" class="SomeSpringBeanClass" scope="prototype">
<property name="someProperty">
<seam:instance name="#{someExpression}"/>
</property>
</bean>

Seam component instances may even be made available for injection into Spring beans by a
Spring bean id.

<seam:instance hame="someComponent" id="someSeamComponentinstance"/>

<bean id="someSpringBean" class="SomeSpringBeanClass" scope="prototype">
<property name="someProperty" ref="someSeamComponentinstance">
</bean>

Now for the caveat!

Seam was designed from the ground up to support a stateful component model with multiple
contexts. Spring was not. Unlike Seam bijection, Spring injection does not occur at method
invocation time. Instead, injection happens only when the Spring bean is instantiated. So the
instance available when the bean is instantiated will be the same instance that the bean uses for
the entire life of the bean. For example, if a Seam CONVERSATI ON-scoped component instance
is directly injected into a singleton Spring bean, that singleton will hold a reference to the same
instance long after the conversation is over! We call this problem scope impedance. Seam bijection
ensures that scope impedance is maintained naturally as an invocation flows through the system.
In Spring, we need to inject a proxy of the Seam component, and resolve the reference when
the proxy is invoked.

The <seam i nst ance/ > tag lets us automatically proxy the Seam component.

<seam:instance id="seamManagedEM" name="someManagedEMComponent" proxy="true"/>

<bean id="someSpringBean" class="SomeSpringBeanClass">
<property name="entityManager" ref="seamManagedEM">

440

Injecting Spring beans into Seam components

</bean>

This example shows one way to use a Seam-managed persistence context from a Spring bean.
(For a more robust way to use Seam-managed persistence contexts as a replacement for the
Spring OpenEnt i t yManager | nVi ew filter see section on Using a Seam Managed Persistence
Context in Spring)

28.2. Injecting Spring beans into Seam components

It is even easier to inject Spring beans into Seam component instances. Actually, there are two
possible approaches:

* inject a Spring bean using an EL expression
« make the Spring bean a Seam component

We'll discuss the second option in the next section. The easiest approach is to access the Spring
beans via EL.

The Spring Del egat i ngVar i abl eResol ver is an integration point Spring provides for integrating
Spring with JSF. This Vari abl eResol ver makes all Spring beans available in EL by their bean
id. You'll need to add the Del egati ngVari abl eResol ver to f aces-config. xnl :

<application>
<variable-resolver>
org.springframework.web.jsf.DelegatingVariableResolver
</variable-resolver>
</application>

Then you can inject Spring beans using @ n:

@In("#{bookingService}")
private BookingService bookingService;

The use of Spring beans in EL is not limited to injection. Spring beans may be used anywhere that
EL expressions are used in Seam: process and pageflow definitions, working memory assertions,
etc...

28.3. Making a Spring bean into a Seam component

The <seam conponent/ > namespace handler can be used to make any Spring bean a Seam
component. Just place the <seam conponent / > tag within the declaration of the bean that you
wish to be a Seam component:

441

Chapter 28. Spring Framework ...

<bean id="someSpringBean" class="SomeSpringBeanClass" scope="prototype">
<seam:component/>
</bean>

By default, <seam conponent / > will create a STATELESS Seam component with class and name
provided in the bean definition. Occasionally, such as when a Fact or yBean is used, the class of
the Spring bean may not be the class appearing in the bean definition. In such cases the cl ass
should be explicitly specified. A Seam component name may be explicitly specified in cases where
there is potential for a naming conflict.

The scope attribute of <seam conponent/> may be used if you wish the Spring bean to be
managed in a particular Seam scope. The Spring bean must be scoped to prot ot ype if the
Seam scope specified is anything other than STATELESS. Pre-existing Spring beans usually have
a fundamentally stateless character, so this attribute is not usually needed.

28.4. Seam-scoped Spring beans

The Seam integration package also lets you use Seam's contexts as Spring 2.0 style custom
scopes. This lets you declare any Spring bean in any of Seam's contexts. However, note once
again that Spring's component model was never architected to support statefulness, so please
use this feature with great care. In particular, clustering of session or conversation scoped Spring
beans is deeply problematic, and care must be taken when injecting a bean or component from
a wider scope into a bean of a narrower scope.

By specifying <seam confi gur e- scopes/ > once in a Spring bean factory configuration, all of the
Seam scopes will be available to Spring beans as custom scopes. To associate a Spring bean
with a particular Seam scope, specify the Seam scope in the scope attribute of the bean definition.

<!-- Only needs to be specified once per bean factory-->
<seam:configure-scopes/>

<beanid="someSpringBean" class="SomeSpringBeanClass" scope="seam.CONVERSATION"/
>

The prefix of the scope name may be changed by specifying the prefix attribute in the
conf i gur e- scopes definition. (The default prefix is seam)

By default an instance of a Spring Component registered in this way is not automatically
created when referenced using @ n. To have an instance auto-created you must either specify
@n(create=true) atthe injection point to identify a specific bean to be auto created or you can

442

Using Spring PlatformTransactionManagement

use the def aul t - aut o- cr eat e attribute of conf i gur e- scopes to make all spring beans who use
a seam scope auto created.

Seam-scoped Spring beans defined this way can be injected into other Spring beans without
the use of <seam i nst ance/ >. However, care must be taken to ensure scope impedance is
maintained. The normal approach used in Spring is to specify <aop: scoped- pr oxy/ > in the bean
definition. However, Seam-scoped Spring beans are not compatible with <aop: scoped- proxy/ >.
So if you need to inject a Seam-scoped Spring bean into a singleton, <seam i nst ance/ > must
be used:

<beanid="someSpringBean" class="SomeSpringBeanClass" scope="seam.CONVERSATION"/
>

<bean id="someSingleton">
<property name="someSeamScopedSpringBean">
<seam:instance name="someSpringBean" proxy="true"/>
</property>
</bean>

28.5. Using Spring PlatformTransactionManagement

Spring provides an extensible transaction management abstraction with support for many
transaction APIs (JPA, Hibernate, JDO, and JTA) Spring also provides tight integrations
with many application server TransactionManagers such as Websphere and Weblogic. Spring
transaction management exposes support for many advanced features such as nested
transactions and supports full Java EE transaction propagation rules like REQUIRES NEW
and NOT_SUPPORTED. For more information see the spring documentation here [http:/
static.springframework.org/spring/docs/2.0.x/reference/transaction.html].

To configure Seam to use Spring transactions enable the SpringTransaction component like so:
<spring:spring-transaction platform-transaction-manager="#{transactionManager}"/>

The spring: spring-transacti on component will utilize Springs transaction synchronization
capabilities for synchronization callbacks.

443

http://static.springframework.org/spring/docs/2.0.x/reference/transaction.html
http://static.springframework.org/spring/docs/2.0.x/reference/transaction.html
http://static.springframework.org/spring/docs/2.0.x/reference/transaction.html

Chapter 28. Spring Framework ...

28.6. Using a Seam Managed Persistence Context in
Spring

One of the most powerful features of Seam is its conversation scope and the ability
to have an EntityManager open for the life of a conversation. This eliminates many of
the problems associated with the detachment and re-attachment of entities as well as
mitigates occurrences of the dreaded Lazyl ni ti al i zati onExcepti on. Spring does not provide
a way to manage an persistence context beyond the scope of a single web request
(OpenEnt i t yManager | nVi ewFi | t er). So, it would be nice if Spring developers could have access
to a Seam managed persistence context using all of the same tools Spring provides for integration
with JPA(e.g. Per si st enceAnnot at i onBeanPost Pr ocessor , JpaTenpl at e, etc.)

Seam provides a way for Spring to access a Seam managed persistence context with Spring's
provided JPA tools bringing conversation scoped persistence context capabilities to Spring
applications.

This integration work provides the following functionality:

 transparent access to a Seam managed persistence context using Spring provided tools

e access to Seam conversation scoped persistence contexts in a non web request (e.g.
asynchronous quartz job)

« allows for using Seam managed persistence contexts with Spring managed transactions (will
need to flush the persistence context manually)

Spring's persistence context propagation model allows only one open EntityManager per
EntityManagerFactory so the Seam integration works by wrapping an EntityManagerFactory
around a Seam managed persistence context.

<bean id="seamEntityManagerFactory" class="org.jboss.seam.ioc.spring.SeamManagedEntityManagerFactoryBee
<property name="persistenceContextName" value="entityManager"/>
</bean>

Where 'persistenceContextName' is the name of the Seam managed persistence context
component. By default this EntityManagerFactory has a unitName equal to the Seam component
name or in this case 'entityManager'. If you wish to provide a different unitName you can do so
by providing a persistenceUnitName like so:

<bean id="seamEntityManagerFactory" class="org.jboss.seam.ioc.spring.SeamManagedEntityManagerFactoryBec
<property name="persistenceContextName" value="entityManager"/>
<property name="persistenceUnitName" value="bookingDatabase:extended"/>

444

Using a Seam Managed Persistence Context in Spring

</bean>

This EntityManagerFactory can then be used in any Spring provided tools. For example, using
Spring's Per si st enceAnnot at i onBeanPost Pr ocessor is the exact same as before.

<bean class="org.springframework.orm.jpa.support.PersistenceAnnotationBeanPostProcessor"/
>

If you define your real EntityManagerFactory in Spring but wish to use a Seam managed
persistence context you can tell the PersistenceAnnot ati onBeanPost Processor which
persistenctUnitName you wish to use by default by specifying the def aul t Per si st enceUni t Narme
property.

The appl i cati onCont ext . xm might look like:

<bean id="entityManagerFactory" class="org.springframework.orm.jpa.LocalEntityManagerFactoryBean">
<property name="persistenceUnitName" value="bookingDatabase"/>

</bean>

<bean id="seamEntityManagerFactory" class="org.jboss.seam.ioc.spring.SeamManagedEntityManagerFactoryBez
<property name="persistenceContextName" value="entityManager"/>
<property name="persistenceUnitName" value="bookingDatabase:extended"/>

</bean>

<bean class="org.springframework.orm.jpa.support.PersistenceAnnotationBeanPostProcessor">
<property name="defaultPersistenceUnitName" value="bookingDatabase:extended"/>

</bean>

The conponent . xml might look like:

<persistence:managed-persistence-context name="entityManager"
auto-create="true" entity-manager-factory="#{entityManagerFactory}"/>

JpaTenpl at e and JpaDaoSuppor t are configured the same way for a Seam managed persistence
context as they would be fore a Seam managed persistence context.

<bean id="bookingService" class="org.jboss.seam.example.spring.BookingService">
<property name="entityManagerFactory" ref="seamEntityManagerFactory"/>
</bean>

445

Chapter 28. Spring Framework ...

28.7. Using a Seam Managed Hibernate Session in
Spring

The Seam Spring integration also provides support for complete access to a Seam managed
Hibernate session using spring's tools. This integration is very similar to the JPA integration.

Like Spring's JPA integration spring's propagation model allows only one open EntityManager per
EntityManagerFactory per transaction??? to be available to spring tools. So, the Seam Session
integration works by wrapping a proxy SessionFactory around a Seam managed Hibernate
session context.

<bean id="seamSessionFactory" class="org.jboss.seam.ioc.spring.SeamManagedSessionFactoryBean">
<property name="sessionName" value="hibernateSession"/>
</bean>

Where 'sessionName' is the name of the persistence: managed- hi ber nat e- sessi on
component. This SessionFactory can then be used in any Spring provided tools. The integration
also provides support for calls to Sessi onFact ory. get Current | nstance() as long as you call
getCurrentinstance() on the SeanvanagedSessi onFact ory.

28.8. Spring Application Context as a Seam Component

Althoughitis possible to use the Spring Cont ext Loader Li st ener to start your application's Spring
ApplicationContext there are a couple of limitations.

« the Spring ApplicationContext must be started after the Seantii st ener
« it can be tricky starting a Spring ApplicationContext for use in Seam unit and integration tests

To overcome these two limitations the Spring integration includes a Seam component that will
start a Spring ApplicationContext. To use this Seam component place the <spri ng: cont ext -
| oader /> definition in the conponents. xm . Specify your Spring context file location in the
confi g-1 ocati ons attribute. If more than one config file is needed you can place them in the
nested <spri ng: confi g-1 ocati ons/ > element following standard conponent s. xm multi value
practices.

<components xmlns="http://jboss.org/schema/seam/components"
xmlns:spring="http://jboss.org/schema/seam/spring"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://jboss.org/schema/seam/components
http://jboss.org/schema/seam/components-2.3.xsd
http://jboss.org/schema/seam/spring
http://jboss.org/schema/seam/spring-2.3.xsd">

446

Using a Spring TaskExecutor for @Asynchronous

<spring:context-loader config-locations="/WEB-INF/applicationContext.xml"/>

</components>

28.9. Using a Spring TaskExecutor for @Asynchronous

Spring provides an abstraction for executing code asynchronously called a TaskExecutor.
The Spring Seam integration allows for the use of a Spring TaskExecutor for
executing immediate @synchronous method calls. To enable this functionality install the
Spri ngTaskExecut or Di spat chor and provide a spring bean defined taskExecutor like so:

<spring:task-executor-dispatcher task-executor="#{springThreadPoolTaskExecutor}"/>

Because a Spring TaskExecut or does not support scheduling of an asynchronous event a fallback
Seam Di spat cher can be provided to handle scheduled asynchronous event like so:

<!l-- Install a ThreadPoolDispatcher to handle scheduled asynchronous event -->
<core:thread-pool-dispatcher name="threadPoolDispatcher"/>

<!-- Install the SpringDispatcher as default -->

<spring:task-executor-dispatcher task-
executor="#{springThreadPoolTaskExecutor}" schedule-
dispatcher="#{threadPoolDispatcher}"'/>

447

448

Chapter 29.

Guice integration

Google Guice is a library that provides lightweight dependency injection through type-safe
resolution. The Guice integration (part of the Seam IoC module) allows use of Guice injection for
all Seam components annotated with the @i ce annotation. In addition to the regular bijection
that Seam performs (which becomes optional), Seam also delegates to known Guice injectors to
satisfy the dependencies of the component. Guice may be useful to tie non-Seam parts of large
or legacy applications together with Seam.

Note

The Guice integration is bundled in the jboss-seam-ioc library. This dependency is
required for all integration techniques covered in this chapter. You will also need
the Guice JAR file on the classpath.

)

29.1. Creating a hybrid Seam-Guice component

The goal is to create a hybrid Seam-Guice component. The rule for how to do this is very simple. If
you want to use Guice injection in your Seam component, annotate it with the @i ce annotation
(after importing the type or g. j boss. seam i oc. gui ce. Qui ce).

@Name("'myGuicyComponent”)
@Guice public class MyGuicyComponent
{
@Inject MyObject myObiject;
@Inject @Special MyObject mySpecialObject;

This Guice injection will happen on every method call, just like with bijection. Guice injects based
on type and binding. To satisfy the dependencies in the previous example, you might have bound
the following implementations in a Guice module, where @peci al is an annotation you define
in your application.

public class MyGuicyModule implements Module

{

public void configure(Binder binder)

{
binder.bind(MyObject.class)

.tolnstance(new MyObiject("regular"));

449

Chapter 29. Guice integration

binder.bind(MyObiject.class).annotatedWith(Special.class)
.tolnstance(new MyObiject("special™));

Great, but which Guice injector will be used to inject the dependencies? Well, you need to perform
some setup first.

29.2. Configuring an injector

You tell Seam which Guice injector to use by hooking it into the injection property of the Guice
initialization component in the Seam component descriptor (components.xml):

<components xmlns="http://jboss.org/schema/seam/components”
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmins:guice="http://jboss.org/schema/seam/guice"
xsi:schemalLocation="
http://jboss.org/schema/seam/guice
http://jboss.org/schema/seam/guice-2.3.xsd
http://jboss.org/schema/seam/components
http://jboss.org/schema/seam/components-2.3.xsd">

<guice:init injector="#{myGuicelnjector}"/>

</components>

myGui cel nj ect or must resolve to a Seam component that implements the Guice | nj ect or
interface.

Having to create an injector is boiler-plate code, though. What you really want to be able to do is
simply hook up Seam to your Guice modules. Fortunately, there is a built-in Seam component that
implements the | nj ect or interface to do exactly that. You can configure it in the Seam component
descriptor with this additional stanza.

<guice:injector name="myGuicelnjector">
<guice:modules>
<value>com.example.guice.GuiceModulel</value>
<value>com.example.guice.GuiceModule2</value>
</guice:modules>
</guice:injector>

450

Using multiple injectors

Of course you can also use an injector that is already used in other, possibly non-Seam part of
you application. That's one of the main motivations for creating this integration. Since the injector
is defined with EL expression, you can obtain it in whatever way you like. For instance, you may
use the Seam factory component pattern to provide injector.

@Name("myGuicelnjectorFactory")
public InjectorFactory
{
@Factory(name = "myGuicelnjector”, scope = APPLICATION, create = true)
public Injector getinjector()
{
/I 'Your code that returns injector
}
}

29.3. Using multiple injectors

By default, an injector configured in the Seam component descriptor is used. If you really need to
use multiple injectors (AFAIK, you should use multiple modules instead), you can specify different
injector for every Seam component in the @i ce annotation.

@Name("'myGuicyComponent")
@Guice("myGuicelnjector")
public class MyGuicyComponent

{
@Inject MyObject myObiject;

That's all there is to it! Check out the guice example in the Seam distribution to see the Seam
Guice integration in action!

451

452

Chapter 30.

Hibernate Search

30.1. Introduction

Full text search engines like Apache Lucene™ are a very powerful technology that bring full text
and efficient queries to applications. Hibernate Search, which uses Apache Lucene under the
covers, indexes your domain model with the addition of a few annotations, takes care of the
database / index synchronization and returns regular managed objects that are matched by full
text queries. Keep in mind, thought, that there are mismatches that arise when dealing with an
object domain model over a text index (keeping the index up to date, mismatch between the index
structure and the domain model, and querying mismatch). But the benefits of speed and efficiency
far outweigh these limitations.

Hibernate Search has been designed to integrate nicely and as naturally as possible with JPA
and Hibernate. As a natural extension, JBoss Seam provides an Hibernate Search integration.

Please refer to the Hibernate Search documentation [] for information specific to the Hibernate
Search project.

30.2. Configuration

Hibernate Search is configured either in the META- | NF/ per si st ence. xnl or hi ber nat e. cf g. xni
file.

Hibernate Search configuration has sensible defaults for most configuration parameters. Here is
a minimal persistence unit configuration to get started.

<persistence-unit name="sample">
<jta-data-source>java:jboss/datasources/ExampleDS</jta-data-source>
<properties>
[.-]
<!l-- use a file system based index -->
<property name="hibernate.search.default.directory_provider"
value="filesystem"/>
<!-- directory where the indexes will be stored -->
<property name="hibernate.search.default.indexBase"
value="/Users/prod/apps/dvdstore/dvdindexes"/>
</properties>
</persistence-unit>

In addition to the configuration file, the following jars have to be deployed:

« hibernate-search.jar

453

Chapter 30. Hibernate Search

« hibernate-search-orm.jar
* hibernate-search-engine.jar
* lucene-core.jar

Maven coordinates for using Hibernate Search:

<dependency>
<groupld>org.hibernate</groupld>
<artifactld>hibernate-search</artifactld>
<version>4.1.1.Final</version>
</dependency>

Some Hibernate Search extensions require additional dependencies, a commonly used is
hi ber nat e- sear ch- anal yzers. jar. For details, see the Hibernate Search documentation
[http://docs.jboss.org/hibernate/search/4.1/reference/en-US/html_single] for details.

° Note

If you deploy those in a EAR, don't forget to update appl i cati on. xm

30.3. Usage

Hibernate Search uses annotations to map entities to a Lucene index, check the reference
documentation [http://docs.jboss.org/hibernate/search/4.1/reference/en-US/html_single] for more
informations.

Hibernate Search is fully integrated with the APl and semantic of JPA / Hibernate. Switching from
a HQL or Criteria based query requires just a few lines of code. The main API the application
interacts with is the Ful | Text Sessi on API (subclass of Hibernate's Sessi on).

When Hibernate Search is present, JBoss Seam injects a Ful | Text Sessi on.

@Stateful
@Name("search")
public class FullTextSearchAction implements FullTextSearch, Serializable {

@In FullTextSession session;

public void search(String searchString) {

454

http://docs.jboss.org/hibernate/search/4.1/reference/en-US/html_single
http://docs.jboss.org/hibernate/search/4.1/reference/en-US/html_single
http://docs.jboss.org/hibernate/search/4.1/reference/en-US/html_single
http://docs.jboss.org/hibernate/search/4.1/reference/en-US/html_single
http://docs.jboss.org/hibernate/search/4.1/reference/en-US/html_single

Usage

org.apache.lucene.search.Query luceneQuery = getLuceneQuery();
org.hibernate.Query query session.createFullTextQuery(luceneQuery, Product.class);
searchResults = query

.setMaxResults(pageSize + 1)

.setFirstResult(pageSize * currentPage)

dist();

° Note

Ful | Text Sessi on extends or g. hi ber nat e. Sessi on so that it can be used as a
regular Hibernate Session

If the Java Persistence API is used, a smoother integration is proposed.

@Stateful
@Name("search")
public class FullTextSearchAction implements FullTextSearch, Serializable {

@In FullTextEntityManager em;

public void search(String searchString) {
org.apache.lucene.search.Query luceneQuery = getLuceneQuery();
javax.persistence.Query query = em.createFullTextQuery(luceneQuery, Product.class);
searchResults = query
.setMaxResults(pageSize + 1)
.setFirstResult(pageSize * currentPage)
.getResultList();

When Hibernate Search is present, a FulltextEntityManager is injected.
Ful | Text Entit yManager extends EntityManager with search specific methods, the same way
Ful | Text Sessi on extends Sessi on.

When an EJB 3.0 Session or Message Driven Bean injection is used (i.e. via the
@PersistenceContext annotation), it is not possible to replace the Enti t yManager interface by
the Ful | Text Enti t yManager interface in the declaration statement. However, the implementation
injected will be a Ful | Text Enti t yManager implementation: downcasting is then possible.

455

Chapter 30. Hibernate Search

@ Stateful
@Name("search")
public class FullTextSearchAction implements FullTextSearch, Serializable {

@PersistenceContext EntityManager em;

public void search(String searchString) {
org.apache.lucene.search.Query luceneQuery = getLuceneQuery();
FullTextEntityManager ftEm = (FullTextEntityManager) em;
javax.persistence.Query query = ftEm.createFullTextQuery(luceneQuery, Product.class);
searchResults = query
.setMaxResults(pageSize + 1)
.setFirstResult(pageSize * currentPage)
.getResultList();

Check the DVDStore or the blog examples of the JBoss Seam distribution for a concrete use of
Hibernate Search.

456

Chapter 31.

Configuring Seam and packaging
Seam applications

Configuration is a very boring topic and an extremely tedious pastime. Unfortunately, several
lines of XML are required to integrate Seam into your JSF implementation and servlet container.
There's no need to be too put off by the following sections; you'll never need to type any of this
stuff yourself, since you can just use seam-gen to start your application or you can copy and paste
from the example applications!

31.1. Basic Seam configuration

First, let's look at the basic configuration that is needed whenever we use Seam with JSF.

31.1.1. Integrating Seam with JSF and your servlet container

Of course, you need a faces servlet!

<servlet>
<servlet-name>Faces Servlet</serviet-name>
<servlet-class>javax.faces.webapp.FacesServlet</serviet-class>
<load-on-startup>1</load-on-startup>

</servlet>

<servlet-mapping>
<servlet-name>Faces Servlet</serviet-name>
<url-pattern>*.seam</url-pattern>
</servlet-mapping>

(You can adjust the URL pattern to suit your taste.)

In addition, Seam requires the following entry in your web. xni file:

<listener>
<listener-class>org.jboss.seam.servlet.SeamListener</listener-class>
</listener>

This listener is responsible for bootstrapping Seam, and for destroying session and application
contexts.

Some JSF implementations have a broken implementation of server-side state saving that
interferes with Seam's conversation propagation. If you have problems with conversation

457

Chapter 31. Configuring Seam ...

propagation during form submissions, try switching to client-side state saving. You'll need this in
web. xm :

<context-param>
<param-name>javax.faces.STATE_SAVING_METHOD</param-name>
<param-value>client</param-value>

</context-param>

Warning

Setting of javax.faces. STATE SAVING METHOD to client can lead
to security issues and it should be set environment entry
com sun. f aces. Cl i ent St at eSavi ngPasswor d in web. xnl like:

There is a minor gray area in the JSF specification regarding the mutability of view state values.
Since Seam uses the JSF view state to back its PAGE scope this can become an issue in some
cases. If you're using server side state saving with the JSF-RI and you want a PAGE scoped bean
to keep its exact value for a given view of a page you will need to specify the following context-
param. Otherwise if a user uses the "back" button a PAGE scoped component will have the latest
value if it has changed not the value of the "back" page. (see Spec Issue [https://javaserverfaces-
spec-public.dev.java.net/issues/show_bug.cgi?id=295]). This setting is not enabled by default
because of the performance hit of serializing the JSF view with every request.

<context-param>
<param-name>com.sun.faces.serializeServerState</param-name>
<param-value>true</param-value>

</context-param>

458

https://javaserverfaces-spec-public.dev.java.net/issues/show_bug.cgi?id=295
https://javaserverfaces-spec-public.dev.java.net/issues/show_bug.cgi?id=295
https://javaserverfaces-spec-public.dev.java.net/issues/show_bug.cgi?id=295

Seam Resource Servlet

31.1.2. Seam Resource Servlet

The Seam Resource Servlet provides resources used by Seam Remoting, captchas (see the
security chapter) and some JSF Ul controls. Configuring the Seam Resource Servlet requires the
following entry in web. xm :

<servlet>
<servlet-name>Seam Resource Servlet</servlet-name>
<servlet-class>org.jboss.seam.servlet. SeamResourceServlet</servlet-class>
</servlet>

<servlet-mapping>
<servlet-name>Seam Resource Servlet</servlet-name>
<url-pattern>/seam/resource/*</url-pattern>
</servlet-mapping>

31.1.3. Seam servlet filters

Seam doesn't need any servlet filters for basic operation. However, there are several features
which depend upon the use of filters. To make things easier, Seam lets you add and configure
servlet filters just like you would configure other built-in Seam components. To take advantage of
this feature, we must first install a master filter in web. xm :

<filter>
<filter-name>Seam Filter</filter-name>
<filter-class>org.jboss.seam.servlet.SeamFilter</filter-class>
<[filter>

<filter-mapping>
<filter-name>Seam Filter</filter-name>
<url-pattern>/*</url-pattern>
<[filter-mapping>

The Seam master filter must be the first filter specified in web. xm . This ensures it is run first.

The Seam filters share a number of common attributes, you can set these in conponent s. xni in
addition to any parameters discussed below:

e url-pattern — Used to specify which requests are filtered, the default is all requests. ur| -
pat t er n is a Tomcat style pattern which allows a wildcard suffix.

* regex-url - pattern— Used to specify which requests are filtered, the default is all requests.
regex-url - patternis atrue regular expression match for request path.

459

Chapter 31. Configuring Seam ...

» di sabl ed — Used to disable a built in filter.

Note that the patterns are matched against the URI path of the request (see
Ht t pSer vl et Request . get URI Pat h()) and that the name of the servlet context is removed before
matching.

Adding the master filter enables the following built-in filters.
31.1.3.1. Exception handling

This filter provides the exception mapping functionality in pages. xm (almost all applications will
need this). It also takes care of rolling back uncommitted transactions when uncaught exceptions
occur. (According to the Java EE specification, the web container should do this automatically, but
we've found that this behavior cannot be relied upon in all application servers. And it is certainly
not required of plain servlet engines like Tomcat.)

By default, the exception handling filter will process all requests, however this behavior may
be adjusted by adding a <web: excepti on-filter> entry to conponent s. xnl , as shown in this
example:

<components xmlns="http://jboss.org/schema/seam/components"
xmlns:web="http://jboss.org/schema/seam/web">

<web:exception-filter url-pattern="*.seam"/>

</components>

31.1.3.2. Conversation propagation with redirects

This filter allows Seam to propagate the conversation context across browser redirects. It
intercepts any browser redirects and adds a request parameter that specifies the Seam
conversation identifier.

The redirect filter will process all requests by default, but this behavior can also be adjusted in

conponents. xm :

<web:redirect-filter url-pattern="*.seam"/>

31.1.3.3. URL rewriting

This filter allows Seam to apply URL rewriting for views based on configuration in the pages. xn
file. This filter is not activate by default, but can be activated by adding the configuration to
conponents. xm :

460

Seam servlet filters

<web:rewrite-filter view-mapping="*.seam"/>

The vi ew mappi ng parameter must match the servlet mapping defined for the Faces Servlet in
the web. xni file. If ommitted, the rewrite filter assumes the pattern *. seam

31.1.3.4. Multipart form submissions

This feature is necessary when using the Seam file upload JSF control. It detects multipart form
requests and processes them according to the multipart/form-data specification (RFC-2388). To
override the default settings, add the following entry to conponent s. xni ;

<web:multipart-filter create-temp-files="true"
max-request-size="1000000"
url-pattern="*.seam"/>

e create-temp-files — If settotrue, uploaded files are written to a temporary file (instead of
held in memory). This may be an important consideration if large file uploads are expected. The
default setting is f al se.

* max-request - si ze — If the size of a file upload request (determined by reading the Cont ent -
Lengt h header in the request) exceeds this value, the request will be aborted. The default
setting is 0 (no size limit).

31.1.3.5. Character encoding

Sets the character encoding of submitted form data.

This filter is not installed by default and requires an entry in conponent s. xn to enable it:
<web:character-encoding-filter encoding="UTF-16"

override-client="true"
url-pattern="*.seam"/>

* encodi ng — The encoding to use.

e override-client — If this is set to true, the request encoding will be set to whatever is
specified by encodi ng no matter whether the request already specifies an encoding or not. If
set to f al se, the request encoding will only be set if the request doesn't already specify an
encoding. The default setting is f al se.

461

Chapter 31. Configuring Seam ...

31.1.3.6. RichFaces

If RichFaces is used in your project, Seam will install the RichFaces Ajax filter for you, making
sure to install it before all other built-in filters. You don't need to install the RichFaces Ajax filter
in web. xm yourself.

The RichFaces Ajax filter is only installed if the RichFaces jars are present in your project.

To override the default settings, add the following entry to conponent s. xm . The options are the
same as those specified in the RichFaces Developer Guide:

<web:ajax4jsf-filter force-parser="true"
enable-cache="true"
log4j-init-file="custom-log4j.xml"
url-pattern="*.seam"/>

» force-parser — forces all JSF pages to be validated by Richfaces's XML syntax checker. If
f al se, only AJAX responses are validated and converted to well-formed XML. Setting f or ce-
par ser to f al se improves performance, but can provide visual artifacts on AJAX updates.

« enabl e-cache — enables caching of framework-generated resources (e.g. javascript, CSS,
images, etc). When developing custom javascript or CSS, setting to true prevents the browser
from caching the resource.

* log4j-init-file—isusedtosetup per-application logging. A path, relative to web application
context, to the log4j.xml configuration file should be provided.

31.1.3.7. Identity Logging

This filter adds the authenticated user name to the log4j mapped diagnostic context so that it can
be included in formatted log output if desired, by adding %X{username} to the pattern.

By default, the logging filter will process all requests, however this behavior may be adjusted by
adding a <web: | oggi ng-fil ter> entry to conponent s. xnl , as shown in this example:

<components xmlns="http://jboss.org/schema/seam/components"
xmlns:web="http://jboss.org/schema/seam/web">
<web:logging-filter url-pattern="*.seam"/>
</components>

31.1.3.8. Context management for custom servlets

Requests sent direct to some servlet other than the JSF servlet are not processed through the
JSF lifecycle, so Seam provides a servlet filter that can be applied to any other servlet that needs
access to Seam components.

462

Seam servlet filters

This filter allows custom servlets to interact with the Seam contexts. It sets up the Seam contexts
at the beginning of each request, and tears them down at the end of the request. You should make
sure that this filter is never applied to the JSF FacesSer vl et . Seam uses the phase listener for
context management in a JSF request.

This filter is not installed by default and requires an entry in conponent s. xn to enable it:

<web:context-filter url-pattern="/media/*"/>

The context filter expects to find the conversation id of any conversation context in a request
parameter named conversati onl d. You are responsible for ensuring that it gets sent in the
request.

You are also responsible for ensuring propagation of any new conversation id back to the client.
Seam exposes the conversation id as a property of the built in component conver sati on.

31.1.3.9. Enabling HTTP cache-control headers

Seam does not automatically add cache- cont r ol HTTP headers to any resources served by the
Seam resource servlet, or directly from your view directory by the servlet container. This means
that your images, Javascript and CSS files, and resource representations from Seam resource
servlet such as Seam Remoting Javascript interfaces are usually not cached by the browser.
This is convenient in development but should be changed in production when optimizing the
application.

You can configure a Seam filter to enable automatic addition of cache-control headers
depending on the requested URI in conponent s. xni ;

<webh:cache-control-filter name="commonTypesCacheControlFilter"
regex-url-pattern="*(\.gif|\.png|\.jpg|\.jpeg|\.css|\.js)"
value="max-age=86400"/> <!-- 1 day -->

<web:cache-control-filter name="anotherCacheControlFilter"
url-pattern="/my/cachable/resources/*"
value="max-age=432000"/> <!-- 5 days -->

You do not have to name the filters unless you have more than one filter enabled.
31.1.3.10. Adding custom filters

Seam can install your filters for you, allowing you to specify where in the chain your filter is
placed (the servlet specification doesn't provide a well defined order if you specify your filters in
a web. xnl). Just add the @i | t er annotation to your Seam component (which must implement
javax.servlet.Filter):

463

Chapter 31. Configuring Seam ...

@Startup

@Scope(APPLICATION)
@Name("org.jboss.seam.web.multipartFilter")
@Bypasslinterceptors
@Filter(within="org.jboss.seam.web.ajax4jsfFilter")
public class MultipartFilter extends AbstractFilter {

Adding the @t art up annotation means that the component is available during Seam startup;
bijection isn't available here (@ypassl nt er cept or s); and the filter should be further down the
chain than the RichFaces filter (@i | t er (wi t hi n="or g. j boss. seam web. aj ax4j sfFilter")).

31.1.4. Integrating Seam with your EJB container

In a Seam application, EJB components have a certain duality, as they are managed by both
the EJB container and Seam. Actually, it's more that Seam resolves EJB component references,
manages the lifetime of stateful session bean components, and also participates in each method
call via interceptors. Let's start with the configuration of the Seam interceptor chain.

We need to apply the Seani nt er cept or to our Seam EJB components. This interceptor delegates
to a set of built-in server-side interceptors that handle such concerns as bijection, conversation
demarcation, and business process signals. The simplest way to do this across an entire
application is to add the following interceptor configuration in ej b-j ar. xni :

<interceptors>
<interceptor>
<interceptor-class>org.jboss.seam.ejb.Seaminterceptor</interceptor-class>
</interceptor>
<[interceptors>

<assembly-descriptor>
<interceptor-binding>
<ejb-name>*</ejb-name>
<interceptor-class>org.jboss.seam.ejb.Seaminterceptor</interceptor-class>
</interceptor-binding>
</assembly-descriptor>

Seam needs to know where to go to find session beans in JNDI. One way to do this is specify the
@ndi Nane annotation on every session bean Seam component. However, this is quite tedious. A
better approach is to specify a pattern that Seam can use to calculate the JNDI name from the EJB
name. Fortunately, new portable JNDI Syntax was introduced in Java EE 6. There are three JNDI
namespaces for portable JNDI lookups - j ava: gl obal ,j ava: nodul e and j ava: app. More in Java

464

http://docs.oracle.com/javaee/6/tutorial/doc/gipjf.html#girgn

Integrating Seam with your EJB container

EE 6 tutorial [http://docs.oracle.com/javaee/6/tutorial/doc/gipjf.html#girgn] We usually specify this
option in component s. xni .

For JBoss AS 7, the following pattern is correct:

<core:init jndi-name="java:app/<ejb-module-name>/#{ejbName}" />

In this case, <ej b- modul e- nane> is the name of the EJB module (by default it is filename of ejb
jar) in which the bean is deployed, Seam replaces #{ ej bName} with the name of the EJB.

How these JNDI names are resolved and somehow locate an EJB component might appear a
bit like black magic at this point, so let's dig into the details. First, let's talk about how the EJB
components get into JNDI.

EJB components would get assigned a global JNDI name automatically, using the pattern
described in Java EE 6 tutorial [http://docs.oracle.com/javaee/6/tutorial/doc/gipjf.html#girgn]. The
EJB name is the first non-empty value from the following list:

* The value of the <ej b- nane> element in ejb-jar.xml
* The value of the name attribute in the @ Stateless or @ Stateful annotation
» The simple name of the bean class

Let's look at an example. Assume that you have the following EJB bean and interface defined.

package com.example.myapp;

import javax.ejb.Local;

@Local
public interface Authenticator

{

boolean authenticate();

package com.example.myapp;

import javax.ejb.Stateless;

@Stateless

@Name("authenticator")
public class AuthenticatorBean implements Authenticator

{

465

http://docs.oracle.com/javaee/6/tutorial/doc/gipjf.html#girgn
http://docs.oracle.com/javaee/6/tutorial/doc/gipjf.html#girgn
http://docs.oracle.com/javaee/6/tutorial/doc/gipjf.html#girgn
http://docs.oracle.com/javaee/6/tutorial/doc/gipjf.html#girgn

Chapter 31. Configuring Seam ...

public boolean authenticate() { ... }

Assuming your EJB bean class is deployed in an EAR named myapp, the global JNDI name
myapp/AuthenticatorBean/local will be assigned to it on JBoss AS. As you learned, you can
reference this EJB component as a Seam component with the name aut hent i cat or and Seam
will take care of finding it in JNDI according to the JNDI pattern (or @ndi Name annotation).

So what about the rest of the application servers? Well, according to the Java EE spec, which
most vendors try to adhere to religiously, you have to declare an EJB reference for your EJB in
order for it to be assigned a JNDI name. That requires some XML. It also means that it is up to
you to establish a JNDI naming convention so that you can leverage the Seam JNDI pattern. You
might find the JBoss convention a good one to follow.

There are two places you have to define the EJB reference when using Seam on non-JBoss
application servers. If you are going to be looking up the Seam EJB component through JSF (in
a JSF view or as a JSF action listener) or a Seam JavaBean component, then you must declare
the EJB reference in web.xml. Here is the EJB reference for the example component just shown:

<ejb-local-ref>
<ejb-ref-name>myapp/AuthenticatorBean</ejb-ref-name>
<ejb-ref-type>Session</ejb-ref-type>
<local>org.example.vehicles.action.Authenticator</local>
</ejb-local-ref>

This reference will cover most uses of the component in a Seam application. However, if you want
to be able to inject a Seam EJB component into another Seam EJB component using @ n, you
need to define this EJB reference in another location. This time, it must be defined in ejb-jar.xml,
and it's a bit tricker.

Within the context of an EJB method call, you have to deal with a somewhat sheltered JNDI
context. When Seam attempts to find another Seam EJB component to satisfy an injection point
defined using @ n, whether or not it finds it depends on whether an EJB reference exists in JNDI.
Strictly speaking, you cannot simply resolve JNDI names as you please. You have to define
the references explicitly. Fortunately, JBoss recognized how aggravating this would be for the
developer and all versions of JBoss automatically register EJBs so they are always available in
JNDI, both to the web container and the EJB container. So if you are using JBoss, you can skip
the next few paragraphs. However, if you are deploying to GlassFish, pay close attention.

For application servers that stubbornly adhere to the EJB specification, EJB references must
always be defined explicitly. But unlike with the web context, where a single resource reference
covers all uses of the EJB from the web environment, you cannot declare EJB references globally
in the EJB container. Instead, you have to specify the JNDI resources for a given EJB component
one-by-one.

466

Integrating Seam with your EJB container

Let's assume that we have an EJB named RegisterAction (the name is resolved using the three
steps mentioned previously). That EJB has the following Seam injection:

@In(create = true)
Authenticator authenticator;

In order for this injection to work, the link must be established in the ejb-jar.xml file as follows:

<ejb-jar>
<enterprise-beans>
<session>
<ejb-name>RegisterAction</ejb-name>
<ejb-local-ref>
<ejb-ref-name>myapp/AuthenticatorAction/local</ejb-ref-name>
<ejb-ref-type>Session</ejb-ref-type>
<local>com.example.myapp.Authenticator</local>
</ejb-local-ref>
</session>
</enterprise-beans>

</ejb-jar>

Notice that the contents of the <ej b-1 ocal - r ef > are identical to what we defined in web.xml.
What we are doing is bringing the reference into the EJB context where it can be used by the
RegisterAction bean. You will need to add one of these references for any injection of a Seam
EJB component into another Seam EJB component using @ n. (You can see an example of this
setup in the jee5/booking example).

But what about @JB? It's true that you can inject one EJB into another using @JB. However,
by doing so, you are injecting the actual EJB reference rather than the Seam EJB component
instance. In this case, some Seam features will work, while others won't. That's because Seam's
interceptor is invoked on any method call to an EJB component. But that only invokes Seam's
server-side interceptor chain. What you lose is Seam's state management and Seam's client-
side interceptor chain. Client-side interceptors handle concerns such as security and concurrency.
Also, when injecting a SFSB, there is no guarantee that you will get the SFSB bound to the active
session or conversation, whatever the case may be. Thus, you definitely want to inject the Seam
EJB component using @ n.

Finally, let's talk about transactions. In an EJB environment, we recommend the use of a special
built-in component for transaction management, that is fully aware of container transactions,
and can correctly process transaction success events registered with the Event s component. If

467

Chapter 31. Configuring Seam ...

you don't add this line to your conponent s. xni file, Seam won't know when container-managed
transactions end:

<transaction:ejb-transaction/>

31.1.5. Don't forget!

There is one final item you need to know about. You must place a seam properties, META-
I NF/ seam properties or META- | NF/ conponent s. xmi file in any archive in which your Seam
components are deployed (even an empty properties file will do). At startup, Seam will scan any
archives with seam properti es files for seam components.

In a web archive (WAR) file, you must place a seam properti es file in the WEB- | NF/ cl asses
directory if you have any Seam components included here.

That's why all the Seam examples have an empty seam properti es file. You can't just delete
this file and expect everything to still work!

You might think this is silly and what kind of idiot framework designers would make an empty file
affect the behavior of their software?? Well, this is a workaround for a limitation of the JVM — if
we didn't use this mechanism, our next best option would be to force you to list every component
explicitly in conponent s. xmi , just like some other competing frameworks do! I think you'll like our
way better.

31.2. Using Alternate JPA Providers

Seam comes packaged and configured with Hibernate as the default JPA provider. If you require
using a different JPA provider you must tell seamabout it.

This is a workaround

j=do

Configuration of the JPA provider will be easier in the future and will not require
configuration changes, unless you are adding a custom persistence provider
implementation.

Telling seam about a different JPA provider can be done in one of two ways:

Update your application's conponents. xnl so that the generic Per si st enceProvi der takes
precedence over the hibernate version. Simply add the following to the file:

<component name="org.jboss.seam.persistence.persistenceProvider"
class="org.jboss.seam.persistence.PersistenceProvider"
scope="stateless">

468

Configuring Seam in Java EE 6

</component>

If you want to take advantage of your JPA provider's non-standard features you will need to write
you own implementation of the Per si st enceProvi der. Use Hi ber nat ePer si st encePr ovi der
as a starting point (don't forget to give back to the community :). Then you will need to tell seam
to use it as before.

<component name="org.jboss.seam.persistence.persistenceProvider"
class="org.your.package.YourPersistenceProvider">
</component>

All that is left is updating the persi stence. xm file with the correct provider class, and what
ever properties your provider needs. Don't forget to package your new provider's jar files in the
application if they are needed.

31.3. Configuring Seam in Java EE 6

__________ 831

If you're running in a Java EE environment, this is all the configuration required to start using Seam!

31.3.1. Packaging

Once you've packaged all this stuff together into an EAR, the archive structure will look something
like this:

my-application.ear/
jboss-seam.jar
lib/
jboss-el.jar
META-INF/
MANIFEST.MF
application.xml
jboss-deployment-structure.xml
my-application.war/

469

Chapter 31. Configuring Seam ...

META-INF/
MANIFEST.MF
WEB-INF/
web.xml
components.xml
faces-config.xml
lib/
jboss-seam-ui.jar
login.jsp
register.jsp

my-application.jar/
META-INF/
MANIFEST.MF
persistence.xml
seam.properties
org/
jboss/
myapplication/
User.class
Login.class
LoginBean.class
Register.class
RegisterBean.class

You should declare j boss-seam j ar as an ejb module in META- | NF/ appl i cati on. xm ; j boss-
el . j ar should be placed in the EAR's lib directory (putting it in the EAR classpath.

If you want to use jBPM or Drools, you must include the needed jars in the EAR's lib directory.

If you want to use the Seam tag library (most Seam applications do), you must include j boss-
seam ui . j ar in the VEB- | NF/ | i b directory of the WAR. If you want to use the PDF or email tag
libraries, you need to put j boss- seam pdf . j ar orj boss-seam il .jar in WVEB- I NF/ | i b.

If you want to use the Seam debug page (only works for applications using facelets), you must
include j boss- seam debug. j ar in the WEB- | NF/ | i b directory of the WAR.

Seam ships with several example applications that are deployable in any Java EE container that
supports EJB 3.1.

faces-config. xm is not required in JSF 2, but if you want to set up something non-default you
need to place it in WAR/ V\EB- | NF.

470

Configuring Seam without EJB

| really wish that was all there was to say on the topic of configuration but unfortunately we're only
about a third of the way there. If you're too overwhelmed by all this tedious configuration stuff, feel
free to skip over the rest of this section and come back to it later.

31.4. Configuring Seam without EJB

Seam is useful even if you're not yet ready to take the plunge into EJB 3.1. In this case you would
use Hibernate 4 instead of EJB 3.1 persistence, and plain JavaBeans instead of session beans.
You'll miss out on some of the nice features of session beans but it will be very easy to migrate
to EJB 3.1 when you're ready and, in the meantime, you'll be able to take advantage of Seam's
unigue declarative state management architecture.

| JavaEE 6

Hibernate J

Seam JavaBean components do not provide declarative transaction demarcation like session
beans do. You could manage your transactions manually using the JTA User Transacti on or
declaratively using Seam's @r ansact i onal annotation. But most applications will just use Seam
managed transactions when using Hibernate with JavaBeans.

The Seam distribution includes a version of the booking example application that uses Hibernate
and JavaBeans instead of EJB, and another version that uses JPA and JavaBeans. These
example applications are ready to deploy into any Java EE application server.

31.4.1. Boostrapping Hibernate in Seam

Seam will bootstrap a Hibernate Sessi onFact ory from your hi ber nat e. cf g. xmi file if you install
a built-in component:

<persistence:hibernate-session-factory name="hibernateSessionFactory"/>

You will also need to configure a managed session if you want a Seam managed Hibernate
Sessi on to be available via injection.

<persistence:managed-hibernate-session name="hibernateSession"
session-factory="#{hibernateSessionFactory}"/>

471

Chapter 31. Configuring Seam ...

31.4.2. Boostrapping JPA in Seam

Seam will bootstrap a JPA Ent i t yManager Fact ory from your per si st ence. xm file if you install
this built-in component:

<persistence:entity-manager-factory name="entityManagerFactory"/>

You will also need to configure a managed persistence context if you want a Seam managed JPA
Enti t yManager to be available via injection.

<persistence:managed-persistence-context name="entityManager"
entity-manager-factory="#{entityManagerFactory}"/>

31.4.3. Packaging

We can package our application as a WAR, in the following structure:

my-application.war/
META-INF/
MANIFEST.MF
jboss-deployment-structure.xml
WEB-INF/
web.xml
components.xml
faces-config.xml
lib/
jboss-seam.jar
jboss-seam-ui.jar
jboss-el.jar
hibernate-core.jar
hibernate-annotations.jar
hibernate-validator.jar

my-application.jar/
META-INF/
MANIFEST.MF
seam.properties
hibernate.cfg.xml
org/
jboss/
myapplication/

472

Configuring Seam in Java SE

User.class
Login.class
Register.class

login.jsp
register.jsp

If we want to deploy Hibernate in a non-EE environment like Tomcat or TestNG, we need to do
a little bit more work.

31.5. Configuring Seam in Java SE

It is possible to use Seam completely outside of an EE environment. In this case, you need to tell
Seam how to manage transactions, since there will be no JTA available. If you're using JPA, you
can tell Seam to use JPA resource-local transactions, ie. Enti t yTr ansacti on, like so:

<transaction:entity-transaction entity-manager="#{entityManager}"/>
If you're using Hibernate, you can tell Seam to use the Hibernate transaction API like this:
<transaction:hibernate-transaction session="#{session}"/>

Of course, you'll also need to define a datasource.

31.6. Configuring jBPM in Seam

Seam's jBPM integration is not installed by default, so you'll need to enable jBPM by installing
a built-in component. You'll also need to explicitly list your process and pageflow definitions. In
conponents. xm :

<bpm:jbpm>

<bpm:pageflow-definitions>
<value>createDocument.jpdl.xml</value>
<value>editDocument.jpdl.xml</value>
<value>approveDocument.jpdl.xml</value>

</bpm:pageflow-definitions>

<bpm:process-definitions>
<value>documentLifecycle.jpdl.xml</value>

</bpm:process-definitions>

473

Chapter 31. Configuring Seam ...

</bpm:jbpm>

No further special configuration is needed if you only have pageflows. If you do have business
process definitions, you need to provide a jBPM configuration, and a Hibernate configuration for
jBPM. The Seam DVD Store demo includes example j bpm cf g. xm and hi ber nat e. cf g. xni
files that will work with Seam:

<jbpm-configuration>

<jbpm-context>
<service name="persistence">
<factory>
<bean class="org.jbpm.persistence.db.DbPersistenceServiceFactory">
<field name="isTransactionEnabled"><false/></field>
</bean>
</factory>
</service>
<service name="tx" factory="org.jopm.tx.TxServiceFactory" />
<service name="message" factory="org.jopm.msg.db.DbMessageServiceFactory" />
<service name="scheduler" factory="org.jopm.scheduler.db.DbSchedulerServiceFactory" />
<service name="logging" factory="org.jbpm.logging.db.DbLoggingServiceFactory" />
<service name="authentication"
factory="org.jbpm.security.authentication.DefaultAuthenticationServiceFactory" />
</jbpm-context>

</jbpm-configuration>

The mostimportant thing to notice here is that JBPM transaction control is disabled. Seam or EJB3
should control the JTA transactions.

31.6.1. Packaging

There is not yet any well-defined packaging format for jBPM configuration and process/pageflow
definition files. In the Seam examples we've decided to simply package all these files into the root
of the EAR. In future, we will probably design some other standard packaging format. So the EAR
looks something like this:

my-application.ear/
jboss-seam.jar
lib/
jboss-el.jar
jbpm-jpdl.jar

474

Deployment in JBoss AS 7

META-INF/
MANIFEST.MF
application.xml
jboss-deployment-structure.xml

my-application.war/
META-INF/

MANIFEST.MF
WEB-INF/
web.xml
components.xml
faces-config.xml
lib/
jboss-seam-ui.jar
login.jsp
register.jsp

my-application.jar/
META-INF/
MANIFEST.MF
persistence.xml
seam.properties
org/
jboss/
myapplication/
User.class
Login.class
LoginBean.class
Register.class
RegisterBean.class

jbpm.cfg.xml
hibernate.cfg.xml
createDocument.jpdl.xml
editDocument.jpdl.xml
approveDocument.jpdl.xml
documentLifecycle.jpdl.xml

31.7. Deployment in JBoss AS 7

JBoss AS 7 is default deployment target for all examples in Seam 2.3 distribution.

Seam 2.3 requires to have setup special deployment metada file jboss-depl oynment -
structure. xm for correct initialization. Minimal content for EAR is:

475

Chapter 31. Configuring Seam ...

Example 31.1. jboss-deployment-structure.xml

<jboss-deployment-structure xmins="urn:jboss:deployment-structure:1.0">
<deployment>
<dependencies>
<module name="org.dom4j" export="true"/>
<module name="org.apache.commons.collections" export="true"/>
<module name="javax.faces.api" export="true"/>
</dependencies>
</deployment>
</jboss-deployment-structure>

More details about new AS 7 classloading can be found at https://docs.jboss.org/author/display/
AS7/Developer+Guide#DeveloperGuide-ClassloadinginJBossAS7

Deployment of multiple modules in one EAR

There is a significant enhancement for speed up the application deployment in
AS 7. This unfortunatelly can cause some issues while you have multiple war/ejb
modules in your application.

This situation requires to use and set up new Java EE 6 configuration parameter
- Module initialization order - in application.xm - initialize-in-order to
true. This causes that initialization will happen in defined order like it is in
appl i cati on. xm . Example of appl i cati on. xni :

476

https://docs.jboss.org/author/display/AS7/Developer+Guide#DeveloperGuide-ClassloadinginJBossAS7
https://docs.jboss.org/author/display/AS7/Developer+Guide#DeveloperGuide-ClassloadinginJBossAS7

Deployment in JBoss AS 7

If you are using maven- ear - pl ugi n for generation of your application, you can use

this plugin configuration:

477

Chapter 31. Configuring Seam ...

31.8. Configuring SFSB and Session Timeouts in JBoss
AS 7

It is very important that the timeout for Stateful Session Beans is set higher than the timeout
for HTTP Sessions, otherwise SFSB's may time out before the user's HTTP session has ended.
JBoss Application Server has a default session bean timeout of 30 minutes, which is configured
in st andal one/ confi gurati on/ st andal one. xn (replace standalone.xml with your standalone-
full.xml if you use full profile).

The default SFSB timeout can be adjusted by modifying the value of def aul t - access-ti meout
in the EJB subsystem subsyst em xm ns="ur n: j boss: domai n: ej b3: 1. 2":

<subsystem xmIns="urn:jboss:domain:ejb3:1.2">

<session-bean>

<stateless>
<bean-instance-pool-ref pool-name="slsb-strict-max-pool"/>

</stateless>
<stateful default-access-timeout="5000" cache-ref="simple"/>
<singleton default-access-timeout="5000"/>

</session-bean>

</subsystem>

The default HTTP session timeout can't be modified in JBoss AS 7.

To override default value for your own application, simply include sessi on-ti neout entry in your
application's own web. xm :

<session-config>
<session-timeout>30</session-timeout>
</session-config>

478

Running Seam in a Portlet

31.9. Running Seam in a Portlet

If you want to run your Seam application in a portlet, take a look at the JBoss Portlet Bridge,
an implementation of JSR-301 that supports JSF within a portlet, with extensions for Seam and
RichFaces. See http://labs.jboss.com/portletbridge for more.

31.10. Deploying custom resources

Seam scans all jars containing / seam properti es,/ META- | NF/ conponent s. xml or / META- | NF/
seam properti es on startup for resources. For example, all classes annotated with @anme are
registered with Seam as Seam components.

You may also want Seam to handle custom resources. A common use case is to handle a specific
annotation and Seam provides specific support for this. First, tell Seam which annotations to
handle in / META- | NF/ seam depl oynent . properties:

A colon-separated list of annotation types to handle
org.jboss.seam.deployment.annotationTypes=com.acme.Foo:com.acme.Bar

Then, during application startup you can get hold of all classes annotated with @oo:

@Name("fooStartup")
@Scope(APPLICATION)
@Startup

public class FooStartup {

@In("#{deploymentStrategy.annotatedClasses['com.acme.Foo']}")
private Set<Class<Object>> fooClasses;

@In("#{hotDeploymentStrategy.annotatedClasses['‘com.acme.Fo0"}")
private Set<Class<Object>> hotFooClasses;

@Create
public void create() {
for (Class clazz: fooClasses) {
handleClass(clazz);
}
for (Class clazz: hotFooClasses) {
handleClass(clazz);

}
}

public void handleClass(Class clazz) {

479

http://labs.jboss.com/portletbridge

Chapter 31. Configuring Seam ...

...

You can also handle any resource. For example, you process any files with the extension
. foo. xnl . To do this, we need to write a custom deployment handler:

public class FooDeploymentHandler implements DeploymentHandler {
private static DeploymentMetadata FOO_METADATA = new DeploymentMetadata()

{

public String getFileNameSuffix() {
return ".foo.xml";

public String getName() {
return "fooDeploymentHandler";

public DeploymentMetadata getMetadata() {
return FOO_METADATA;

Here we are just building a list of any files with the suffix . f oo. xni .

Then, we need to register the deployment handler with Seam in /META-I NF/ seam
depl oyment . properties. You can register multiple deployment handler using a comma
separated list.

For standard deployment
org.jboss.seam.deployment.deploymentHandlers=com.acme.FooDeploymentHandler

For hot deployment
org.jboss.seam.deployment.hotDeploymentHandlers=com.acme.FooDeploymentHandler

Seam uses deployment handlers internally to install components and namespaces. You can easily
access the deployment handler during an APPLI CATI ON scoped component's startup:

480

Deploying custom resources

@Name("fooStartup")
@Scope(APPLICATION)
@Startup

public class FooStartup {

@In("#{deploymentStrategy.deploymentHandlers['fooDeploymentHandler']}")
private FooDeploymentHandler myDeploymentHandler;

@In("#{hotDeploymentStrategy.deploymentHandlers['fooDeploymentHandler']}")
private FooDeploymentHandler myHotDeploymentHandler;

@Create
public void create() {
for (FileDescriptor fd: myDeploymentHandler.getResources()) {
handleFooXml(fd);

for (FileDescriptor f: myHotDeploymentHandler.getResources()) {
handleFooXml(fd);

public void handleFooXml(FileDescriptor fd) {
...

481

482

Chapter 32.

Seam annotations

When you write a Seam application, you'll use a lot of annotations. Seam lets you use annotations
to achieve a declarative style of programming. Most of the annotations you'll use are defined by
the EJB 3.0 specification. The annotations for data validation are defined by the Bean Validation
standard. Finally, Seam defines its own set of annotations, which we'll describe in this chapter.

All of these annotations are defined in the package or g. j boss. seam annot at i ons.

32.1. Annotations for component definition

The first group of annotations lets you define a Seam component. These annotations appear on
the component class.

@\ane
@Name("componentName")

Defines the Seam component name for a class. This annotation is required for all Seam
components.

@cope
@Scope(ScopeType.CONVERSATION)

Defines the default context of the component. The possible values are defined by the
ScopeType enumeration: EVENT, PAGE, CONVERSATI ON, SESSI ON, BUSI NESS PROCESS,
APPL| CATI ON, STATELESS.

When no scope is explicitly specified, the default depends upon the component type. For
stateless session beans, the default is STATELESS. For entity beans and stateful session
beans, the default is CONVERSATI ON. For JavaBeans, the default is EVENT.

@®ol e
@Role(name="roleName", scope=ScopeType.SESSION)
Allows a Seam component to be bound to multiple contexts variables. The @ame/@cope

annotations define a "default role". Each @ol e annotation defines an additional role.

* nane — the context variable name.

483

Chapter 32. Seam annotations

* scope — the context variable scope. When no scope is explicitly specified, the default
depends upon the component type, as above.

@Rol es

@Roles({
@Role(name="user", scope=ScopeType.CONVERSATION),

@Role(name="currentUser", scope=ScopeType.SESSION)
)

Allows specification of multiple additional roles.

@ypassl nterceptors
@Bypassinterceptors

Disables Seam all interceptors on a particular component or method of a component.

@ndi Name
@JndiName("my/jndi/name")

Specifies the JNDI name that Seam will use to look up the EJB component. If
no JNDI name is explicitly specified, Seam will use the JNDI pattern specified by

org.jboss.seamcore.init.jndi Pattern.

@Conver sati onal
@Conversational

Specifies that a conversation scope component is conversational, meaning that no method of
the component may be called unless a long-running conversation is active.

@er Nest edConver sati on
@PerNestedConversation

Limits the scope of a CONVERSATION-scoped component to just the parent conversation
in which it was instantiated. The component instance will not be visible to nested child
conversations, which will get their own instance.

484

Annotations for component definition

Warning: this is ill-defined, since it implies that a component will be visible for some part of a
request cycle, and invisible after that. It is not recommended that applications use this feature!

@t artup

@Scope(APPLICATION) @Startup(depends="org.jboss.seam.bpm.jbpm")

Specifies that an application scope component is started immediately at initialization time.
This is mainly used for certain built-in components that bootstrap critical infrastructure such
as JNDI, datasources, etc.

@Scope(SESSION) @Startup

Specifies that a session scope component is started immediately at session creation time.
» depends — specifies that the named components must be started first, if they are installed.

@nstal |

@Install(false)

Specifies whether or not a component should be installed by default. The lack of an @ nst al |
annotation indicates a component should be installed.

@Install(dependencies="org.jboss.seam.bpm.jbpm")

Specifies that a component should only be stalled if the components listed as dependencies
are also installed.

@Install(genericDependencies=ManagedQueueSender.class)

Specifies that a component should only be installed if a component that is implemented by
a certain class is installed. This is useful when the dependency doesn't have a single well-
known name.

@Install(classDependencies="org.hibernate.Session")

Specifies that a component should only be installed if the named class is in the classpath.

485

Chapter 32. Seam annotations

@Install(precedence=BUILT_IN)

Specifies the precedence of the component. If multiple components with the same nhame exist,
the one with the higher precedence will be installed. The defined precedence values are (in
ascending order):

BUI LT_I N— Precedence of all built-in Seam components
FRAMEWORK — Precedence to use for components of frameworks which extend Seam
APPLI CATI ON— Precedence of application components (the default precedence)

DEPLOYMENT — Precedence to use for components which override application components
in a particular deployment

MOCK — Precedence for mock objects used in testing

@ynchroni zed

@Synchronized(timeout=1000)

Specifies that a component is accessed concurrently by multiple clients, and that Seam should
serialize requests. If a request is not able to obtain its lock on the component in the given
timeout period, an exception will be raised.

@ReadOnl y

@ReadOnly

Specifies that a JavaBean component or component method does not require state replication
at the end of the invocation.

@\ut oCreate

@AutoCreate

Specifies that a component will be automatically created, even if the client does not specify

create=true.

32.2. Annotations for bijection

The next two annotations control bijection. These attributes occur on component instance

variables or property accessor methods.

486

Annotations for bijection

@In

Specifies that a component attribute is to be injected from a context variable at the beginning
of each component invocation. If the context variable is null, an exception will be thrown.

@In(required=false)

Specifies that a component attribute is to be injected from a context variable at the beginning
of each component invocation. The context variable may be null.

@In(create=true)

Specifies that a component attribute is to be injected from a context variable at the beginning
of each component invocation. If the context variable is null, an instance of the component
is instantiated by Seam.

@In(value="contextVariableName")

Specifies the name of the context variable explicitly, instead of using the annotated instance
variable name.

@In(value="#{customer.addresses['shipping'T}")

Specifies that a component attribute is to be injected by evaluating a JSF EL expression at

the beginning of each component invocation.

 val ue — specifies the name of the context variable. Default to the name of the component
attribute. Alternatively, specifies a JSF EL expression, surrounded by #{. . .}.

» creat e — specifies that Seam should instantiate the component with the same name as
the context variable if the context variable is undefined (null) in all contexts. Default to false.

 required — specifies Seam should throw an exception if the context variable is undefined
in all contexts.

487

Chapter 32. Seam annotations

@out

@Out

Specifies that a component attribute that is a Seam component is to be outjected to its context
variable at the end of the invocation. If the attribute is null, an exception is thrown.

@Out(required=false)

Specifies that a component attribute that is a Seam component is to be outjected to its context
variable at the end of the invocation. The attribute may be null.

@Out(scope=ScopeType.SESSION)

Specifies that a component attribute that is not a Seam component type is to be outjected to
a specific scope at the end of the invocation.

Alternatively, if no scope is explicitly specified, the scope of the component with the @ut
attribute is used (or the EVENT scope if the component is stateless).
@Out(value="contextVariableName")

Specifies the name of the context variable explicitly, instead of using the annotated instance

variable name.

» val ue — specifies the name of the context variable. Default to the name of the component
attribute.

* required — specifies Seam should throw an exception if the component attribute is null
during outjection.

Note that it is quite common for these annotations to occur together, for example:

@In(create=true) @Out private User currentUser;

The next annotation supports the manager component pattern; a Seam component manages the
lifecycle of an instance of some other class that is to be injected. It appears on a component getter
method.

488

Annotations for bijection

@Jnwr ap

@Unwrap

Specifies that the object returned by the annotated getter method is the thing that is injected
instead of the component instance itself.

The next annotation supports the factory component pattern; a Seam component is responsible
for initializing the value of a context variable. This is especially useful for initializing any state
needed for rendering the response to a non-faces request. It appears on a component method.

@actory

@Factory("processinstance") public void createProcessinstance() { ... }

Specifies that the method of the component is used to initialize the value of the named context
variable, when the context variable has no value. This style is used with methods that return
voi d.

@Factory("processinstance”, scope=CONVERSATION) public ProcessiInstance createProcessinstance() { ...

Specifies that the method returns a value that Seam should use to initialize the value of
the named context variable, when the context variable has no value. This style is used with
methods that return a value. If no scope is explicitly specified, the scope of the component with
the @act ory method is used (unless the component is stateless, in which case the EVENT
context is used).

 val ue — specifies the name of the context variable. If the method is a getter method, default
to the JavaBeans property hame.

* scope — specifies the scope that Seam should bind the returned value to. Only meaningful
for factory methods which return a value.

* aut oCr eat e — specifies that this factory method should be automatically called whenever
the variable is asked for, even if @ n does not specify cr eat e=t r ue.

This annotation lets you inject a Log:

@ogger

@Logger("categoryName")

489

}

Chapter 32. Seam annotations

The

Specifies that a component field is to be injected with an instance of
org. j boss. seam | og. Log. For entity beans, the field must be declared as static.

« val ue — specifies the name of the log category. Default to the name of the component
class.

last annotation lets you inject a request parameter value:

@Request Par anet er

32

@RequestParameter("parameterName")

Specifies that a component attribute is to be injected with the value of a request parameter.
Basic type conversions are performed automatically.

e val ue — specifies the name of the request parameter. Default to the name of the
component attribute.

.3. Annotations for component lifecycle methods

These annotations allow a component to react to its own lifecycle events. They occur on methods
of the component. There may be only one of each per component class.

@Cr eat e

@Create

Specifies that the method should be called when an instance of the component is instantiated
by Seam. Note that create methods are only supported for JavaBeans and stateful session
beans.

@est r oy

@Destroy

Specifies that the method should be called when the context ends and its context variables are
destroyed. Note that destroy methods are only supported for JavaBeans and stateful session
beans.

Destroy methods should be used only for cleanup. Seam catches, logs and swallows any
exception that propagates out of a destroy method.

490

Annotations for context demarcation

@ser ver

@Observer("somethingChanged")

Specifies that the method should be called when a component-driven event of the specified
type occurs.

@Observer(value="somethingChanged",create=false)

Specifies that the method should be called when an event of the specified type occurs but
that an instance should not be created if one doesn't exist. If an instance does not exist and
create is false, the event will not be observed. The default value for create is true.

32.4. Annotations for context demarcation

These annotations provide declarative conversation demarcation. They appear on methods of
Seam components, usually action listener methods.

Every web request has a conversation context associated with it. Most of these conversations
end at the end of the request. If you want a conversation that span multiple requests, you must
"promote" the current conversation to a long-running conversation by calling a method marked
with @egi n.

@egi n

@Begin

Specifies that a long-running conversation begins when this method returns a non-null
outcome without exception.

@Begin(join=true)

Specifies that if a long-running conversation is already in progress, the conversation context
is simply propagated.

@Begin(nested=true)

Specifies that if a long-running conversation is already in progress, a new nested conversation
context begins. The nested conversation will end when the next @nd is encountered, and the

491

Chapter 32. Seam annotations

outer conversation will resume. It is perfectly legal for multiple nested conversations to exist
concurrently in the same outer conversation.

@Begin(pageflow="process definition name")

Specifies a jBPM process definition name that defines the pageflow for this conversation.

@Begin(flushMode=FlushModeType.MANUAL)

Specify the flush mode of any Seam-managed persistence contexts.
f 1 ushMbde=Fl ushMbdeType. MANUAL supports the use of atomic conversations where all write
operations are queued in the conversation context until an explicit call to fl ush() (which
usually occurs at the end of the conversation).

 j oi n — determines the behavior when a long-running conversation is already in progress.
If t rue, the context is propagated. If f al se, an exception is thrown. Default to f al se. This
setting is ignored when nest ed=t r ue is specified.

* nested — specifies that a nested conversation should be started if a long-running
conversation is already in progress.

e flushMode — set the flush mode of any Seam-managed Hibernate sessions or JPA
persistence contexts that are created during this conversation.

* pagefl ow — a process definition name of a jBPM process definition deployed via
org.j boss. seam bpm j bpm pagef | owDef i ni ti ons.

@nd

@End

Specifies that a long-running conversation ends when this method returns a non-null outcome
without exception.

» bef oreRedi rect — by default, the conversation will not actually be destroyed until after
any redirect has occurred. Setting bef or eRedi r ect =t r ue specifies that the conversation
should be destroyed at the end of the current request, and that the redirect will be processed
in a new temporary conversation context.

* root — by default, ending a nested conversation simply pops the conversation stack and
resumes the outer conversation. Setting r oot =t r ue specifies that the root conversation
should be destroyed which effectively destroys the entire conversation stack. If the
conversation is not nested, the current conversation is simply ended.

492

Annotations for context demarcation

@t art Task

@StartTask

"Starts” a jBPM task. Specifies that a long-running conversation begins when this method
returns a non-null outcome without exception. This conversation is associated with the jBPM
task specified in the named request parameter. Within the context of this conversation, a
business process context is also defined, for the business process instance of the task
instance.

The jBPM Taskl nstance will be available in a request context variable named
t askl nst ance. The jBPM Pr ocessl nst ance will be available in a request context variable
named pr ocessl nst ance. (Of course, these objects are available for injection via @n.)

* taskl dPar anet er —the name of a request parameter which holds the id of the task. Default
to "t askl d", which is also the default used by the Seam t askLi st JSF component.

flushMode — set the flush mode of any Seam-managed Hibernate sessions or JPA
persistence contexts that are created during this conversation.

@egi nTask

@BeginTask

Resumes work on an incomplete jBPM task. Specifies that a long-running conversation
begins when this method returns a non-null outcome without exception. This conversation is
associated with the jBPM task specified in the named request parameter. Within the context
of this conversation, a business process context is also defined, for the business process
instance of the task instance.

e The jBPM org.j bpm t askngnt . exe. Taskl nst ance will be available in a request context
variable namedt askl nst ance. The jBPMor g. j bpm gr aph. exe. Processl nst ance will be
available in a request context variable named pr ocessl nst ance.

 taskl dPar anet er —the name of a request parameter which holds the id of the task. Default
to "t askl d", which is also the default used by the Seam t askLi st JSF component.

e flushMode — set the flush mode of any Seam-managed Hibernate sessions or JPA
persistence contexts that are created during this conversation.

@ndTask

@EndTask

493

Chapter 32. Seam annotations

"Ends" a jBPM task. Specifies that a long-running conversation ends when this method
returns a non-null outcome, and that the current task is complete. Triggers a jBPM transition.
The actual transition triggered will be the default transition unless the application has called
Transi ti on. set Nane() on the built-in component named t r ansi ti on.

@EndTask(transition="transitionName")

Triggers the given jBPM transition.

e transition — the name of the jBPM transition to be triggered when ending the task.
Defaults to the default transition.

» bef oreRedi rect — by default, the conversation will not actually be destroyed until after
any redirect has occurred. Setting bef or eRedi r ect =t r ue specifies that the conversation
should be destroyed at the end of the current request, and that the redirect will be processed
in a new temporary conversation context.

@cr eat eProcess

@CreateProcess(definition="process definition name")

Creates a new jBPM process instance when the method returns a non-null outcome without
exception. The Processlnstance object will be available in a context variable named

processl nst ance.

e definition — the name of the jBPM process definition deployed via
org.j boss. seam bpm j bpm processDefi ni tions.

@ResunePr ocess

@ResumeProcess(processldParameter="processld")

Re-enters the scope of an existing jBPM process instance when the method returns a non-
null outcome without exception. The Processl nst ance object will be available in a context
variable named pr ocessl nst ance.

» processl dPar anet er — the name a request parameter holding the process id. Default to
"processld".

@ransition

@Transition("cancel")

494

Annotations for use with Seam JavaBean components in a J2EE environment

Marks a method as signaling a transition in the current jBPM process instance whenever the
method returns a non-null result.

32.5. Annotations for use with Seam JavaBean
components in a J2EE environment

Seam provides an annotation that lets you force a rollback of the JTA transaction for certain action
listener outcomes.

@r ansact i onal
@Transactional

Specifies that a JavaBean component should have a similar transactional behavior to the
default behavior of a session bean component. ie. method invocations should take place in
a transaction, and if no transaction exists when the method is called, a transaction will be
started just for that method. This annotation may be applied at either class or method level.

Do not use this annotation on EJB 3.0 components, use @t ansacti onAttri bute!

@\ppl i cati onException
@ApplicationException

Synonym for javax.ejb.ApplicationException, for use in a pre Java EE 5 environment. Applied
to an exception to denote that it is an application exception and should be reported to the
client directly(i.e., unwrapped).

Do not use this annotation on EJB 3.0 components, use
@ avax. ej b. Appl i cati onExcepti on instead.

* rol | back — by default f al se, if t r ue this exception should set the transaction to rollback
only

* end — by default fal se, if true this exception should end the current long-running
conversation

@nterceptors

@Interceptors({DVDlInterceptor, CDInterceptor})

495

Chapter 32. Seam annotations

Synonym for javax.interceptors.Interceptors, for use in a pre Java EE 5 environment. Note
that this may only be used as a meta-annotation. Declares an ordered list of interceptors for
a class or method.

Do not use this annotations on EJB 3.0 components, use
@ avax. i nterceptor.|nterceptors instead.

These annotations are mostly useful for JavaBean Seam components. If you use EJB 3.0
components, you should use the standard Java EE5 annotation.

32.6. Annotations for exceptions

These annotations let you specify how Seam should handle an exception that propagates out of
a Seam component.

@Redi r ect

@Redirect(viewld="error.jsp")

Specifies that the annotated exception causes a browser redirect to a specified view id.
« vi ewl d — specifies the JSF view id to redirect to. You can use EL here.
« message — a message to be displayed, default to the exception message.

« end — specifies that the long-running conversation should end, default to f al se.

@+t t pError

@HTttpError(errorCode=404)

Specifies that the annotated exception causes a HTTP error to be sent.
* error Code — the HTTP error code, default to 500.
* message — a message to be sent with the HTTP error, default to the exception message.

« end — specifies that the long-running conversation should end, default to f al se.

32.7. Annotations for Seam Remoting

Seam Remoting requires that the local interface of a session bean be annotated with the following
annotation:

496

Annotations for Seam interceptors

@\¢bRenot e
@WebRemote(exclude="path.to.exclude")

Indicates that the annotated method may be called from client-side JavaScript. The excl ude
property is optional and allows objects to be excluded from the result's object graph (see the
Chapter 26, Remoting chapter for more details).

32.8. Annotations for Seam interceptors

The following annotations appear on Seam interceptor classes.

Please refer to the documentation for the EJB 3.0 specification for information about the
annotations required for EJB interceptor definition.

@ nt er cept or
@Interceptor(stateless=true)
Specifies that this interceptor is stateless and Seam may optimize replication.
@Interceptor(type=CLIENT)

Specifies that this interceptor is a "client-side" interceptor that is called before the EJB
container.

@Interceptor(around={Somelnterceptor.class, OtherInterceptor.class})
Specifies that this interceptor is positioned higher in the stack than the given interceptors.
@Interceptor(within={Somelnterceptor.class, Otherlnterceptor.class})

Specifies that this interceptor is positioned deeper in the stack than the given interceptors.

32.9. Annotations for asynchronicity

The following annotations are used to declare an asynchronous method, for example:

497

Chapter 32. Seam annotations

@Asynchronous public void scheduleAlert(Alert alert, @Expiration Date date) { ... }

@Asynchronous public Timer scheduleAlerts(Alert alert,
@Expiration Date date,
@IntervalDuration long interval) { ... }

@\synchr onous

@Asynchronous

Specifies that the method call is processed asynchronously.

@ur ati on

@Duration

Specifies that a parameter of the asynchronous call is the duration before the call is processed
(or first processed for recurring calls).

@xpiration

@Expiration

Specifies that a parameter of the asynchronous call is the datetime at which the call is
processed (or first processed for recurring calls).

@nterval Durati on

@IntervalDuration

Specifies that an asynchronous method call recurs, and that the annotation parameter is
duration between recurrences.

32.10. Annotations for use with JSF

The following annotations make working with JSF easier.

498

Annotations for use with dataTable

@onverter
Allows a Seam component to act as a JSF converter. The annotated class must be a Seam
component, and must implement j avax. f aces. convert. Converter.

e i d —the JSF converter id. Defaults to the component name.
« ford ass — if specified, register this component as the default converter for a type.

@/al i dat or
Allows a Seam component to act as a JSF validator. The annotated class must be a Seam
component, and must implement j avax. f aces. val i dat or. Val i dat or.

e i d — the JSF validator id. Defaults to the component name.

32.10.1. Annotations for use with dataTabl e

The following annotations make it easy to implement clickable lists backed by a stateful session
bean. They appear on attributes.

@at aMbdel

@DataModel("variableName")

Outjects a property of type Li st, Map, Set or Obj ect[] as a JSF Dat aMbdel into the scope
of the owning component (or the EVENT scope if the owning component is STATELESS). In the
case of Map, each row of the Dat aMbdel is a Map. Entry.

* val ue — name of the conversation context variable. Default to the attribute name.

» scope — if scope=ScopeType. PAGE is explicitly specified, the Dat aModel will be kept in the
PAGE context.

@pat aMbdel Sel ecti on

@DataModelSelection

Injects the selected value from the JSF Dat aMbdel (this is the element of the underlying
collection, or the map value). If only one @at aMbdel attribute is defined for a component, the
selected value from that Dat aModel will be injected. Otherwise, the component name of each
@at aMbdel must be specified in the value attribute for each @at aMbdel Sel ecti on.

If PAGE scope is specified on the associated @at aMbdel , then, in addition to the DataModel
Selection being injected, the associated DataModel will also be injected. In this case, if the
property annotated with @at aMbdel is a getter method, then a setter method for the property
must also be part of the Business API of the containing Seam Component.

499

Chapter 32. Seam annotations

e val ue — name of the conversation context variable. Not needed if there is exactly one
@at aMbdel in the component.

@at aMbdel Sel ecti onl ndex
@DataModelSelectionindex

Exposes the selection index of the JSF Dat aMbdel as an attribute of the component (this is the
row number of the underlying collection, or the map key). If only one @at aMbdel attribute is
defined for a component, the selected value from that Dat aMbdel will be injected. Otherwise,
the component name of each @at aMbdel must be specified in the value attribute for each
@at aMbdel Sel ecti onl ndex.

« val ue — name of the conversation context variable. Not needed if there is exactly one
@at aMbdel in the component.

32.11. Meta-annotations for databinding

These meta-annotations make it possible to implement similar functionality to @at aMbdel and
@at aMbdel Sel ect i on for other datastructures apart from lists.

@at aBi nder d ass
@DataBinderClass(DataModelBinder.class)

Specifies that an annotation is a databinding annotation.

@at aSel ect or Cl ass
@DataSelectorClass(DataModelSelector.class)

Specifies that an annotation is a dataselection annotation.

32.12. Annotations for packaging

This annotation provides a mechanism for declaring information about a set of components that
are packaged together. It can be applied to any Java package.

@\anespace

@Namespace(value="http://jposs.org/schema/seam/example/seampay")

500

Annotations for integrating with the servlet container

Specifies that components in the current package are associated with the given namespace.
The declared namespace can be used as an XML namespace in a conponent s. xn file to
simplify application configuration.

@Namespace(value="http://jpboss.org/schema/seam/core", prefix="org.jboss.seam.core")

Specifies a namespace to associate with a given package. Additionally, it specifies a
component name prefix to be applied to component names specified in the XML file. For
example, an XML element named i ni t that is associated with this namespace would be
understood to actually refer to a component named or g. j boss. seam core.init.

32.13. Annotations for integrating with the servlet
container

These annotations allow you to integrate your Seam components with the servlet container.

@ilter
Use the Seam component (which implements javax. servlet. Filter) annotated with
@il ter as a servlet filter. It will be executed by Seam's master filter.

@Filter(around={"seamComponent", "otherSeamComponent"})

Specifies that this filter is positioned higher in the stack than the given filters.

@Filter(within={"seamComponent", "otherSeamComponent"})

Specifies that this filter is positioned deeper in the stack than the given filters.

501

502

Chapter 33.

Built-in Seam components

This chapter describes Seam's built-in components, and their configuration properties. The built-
in components will be created even if they are not listed in your conmponent s. xnl file, but if
you need to override default properties or specify more than one component of a certain type,
conponent s. xm is used.

Note that you can replace any of the built in components with your own implementations simply
by specifying the name of one of the built in components on your own class using @\ane.

33.1. Context injection components

The first set of built in components exist purely to support injection of various contextual objects.
For example, the following component instance variable would have the Seam session context
object injected:

@In private Context sessionContext;

org.j boss. seam core. contexts
Component that provides access to Seam Context objects, for example
org.j boss. seam core. cont exts. sessi onContext['user'].

org.j boss. seam f aces. f acesCont ext
Manager component for the FacesCont ext context object (not a true Seam context)

All of these components are always installed.

33.2. JSF-related components

The following set of components are provided to supplement JSF.

org. j boss. seam f aces. dat eConverter
Provides a default JSF converter for properties of type j ava. uti | . Dat e.

This converter is automatically registered with JSF. It is provided to save a developer from
having to specify a DateTimeConverter on an input field or page parameter. By default, it
assumes the type to be a date (as opposed to a time or date plus time) and uses the short
input style adjusted to the Locale of the user. For Locale.US, the input pattern is mm/DDlyy.
However, to comply with Y2K, the year is changed from two digits to four (e.g., mm/DD/yyyy).

It's possible to override the input pattern globally using component configuration. Consult the
JavaDoc for this class to see examples.

503

Chapter 33. Built-in Seam com...

org

org

org

org.

.j boss. seam f aces. f acesMessages

Allows faces success messages to propagate across a browser redirect.

e add(FacesMessage facesMessage) — add a faces message, which will be displayed
during the next render response phase that occurs in the current conversation.

e add(String nessageTenpl ate) — add a faces message, rendered from the given
message template which may contain EL expressions.

e add(Severity severity, String nessageTenpl at e) — add a faces message, rendered
from the given message template which may contain EL expressions.

* addFronResour ceBundl e(String key) — add a faces message, rendered from a
message template defined in the Seam resource bundle which may contain EL expressions.

e addFronResour ceBundl e(Severity severity, String key) — add a faces message,
rendered from a message template defined in the Seam resource bundle which may contain
EL expressions.

e clear() — clear all messages.

.j boss. seam f aces. redirect

A convenient API for performing redirects with parameters (this is especially useful for
bookmarkable search results screens).

e redirect.vi ew d — the JSF view id to redirect to.

e redirect. conversationPropagati onEnabl ed — determines whether the conversation
will propagate across the redirect.

e redirect. paranmet ers — a map of request parameter name to value, to be passed in the
redirect request.

» execut e() — perform the redirect immediately.

e captureCurrent Request () — stores the view id and request parameters of the current
GET request (in the conversation context), for later use by calling execut e() .

.j boss. seam faces. httpError

A convenient API for sending HTTP errors.

j boss. seam ui . render St anpSt or e

A component (session-scoped by default) responsible for maintaining a collection of render
stamps. A render stamp is an indicator as to whether a form which was rendered has been
submitted. This store is useful when the client-side state saving method of JSF is being used
because it puts the determination of whether a form has been posted in the control of the
server rather than in the component tree which is maintained on the client.

To unbind this check from the session (which is one of the main design goals of client-
side state saving) an implementation must be provided that stores the render stamps in the

504

Utility components

application (valid as long as the application is running) or the database (valid across server
restarts).

* maxSi ze — The maximum number of stamps to be kept in the store. Default: 100

These components are installed when the class j avax. f aces. cont ext. FacesCont ext is
available on the classpath.

33.3. Utility components

These components are merely useful.

org.j boss. seam core. events
An API for raising events that can be observed via @bser ver methods, or method bindings
in conponent s. xni .

e rai seEvent (String type) — raise an event of a particular type and distribute to all
observers.

* raiseAsynchronousEvent (String type) — raise an event to be processed
asynchronously by the EJB3 timer service.

e raiseTinmedEvent(String type,) — schedule an event to be processed
asynchronously by the EJB3 timer service.

e addLi stener(String type, String nethodBi ndi ng) — add an observer for a particular
event type.

org.j boss. seam core. interpol at or
An API for interpolating the values of JSF EL expressions in Strings.

e interpol ate(String tenpl ate) — scan the template for JSF EL expressions of the form
#{ ...} and replace them with their evaluated values.

org. j boss. seam core. expressi ons
An API for creating value and method bindings.

e createVal ueBi ndi ng(String expressi on) — create a value binding object.
e creat eMet hodBi ndi ng(String expression) — create a method binding object.

org.j boss. seam cor e. poj oCache
Manager component for a JBoss Cache Poj oCache instance.

* poj oCache. cf gResourceNane — the name of the configuration file. Default to
treecache. xml .

All of these components are always installed.

505

Chapter 33. Built-in Seam com...

33.4. Components for internationalization and themes

The next group of components make it easy to build internationalized user interfaces using Seam.

org.j boss.seam core.local e
The Seam locale.

org.jboss.seaminternational.tinezone
The Seam timezone. The timezone is session scoped.

org. j boss. seam core. resourceBundl e
The Seam resource bundle. The resource bundle is stateless. The Seam resource bundle
performs a depth-first search for keys in a list of Java resource bundles.

org.j boss. seam core. resour ceLoader
The resource loader provides access to application resources and resource bundles.

* resourcelLoader. bundl eNanmes — the names of the Java resource bundles to search when
the Seam resource bundle is used. Default to nessages.

org.jboss.seaminternational.local eSel ector
Supports selection of the locale either at configuration time, or by the user at runtime.

sel ect () — select the specified locale.

e | ocal eSel ector. | ocal e —the actual j ava. util . Local e.

| ocal eSel ector. | ocal eSt ri ng — the stringified representation of the locale.

* |l ocal eSel ect or. | anguage — the language for the specified locale.

| ocal eSel ect or. count ry — the country for the specified locale.

* |l ocal eSel ect or. vari ant — the variant for the specified locale.

| ocal eSel ector. support edLocal es — a list of Sel ect | t ens representing the supported
locales listed in j sf-config. xnl .

» | ocal eSel ect or. cooki eEnabl ed — specifies that the locale selection should be persisted
via a cookie.

org. j boss.seaminternational .ti mezoneSel ect or
Supports selection of the timezone either at configuration time, or by the user at runtime.

« sel ect () — select the specified locale.
e timezoneSel ector.timezone — the actual j ava. util . Ti meZone.

* timezoneSel ector.ti meZonel d — the stringified representation of the timezone.

506

Components for controlling conversations

e tinmezoneSel ect or. cooki eEnabl ed — specifies that the timezone selection should be
persisted via a cookie.

org.j boss.seaminternational . messages
A map containing internationalized messages rendered from message templates defined in
the Seam resource bundle.

org. j boss. seam t hene. t heneSel ect or
Supports selection of the theme either at configuration time, or by the user at runtime.

« sel ect () — select the specified theme.

e thene. avai | abl eThemes — the list of defined themes.

* themeSel ect or. t heme — the selected theme.

* theneSel ector. t hemes — a list of Sel ect | t ens representing the defined themes.

» theneSel ect or. cooki eEnabl ed — specifies that the theme selection should be persisted
via a cookie.

org.j boss. seam t hene. t henme
A map containing theme entries.

All of these components are always installed.

33.5. Components for controlling conversations

The next group of components allow control of conversations by the application or user interface.

org. j boss. seam core. conversati on
API for application control of attributes of the current Seam conversation.

e getld() — returns the current conversation id

* i sNested() — is the current conversation a nested conversation?

e i sLongRunni ng() — is the current conversation a long-running conversation?
e getld() — returns the current conversation id

e get Parent | d() — returns the conversation id of the parent conversation

* get Root | d() — returns the conversation id of the root conversation

» set Ti meout (i nt timeout) — sets the timeout for the current conversation

e setView d(String outcone) — sets the view id to be used when switching back to the
current conversation from the conversation switcher, conversation list, or breadcrumbs.

507

Chapter 33. Built-in Seam com...

e setDescription(String description) — sets the description of the current
conversation to be displayed in the conversation switcher, conversation list, or
breadcrumbs.

* redirect () — redirect to the last well-defined view id for this conversation (useful after
login challenges).

* | eave() — exit the scope of this conversation, without actually ending the conversation.
« begi n() — begin a long-running conversation (equivalent to @egi n).

* begi nPagefl ow String pagefl owNane) — begin a long-running conversation with a
pageflow (equivalent to @egi n(pagef | ow="...")).

* end() — end a long-running conversation (equivalent to @nd).
e pop() — pop the conversation stack, returning to the parent conversation.
e root () — return to the root conversation of the conversation stack.

e changeFl ushMode(Fl ushModeType flushMode) — change the flush mode of the
conversation.

org.j boss. seam core. conversati onLi st
Manager component for the conversation list.

org.j boss. seam core. conversati onSt ack
Manager component for the conversation stack (breadcrumbs).

org.j boss. seam faces. swi t cher
The conversation switcher.

All of these components are always installed.

33.6. jBPM-related components

These components are for use with jBPM.

org.j boss. seam pagef | ow. pagef | ow
API control of Seam pageflows.

e islnProcess() — returns true if there is currently a pageflow in process
* get Processl nstance() — returns jBPM Pr ocessl nst ance for the current pageflow

e begin(String pageflowNane) — begin a pageflow in the context of the current
conversation

e reposition(String nodeName) — reposition the current pageflow to a particular node

508

jBPM-related components

org. j boss. seam bpm act or
API for application control of attributes of the jBPM actor associated with the current session.

e setld(String actorld) — sets the jBPM actor id of the current user.

* get G oupAct or | ds() — returns a Set to which jBPM actor ids for the current users groups
may be added.

org.j boss.seam bpmtransition
API for application control of the jBPM transition for the current task.

e set Name(String transitionNanme) — sets the jBPM transition name to be used when the
current task is ended via @ndTask.

org.j boss. seam bpm busi nessProcess
API for programmatic control of the association between the conversation and business
process.

* busi nessProcess. t askl d — the id of the task associated with the current conversation.

* busi nessProcess. processld — the id of the process associated with the current
conversation.

* busi nessProcess. hasCurrent Task() — is a task instance associated with the current
conversation?

* busi nessProcess. hasCurrent Process() — is a process instance associated with the
current conversation.

e createProcess(String name) — create an instance of the named process definition and
associate it with the current conversation.

e start Task() — start the task associated with the current conversation.

e endTask(String transitionName) — end the task associated with the current
conversation.

e resumeTask(Long i d) — associate the task with the given id with the current conversation.

e resumeProcess(Long id) — associate the process with the given id with the current
conversation.

e transition(String transitionNane) — trigger the transition.

org.j boss. seam bpm t askl nst ance
Manager component for the jBPM TasklI nst ance.

org.j boss. seam bpm processl nst ance
Manager component for the jBPM Pr ocessl nst ance.

org.j boss. seam bpm j bpmCont ext
Manager component for an event-scoped JbpntCont ext .

509

Chapter 33. Built-in Seam com...

org. j boss. seam bpm t askl nst ancelLi st
Manager component for the jBPM task list.

org.j boss. seam bpm pool edTaskl nst ancelLi st
Manager component for the jBPM pooled task list.

org.j boss. seam bpm t askl nst anceli st For Type
Manager component for the jBPM task lists.

org.j boss. seam bpm pool edTask
Action handler for pooled task assignment.

org.j boss. seam bpm processl nst anceFi nder
Manager for the process instance task list.

org.j boss. seam bpm processl nst anceLi st
The process instance task list.

All of these components are installed whenever the component or g. j boss. seam bpm j bpmis
installed.

33.7. Security-related components

These components relate to web-tier security.
org. j boss. seam web. user Pri nci pal
Manager component for the current user Pri nci pal .

org.j boss. seam web. i sUser | nRol e
Allows JSF pages to choose to render a control, depending upon the
roles available to the current principal. <h:commandButton val ue="edit"
rendered="#{i sUserlnRol e['adm n']}"/>.

33.8. JIMS-related components

These components are for use with managed Topi cPubl i sher s and QueueSender s (see below).

org. j boss. seam j nms. queueSessi on
Manager component for a JMS QueueSessi on .

org.j boss. seam j ns. t opi cSessi on
Manager component for a JMS Topi cSessi on .

33.9. Mail-related components

These components are for use with Seam's Email support

510

Infrastructural components

org. j boss. seam nmi | . mai | Sessi on
Manager component for a JavaMail Sessi on. The session can be either looked up in the JNDI
context (by setting the sessi onJndi Name property) or it can created from the configuration
options in which case the host is mandatory.

e org.jboss.seam nuil . mai | Sessi on. host — the hostname of the SMTP server to use
e org.jboss.seam mai |l . mai | Sessi on. port — the port of the SMTP server to use

e org.jboss.seam nai |l . mai | Sessi on. user nane — the username to use to connect to the
SMTP server.

e org.jboss.seam nmai |l . mai | Sessi on. passwor d — the password to use to connect to the
SMTP server

* org.jboss.seam mail . mail Sessi on. debug — enable JavaMail debugging (very
verbose)

e org.jboss.seam mail . mai | Sessi on. ssl — enable SSL connection to SMTP (will default
to port 465)

org.j boss. seam nui | . mai | Sessi on. t| s — by default true, enable TLS support in the
mail session

e org.jboss.seam nai | . mai | Sessi on. sessi onJndi Nanme — name under which a
javax.mail.Session is bound to JNDI. If supplied, all other properties will be ignored.

33.10. Infrastructural components

These components provide critical platform infrastructure. You can install a component which isn't
installed by default by setting i nst al I ="true" on the component in conponent s. xni .

org.jboss.seamcore.init
Initialization settings for Seam. Always installed.

e org.jboss.seamcore.init.jndi Pattern — the JNDI pattern used for looking up
session beans

e org.jboss.seamcore.init.debug — enable Seam debug mode. This should be set to
false when in production. You may see errors if the system is placed under any load and
debug is enabled.

e org.jboss.seamcore.init.clientSideConversations—ifsettotrue, Seam will save
conversation context variables in the client instead of in the Ht t pSessi on.

org. j boss. seam core. nanager
Internal component for Seam page and conversation context management. Always installed.

e org.jboss.seam core. manager . conversati onTi meout — the conversation context
timeout in milliseconds.

511

Chapter 33. Built-in Seam com...

e org.jboss.seam core. manager. concur r ent Request Ti meout — maximum wait time for
a thread attempting to gain a lock on the long-running conversation context.

e org.jboss.seam core. manager. conver sati onl dPar anet er — the request parameter
used to propagate the conversation id, default to conver sati onl d.

* org.jboss. seam core. manager. conver sati onl sLongRunni ngPar anet er — the
request parameter used to propagate information about whether the conversation is long-
running, default to conver sat i onl sLongRunni ng.

e org.jboss. seam core. manager . def aul t Fl ushMode — set the flush mode set by default
on any Seam Managed Persistence Context. By default AUTO.

org.j boss. seam navi gati on. pages
Internal component for Seam workspace management. Always installed.

e org.jboss. seam navi gati on. pages. noConver sati onVi e d — global setting for the
view id to redirect to when a conversation entry is not found on the server side.

e org.jboss.seam navi gati on. pages. | ogi nVi e d — global setting for the view id to
redirect to when an unauthenticated user tries to access a protected view.

e org.jboss.seam navi gati on. pages. htt pPort — global setting for the port to use when
the http scheme is requested.

e org.jboss.seam navi gati on. pages. htt psPort — global setting for the port to use when
the https scheme is requested.

e org.jboss.seam navi gati on. pages. resources — a list of resources to search for
pages. xnl style resources. Defaults to WVEB- | NF/ pages. xni .

org.j boss. seam bpm j bpm
Bootstraps a JbpnConfi gur ati on. Install as class or g. j boss. seam bpm Jbpm

e org.jboss.seam bpm j bpm processDefi ni ti ons —alist of resource names of jPDL files
to be used for orchestration of business processes.

e org.jboss.seam bpm j bpm pagef | owDefi ni ti ons — a list of resource names of jPDL
files to be used for orchestration of conversation page flows.

org. j boss. seam core. conversationEntries
Internal session-scoped component recording the active long-running conversations between
requests.

org.j boss. seam f aces. f acesPage
Internal page-scoped component recording the conversation context associated with a page.

org. j boss. seam persi st ence. persi st enceCont ext s
Internal component recording the persistence contexts which were used in the current
conversation.

512

Miscellaneous components

org. j boss. seam j ms. queueConnecti on
Manages a JMS QueueConnect i on. Installed whenever managed QueueSender is installed.

e org.jboss.seam j ns. queueConnecti on. queueConnect i onFact oryJndi Name — the
JNDI name of a JMS QueueConnect i onFact ory. Default to U L2Connect i onFact ory

org. j boss. seam jms. t opi cConnecti on
Manages a JMS Topi cConnecti on. Installed whenever managed Topi cPublisher is
installed.

e org.jboss.seam jns.topi cConnection.topi cConnectionFactoryJndi Name — the
JNDI name of a JMS Topi cConnect i onFact ory. Default to U L2Connect i onFact ory

org.j boss. seam persi st ence. persi st enceProvi der
Abstraction layer for non-standardized features of JPA provider.

org.j boss.seam core. validators
Caches instances of Hibernate Validator Cl assVal i dat or .

org.j boss. seam f aces. val i dati on
Allows the application to determine whether validation failed or was successful.

org.j boss. seam debug. i ntrospect or
Support for the Seam Debug Page.

org.j boss. seam debug. cont exts
Support for the Seam Debug Page.

org.j boss. seam excepti on. excepti ons
Internal component for exception handling.

org.j boss. seam transaction. transaction
API for controlling transactions and abstracting the underlying transaction management
implementation behind a JTA-compatible interface.

org.j boss. seam f aces. saf eActi ons
Decides if an action expression in an incoming URL is safe. This is done by checking that the
action expression exists in the view.

33.11. Miscellaneous components

These components don't fit into

org.j boss. seam async. di spat cher
Dispatcher stateless session bean for asynchronous methods.

org.j boss. seam core. i mage
Image manipulation and interrogation.

513

Chapter 33. Built-in Seam com...

org. j boss. seam core. poj oCache
Manager component for a PojoCache instance.

org.j boss. seam cor e. ui Conponent
Manages a map of UIComponents keyed by component id.

33.12. Special components

Certain special Seam component classes are installable multiple times under names specified in
the Seam configuration. For example, the following lines in conponent s. xmi install and configure
two Seam components:

<component name="bookingDatabase"
class="org.jboss.seam.persistence.ManagedPersistenceContext">
<property name="persistenceUnitJndiName">java:/comp/emf/bookingPersistence</property>
</component>

<component name="userDatabase"
class="org.jboss.seam.persistence.ManagedPersistenceContext">
<property name="persistenceUnitJndiName">java:/comp/emf/userPersistence</property>
</component>

The Seam component names are booki ngDat abase and user Dat abase.

<entityManager>, or g. j boss. seam per si st ence. ManagedPer si st enceCont ext
Manager component for a conversation scoped managed Ent i t yManager with an extended
persistence context.

» <entityManager>.entityManagerFactory — a value binding expression that evaluates to an
instance of Enti t yManager Fact ory.

<entityManager>.persistenceUnitJndiName — the JNDI name of the entity manager
factory, default to java:/<managedPersistenceContext>.

<entityManagerFactory>, or g. j boss. seam per si st ence. Enti t yManager Fact ory
Manages a JPA Ent i t yManager Fact ory. This is most useful when using JPA outside of an
EJB 3.0 supporting environment.

e entityManager Fact ory. persi st enceUni t Name — the name of the persistence unit.
See the API JavaDoc for further configuration properties.

<session>, or g. j boss. seam per si st ence. ManagedSessi on
Manager component for a conversation scoped managed Hibernate Sessi on.

514

Special components

» <session>.sessionFactory — a value binding expression that evaluates to an instance of
Sessi onFact ory.

<session>.sessionFactoryJndiName — the JNDI name of the session factory, default to
java:/<managedSession>.

<sessionFactory>, or g. j boss. seam per si st ence. Hi ber nat eSessi onFact ory
Manages a Hibernate Sessi onFact ory.

e <sessi onFact ory>. cf gResour ceNane — the path to the configuration file. Default to
hi bernate. cfg. xm .

See the API JavaDoc for further configuration properties.

<managedQueueSender>, or g. j boss. seam j ns. ManagedQueueSender
Manager component for an event scoped managed JMS QueueSender .

* <managedQueueSender>.queueJndiName — the JNDI name of the JMS queue.

<managedTopicPublisher>, or g. j boss. seam j ns. ManagedTopi cPubl i sher
Manager component for an event scoped managed JMS Topi cPubl i sher.

* <managedTopicPublisher>.topicJndiName — the JNDI name of the JMS topic.

<managedWorkingMemory>, or g. j boss. seam dr ool s. ManagedWor ki nghenory
Manager component for a conversation scoped managed Drools Wr ki ngMenory.

* <managedWorkingMemory>.ruleBase — a value expression that evaluates to an instance
of Rul eBase.

<ruleBase>, or g. j boss. seam dr ool s. Rul eBase
Manager component for an application scoped Drools Rul eBase. Note that this is not really
intended for production usage, since it does not support dynamic installation of new rules.

» <ruleBase>.ruleFiles — a list of files containing Drools rules.
<ruleBase>.dslFile — a Drools DSL definition.
<entityHome>, or g. j boss. seam f r amewor k. Ent i t yHonme
<hibernateEntityHome>, or g. j boss. seam f r anewor k. Hi ber nat eEnti t yHone
<entityQuery>, or g. j boss. seam f ranewor k. Enti t yQuery

<hibernateEntityQuery>, or g. j boss. seam f r amewor k. Hi ber nat eEnti t yQuery

515

516

Chapter 34.

Seam JSF controls

Seam includes a number of JSF controls that are useful for working with Seam. These are
intended to complement the built-in JSF controls, and controls from other third-party libraries. We
recommend JBoss RichFaces, ICEsoft ICEfaces and Apache MyFaces Trinidad tag libraries for
use with Seam. We do not recommend the use of the Tomahawk tag library.

34.1. Tags

To use these tags, define the "s" namespace in your page as follows (facelets only):

<html xmlIns="http://www.w3.0rg/1999/xhtml"
xmlins:s="http://jboss.org/schema/seam/taglib">

The ui example demonstrates the use of a number of these tags.
34.1.1. Navigation Controls

34.1.1.1. <s: button>

Description

A button that supports invocation of an action with control over conversation propagation. Does
not submit the form.

Attributes

* val ue — the label.

e acti on — a method binding that specified the action listener.
* vi ew— the JSF view id to link to.

« fragment — the fragment identifier to link to.

* di sabl ed — is the link disabled?

e propagati on — determines the conversation propagation style: begi n, j oi n, nest ed, none,
end or endRoot .

» pagef | ow— a pageflow definition to begin. (This is only useful when pr opagat i on="begi n"
or propagat i on="j oi n" is used).

e includePageParans — when set to false, page parameters defined in pages. xnl will be
excluded from rendering.

517

Chapter 34. Seam JSF controls

Usage

<s:button id="cancel"
value="Cancel"
action="#{hotelBooking.cancel}"/>

You can specify both vi ewand acti on on <s: i nk />. In this case, the action will be called once
the redirect to the specified view has occurred.

The use of action listeners (including the default JSF action listener) is not supported with
<s:button />,

34.1.1.2. <s: conversati onl d>

Description

Add the conversation id to JSF link or button (e.g. <h: commandLi nk />, <s: button />).
Attributes

None
34.1.1.3. <s: taskl d>

Description
Add the task id to an output link (or similar JSF control), when the task is available via #{t ask}.
Attributes

None.
34.1.1.4. <s:1ink>

Description

A link that supports invocation of an action with control over conversation propagation. Does not
submit the form.

The use of action listeners (including the default JSF action listener) is not supported with
<s:link />

Attributes

e val ue — the label.
e acti on — a method binding that specified the action listener.

e vi ew— the JSF view id to link to.

518

Navigation Controls

e fragment — the fragment identifier to link to.
 di sabl ed — is the link disabled?

e propagati on — determines the conversation propagation style: begi n, j oi n, nest ed, none,
end or endRoot .

* pageflow — a pageflow definition to begin. (This is only useful when using
propagat i on="begi n" or propagati on="j oi n".)

e includePageParans — when set to false, page parameters defined in pages. xnl will be
excluded from rendering.

Usage

<s:link id="register" view="/register.xhtml"
value="Register New User"/>

You can specify both vi ewand acti on on <s: | i nk />. In this case, the action will be called once
the redirect to the specified view has occured.

34.1.1.5. <s: conversati onPropagati on>
Description

Customize the conversation propagation for a command link or button (or similar JSF control).
Facelets only.

Attributes
» type — determines the conversation propagation style: begi n, j oi n, nest ed, none, end or
endRoot .

e pageflow — a pageflow definition to begin. (This is only useful when using
propagati on="begi n" or propagati on="j oi n".)

Usage
<h:commandButton value="Apply" action="#{personHome.update}">

<s:conversationPropagation type="join" />
</h:commandButton>

34.1.1.6. <s:defaultAction>

Description

519

Chapter 34. Seam JSF controls

Specify the default action to run when the form is submitted using the enter key.

Currently you can only nest it inside buttons (e.g. <h: commandBut t on />, <a: commandBut t on /
> or <tr:commandBut t on />).

You must specify an id on the action source. You can only have one default action per form.
Attributes
None.

Usage

<h:commandButton id="foo" value="Fo0" action="#{manager.foo}"'>
<s:defaultAction />
</h:commandButton>

34.1.2. Converters and Validators

34.1.2.1. <s: convert Dat eTi nme>

Description

Perform date or time conversions in the Seam timezone.
Attributes

None.

Usage

<h:outputText value="#{item.orderDate}">
<s:convertDateTime type="both" dateStyle="full"/>
</h:outputText>

34.1.2.2. <s: convertEnt i ty>

Description

Assigns an entity converter to the current component. This is useful for radio button and dropdown
controls.

The converter works with any managed entity - either simple or composite. The converter should
be able to find the items declared in the JSF controls on form submission, otherwise you will
receive a validation error.

520

Converters and Validators

Attributes
None.
Configuration

You must use Seam managed transactions (see Section 10.2, “Seam managed transactions”)
with <s: convertEntity />.

If your Managed Persistence Context isn't called entit yManager, then you need to set it in
components.xml:

<components xmlns="http://jboss.org/schema/seam/components"
xmlins:ui="http://jboss.org/schema/seam/ui">

<ui:jpa-entity-loader entity-manager="#{em}" />

If you are using a Managed Hibernate Session then you need to set it in components.xml:

<components xmlns="http://jboss.org/schema/seam/components"
xmins:ui="http://jboss.org/schema/seam/ui">

<ui:hibernate-entity-loader />

If your Managed Hibernate Session isn't called session, then you need to set it in
components.xml:

<components xmlns="http://jpboss.org/schema/seam/components"
xmins:ui="http://jboss.org/schema/seam/ui">

<ui:hibernate-entity-loader session="#{hibernateSession}" />

If you want to use more than one entity manager with the entity converter, you can create a copy
of the entity converter for each entity manager in conponent s. xnl - note how the entity converter
delegates to the entity loader to perform persistence operations:

<components xmlns="http://jpboss.org/schema/seam/components"
xmlns:ui="http://jboss.org/schema/seam/ui">

<ui:entity-converter name="standardEntityConverter" entity-loader="#{standardEntityLoader}" /
>

521

Chapter 34. Seam JSF controls

<ui:jpa-entity-loader name="standardEntityLoader" entity-
manager="#{standardEntityManager}" />

<ui:entity-converter name="restrictedEntityConverter" entity-loader="#{restrictedEntityLoader}" /
>

<ui:jpa-entity-loader name="restrictedEntityLoader" entity-
manager="#{restrictedEntityManager}" />

<h:selectOneMenu value="#{person.continent}">
<s:selectltems value="#{continents.resultList}" var="continent"
label="#{continent.name}" />
<f.converter converterld="standardEntityConverter" />
</h:selectOneMenu>

Usage

<h:selectOneMenu value="#{person.continent}" required="true">
<s:selectltems value="#{continents.resultList}" var="continent"
label="#{continent.name}"
noSelectionLabel="Please Select..."/>
<s:convertEntity />
</h:selectOneMenu>

34.1.2.3. <s: convert Enune

Description

Assigns an enum converter to the current component. This is primarily useful for radio button and
dropdown controls.

Attributes
None.

Usage

<h:selectOneMenu value="#{person.honorific}">
<s:selectltems value="#{honorifics}" var="honorific"
label="#{honorific.label}"
noSelectionLabel="Please select" />
<s:convertEnum />

522

Converters and Validators

</h:selectOneMenu>

34.1.2.4. <s: convert At omi cBool ean>

Description

javax. f aces. convert. Converter forjava. util.concurrent. atoni c. At oni cBool ean.
Attributes

None.

Usage

<h:outputText value="#{item.valid}">
<s:convertAtomicBoolean />
</h:outputText>

34.1.2.5. <s: convert At oni cl nt eger >

Description

j avax. f aces. convert. Converter forjava.util.concurrent. atonic. At omi cl nt eger.
Attributes

None.

Usage

<h:outputText value="#{item.id}">
<s:convertAtomiclnteger />
</h:outputText>

34.1.2.6. <s: convert At omi cLong>

Description

j avax. f aces. convert. Converter forjava. util.concurrent. atonic. At oni cLong.
Attributes

None.

Usage

523

Chapter 34. Seam JSF controls

<h:outputText value="#{item.id}">
<s:convertAtomicLong />
</h:outputText>

34.1.2.7. <s: val i dat eEqual i ty>
Description

Tag to nest inside an input control to validate that its parent's value is equal (or not equal!) to the
referenced control's value.

Attributes

» for — The id of a control to validate against.

* message — Message to show on failure.

* required — False will disable a check that a value at all is inputted in fields.

» messagel d — Message id to show on failure.

« oper at or — What operator to use when comparing the values Valid operators are:
* equal — Validates that value.equals(forValue)
* not _equal — Validates that lvalue.equals(forValue)
e greater — Validates that ((Comparable)value).compareTo(forValue) > 0
» greater_or_equal — Validates that ((Comparable)value).compareTo(forValue) >= 0
* | ess — Validates that ((Comparable)value).compareTo(forValue) < 0
* | ess_or_equal — Validates that ((Comparable)value).compareTo(forValue) <=0

Usage

<h:inputText id="name" value="#{bean.name}"/>
<h:inputText id="nameVerification" >

<s:validateEquality for="name" />
</h:inputText>

34.1.2.8. <s: vali date>

Description

A non-visual control, validates a JSF input field against the bound property using Hibernate
Validator.

524

Converters and Validators

Attributes
None.

Usage

<h:inputText id="userName" required="true"
value="#{customer.userName}">
<s:validate />
</h:inputText>
<h:message for="userName" styleClass="error" />

34.1.2.9. <s:val idateAl | >

Description

A non-visual control, validates all child JSF input fields against their bound properties using
Hibernate Validator.

Attributes
None.

Usage

<s:validateAll>
<div class="entry">
<h:outputLabel for="username">Username:</h:outputLabel>
<h:inputText id="username" value="#{user.username}"
required="true"/>
<h:message for="username" styleClass="error" />
</div>
<div class="entry">
<h:outputLabel for="password">Password:</h:outputLabel>
<h:inputSecret id="password" value="#{user.password}"
required="true"/>
<h:message for="password" styleClass="error" />
</div>
<div class="entry">
<h:outputLabel for="verify">Verify Password:</h:outputLabel>
<h:inputSecret id="verify" value="#{register.verify}"
required="true"/>
<h:message for="verify" styleClass="error" />
</div>

525

Chapter 34. Seam JSF controls

</s:validateAll>

34.1.3. Formatting

34.1.3.1. <s: decor ate>
Description
"Decorate" a JSF input field when validation fails or when r equi red="t rue" is set.

Attributes

« tenpl at e — the facelets template to use to decorate the component

e encl ose — if true, the template used to decorate the input field is enclosed by the element
specified with the "element" attribute. By default this is a div element.

« el enent — the element to enclose the template used to decorate the input field. By default, the
template is enclosed with a div element.

#{i nval i d} and #{required} are available inside s: decor at e; #{r equi r ed} evaluatestotrue
if you have set the input component being decorated as required, and #{i nval i d} evaluates to
t r ue if a validation error occurs.

Usage

<s:decorate template="edit.xhtml">
<ui:define name="label">Country:</ui:define>
<h:inputText value="#{location.country}" required="true"/>
</s:decorate>

<ui:composition xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:ui="http://java.sun.com/jsf/facelets"
xmlns:h="http://java.sun.com/jsf/htm|"
xmlins:f="http://java.sun.com/jsf/core"
xmins:s="http://jposs.org/schema/seam/taglib">

<div>
<s:label styleClass="#{invalid?'error""}">
<ui:insert name="label"/>
<s:span styleClass="required" rendered="#{required}">*</s:span>

</s:label>

526

Formatting

<s:validateAll>
<ui:insert/>
</s:validateAll>

<s:message styleClass="error"/>
</div>

</ui:composition>

34.1.3.2. <s: di v>
Description

Render a HTML <di v>.
Attributes

None.

Usage

<s:div rendered="#{selectedMember == null}">
Sorry, but this member does not exist.
</s:div>

34.1.3.3. <s: span>

Description
Render a HTML .

Attributes

e title—Title for a span.

Usage

<s:span styleClass="required" rendered="#{required}" titte="Small tooltip">*</s:span>

34.1.3.4. <s: fr agment >

Description

A non-rendering component useful for enabling/disabling rendering of it's children.

527

Chapter 34. Seam JSF controls

Attributes
None.

Usage

<s:fragment rendered="#{auction.highBidder ne null}">
Current bid:
</s:fragment>

34.1.3.5. <s: 1 abel >

Description

"Decorate" a JSF input field with the label. The label is placed inside the HTML <I abel > tag, and
is associated with the nearest JSF input component. It is often used with <s: decor at e>.

Attributes

* styl e — The control's style
» styl eC ass — The control's style class

Usage

<s:label styleClass="label">
Country:
</s:label>
<h:inputText value="#{location.country}" required="true"/>

34.1.3.6. <s: nessage>

Description

"Decorate" a JSF input field with the validation error message.
Attributes

None.

Usage

<f:facet name="afterlnvalidField">
<s:span>
 Error:
<s:message/>

528

Seam Text

</s:span>
</f:facet>

34.1.4. Seam Text

34.1.4.1. <s: for mat t edText >

Description

Outputs Seam Text, a rich text markup useful for blogs, wikis and other applications that might
use rich text. See the Seam Text chapter for full usage.

Attributes

» val ue — an EL expression specifying the rich text markup to render.

Usage

<s:formattedText value="#{blog.text}"/>

Example

Please type your comment

larem pharetra viverra™. Fusce in ipsum. Mam et turpis id arcu lobortis dapibus .

Lorem ipsum

Lorem ipsum dofor 5 amet, consectetuer adipiscing elit,

-suspendisse a risus- Uis lerem pharetrs viverra £ coe in insumn, Marn et
turpis id arcu lobortis dapibus,

Curabitur et sem vel quam

1. wenenatis mattis.
Z. Mulla hendrerit orci ut massa.
3. Donec condirmenturn,

« libero in iaculis hendrerit,
+ risus dolor congue nulla,
+ Mon accumsan ante risus et ipsunn.

“Suspendisse dui, Maecenas lorem. Maecenas sit amet purus nec metus
sodales sagittis, Phasellus varius lacus nec velit, *

529

Chapter 34. Seam JSF controls

34.1.5. Form support

34.1.5.1. <s: t oken>

Description

Produces a random token that is inserted into a hidden form field to help to secure JSF form
posts against cross-site request forgery (XSRF) attacks. Note that the browser must have cookies
enabled to submit forms that include this component.

Attributes

* requi reSessi on — indicates whether the session id should be included in the form signature,
hence binding the token to the session. This value can be set to false if the "build before restore”
mode of Facelets is activated (the default in JSF 2.0). (default: false)

» enabl eCooki eNot i ce — indicates that a JavaScript check should be inserted into the page to
verify that cookies are enabled in the browser. If cookies are not enabled, present a notice to
the user that form posts will not work. (default: false)

e al l owMul ti pl ePost s — indicates whether to allow the same form to be submitted multiple
times with the same signature (as long as the view does not change). This is a common need
if the form is perform Ajax calls but not rerendering itself or, at the very least, the UlToken
component. The preferred approach is to have the UIToken component rerendered on any Ajax
call where the UlIToken component would be processed. (default: false)

Usage

<h:form>
<s:token enableCookieNotice="true" requireSession="false"/>

</h:form>

34.1.5.2. <s: enum tenv
Description
Creates a Sel ect | t emfrom an enum value.

Attributes

* enunVal ue — the string representation of the enum value.

e | abel — the label to be used when rendering the Sel ect | t em

530

Form support

Usage

<h:selectOneRadio id="radioList"
layout="lineDirection"
value="#{newPayment.paymentFrequency}">
<!-- JSF 2 way <f:converter converterld="org.jpboss.seam.ui.EnumConverter" />-->
<s:convertEnum />

<s:enumltem enumValue="ONCE" label="Only Once" />
<s:enumltem enumValue="EVERY_MINUTE" label="Every Minute" />
<s:enumltem enumValue="HOURLY" label="Every Hour" />
<s:enumltem enumValue="DAILY" label="Every Day" />
<s:enumltem enumValue="WEEKLY" label="Every Week" />

</h:selectOneRadio>

34.1.5.3. <s: sel ectltens>

Description
Creates a Li st <Sel ect | t em> from a List, Set, DataModel or Array.

Attributes

» val ue — an EL expression specifying the data that backs the Li st <Sel ect It enp
» var — defines the name of the local variable that holds the current object during iteration
* | abel — the label to be used when rendering the Sel ect | t em Can reference the var variable.

i tenVal ue — Value to return to the server if this option is selected. Optional, by default the var
object is used. Can reference the var variable.

* di sabl ed — if true the Sel ect | t emwill be rendered disabled. Can reference the var variable.

* noSel ecti onLabel — specifies the (optional) label to place at the top of list (if
requi red="true" is also specified then selecting this value will cause a validation error).

* hi deNoSel ecti onLabel — if true, the noSel ecti onLabel will be hidden when a value is
selected

Usage

<h:selectOneMenu value="#{person.age}"
converter="ageConverter">
<s:selectltems value="#{ages}" var="age" label="#{age}" />
</h:selectOneMenu>

531

Chapter 34. Seam JSF controls

34.1.5.4. <s:fil eUpl oad>

Description

Renders a file upload control. This control must be used within a form with an encoding type of

mul ti part/formdata, i.e:

<h:form enctype="multipart/form-data">

For multipart requests, the Seam Multipart servlet filter must also be configured in web. xm :

<filter>
<filter-name>Seam Filter</filter-name>
<filter-class>org.jboss.seam.servlet. SeamFilter</filter-class>
<[filter>

<filter-mapping>
<filter-name>Seam Filter</filter-name>
<url-pattern>/*</url-pattern>
</filter-mapping>

Configuration

The following configuration options for multipart requests may be configured in components.xmil:

e createTenpFi | es — if this option is set to true, uploaded files are streamed to a temporary
file instead of in memory.

« maxRequest Si ze — the maximum size of a file upload request, in bytes.

Here's an example:

<component class="org.jboss.seam.web.MultipartFilter">
<property name="createTempFiles">true</property>
<property name="maxRequestSize">1000000</property>
</component>

Attributes

« dat a — this value binding receives the binary file data. The receiving field should be declared
as a byte[] or | nput St ream(required).

532

Other

« cont ent Type — this value binding receives the file's content type (optional).
» fil eNane — this value binding receives the filename (optional).
» fileSi ze — this value binding receives the file size (optional).

e accept — a comma-separated list of content types to accept, may not be supported by the
browser. E.g. "i mages/ png, i nages/ j pg", "i mages/ *".

« styl e — The control's style
» styl eC ass — The control's style class

Usage

<s:fileUpload id="picture" data="#{register.picture}"
accept="image/png"
contentType="#{register.pictureContentType}" />

34.1.6. Other

34.1.6.1. <s: cache>

Description

Cache the rendered page fragment using JBoss Cache. Note that <s: cache> actually uses the
instance of JBoss Cache managed by the built-in poj oCache component.

Attributes

» key — the key to cache rendered content, often a value expression. For example, if we
were caching a page fragment that displays a document, we might use key="Documnent -
#{document . i d}".

« enabl ed — a value expression that determines if the cache should be used.
* regi on — a JBoss Cache node to use (different nodes can have different expiry policies).

Usage

<s:cache key="entry-#{blogEntry.id}" region="pageFragments">
<div class="blogEntry">
<h3>#{blogEntry.title}</h3>
<div>
<s:formattedText value="#{blogEntry.body}"/>
</div>

533

Chapter 34. Seam JSF controls

<p>
[Posted on
<h:outputText value="#{blogEntry.date}">
<f:convertDateTime timezone="#{blog.timeZone}" locale="#{blog.locale}"
type="both"/>
</h:outputText>]
</p>
</div>
</s:cache>

34162 <s.resource>

Description

A tag that acts a file download provider. It must be alone in the JSF page. To be able to use this
control, web.xml must be set up as follows.

Configuration

<servlet>
<servlet-name>Document Store Servlet</serviet-name>
<servlet-class>org.jboss.seam.document.DocumentStoreServiet</servlet-class>
</servlet>
<servlet-mapping>
<servlet-name>Document Store Servlet</serviet-name>
<url-pattern>/seam/docstore/*</url-pattern>
</servlet-mapping>

Attributes

» dat a— Data that should be downloaded. May be a java.util.File, an InputStream or a byte array.
» fil eNane — Filename of the file to be served

e cont ent Type — content type of the file to be downloaded

 di spositi on — disposition to use. Default is inline

Usage

Here is an example on how to use the tag:

<s:resource xmlns="http://www.w3.0rg/1999/xhtml"
xmins:s="http://jboss.org/schema/seam/taglib"

534

Other

data="#{resources.data}"
contentType="#{resources.contentType}"
fileName="#{resources.fileName}" />

The bean named r esour ces is some backing bean that given some request parameters servers
a specific file, see s: downl oad.

34.1.6.3. <s: downl oad>

Description

Builds a RESTful link to a <s: r esour ce>. Nested f : par ambuild up the url.

* src — Resource file serving files.

Attributes

<s:download src="/resources.xhtm|">
<f:param name="fileld" value="#{someBean.downloadableFileld}"/>
</s:download>

Will produce something like: htt p: / /1 ocal host/ resources. seanPfil el d=1
34.1.6.4. <s: gr aphi cl mage>

Description

An extended <h: gr aphi cl mage> that allows the image to be created in a Seam Component;
further transforms can be applied to the image.

All attributes for <h: gr aphi cl mage> are supported, as well as:

Attributes

* val ue — image to display. Can be a path String (loaded from the classpath), a byte[],
ajava.io.File, ajava.io.lnputStreamor a java. net. URL. Currently supported image
formats are i mage/ png, i mage/ j peg, i mage/ gi f and i mage/ bnp.

« fil eNane — if not specified the served image will have a generated file name. If you want to
name your file, you should specify it here. This name should be unique

Transformations

To apply a transform to the image, you would nest a tag specifying the transform to apply. Seam
currently supports these transforms:

535

Chapter 34. Seam JSF controls

<s:transform mageSi ze>
e w dt h — new width of the image
« hei ght — new height of the image

e mai ntai nRati o —iftrue, and one of wi dt h/hei ght are specified, the image will be resized
with the dimension not specified being calculated to maintain the aspect ratio.

» fact or — scale the image by the given factor
<s:transform nageBl ur>
e radi us — perform a convolution blur with the given radius
<s:transform nageType>
e cont ent Type — alter the type of the image to either i mage/ j peg or i mage/ png

Its easy to create your own transform - create a Ul Conponent which implements
org. j boss. seam ui . graphi cl mage. | mageTransform Inside the appl yTransf or n() method
use i mage. get Buf f er edl mage() to get the original image and i mage. set Buf f er edl mage() to
set your transformed image. Transforms are applied in the order specified in the view.

Usage
<s:graphiclmage rendered="#{auction.image ne null}"
value="#{auction.image.data}">

<s:transformlmageSize width="200" maintainRatio="true"/>
</s:graphiclmage>

34.1.6.5. <s: renot e>

Description

Generates the Javascript stubs required to use Seam Remoting.

Attributes

* incl ude — a comma-separated list of the component names (or fully qualified class names)for
which to generate Seam Remoting Javascript stubs. See Chapter 26, Remoting for more details.

Usage

<s:remote include="customerAction,accountAction,com.acme.MyBean"/>

536

Annotations

34.2. Annotations

Seam also provides annotations to allow you to use Seam components as JSF converters and
validators:

@onverter

@Name("itemConverter")

@Bypasslinterceptors

@Converter

public class ItemConverter implements Converter {

@Transactional

public Object getAsObject(FacesContext context, UIComponent cmp, String value) {
EntityManager entityManager = (EntityManager) Component.getinstance("entityManager");
entityManager.joinTransaction();
/I Do the conversion

public String getAsString(FacesContext context, UIComponent cmp, Object value) {
/I Do the conversion

<h:inputText value="#{shop.item}" converter="itemConverter" />

Registers the Seam component as a JSF converter. Shown here is a converter which is able
to access the JPA EntityManager inside a JTA transaction, when converting the value back
to it's object representation.

@/al i dat or

@Name("itemValidator")

@Bypassinterceptors

@org.jboss.seam.annotations.faces.Validator

public class ItemValidator implements javax.faces.validator.Validator {

public void validate(FacesContext context, UIComponent cmp, Object value)
throws ValidatorException {
ItemController temController = (ItemController) Component.getinstance(“itemController");

537

Chapter 34. Seam JSF controls

boolean valid = itemController.validate(value);
if (tvalid) {
throw ValidatorException("Invalid value " + value);
}
}
}

<h:inputText value="#{shop.item}" validator="itemValidator" />

Registers the Seam component as a JSF validator. Shown here is a validator which injects
another Seam component; the injected component is used to validate the value.

538

Chapter 35.

JBoss EL

Seam uses JBoss EL which provides an extension to the standard Unified Expression Language
(EL). JBoss EL provides a number of enhancements that increase the expressiveness and power
of EL expressions.

35.1. Parameterized Expressions

Standard EL 2.1 does not allow you to use a method with user defined parameters — of course,
JSF listener methods (e.g. aval ueChangelLi st ener) take parameters provided by JSF. Standard
EL 2.2 [http://docs.oracle.com/javaee/6/tutorial/doc/gjddd.html], which is in Java EE 6, allows it
now. So you don't have to use JBoss EL enhancements.

You can still use JBoss EL instead of standard EL 2.2 from Java EE 6 by setting up
com sun. f aces. expressi onFactory inweb. xm :

<context-param>
<param-name>com.sun.faces.expressionFactory</param-name>
<param-value>org.jboss.el.ExpressionFactorylmpl</param-value>
</context-param>

JBoss EL and EL 2.2 removed this restriction. For example:

<h:commandButton action="#{hotelBooking.bookHotel(hotel)}" value="Book Hotel"/>

@Name("hotelBooking™)
public class HotelBooking

{
public String bookHotel(Hotel hotel)

{
/I Book the hotel

35.1.1. Usage

Just as in calls to method from Java, parameters are surrounded by parentheses, and separated
by commas:

539

http://docs.oracle.com/javaee/6/tutorial/doc/gjddd.html
http://docs.oracle.com/javaee/6/tutorial/doc/gjddd.html
http://docs.oracle.com/javaee/6/tutorial/doc/gjddd.html

Chapter 35. JBoss EL

<h:commandButton action="#{hotelBooking.bookHotel(hotel, user)}"' value="Book Hotel"/>

The parameters hotel and user will be evaluated as value expressions and passed to the
bookHot el () method of the component.

Any value expression may be used as a parameter:

<h:commandButton
action="#{hotelBooking.bookHotel(hotel.id, user.username)}"
value="Book Hotel"/>

It's important to fully understand how this extension to EL works. When the page is rendered, the
parameter names are stored (for example, hotel . i d and user . user nane), and evaluated (as
value expressions) when the page is submitted. You can't pass objects as parameters!

You must ensure that the parameters are available not only when the page is rendered, but also
when it is submittedIf the arguments can not be resolved when the page is submitted the action
method will be called with nul | arguments!

You can also pass literal strings using single quotes:

<h:commandLink action="#{printer.printin('Hello world!")}" value="Hello"/>

Unified EL also supports value expressions, used to bind a field to a backing bean. Value
expressions use JavaBean naming conventions and expect a getter/setter pair. Often JSF expects
avalue expression where only retrieval (get) is needed (e.g. the r ender ed attribute). Many objects,
however, don't have appropriately named property accessors or require parameters.

JBoss EL removes this restriction by allowing values to be retrieved using the method syntax.
For example:

<h:outputText value="#{person.name}" rendered="#{person.name.length() > 5}" />

You can access the size of a collection in a similar manner:

#{searchResults.size()}

In general any expression of the form #{obj.property} would be identical to the expression
#{obj.getProperty()}.

540

Limitations and Hints

Parameters are also allowed. The following example calls the product sByCol or Met hod with a
literal string argument:

#{controller.productsByColor('blue")}

35.1.2. Limitations and Hints

When using JBoss EL you should keep the following points in mind:

* Incompatibility with JSP 2.1 — JBoss EL can't currently be used with JSP 2.1 as the compiler
rejects expressions with parameters in. So, if you want to use this extension with JSF 1.2, you
will need to use Facelets. The extension works correctly with JSP 2.0.

» Use inside iterative components — Components like <c: f or Each / >and <ui : r epeat / >iterate
over a List or array, exposing each item in the list to nested components. This works great if
you are selecting a row using a <h: conmandBut t on /> or <h: conmandLi nk / >:

@Factory("items")
public List<ltem> getltems() {
return entityManager.createQuery("select ...").getResultList();

<h:dataTable value="#{items}" var="item">
<h:column>
<h:commandLink value="Select #{item.name}" action="#{itemSelector.select(item})" />
</h:column>
</h:dataTable>

However if you want to use <s:link /> or <s:button /> you must expose the items
as a DataWbdel, and use a <dataTable /> (or equivalent from a component set like
<rich: dat aTabl e />). Neither <s: link /> or<s: button /> submitthe form (and therefore
produce a bookmarkable link) so a "magic” parameter is needed to recreate the item when the
action method is called. This magic parameter can only be added when a data table backed
by a Dat aMbdel is used.

Calling a Met hodExpr essi on from Java code — Normally, when a Met hodExpr essi on is
created, the parameter types are passed in by JSF. In the case of a method binding, JSF
assumes that there are no parameters to pass. With this extension, we can't know the parameter
types until after the expression has been evaluated. This has two minor consequences:

* When you invoke a Met hodExpr essi on in Java code, parameters you pass may be ignored.
Parameters defined in the expression will take precedence.

541

Chapter 35. JBoss EL

 Ordinarily, it is safe to call met hodExpr essi on. get Met hodl nf o() . get Par anTypes() at any
time. For an expression with parameters, you must first invoke the Met hodExpr essi on before
calling get Par aniTypes() .

Both of these cases are exceedingly rare and only apply when you want to invoke the
Met hodExpr essi on by hand in Java code.

35.2. Projection

JBoss EL supports a limited projection syntax. A projection expression maps a sub-expression
across a multi-valued (list, set, etc...) expression. For instance, the expression:

#{company.departments}

might return a list of departments. If you only need a list of department names, your only option is
to iterate over the list to retrieve the values. JBoss EL allows this with a projection expression:

#{company.departments.{d|d.name}}

The subexpression is enclosed in braces. In this example, the expression d. name is evaluated
for each department, using d as an alias to the department object. The result of this expression
will be a list of String values.

Any valid expression can be used in an expression, so it would be perfectly valid to write the
following, assuming you had a use for the lengths of all the department names in a company:

#{company.departments.{d|d.size()}}

Projections can be nested. The following expression returns the last names of every employee
in every department:

#{company.departments.{d|d.employees.{emp|emp.lastName}}}

Nested projections can be slightly tricky, however. The following expression looks like it returns
a list of all the employees in all the departments:

#{company.departments.{d|d.employees}}

542

Projection

However, it actually returns a list containing a list of the employees for each individual department.
To combine the values, it is necessary to use a slightly longer expression:

#{company.departments.{d|d.employees.{e|e}}}

It is important to note that this syntax cannot be parsed by Facelets or JSP and thus cannot be
used in xhtml or JSP files. We anticipate that the projection syntax will change in future versions
of JBoss EL.

543

544

Chapter 36.

Clustering and EJB Passivation

Please note that this chapter is still being reviewed. Tread carefully.

This chapter covers two distinct topics that happen share a common solution in Seam, (web)
clustering and EJB passivation. Therefore, they are addressed together in this reference manual.
Although performance tends to be grouped in this category as well, it's kept separate because
the focus of this chapter is on the programming model and how it's affected by the use of the
aforementioned features.

In this chapter you will learn how Seam manages the passivation of Seam components and entity
instances, how to activate this feature, and how this feature is related to clustering. You will also
learn how to deploy a Seam application into a cluster and verify that HTTP session replication is
working properly. Let's start with a little background on clustering and see an example of how you
deploy a Seam application to a JBoss AS cluster.

36.1. Clustering

Clustering (more formally web clustering) allows an application to run on two or more parallel
servers (i.e., nodes) while providing a uniform view of the application to clients. Load is distributed
across the servers in such a way that if one or more of the servers fails, the application is still
accessible via any of the surviving nodes. This topology is crucial for building scalable enterprise
applications as performance and availability can be improved simply by adding nodes. But it brings
up an important question. What happens to the state that was on the server that failed?

Since day one, Seam has always provided support for stateful applications running in a cluster.
Up to this point, you have learned that Seam provides state management in the form of additional
scopes and by governing the life cycle of stateful (scoped) components. But state management in
Seam goes beyond creating, storing and destroying instances. Seam tracks changes to JavaBean
components and stores the changes at strategic points during the request so that the changes can
be restored when the request shifts to a secondary node in the cluster. Fortunately, monitoring
and replication of stateful EJB components is already handled by the EJB server, so this feature
of Seam is intended to put stateful JavaBeans on par with their EJB cohorts.

But wait, there's more! Seam also offers an incredibly unique feature for clustered applications. In
addition to monitoring JavaBean components, Seam ensures that managed entity instances (i.e.
JPA and Hibernate entities) don't become detached during replication. Seam keeps a record of the
entities that are loaded and automatically loads them on the secondary node. You must, however,
be using a Seam-managed persistence context to get this feature. More in depth information about
this feature is provided in the second half of this chapter.

Now that you understand what features Seam offers to support a clustered environment, let's look
at how you program for clustering.

545

Chapter 36. Clustering and EJ...

36.1.1. Programming for clustering

Any session- or conversation-scoped mutable JavaBean component that will be used in a
clustered environment must implement the or g. j boss. seam cor e. Miut abl e interface from the
Seam API. As part of the contract, the component must maintain a dirty flag that is reported and
reset by the cl earDirty() method. Seam calls this method to determine if it is necessary to
replicate the component. This avoids having to use the more cumbersome Servlet API to add and
remove the session attribute on every change of the object.

You also must ensure that all session- and conversation-scoped JavaBean components are
Serializable. Additional, all fields of a stateful component (EJB or JavaBean) must Serializable
unless the field is marked transient or set to null in a @r ePassi vat e method. You can restore the
value of a transient or nullified field in a @ost Acti vat e method.

One area where people often get bitten is by using List.subList to create a list.
The resulting list is not Serializable. So watch out for situations like that. If hit a
java.io. Not Serial i zabl eExcepti on and cannot locate the culprit at first glance, you can put
a breakpoint on this exception, run the application server in debug mode and attach a debugger
(such as Eclipse) to see what deserialization is choking on.

Note

j=deo

Please note that clustering does not work with hot deployable components.
But then again, you shouldn't be using hot deployable components in a non-
development environment anyway.

36.1.2. Deploying a Seam application to a JBoss AS cluster with
session replication

! Warning

This section needs to be updated for JBoss AS 7.x

The procedure outlined in this tutorial has been validated with an seam-gen application and the
Seam booking example.

In the tutorial, | assume that the IP addresses of the master and slave servers are 192.168.1.2
and 192.168.1.3, respectively. | am intentionally not using the mod_jk load balancer so that it's
easier to validate that both nodes are responding to requests and can share sessions.

I'm using the farm deployment method in these instructions, though you could also deploy the
application normally and allow the two servers to negotiate a master/slave relationship based on
startup order.

546

Deploying a Seam application to a JBoss AS cluster with session replication

/sbin/iptables -1 RH-Firewall-1-INPUT 5 -p udp -d 224.0.0.0/4 -j ACCEPT
/sbin/iptables -1 RH-Firewall-1-INPUT 9 -p udp -s 192.168.1.0/24 -j ACCEPT
/sbin/iptables -I RH-Firewall-1-INPUT 10 -p tcp -s 192.168.1.0/24 -j ACCEPT
/etc/init.d/iptables save

this page

Create two instances of JBoss AS (just extract the zip twice)
Deploy the JDBC driver to server/all/lib/ on both instances if not using HSQLDB

Add <di st ri but abl e/ > as the first child element in WEB-INF/web.xml

Set the distributabl e property on org.jboss.seamcore.init to true to enable the

ManagedEntityInterceptor (i.e., <core:init distributabl e="true"/>)

Ensure you have two IP addresses available (two computers, two network cards, or two IP
addresses bound to the same interface). I'll assume the two IP address are 192.168.1.2 and

192.168.1.3

Start the master JBoss AS instance on the first IP

J/bin/run.sh -c all -b 192.168.1.2

The log should report that there are 1 cluster members and 0 other members.
Verify that the server/all/farm directory is empty in the slave JBoss AS instance

Start the slave JBoss AS instance on the second IP

/bin/run.sh -c all -b 192.168.1.3

The log should report that there are 2 cluster members and 1 other members. It should also

show the state being retrieved from the master.

547

http://www.jboss.org/community/docs/DOC-11935
http://www.jboss.org/community/docs/DOC-11935
http://www.jboss.org/community/docs/DOC-11935

Chapter 36. Clustering and EJ...

« Deploy the -ds.xml to server/all/farm of the master instance

In the log of the master you should see acknowledgement of the deployment. In the log of the
slave you should see a corresponding message acknowledging the deployment to the slave.

» Deploy the application to the server/all/farm directory

In the log of the master you should see acknowledgement of the deployment. In the log of the
slave you should see a corresponding message acknowledging the deployment to the slave.
Note that you may have to wait up to 3 minutes for the deployed archive to be transfered.

You're application is now running in a cluster with HTTP session replication! But, of course, you
are going to want to validate that the clustering actually works.

36.1.3. Validating the distributable services of an application
running in a JBoss AS cluster

It's all well and fine to see the application start successfully on two different JBoss AS servers,
but seeing is believing. You likely want to validate that the two instances are exchanging HTTP
sessions to allow the slave to take over when the master instance is stopped.

Start off by visiting the application running on the master instance in your browser. That will
produce the first HTTP session. Now, open up the JBoss AS JMX console on that instance and
navigate to the following MBean:

« Category: jboss.cache
« Entry: service=TomcatClusteringCache
» Method: printDetails()

Invoke the printDetails() method. You will see a tree of active HTTP sessions. Verify that the
session your browser is using corresponds to one of the sessions in this tree.

Now switch over to the slave instance and invoke the same method in the JMX console. You
should see an identical list (at least underneath this application's context path).

So you can see that at least both servers claim to have identical sessions. Now, time to test that
the data is serializing and deserializing properly.

Sign in using using the URL of the master instance. Then, construct a URL for the second instance
by putting the ;jsessionid=XXXX immediately after the servlet path and changing the IP address.
You should see that the session has carried over to the other instance. Now kill the master
instance and see that you can continue to use the application from the slave instance. Remove
the deployments from the server/all/farm directory and start the instance again. Switch the IP in
the URL back to that of the master instance and visit the URL. You'll see that the original session
is still being used.

548

EJB Passivation and the ManagedEntitylnterceptor

One way to watch objects passivate and activate is to create a session- or conversation-scoped
Seam component and implement the appropriate life-cycle methods. You can either use methods
from the HttpSessionActivationListener interface (Seam automatically registers this interface on
all non-EJB components):

public void sessionWillPassivate(HttpSessionEvent e);
public void sessionDidActivate(HttpSessionEvent e);

Or you can simply mark two no-argument public void methods with @°r ePassi vate and
@ost Act i vat e, respectively. Note that the passivation step occurs at the end of every request,
while the activation step occurs when a node is called upon.

Now that you understand the big picture of running Seam in a cluster, it's time to address Seam's
most mysterious, yet remarkable agent, the ManagedEntitylnterceptor.

36.2. EJB Passivation and the
ManagedEntityInterceptor

The ManagedEntityinterceptor (MEI) is an optional interceptor in Seam that gets applied
to conversation-scoped components when enabled. Enabling it is simple. You just set the
distributable property on the org.jposs.seam.init.core component to true. More simply put,
you add (or update) the following component declaration in the component descriptor (i.e.,
components.xml).

<core:init distributable="true"/>

Note that this doesn't enable replication of HTTP sessions, but it does prepare Seam to be able
to deal with passivation of either EJB components or components in the HTTP session.

The MEI serves two distinct scenarios (EJB passivation and HTTP session passivation), although
to accomplish the same overall goal. It ensures that throughout the life of a conversation using at
least one extended persistence context, the entity instances loaded by the persistence context(s)
remain managed (they do not become detached prematurely by a passivation event). In short, it
ensures the integrity of the extended persistence context (and therefore its guarantees).

The previous statement implies that there is a challenge that threatens this contract. In fact, there
are two. One case is when a stateful session bean (SFSB) that hosts an extended persistence
context is passivated (to save memory or to migrate it to another node in the cluster) and the
second is when the HTTP session is passivated (to prepare it to be migrated to another node in
the cluster).

| first want to discuss the general problem of passivation and then look at the two challenges cited
individually.

549

Chapter 36. Clustering and EJ...

36.2.1. The friction between passivation and persistence

The persistence context is where the persistence manager (i.e., JPA EntityManager or Hibernate
Session) stores entity instances (i.e., objects) it has loaded from the database (via the object-
relational mappings). Within a persistence context, there is no more than one object per unique
database record. The persistence context is often referred to as the first-level cache because if
the application asks for a record by its unique identifier that has already been loaded into the
persistence context, a call to the database is avoided. But it's about more than just caching.

Objects held in the persistence context can be modified, which the persistence manager tracks.
When an object is modified, it's considered "dirty". The persistence manager will migrate these
changes to the database using a technique known as write-behind (which basically means only
when necessary). Thus, the persistence context maintains a set of pending changes to the
database.

Database-oriented applications do much more than just read from and write to the database. They
capture transactional bits of information that need to be transferred into the database atomically (at
once). It's not always possible to capture this information all on one screen. Additionally, the user
might need to make a judgement call about whether to approve or reject the pending changes.

What we are getting at here is that the idea of a transaction from the user's perspective needs to be
extended. And that is why the extended persistence context fits so perfectly with this requirement.
It can hold such changes for as long as the application can keep it open and then use the
built-in capabilities of the persistence manager to push these pending changes to the database
without requiring the application developer to worry about the low-level details (a simple call to
Enti t yManager #f | ush() does the trick).

The link between the persistence manager and the entity instances is maintained using object
references. The entity instances are serializable, but the persistence manager (and in turn its
persistence context) is not. Therefore, the process of serialization works against this design.
Serialization can occur either when a SFSB or the HTTP session is passivated. In order to sustain
the activity in the application, the persistence manager and the entity instances it manages must
weather serialization without losing their relationship. That's the aid that the MEI provides.

36.2.2. Case #1: Surviving EJB passivation

Conversations were initially designed with stateful session beans (SFSBs) in mind, primarily
because the EJB 3 specification designates SFSBs as hosts of the extended persistence context.
Seam introduces a complement to the extended persistence context, known as a Seam-managed
persistence context, which works around a number of limitations in the specification (complex
propagation rules and lack of manual flushing). Both can be used with a SFSB.

A SFSB relies on a client to hold a reference to it in order to keep it active. Seam has provided
an ideal place for this reference in the conversation context. Thus, for as long as the conversation
context is active, the SFSB is active. If an EntityManager is injected into that SFSB using the
annotation @PersistenceContext(EXTENDED), then that EntityManager will be bound to the

550

Case #2: Surviving HTTP session replication

SFSB and remain open throughout its lifetime, the lifetime of the conversation. If an EntityManager
is injected using @In, then that EntityManager is maintained by Seam and stored directly in the
conversation context, thus living for the lifetime of the conversation independent of the lifetime
of the SFSB.

With all of that said, the Java EE container can passivate a SFSB, which means it will serialize
the object to an area of storage external to the JVM. When this happens depends on the settings
of the individual SFSB. This process can even be disabled. However, the persistence context is
not serialized (is this only true of SMPC?). In fact, what happens depends highly on the Java
EE container. The spec is not very clear about this situation. Many vendors just tell you not to
let it happen if you need the guarantees of the extended persistence context. Seam's approach
is more conservative. Seam basically doesn't trust the SFSB with the persistence context or the
entity instances. After each invocation of the SFSB, Seam moves the reference to entity instance
held by the SFSB into the current conversation (and therefore into the HTTP session), nullifying
those fields on the SFSB. It then restores this references at the beginning of the next invocation.
Of course, Seam is already storing the persistence manager in the conversation. Thus, when the
SFSB passivates and later activates, it has absolutely no averse affect on the application.

Note

j=do

If you are using SFSBs in your application that hold references to extended
persistence contexts, and those SFSBs can passivate, then you must use the MEI.
This requirement holds even if you are using a single instance (not a cluster).
However, if you are using clustered SFSB, then this requirement also applies.

It is possible to disable passivation on a SFSB. See the Ejb3DisableSfshPassivation [http://
www.jboss.org/community/docs/DOC-9656] page on the JBoss Wiki for details.

36.2.3. Case #2: Surviving HTTP session replication

Dealing with passivation of a SFSB works by leveraging the HTTP session. But what happens
when the HTTP session passivates? This happens in a clustered environment with session
replication enabled. This case is much tricker to deal with and is where a bulk of the MEI
infrastructure comes into play. In this case, the persistence manager is going to be destroyed
because it cannot be serialized. Seam handles this deconstruction (hence ensuring that the HTTP
session serializes properly). But what happens on the other end. Well, when the MEI sticks an
entity instance into the conversation, it embeds the instance in a wrapper that provides information
on how to re-associate the instance with a persistence manager post-serialization. So when the
application jumps to another node in the cluster (presumably because the target node went down)
the MEI infrastructure essentially reconstructs the persistence context. The huge drawback here
is that since the persistence context is being reconstructed (from the database), pending changes
are dropped. However, what Seam does do is ensure that if the entity instance is versioned, that
the guarantees of optimistic locking are upheld. (why isn't the dirty state transferred?)

551

http://www.jboss.org/community/docs/DOC-9656
http://www.jboss.org/community/docs/DOC-9656
http://www.jboss.org/community/docs/DOC-9656

Chapter 36. Clustering and EJ...

36.2.4. ManagedEntityInterceptor wrap-up

The important point of this section is that the MEI is there for a reason. It's there to ensure that the
extended persistence context can retain intact in the face of passivation (of either a SFSB or the
HTTP session). This matters because the natural design of Seam applications (and conversational
state in general) revolve around the state of this resource.

552

Chapter 37.

Performance Tuning

This chapter is an attempt to document in one place all the tips for getting the best performance
from your Seam application.

37.1. Bypassing Interceptors

For repetitive value bindings such as those found in a JSF dataTable or other iterative control
(like ui : r epeat), the full interceptor stack will be invoked for every invocation of the referenced
Seam component. The effect of this can result in a substantial performance hit, especially if the
component is accessed many times. A significant performance gain can be achieved by disabling
the interceptor stack for the Seam component being invoked. To disable interceptors for the
component, add the @ypass| nt er cept or s annotation to the component class.

Warning

It is very important to be aware of the implications of disabling interceptors for
a Seam component. Features such as bijection, annotated security restrictions,
synchronization and others are unavailable for a component marked with
@ypassl| nterceptors. While in most cases it is possible to compensate for
the loss of these features (e.g. instead of injecting a component using @ n, you
can use Conponent . get | nst ance() instead) it is important to be aware of the
conseqguences.

The following code listing demonstrates a Seam component with its interceptors disabled:

@Name("foo")
@Scope(EVENT)
@Bypassinterceptors
public class Foo

{
public String getRowActions()

{
/I Role-based security check performed inline instead of using @Restrict or other security
annotation
Identity.instance().checkRole("user");

/I Inline code to lookup component instead of using @In
Bar bar = (Bar) Component.getinstance("bar");

String actions;
/I some code here that does something

553

Chapter 37. Performance Tuning

return actions;

}
}

554

Chapter 38.

Testing Seam applications

Most Seam applications will need at least two kinds of automated tests: unit tests, which test
a particular Seam component in isolation, and scripted integration tests which exercise all Java
layers of the application (that is, everything except the view pages).

Both kinds of tests are very easy to write.

38.1. Unit testing Seam components

All Seam components are POJOs. This is a great place to start if you want easy unit testing.
And since Seam emphasises the use of bijection for inter-component interactions and access
to contextual objects, it's very easy to test a Seam component outside of its normal runtime
environment.

Consider the following Seam Component which creates a statement of account for a customer:

@Stateless

@Scope(EVENT)
@Name("statementOfAccount™)
public class StatementOfAccount {

@In(create=true) EntityManager entityManager
private double statementTotal,

@In

private Customer customer;

@Create
public void create() {
List<Invoice> invoices = entityManager
.createQuery("select invoice from Invoice invoice where invoice.customer = :customer")
.setParameter("customer"”, customer)
.getResultList();
statementTotal = calculateTotal(invoices);

}

public double calculateTotal(List<Invoice> invoices) {
double total = 0.0;
for (Invoice invoice: invoices)

{

double += invoice.getTotal();

}

555

Chapter 38. Testing Seam appl...

return total;

/I getter and setter for statementTotal

We could write a unit test for the calculateTotal method (which tests the business logic of the
component) as follows:

public class StatementOfAccountTest {
@Test
public testCalculateTotal {
List<lnvoice> invoices = generateTestInvoices(); // A test data generator
double statementTotal = new StatementOfAccount().calculateTotal(invoices);
assert statementTotal = 123.45;

You'll notice we aren't testing retrieving data from or persisting data to the database; nor are we
testing any functionality provided by Seam. We are just testing the logic of our POJOs. Seam
components don't usually depend directly upon container infrastructure, so most unit testing are
as easy as that!

However, if you want to test the entire application, read on.

38.2. Integration testing Seam components

Warning

Using JBoss Embedded for integration testing was removed. Seam uses Arquillian
with JUnit. Right now TestNG is not recommended test framework with Arquillian.

Integration testing is slightly more difficult. In this case, we can't eliminate the container
infrastructure; indeed, that is part of what is being tested! At the same time, we don't want to be
forced to deploy our application to an application server to run the automated tests. We need to
be able to reproduce just enough of the container infrastructure inside our testing environment to
be able to exercise the whole application, without hurting performance too much.

The approach taken by Seam is to let you write tests that exercise your components while running
inside a pruned down container environment (Seam, together with the JBoss AS container)

Arquillian makes it possible to run integration tests inside a real container, even without Seanfest .

556

Integration testing Seam components

Example 38.1. RegisterTest.java

@RunWith(Arquillian) 1
public class RegisterTest

{

@Deployment 2
@OverProtocol("Servlet 3.0") 3
public static Archive<?> createDeployment()

{

EnterpriseArchive er = ShrinkWrap.create(Ziplmporter.class) 4
.importFrom(new File("../registration-ear/target/seam-registration.ear"))
.as(EnterpriseArchive.class);

WebArchive web = er.getAsType(WebArchive.class, "registration-web.war");

web.addClasses(RegisterTest.class); 5

return er;

}

@Before

public void before()
{

Lifecycle.beginCall(); 6

}
@After
public void after(
{
Lifecycle.endCall();
}

protected void setValue(String valueExpression, Object value)

{

Expressions.instance().createValueExpression(valueExpression).setValue(value);

}

@Test

public void testRegisterComponent() throws Exception

{
setValue("#{user.username}", "1lovthafew");
setValue("#{user.name}", "Gavin King");
setValue("#{user.password}", "secret");
Register register = (Register)Component.getinstance("register");

Assert.assertEquals('success", register.register());

557

Chapter 38. Testing Seam appl...

11 The JUnit @RunW t h annotation must be present to run our tests with Arquillian.

2z Since we want to run our test in a real container, we need to specify an archive that gets
deployed.

32 @ver Protocol isan Arquillian annotation to specify the protocol used for running the tests.
The "Servlet 3.0" protocol is the recommended protocol for running Seam tests.

4 ShrinkWrap can be used to create the deployment archive. In this example, the whole EAR
is imported, but we could also use the ShrinkWrap API to create a WAR or an EAR from the
scratch and put in just the artifacts that we need for the test.

5. The test class itself must be added to the web archive.

6 Lifecycle.beginCall () is needed to setup Seam contexts.

38.2.1. Configuration

The Arquillian configuration depends on the specific container used. See Arquillian documentation
for more information.

Assuming you are using Maven as your build tool and want run your tests on JBoss AS 7, you will
need to put these dependencies into your pom xm :

<dependency>
<groupld>org.jboss.arquillian.junit</groupld>
<artifactld>arquillian-junit-container</artifactld>
<version>${version.arquillian}</version>
<scope>test</scope>

</dependency>

<dependency>
<groupld>org.jboss.as</groupld>
<artifactld>jboss-as-arquillian-container-managed</artifactld>
<version>${version.jboss.as7}</version>
<scope>test</scope>

</dependency>

The Arquillian JBoss AS Managed Container will automatically start the application server,
provided the JBOSS_HOME environment property points to the JBoss AS 7 installation.

558

Using JUnitSeamTest with Arquillian

38.2.2. Using JUnitSeamTest with Arquillian

It is also possible to use the simulated JSF environment provided by SeaniTest along with
Arquillian. This is useful especially if you are migrating from previous Seam releases and want to
keep your existing testsuite mostly unchanged.

Note

SeamTest was primary designated for TestNG integration tests. There are some
glitches so we recommend to use JUnitSeamTest which is the JUnit variant for
SeamTest.

j=do

The following changes must be done to run a JUnitSeamTest with Arquillian:

« Create the @epl oynent method.

e Convert the test to JUnit. A JUni t Seanifest class can now be used instead of the original
Seanilest .

* Replace the Seanli st ener with or g. j boss. seam nock. MockSeandli st ener in web.xml.

Example 38.2. RegisterTest.java

@RunWith(Arquillian)
public class RegisterTest extends JUnitSeamTest
{

@Deployment

@OverProtocol("Servlet 3.0")

public static Archive<?> createDeployment()

{

EnterpriseArchive er = ShrinkWrap.create(Ziplmporter.class)
.importFrom(new File("../registration-ear/target/seam-registration.ear"))
.as(EnterpriseArchive.class);

WebArchive web = er.getAsType(WebArchive.class, "registration-web.war");

web.addClasses(RegisterTest.class);

/I Replacing the SeamListener with MockSeamListener
web.delete("/WEB-INF/web.xml");
web.addAsWeblInfResource("WEB-INF/mock-web.xml", "web.xml");
return er;

@Test
public void testRegisterComponent() throws Exception

559

Chapter 38. Testing Seam appl...

new ComponentTest() {

protected void testComponents() throws Exception

{
setValue("#{user.username}", "1lovthafew");
setValue("#{user.name}", "Gavin King");
setValue("#{user.password}", "secret");
assert invokeMethod("#{register.register}").equals("success");
assert getValue("#{user.username}").equals("lovthafew");
assert getValue("#{user.name}").equals("Gavin King");

assert getValue("#{user.password}").equals("secret");

}.run();

Example 38.3. mock-web.xml

<?xml version="1.0" ?>
<web-app version="3.0"
xmlns="http://java.sun.com/xml/ns/javaee"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/javaee/
web-app_3 0.xsd">

<listener>
<listener-class>org.jboss.seam.mock.MockSeamListener</listener-class>

</listener>

</web-app>

560

Integration testing Seam application user interactions

38.2.2.1. Using mocks in integration tests

Occasionally, we need to be able to replace the implementation of some Seam component that
depends upon resources which are not available in the integration test environment. For example,
suppose we have some Seam component which is a facade to some payment processing system:

@Name("paymentProcessor")
public class PaymentProcessor {
public boolean processPayment(Payment payment) { }

For integration tests, we can mock out this component as follows:

@Name("paymentProcessor")
@Install(precedence=MOCK)
public class MockPaymentProcessor extends PaymentProcessor {
public boolean processPayment(Payment payment) {
return true;

Since the MOCK precedence is higher than the default precedence of application components,
Seam will install the mock implementation whenever it is in the classpath. When deployed into
production, the mock implementation is absent, so the real component will be installed.

38.2.3. Integration testing Seam application user interactions

An even harder problem is emulating user interactions. A third problem is where to put
our assertions. Some test frameworks let us test the whole application by reproducing user
interactions with the web browser. These frameworks have their place, but they are not appropriate
for use at development time.

Seantest Or JUni t Seanfest lets you write scripted tests, in a simulated JSF environment. The
role of a scripted test is to reproduce the interaction between the view and the Seam components.
In other words, you get to pretend you are the JSF implementation!

This approach tests everything except the view.

Let's consider a JSF view for the component we unit tested above:

<html>
<head>
<title>Register New User</title>

561

Chapter 38. Testing Seam appl...

</head>
<body>
<fview>
<h:form>
<table border="0">
<tr>
<td>Username</td>
<td><h:inputText value="#{user.username}"/></td>
</tr>
<tr>
<td>Real Name</td>
<td><h:inputText value="#{user.name}"/></td>
</tr>
<tr>
<td>Password</td>
<td><h:inputSecret value="#{user.password}"/></td>
</tr>
</table>
<h:messages/>
<h:commandButton type="submit" value="Register" action="#{register.register}"/>
</h:form>
</f.view>
</body>
</html>

We want to test the registration functionality of our application (the stuff that happens when the
user clicks the Register button). We'll reproduce the JSF request lifecycle in an automated JUnit
test:

@RunWith(Arquillian.class)
public class RegisterTest extends JUnitSeamTest
{
@Deployment(name="RegisterTest")
@OverProtocol("Servlet 3.0")
public static Archive<?> createDeployment()
{
EnterpriseArchive er = ShrinkWrap.create(Ziplmporter.class, "seam-
registration.ear").importFrom(new File("../registration-ear/target/seam-registration.ear"))
.as(EnterpriseArchive.class);
WebArchive web = er.getAsType(WebArchive.class, "registration-web.war");
web.addClasses(RegisterTest.class);

/I Install org.jboss.seam.mock.MockSeamListener

562

Integration testing Seam application user interactions

web.delete("/WEB-INF/web.xml");
web.addAsWeblInfResource("web.xml");

return er,

}

@Test
public void testLogin() throws Exception

{

new FacesRequest("/register.xhtml") {

@Override
protected void processValidations() throws Exception
{
validateValue("#{user.username}", "lovthafew");
validateValue("#{user.name}", "Gavin King");

validateValue("#{user.password}", "secret");
assert lisValidationFailure();

}

@Override
protected void updateModelValues() throws Exception
{
setValue("#{user.username}", "1lovthafew");
setValue("#{user.name}", "Gavin King");

setValue("#{user.password}", "secret");

}

@Override
protected void invokeApplication()

{

assert invokeMethod("#{register.register}").equals("/registered.xhtml");
setOutcome("/registered.xhtml");

}

@Override
protected void afterRequest()

{

assert islnvokeApplicationComplete();
assert lisRenderResponseBegun();

}

}.run();

563

Chapter 38. Testing Seam appl...

Notice that we've extended Junit Seanfest, which provides a Seam environment for
our components, and written our test script as an anonymous class that extends
JUni t SeanTest . FacesRequest , which provides an emulated JSF request lifecycle. (There is
also a JUni t Seanirest . NonFacesRequest for testing GET requests.) We've written our code in
methods which are named for the various JSF phases, to emulate the calls that JSF would make
to our components. Then we've thrown in various assertions.

You'll find plenty of integration tests for the Seam example applications which demonstrate more
complex cases. There are instructions for running these tests using Maven, or using the JUnit
plugin for eclipse:

2

#

o= Outline [E Task List [Ju JInit EE} = 0

g° B @ Hov ¥

Finished after 10.431 seconds

Runs: 1/1 B Errors: 0 B Failures: 0

¥ Fii] org.jboss.seam.example.registration.test.RegisterTest [Runner: JUn

2 testLogin (1.973 s)

-

4| y

= Failure Trace i

564

Integration testing Seam application user interactions

38.2.3.1. Configuration

If you used seam-gen to create your project you are ready to start writing tests. Otherwise you'll
need to setup the testing environment in your favorite build tool (e.g. ant, maven, eclipse).

For ant or own build tool which uses jars on local - you can use to get all jars by running ant -
f get-arquillian-libs.xm -Dtest.lib.dir=lib/test. This justcopy all Arquillian jars for
managed JBoss AS 7.1.1 container and copy all jars into defined directory |i b/t est by using
thattest.!lib. dir property.

And, of course you need to put your built project and tests onto the classpath as well as jar for
your test framework. Don't forget to put all the correct configuration files for JPA and Seam onto
the classpath as well. Seam asks Arquillian to deploy any resource (jar or directory) which has
seam properti es init's root. Therefore, if you don't assemble a directory structure that resembles
a deployable archive containing your built project, you must put a seam properties in each
resource.

38.2.3.2. Using JUnitSeamTest with another test framework

Seam provides JUnit support out of the box, but you can also use another test framework, if you
want.

You'll need to provide an implementation of Abst r act SeaniTest which does the following:

e Calls super. begi n() before every test method.
 Calls super. end() after every test method.

« Calls super. set upCl ass() to setup integration test environment. This should be called before
any test methods are called.

« Calls super. cl eanupC ass() to clean up the integration test environment.
e Calls super. start Seant() to start Seam at the start of integration testing.

e Calls super . st opSean{() to cleanly shut down Seam at the end of integration testing.

38.2.3.3. Integration Testing with Mock Data

If you want to insert or clean data in your database before each test you can use Seam's integration
with DBUnit. To do this, extend DBUni t SeanTest rather than Seanilest .

You have to provide a dataset for DBUnit.

Caution

/ DBUnit supports two formats for dataset files, flat and XML. Seam's
DBUni t Seanifest or DBJUni t SeaniTest assumes the flat format is used, so make
sure that your dataset is in this format.

565

Chapter 38. Testing Seam appl...

<dataset>

<ARTIST
id="1"
dtype="Band"
name="Pink Floyd" />

<DISC
id="1"
name="Dark Side of the Moon"
artist_id="1"/>

</dataset>

In your test class, configure your dataset with overriding pr epar eDBUni t Oper ati ons():

protected void prepareDBUnitOperations() {
beforeTestOperations.add(
new DataSetOperation("my/datasets/BaseData.xml")
ik
}

Dat aSet Oper ati on defaults to Dat abaseOper ati on. CLEAN | NSERT if no other operation is
specified as a constructor argument. The above example cleans all tables defined BaseDat a. xni ,
then inserts all rows declared in BaseDat a. xnl before each @est method is invoked.

If you require extra cleanup after a test method executes, add operations to
af t er Test Qper at i ons list.

You need to tell DBUnit which datasource you are using. This is accomplished by defining
a test parameter [http://testng.org/doc/documentation-main.html#parameters-testng-xml] named
dat asour ceJndi Nane in testng.xml as follows:

<parameter name="datasourceJndiName" value="java:/seamdiscsDatasource"/>

DBUnitSeamTest or DBJUnitSeamTest have support for MySQL and HSQL - you need to tell it
which database is being used, otherwise it defaults to HSQL.:

<parameter name="database" value="MYSQL" />

566

http://testng.org/doc/documentation-main.html#parameters-testng-xml
http://testng.org/doc/documentation-main.html#parameters-testng-xml

Integration testing Seam application user interactions

It also allows you to insert binary data into the test data set (n.b. this is untested on Windows).
You need to tell it where to locate these resources on your classpath:

<parameter name="binaryDir" value="images/" />

You do not have to configure any of these parameters if you use HSQL and have no binary imports.
However, unless you specify dat asour ceJndi Name in your test configuration, you will have to call
set Dat abaseJndi Nane() before your test runs. If you are not using HSQL or MySQL, you need
to override some methods. See the Javadoc of DBUni t SeanTest for more details.

38.2.3.4. Integration Testing Seam Mail

It's very easy to integration test your Seam Mail:

public class MailTest extends SeamTest {

@Test
public void testSimpleMessage() throws Exception {

new FacesRequest() {

@Override

protected void updateModelValues() throws Exception {
setValue("#{person.firstname}", "Pete");
setValue("#{person.lastname}", "Muir");

non

setValue("#{person.address}", "test@example.com");

}

@Override

protected void invokeApplication() throws Exception {
MimeMessage renderedMessage = getRenderedMailMessage("/simple.xhtml");
assert renderedMessage.getAllRecipients().length == 1;
InternetAddress to = (InternetAddress) renderedMessage.getAllRecipients()[0];
assert to.getAddress().equals("test@example.com");

}

}.run();
}

567

Chapter 38. Testing Seam appl...

We create a new FacesRequest as normal. Inside the invokeApplication hook we render the
message using get Render edMai | Message(vi ewl d) ; , passing the viewld of the message to
render. The method returns the rendered message on which you can do your tests. You can of
course also use any of the standard JSF lifecycle methods.

There is no support for rendering standard JSF components so you can't test the content body
of the mail message easily.

568

Chapter 39.

Dependencies

39.1. JDK Dependencies

Seam does not work with JDK 1.4 and requires JDK 5 or above as it uses annotations and
other JDK 5.0 features. Seam has been thoroughly tested using Oracle's JDKs and OpenJDKs.
However there are no known issues specific to Seam with other JDKs.

39.1.1. Oracle's JDK 6 Considerations

Earlier versions of Oracle's JDK 6 contained an incompatible version of JAXB and required
overriding it using the "endorsed" directory. Oracle's JDK6 Update 4 release upgraded to JAXB
2.1 and removed this requirement. When building, testing, or executing be sure to use this version
or higher.

39.2. Project Dependencies

This section both lists the compile-time and runtime dependencies for Seam. Where the type
is listed as ear, the library should be included in the /lib directory of your application's ear file.
Where the type is listed as war , the library should be placed in the / WEB- | NF/ | i b directory of your
application's war file. The scope of the dependency is either all, runtime or provided (by JBoss
AS 7.1.x).

Up to date version information and complete dependency information is not included in the docs,
but is provided in the / dependency-r eport . t xt which is generated from the Maven POMs stored
in/ bui | d. You can generate this file by running ant dependencyReport.

39.2.1. Core

Table 39.1.

Name Scope Type Notes

j boss-seamj ar all ear The core Seam library, always
required.

j boss- seam debug. j ar runtime war Include during development
when enabling Seam's debug
feature

j boss-seamioc.jar runtime war Required when using Seam with
Spring

j boss-seam pdf . j ar runtime war Required when using Seam's
PDF features

j boss- seam excel . j ar runtime war Required when using Seam's

Microsoft® Excel® features

569

Chapter 39. Dependencies

Name Scope Type
j boss-seamrss.jar runtime war
j boss- seam runtime war

renoting.jar

j boss-seamui . j ar runtime war
jsf-api.jar provided
jsf-inmpl.jar provided
urlrewite.jar runtime war
quartz.jar runtime ear

39.2.2. RichFaces

Table 39.2. RichFaces dependencies

Name Scope Type
ri chfaces-core- all ear
api.jar
ri chfaces-core- runtime war
i mpl.jar
ri chfaces- runtime war

conponents-ui.jar

ri chf aces- runtime war
conponent s-api .jar

39.2.3. Seam Mall

Table 39.3. Seam Mail Dependencies

Name Scope Type
mail.jar runtime ear
i ronj acamar-nmail.jar compile

only

Notes

Required when using Seam's
RSS generation features

Required when using Seam
Remoting

Required to use the Seam JSF
controls

JSF API
JSF Reference Implementation
URL Rewrite library

Required when you wish
to use Quartz with Seam's
asynchronous features

Notes

Required to use RichFaces.
Provides Core API classes that
you may wish to use from your
application e.g. to create a tree

Required to use RichFaces Core
implementations.

Required to use RichFaces.
Provides all the Components Ul
components.

Required to use RichFaces.
Provides all the API for Ul
components.

Notes

Required for outgoing malil
support

Required for incoming malil
support

570

Seam PDF

Name Scope Type Notes

i ronj acamar - mai | . jar should
be deployed to the application
server at runtime

j boss-seammail . jar runtime war Seam Mail

39.2.4. Seam PDF

Table 39.4. Seam PDF Dependencies

Name Type Scope Notes
itext.jar runtime war PDF Library
jfreechart.jar runtime war Charting library
j conmon. j ar runtime war Required by JFreeChart
j boss-seam pdf . jar runtime war Seam PDF core library

39.2.5. Seam Microsoft® Excel®

Table 39.5. Seam Microsoft® Excel® Dependencies

Name Type Scope Notes
jxl.jar runtime war JExcelAPI library
j boss-seam excel . j ar runtime war Seam Microsoft® Excel® core
library

39.2.6. Seam RSS support

Table 39.6. Seam RSS Dependencies

Name Type Scope Notes
yarfraw. jar runtime war YARFRAW RSS library
JAXB runtime war JAXB XML parsing libraries
http-client.jar runtime war Apache HTTP Client libraries
commons-i o runtime war Apache commons IO library
commons- | ang runtime war Apache commons lang library
commons- codec runtime war Apache commons codec library
comons- col | ections runtime war Apache commons collections

library

j boss-seamrss.jar runtime war Seam RSS core library

571

Chapter 39. Dependencies

39.2.7. Drools

The Drools libraries can be found in the I i b directory in Seam.

Table 39.7. Drools Dependencies

Name Scope Type Notes
antlr-runtine.jar runtime ear ANTLR Runtime Library
ecj.jar runtime ear Eclipse Compiler for Java
know edge-api . j ar runtime ear
dr ool s-conpil er.jar runtime ear Drools compiler
drool s-core.jar runtime ear
dr ool s- runtime ear

deci siontabl es.jar

drool s-tenpl ates.jar runtime ear
nvel 2. j ar runtime ear
39.2.8. JBPM

Table 39.8. JBPM dependencies

Name Scope Type Notes
jbpmjpdl.jar runtime ear
39.2.9. GWT

These libraries are required if you with to use the Google Web Toolkit (GWT) with your Seam
application.

Table 39.9. GWT dependencies

Name Scope Type Notes

gwt -servlet.jar runtime war The GWT Servlet libs

39.2.10. Spring
These libraries are required if you with to use the Spring Framework with your Seam application.

Table 39.10. Spring Framework dependencies

Name Scope Type Notes

spring.jar runtime ear The Spring Framework library

572

Groovy

39.2.11. Groovy

These libraries are required if you with to use Groovy with your Seam application.

Table 39.11. Groovy dependencies

Name Scope Type Notes

groovy-all.jar runtime ear The Groovy libs

39.3. Dependency Management using Maven

We aren't actually going to discuss how to use Maven here, but just run over some Seam usage
from user/application point of view you could use.

Released versions of Seam are available in http://repository.jboss.org/nexus/content/groups/
public [http://repository.jboss.org/nexus/content/groups/public].

All the Seam artifacts are available in Maven:

<dependency>
<groupld>org.jboss.seam</groupld>
<artifactld>jboss-seam</artifactld>
</dependency>

<dependency>
<groupld>org.jboss.seam</groupld>
<artifactld>jboss-seam-ui</artifactld>
</dependency>

<dependency>
<groupld>org.jboss.seam</groupld>
<artifactld>jboss-seam-pdf</artifactld>
</dependency>

<dependency>
<groupld>org.jboss.seam</groupld>
<artifactld>jboss-seam-mail</artifactld>
</dependency>

573

http://repository.jboss.org/nexus/content/groups/public
http://repository.jboss.org/nexus/content/groups/public
http://repository.jboss.org/nexus/content/groups/public

Chapter 39. Dependencies

<dependency>
<groupld>org.jboss.seam</groupld>
<artifactld>jboss-seam-debug</artifactid>
</dependency>

<dependency>
<groupld>org.jboss.seam</groupld>
<artifactld>jboss-seam-remoting</artifactld>
</dependency>

<dependency>
<groupld>org.jboss.seam</groupld>
<artifactld>jboss-seam-ioc</artifactld>
</dependency>

<dependency>
<groupld>org.jboss.seam</groupld>
<artifactld>jboss-seam-excel</artifactld>
</dependency>

<dependency>
<groupld>org.jboss.seam</groupld>
<artifactld>jboss-seam-resteasy</artifactld>
</dependency>

<dependency>
<groupld>org.jboss.seam</groupld>
<artifactld>jboss-seam-rss</artifactld>
</dependency>

<dependency>
<groupld>org.jboss.seam</groupld>
<artifactld>jboss-seam-wicket</artifactld>

574

Dependency Management using Maven

</dependency>

This sample POM will give you Seam, JPA (provided by Hibernate), Hibernate Validator and

Hibernate Search:

<?xml version="1.0" encoding="UTF-8"?>
<project xmIns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xsi:schemalocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-

v4_0_0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupld>org.jboss.seam.example/groupld>
<artifactld>my-project</artifactld>
<version>1.0</version>
<name>My Seam Project</name>
<packaging>jar</packaging>
<repositories>
<repository>
<id>repository.jboss.org</id>
<name>JBoss Public Repository</name>
<url>http://repository.jboss.org/nexus/content/groups/public</url>
</repository>
</repositories>

<dependencyManagement>
<dependencies>
<dependency>
<groupld>org.jboss.seam</groupld>
<artifactld>bom</artifactld>
<version>2.3.0.Final</version>
<type>pom</type>
<scope>import</scope>
</dependency>
</dependencies>
</dependencyManagement>

<dependencies>

<dependency>
<groupld>org.hibernate</groupld>
<artifactld>hibernate-validator</artifactld>
</dependency>

575

Chapter 39. Dependencies

<dependency>
<groupld>org.hibernate</groupld>
<artifactld>hibernate-entitymanager</artifactld>
</dependency>

<dependency>
<groupld>org.hibernate</groupld>
<artifactld>hibernate-search</artifactld>
</dependency>

<dependency>
<groupld>org.jboss.seam</groupld>
<artifactld>jboss-seam</artifactld>
</dependency>

</dependencies>

</project>

576

	Seam - Contextual Components
	Table of Contents
	Introduction to JBoss Seam
	1. Contribute to Seam

	Chapter 1. Seam Tutorial
	1.1. Using the Seam examples
	1.1.1. Running the examples on JBoss AS
	1.1.2. Running the example tests

	1.2. Your first Seam application: the registration example
	1.2.1. Understanding the code
	1.2.1.1. The entity bean: User.java
	1.2.1.2. The stateless session bean class: RegisterAction.java
	1.2.1.3. The session bean local interface: Register.java
	1.2.1.4. The view: register.xhtml and registered.xhtml
	1.2.1.5. The Seam component deployment descriptor: components.xml
	1.2.1.6. The web deployment description: web.xml
	1.2.1.7. The JSF configuration: faces-config.xml
	1.2.1.8. The EJB deployment descriptor: ejb-jar.xml
	1.2.1.9. The EJB persistence deployment descriptor: persistence.xml
	1.2.1.10. The EAR deployment descriptor: application.xml

	1.2.2. How it works

	1.3. Clickable lists in Seam: the messages example
	1.3.1. Understanding the code
	1.3.1.1. The entity bean: Message.java
	1.3.1.2. The stateful session bean: MessageManagerBean.java
	1.3.1.3. The session bean local interface: MessageManager.java
	1.3.1.4. The view: messages.xhtml

	1.3.2. How it works

	1.4. Seam and jBPM: the todo list example
	1.4.1. Understanding the code
	1.4.2. How it works

	1.5. Seam pageflow: the numberguess example
	1.5.1. Understanding the code
	1.5.2. How it works

	1.6. A complete Seam application: the Hotel Booking example
	1.6.1. Introduction
	1.6.2. Overview of the booking example
	1.6.3. Understanding Seam conversations
	1.6.4. The Seam Debug Page

	1.7. Nested conversations: extending the Hotel Booking example
	1.7.1. Introduction
	1.7.2. Understanding Nested Conversations

	1.8. A complete application featuring Seam and jBPM: the DVD Store example
	1.9. Bookmarkable URLs with the Blog example
	1.9.1. Using "pull"-style MVC
	1.9.2. Bookmarkable search results page
	1.9.3. Using "push"-style MVC in a RESTful application

	Chapter 2. Getting started with Seam, using seam-gen
	2.1. Before you start
	2.2. Setting up a new project
	2.3. Creating a new action
	2.4. Creating a form with an action
	2.5. Generating an application from an existing database
	2.6. Generating an application from existing JPA/EJB3 entities
	2.7. Deploying the application as an EAR
	2.8. Seam and incremental hot deployment

	Chapter 3. Getting started with Seam, using JBoss Tools
	3.1. Before you start

	Chapter 4. Migration from 2.2 to 2.3
	4.1. Migration of XML Schemas
	4.1.1. Seam schema migration
	4.1.2. Java EE 6 schema changes

	4.2. Java EE 6 upgrade
	4.2.1. Using Bean Validation standard instead of Hibernate Validator
	4.2.2. Migration of JSF 1 to JSF 2 Facelets templates
	4.2.3. Migration to JPA 2.0
	4.2.4. Using compatible JNDI for resources

	4.3. JBoss AS 7.1 deployment
	4.3.1. Deployment changes
	4.3.2. Datasource migration

	4.4. Changes in testing framework
	4.5. Dependency changes with using Maven
	4.5.1. Seam Bill of Materials

	Chapter 5. The contextual component model
	5.1. Seam contexts
	5.1.1. Stateless context
	5.1.2. Event context
	5.1.3. Page context
	5.1.4. Conversation context
	5.1.5. Session context
	5.1.6. Business process context
	5.1.7. Application context
	5.1.8. Context variables
	5.1.9. Context search priority
	5.1.10. Concurrency model

	5.2. Seam components
	5.2.1. Stateless session beans
	5.2.2. Stateful session beans
	5.2.3. Entity beans
	5.2.4. JavaBeans
	5.2.5. Message-driven beans
	5.2.6. Interception
	5.2.7. Component names
	5.2.8. Defining the component scope
	5.2.9. Components with multiple roles
	5.2.10. Built-in components

	5.3. Bijection
	5.4. Lifecycle methods
	5.5. Conditional installation
	5.6. Logging
	5.7. The Mutable interface and @ReadOnly
	5.8. Factory and manager components

	Chapter 6. Configuring Seam components
	6.1. Configuring components via property settings
	6.2. Configuring components via components.xml
	6.3. Fine-grained configuration files
	6.4. Configurable property types
	6.5. Using XML Namespaces

	Chapter 7. Events, interceptors and exception handling
	7.1. Seam events
	7.2. Page actions
	7.3. Page parameters
	7.3.1. Mapping request parameters to the model

	7.4. Propagating request parameters
	7.5. URL rewriting with page parameters
	7.6. Conversion and Validation
	7.7. Navigation
	7.8. Fine-grained files for definition of navigation, page actions and parameters
	7.9. Component-driven events
	7.10. Contextual events
	7.11. Seam interceptors
	7.12. Managing exceptions
	7.12.1. Exceptions and transactions
	7.12.2. Enabling Seam exception handling
	7.12.3. Using annotations for exception handling
	7.12.4. Using XML for exception handling
	7.12.4.1. Suppressing exception logging

	7.12.5. Some common exceptions

	Chapter 8. Conversations and workspace management
	8.1. Seam's conversation model
	8.2. Nested conversations
	8.3. Starting conversations with GET requests
	8.4. Requiring a long-running conversation
	8.5. Using <s:link> and <s:button>
	8.6. Success messages
	8.7. Natural conversation ids
	8.8. Creating a natural conversation
	8.9. Redirecting to a natural conversation
	8.10. Workspace management
	8.10.1. Workspace management and JSF navigation
	8.10.2. Workspace management and jPDL pageflow
	8.10.3. The conversation switcher
	8.10.4. The conversation list
	8.10.5. Breadcrumbs

	8.11. Conversational components and JSF component bindings
	8.12. Concurrent calls to conversational components
	8.12.1. How should we design our conversational AJAX application?
	8.12.2. Dealing with errors

	Chapter 9. Pageflows and business processes
	9.1. Pageflow in Seam
	9.1.1. The two navigation models
	9.1.2. Seam and the back button

	9.2. Using jPDL pageflows
	9.2.1. Installing pageflows
	9.2.2. Starting pageflows
	9.2.3. Page nodes and transitions
	9.2.4. Controlling the flow
	9.2.5. Ending the flow
	9.2.6. Pageflow composition

	9.3. Business process management in Seam
	9.4. Using jPDL business process definitions
	9.4.1. Installing process definitions
	9.4.2. Initializing actor ids
	9.4.3. Initiating a business process
	9.4.4. Task assignment
	9.4.5. Task lists
	9.4.6. Performing a task

	Chapter 10. Seam and Object/Relational Mapping
	10.1. Introduction
	10.2. Seam managed transactions
	10.2.1. Disabling Seam-managed transactions
	10.2.2. Configuring a Seam transaction manager
	10.2.3. Transaction synchronization

	10.3. Seam-managed persistence contexts
	10.3.1. Using a Seam-managed persistence context with JPA
	10.3.2. Using a Seam-managed Hibernate session
	10.3.3. Seam-managed persistence contexts and atomic conversations

	10.4. Using the JPA "delegate"
	10.5. Using EL in EJB-QL/HQL
	10.6. Using Hibernate filters

	Chapter 11. JSF form validation in Seam
	Chapter 12. Groovy integration
	12.1. Groovy introduction
	12.2. Writing Seam applications in Groovy
	12.2.1. Writing Groovy components
	12.2.1.1. Entity
	12.2.1.2. Seam component

	12.2.2. seam-gen

	12.3. Deployment
	12.3.1. Deploying Groovy code
	12.3.2. Native .groovy file deployment at development time
	12.3.3. seam-gen

	Chapter 13. Writing your presentation layer using Apache Wicket
	13.1. Adding Seam to your wicket application
	13.1.1. Bijection
	13.1.2. Orchestration

	13.2. Setting up your project
	13.2.1. Runtime instrumentation
	13.2.1.1. Location-specific instrumentation
	13.2.1.2. Runtime instrumentation agent

	13.2.2. Compile-time instrumentation
	13.2.2.1. Instrumenting with ant
	13.2.2.2. Instrumenting with maven

	13.2.3. The @SeamWicketComponent annotation
	13.2.4. Defining the Application

	Chapter 14. The Seam Application Framework
	14.1. Introduction
	14.2. Home objects
	14.3. Query objects
	14.4. Controller objects

	Chapter 15. Seam and JBoss Rules
	15.1. Installing rules
	15.2. Using rules from a Seam component
	15.3. Using rules from a jBPM process definition

	Chapter 16. Security
	16.1. Overview
	16.2. Disabling Security
	16.3. Authentication
	16.3.1. Configuring an Authenticator component
	16.3.2. Writing an authentication method
	16.3.2.1. Identity.addRole()
	16.3.2.2. Writing an event observer for security-related events

	16.3.3. Writing a login form
	16.3.4. Configuration Summary
	16.3.5. Remember Me
	16.3.5.1. Token-based Remember-me Authentication

	16.3.6. Handling Security Exceptions
	16.3.7. Login Redirection
	16.3.8. HTTP Authentication
	16.3.8.1. Writing a Digest Authenticator

	16.3.9. Advanced Authentication Features
	16.3.9.1. Using your container's JAAS configuration

	16.4. Identity Management
	16.4.1. Configuring IdentityManager
	16.4.2. JpaIdentityStore
	16.4.2.1. Configuring JpaIdentityStore
	16.4.2.2. Configuring the Entities
	16.4.2.3. Entity Bean Examples
	16.4.2.3.1. Minimal schema example
	16.4.2.3.2. Complex Schema Example

	16.4.2.4. JpaIdentityStore Events
	16.4.2.4.1. JpaIdentityStore.EVENT_PRE_PERSIST_USER
	16.4.2.4.2. JpaIdentityStore.EVENT_USER_CREATED
	16.4.2.4.3. JpaIdentityStore.EVENT_USER_AUTHENTICATED

	16.4.3. LdapIdentityStore
	16.4.3.1. Configuring LdapIdentityStore
	16.4.3.2. LdapIdentityStore Configuration Example

	16.4.4. Writing your own IdentityStore
	16.4.5. Authentication with Identity Management
	16.4.6. Using IdentityManager

	16.5. Error Messages
	16.6. Authorization
	16.6.1. Core concepts
	16.6.1.1. What is a role?
	16.6.1.2. What is a permission?

	16.6.2. Securing components
	16.6.2.1. The @Restrict annotation
	16.6.2.2. Inline restrictions

	16.6.3. Security in the user interface
	16.6.4. Securing pages
	16.6.5. Securing Entities
	16.6.5.1. Entity security with JPA
	16.6.5.2. Entity security with a Managed Hibernate Session

	16.6.6. Typesafe Permission Annotations
	16.6.7. Typesafe Role Annotations
	16.6.8. The Permission Authorization Model
	16.6.8.1. PermissionResolver
	16.6.8.1.1. Writing your own PermissionResolver

	16.6.8.2. ResolverChain

	16.6.9. RuleBasedPermissionResolver
	16.6.9.1. Requirements
	16.6.9.2. Configuration
	16.6.9.3. Writing Security Rules
	16.6.9.4. Non-String permission targets
	16.6.9.5. Wildcard permission checks

	16.6.10. PersistentPermissionResolver
	16.6.10.1. Configuration
	16.6.10.2. Permission Stores
	16.6.10.3. JpaPermissionStore
	16.6.10.3.1. Permission annotations
	16.6.10.3.2. Example Entity
	16.6.10.3.3. Class-specific Permission Configuration
	16.6.10.3.4. Permission masks
	16.6.10.3.5. Identifier Policy
	16.6.10.3.6. ClassIdentifierStrategy
	16.6.10.3.7. EntityIdentifierStrategy

	16.7. Permission Management
	16.7.1. PermissionManager
	16.7.2. Permission checks for PermissionManager operations

	16.8. SSL Security
	16.8.1. Overriding the default ports

	16.9. CAPTCHA
	16.9.1. Configuring the CAPTCHA Servlet
	16.9.2. Adding a CAPTCHA to a form
	16.9.3. Customising the CAPTCHA algorithm

	16.10. Security Events
	16.11. Run As
	16.12. Extending the Identity component
	16.13. OpenID
	16.13.1. Configuring OpenID
	16.13.2. Presenting an OpenIdDLogin form
	16.13.3. Logging in immediately
	16.13.4. Deferring login
	16.13.5. Logging out

	Chapter 17. Internationalization, localization and themes
	17.1. Internationalizing your app
	17.1.1. Application server configuration
	17.1.2. Translated application strings
	17.1.3. Other encoding settings

	17.2. Locales
	17.3. Labels
	17.3.1. Defining labels
	17.3.2. Displaying labels
	17.3.3. Faces messages

	17.4. Timezones
	17.5. Themes
	17.6. Persisting locale and theme preferences via cookies

	Chapter 18. Seam Text
	18.1. Basic fomatting
	18.2. Entering code and text with special characters
	18.3. Links
	18.4. Entering HTML
	18.5. Using the SeamTextParser

	Chapter 19. iText PDF generation
	19.1. Using PDF Support
	19.1.1. Creating a document
	19.1.2. Basic Text Elements
	19.1.3. Headers and Footers
	19.1.4. Chapters and Sections
	19.1.5. Lists
	19.1.6. Tables
	19.1.7. Document Constants
	19.1.7.1. Color Values
	19.1.7.2. Alignment Values

	19.2. Charting
	19.3. Bar codes
	19.4. Fill-in-forms
	19.5. Rendering Swing/AWT components
	19.6. Configuring iText
	19.7. Further documentation

	Chapter 20. The Microsoft® Excel® spreadsheet application
	20.1. The Microsoft® Excel® spreadsheet application support
	20.2. Creating a simple workbook
	20.3. Workbooks
	20.4. Worksheets
	20.5. Columns
	20.6. Cells
	20.6.1. Validation
	20.6.2. Format masks
	20.6.2.1. Number masks
	20.6.2.2. Date masks

	20.7. Formulas
	20.8. Images
	20.9. Hyperlinks
	20.10. Headers and footers
	20.11. Print areas and titles
	20.12. Worksheet Commands
	20.12.1. Grouping
	20.12.2. Page breaks
	20.12.3. Merging

	20.13. Datatable exporter
	20.14. Fonts and layout
	20.14.1. Stylesheet links
	20.14.2. Fonts
	20.14.3. Borders
	20.14.4. Background
	20.14.5. Column settings
	20.14.6. Cell settings
	20.14.7. The datatable exporter
	20.14.8. Layout examples
	20.14.9. Limitations

	20.15. Internationalization
	20.16. Links and further documentation

	Chapter 21. RSS support
	21.1. Installation
	21.2. Generating feeds
	21.3. Feeds
	21.4. Entries
	21.5. Links and further documentation

	Chapter 22. Email
	22.1. Creating a message
	22.1.1. Attachments
	22.1.2. HTML/Text alternative part
	22.1.3. Multiple recipients
	22.1.4. Multiple messages
	22.1.5. Templating
	22.1.6. Internationalisation
	22.1.7. Other Headers

	22.2. Receiving emails
	22.3. Configuration
	22.3.1. mailSession
	22.3.1.1. JNDI lookup in JBoss AS
	22.3.1.2. Seam configured Session

	22.4. Tags

	Chapter 23. Asynchronicity and messaging
	23.1. Messaging in Seam
	23.1.1. Configuration
	23.1.2. Sending messages
	23.1.3. Receiving messages using a message-driven bean
	23.1.4. Receiving messages in the client

	23.2. Asynchronicity
	23.2.1. Asynchronous methods
	23.2.2. Asynchronous methods with the Quartz Dispatcher
	23.2.3. Asynchronous events
	23.2.4. Handling exceptions from asynchronous calls

	Chapter 24. Caching
	24.1. Using Caching in Seam
	24.2. Page fragment caching

	Chapter 25. Web Services
	25.1. Configuration and Packaging
	25.2. Conversational Web Services
	25.2.1. A Recommended Strategy

	25.3. An example web service
	25.4. RESTful HTTP webservices with RESTEasy
	25.4.1. RESTEasy configuration and request serving
	25.4.2. Resources as Seam components
	25.4.3. Securing resources
	25.4.4. Mapping exceptions to HTTP responses
	25.4.5. Exposing entities via RESTful API
	25.4.5.1. ResourceQuery
	25.4.5.2. ResourceHome

	25.4.6. Testing resources and providers

	Chapter 26. Remoting
	26.1. Configuration
	26.2. The "Seam" object
	26.2.1. A Hello World example
	26.2.2. Seam.Component
	26.2.2.1. Seam.Component.newInstance()
	26.2.2.2. Seam.Component.getInstance()
	26.2.2.3. Seam.Component.getComponentName()

	26.2.3. Seam.Remoting
	26.2.3.1. Seam.Remoting.createType()
	26.2.3.2. Seam.Remoting.getTypeName()

	26.3. Client Interfaces
	26.4. The Context
	26.4.1. Setting and reading the Conversation ID
	26.4.2. Remote calls within the current conversation scope

	26.5. Batch Requests
	26.6. Working with Data types
	26.6.1. Primitives / Basic Types
	26.6.1.1. String
	26.6.1.2. Number
	26.6.1.3. Boolean

	26.6.2. JavaBeans
	26.6.3. Dates and Times
	26.6.4. Enums
	26.6.5. Collections
	26.6.5.1. Bags
	26.6.5.2. Maps

	26.7. Debugging
	26.8. Handling Exceptions
	26.9. The Loading Message
	26.9.1. Changing the message
	26.9.2. Hiding the loading message
	26.9.3. A Custom Loading Indicator

	26.10. Controlling what data is returned
	26.10.1. Constraining normal fields
	26.10.2. Constraining Maps and Collections
	26.10.3. Constraining objects of a specific type
	26.10.4. Combining Constraints

	26.11. Transactional Requests
	26.12. JMS Messaging
	26.12.1. Configuration
	26.12.2. Subscribing to a JMS Topic
	26.12.3. Unsubscribing from a Topic
	26.12.4. Tuning the Polling Process

	Chapter 27. Seam and the Google Web Toolkit
	27.1. Configuration
	27.2. Preparing your component
	27.3. Hooking up a GWT widget to the Seam component
	27.4. GWT Ant Targets
	27.5. GWT Maven plugin

	Chapter 28. Spring Framework integration
	28.1. Injecting Seam components into Spring beans
	28.2. Injecting Spring beans into Seam components
	28.3. Making a Spring bean into a Seam component
	28.4. Seam-scoped Spring beans
	28.5. Using Spring PlatformTransactionManagement
	28.6. Using a Seam Managed Persistence Context in Spring
	28.7. Using a Seam Managed Hibernate Session in Spring
	28.8. Spring Application Context as a Seam Component
	28.9. Using a Spring TaskExecutor for @Asynchronous

	Chapter 29. Guice integration
	29.1. Creating a hybrid Seam-Guice component
	29.2. Configuring an injector
	29.3. Using multiple injectors

	Chapter 30. Hibernate Search
	30.1. Introduction
	30.2. Configuration
	30.3. Usage

	Chapter 31. Configuring Seam and packaging Seam applications
	31.1. Basic Seam configuration
	31.1.1. Integrating Seam with JSF and your servlet container
	31.1.2. Seam Resource Servlet
	31.1.3. Seam servlet filters
	31.1.3.1. Exception handling
	31.1.3.2. Conversation propagation with redirects
	31.1.3.3. URL rewriting
	31.1.3.4. Multipart form submissions
	31.1.3.5. Character encoding
	31.1.3.6. RichFaces
	31.1.3.7. Identity Logging
	31.1.3.8. Context management for custom servlets
	31.1.3.9. Enabling HTTP cache-control headers
	31.1.3.10. Adding custom filters

	31.1.4. Integrating Seam with your EJB container
	31.1.5. Don't forget!

	31.2. Using Alternate JPA Providers
	31.3. Configuring Seam in Java EE 6
	31.3.1. Packaging

	31.4. Configuring Seam without EJB
	31.4.1. Boostrapping Hibernate in Seam
	31.4.2. Boostrapping JPA in Seam
	31.4.3. Packaging

	31.5. Configuring Seam in Java SE
	31.6. Configuring jBPM in Seam
	31.6.1. Packaging

	31.7. Deployment in JBoss AS 7
	31.8. Configuring SFSB and Session Timeouts in JBoss AS 7
	31.9. Running Seam in a Portlet
	31.10. Deploying custom resources

	Chapter 32. Seam annotations
	32.1. Annotations for component definition
	32.2. Annotations for bijection
	32.3. Annotations for component lifecycle methods
	32.4. Annotations for context demarcation
	32.5. Annotations for use with Seam JavaBean components in a J2EE environment
	32.6. Annotations for exceptions
	32.7. Annotations for Seam Remoting
	32.8. Annotations for Seam interceptors
	32.9. Annotations for asynchronicity
	32.10. Annotations for use with JSF
	32.10.1. Annotations for use with dataTable

	32.11. Meta-annotations for databinding
	32.12. Annotations for packaging
	32.13. Annotations for integrating with the servlet container

	Chapter 33. Built-in Seam components
	33.1. Context injection components
	33.2. JSF-related components
	33.3. Utility components
	33.4. Components for internationalization and themes
	33.5. Components for controlling conversations
	33.6. jBPM-related components
	33.7. Security-related components
	33.8. JMS-related components
	33.9. Mail-related components
	33.10. Infrastructural components
	33.11. Miscellaneous components
	33.12. Special components

	Chapter 34. Seam JSF controls
	34.1. Tags
	34.1.1. Navigation Controls
	34.1.1.1. <s:button>
	34.1.1.2. <s:conversationId>
	34.1.1.3. <s:taskId>
	34.1.1.4. <s:link>
	34.1.1.5. <s:conversationPropagation>
	34.1.1.6. <s:defaultAction>

	34.1.2. Converters and Validators
	34.1.2.1. <s:convertDateTime>
	34.1.2.2. <s:convertEntity>
	34.1.2.3. <s:convertEnum>
	34.1.2.4. <s:convertAtomicBoolean>
	34.1.2.5. <s:convertAtomicInteger>
	34.1.2.6. <s:convertAtomicLong>
	34.1.2.7. <s:validateEquality>
	34.1.2.8. <s:validate>
	34.1.2.9. <s:validateAll>

	34.1.3. Formatting
	34.1.3.1. <s:decorate>
	34.1.3.2. <s:div>
	34.1.3.3. <s:span>
	34.1.3.4. <s:fragment>
	34.1.3.5. <s:label>
	34.1.3.6. <s:message>

	34.1.4. Seam Text
	34.1.4.1. <s:formattedText>

	34.1.5. Form support
	34.1.5.1. <s:token>
	34.1.5.2. <s:enumItem>
	34.1.5.3. <s:selectItems>
	34.1.5.4. <s:fileUpload>

	34.1.6. Other
	34.1.6.1. <s:cache>
	34.1.6.2. <s:resource>
	34.1.6.3. <s:download>
	34.1.6.4. <s:graphicImage>
	34.1.6.5. <s:remote>

	34.2. Annotations

	Chapter 35. JBoss EL
	35.1. Parameterized Expressions
	35.1.1. Usage
	35.1.2. Limitations and Hints

	35.2. Projection

	Chapter 36. Clustering and EJB Passivation
	36.1. Clustering
	36.1.1. Programming for clustering
	36.1.2. Deploying a Seam application to a JBoss AS cluster with session replication
	36.1.3. Validating the distributable services of an application running in a JBoss AS cluster

	36.2. EJB Passivation and the ManagedEntityInterceptor
	36.2.1. The friction between passivation and persistence
	36.2.2. Case #1: Surviving EJB passivation
	36.2.3. Case #2: Surviving HTTP session replication
	36.2.4. ManagedEntityInterceptor wrap-up

	Chapter 37. Performance Tuning
	37.1. Bypassing Interceptors

	Chapter 38. Testing Seam applications
	38.1. Unit testing Seam components
	38.2. Integration testing Seam components
	38.2.1. Configuration
	38.2.2. Using JUnitSeamTest with Arquillian
	38.2.2.1. Using mocks in integration tests

	38.2.3. Integration testing Seam application user interactions
	38.2.3.1. Configuration
	38.2.3.2. Using JUnitSeamTest with another test framework
	38.2.3.3. Integration Testing with Mock Data
	38.2.3.4. Integration Testing Seam Mail

	Chapter 39. Dependencies
	39.1. JDK Dependencies
	39.1.1. Oracle's JDK 6 Considerations

	39.2. Project Dependencies
	39.2.1. Core
	39.2.2. RichFaces
	39.2.3. Seam Mail
	39.2.4. Seam PDF
	39.2.5. Seam Microsoft Excel
	39.2.6. Seam RSS support
	39.2.7. Drools
	39.2.8. JBPM
	39.2.9. GWT
	39.2.10. Spring
	39.2.11. Groovy

	39.3. Dependency Management using Maven

