
Business domain translation of problem spaces (WIP draft)

© 2017. Sebastian Samaruga (ssamarug@gmail.com)

Abstract:

Keywords: Semantic Web, RDF, OWL, Big Data, Big Linked Data, Dataflow, Event Driven,
Message Driven, ESB, EAI.

Objectives: Streamline and augment analysis and knowledge discovery capabilities for
enhanced declarative and reactive event driven process flows between frameworks, protocols
and tools for Semantic Web backed integration and Big (linked) Data applications.

Achieve diverse information schema merge and interoperability (for example for different
domains or applications databases). Translate behavior in one context (domain) into
corresponding behavior in other context. Aggregate diverse domain data (facts) into
corresponding domains state.

Considerations:

Given a business domain problem space (data, schema and behavior for an application, for
example) a ‘translation’ could be made between other domain(s) problem spaces which
encompasses a given set of data, schema and behavior instances (objectives) to be solved in
the other domains in respect of the problems in the first domain.

This shall be accomplished by means of an event-driven architecture in a semantics aware layer
which leverages diverse backend integration (sync) and schema merge / interoperability. Also, a
declarative layer is provided for aggregation and composition of related event flows of various
objectives to met a given purpose.

An example: In the healthcare domain an event: flu diagnose growth above normal limits is to
be translated in the financial domain (maybe of a government or an institution) as an increase of
money amount dedicated to flu prevention or treatment. In the media or advertisement domain
the objectives of informing population about flu prevention and related campaigns may be
raised. And in the technology sector the tasks of analyzing and summarizing statistical data for
better campaigns must be done.

Features:

The proposed application framework to be implemented as mentioned in this document is
thought to provide means for full stack deployments (from presentation through business logic
to persistence).

mailto:ssamarug@gmail.com

The core components are distributed and functional in nature: REST endpoints, transformations
layer, functional metamodels / node abstractions (profile driven discovery and service
subscriptions).

An important goal will be to be able to work with any given datasources / schemas / ontologies
without the need of having a previous knowledge of them or their structures for being able to
work with them via some of the following features:

Node IO via plain RDF serialization to-from any service / backend through Bindings (below).
Message wrappers of data / information / knowledge (schema-behavior) layers.

Ontology (schema) merge. Type inference. Attributes and relationships alignment /
augmentation. Index service.

Order inference. Contextual order inference alignment / augmentation (temporal, causal,
containment, etc.). Registry service.

Identity and instance equivalence inference. Determine whether two subjects (differents schema
/ identifiers) refer to the same entities. Naming service.

Node metamodel models statements into layers, each one having its own 'abstractions' for the
roles each statement parts play and each one having its schema / behavior associated:

Data layer:
Resource (schema) / Event (behavior).
Data example: aProduct, price, 10;
Metamodel example: TBD.

Information layer:
Kind (schema), Rule (behavior).
Information example: aProductPrice, percentVariation, +10;
Metamodel example: TBD.

Knowledge (behavior) layer:
Class (schema), Flow (behavior).
Knowledge example: aProductPriceVariation, tendencyLastMonth, rise;
Metamodel example: TBD.

Node Resource metamodel activation: given REST endpoint semantics messages consumed
activates publishing of matching quads: for a CSPO quad matching CS, corresponding CSxx
quads messages will be emitted.

Knowledge, information and data layers behavior (REST CRUD) entails ‘propagation’ into upper

/ lower metamodel aggregated levels of statements updating them accordingly via dataflow
graphs (below).

Service Features:
Alignment / augmentation features a (contextualized) Node should provide.

Align identity: merge equivalent entities (with different URIs). Align types (schema / promotion:
infer type due to role in relation).

Align attributes / links: augment knowledge (properties and values) about entities (because of
type / role alignment).

Align ordering: sort entities regarding some context / axis (temporal, causal, composition and
other relations).

Implement functional query / transformation API language: for a given entity / concept (Monad)
being able to browse / apply a function which entails some other result entity (Monads).

Resource endpoints. Node RESTFul interfaces for metamodels interaction. Provides /
consumes (feeds / streams) events / messages declared via dataflow engine. The datastore
should be a HATEOAS web application. DCI pattern (messages: data, subscriptions: context /
roles, interactions).

Implement XSL Driven declarative dataflow engine: Streams ‘pipes’ declaratively stated in XSL
for reactive behavior definitions. Functional query / transform semantics. Datastore application
publish / subscribe to this (request / response 'filters'). Each metamodel concept has its own
templates for backend, model and domain declarative model aggregations.

Implement a 'Node' abstraction: Integration of diverse (wrapped into metamodels) datasources /
backends / services / protocols via the implementation of service contracts and exposing a plain
RDF IO (dialog protocol) interface. A Node Binding to other Nodes shall allow to integrate via
dataflow semantics diverse datasources / datastores. Contexts: parent, siblings, child nodes
(domains).

Provide discovery services for data / schema / behavior (bus / stream events actors and roles).
Bind Profiles by ontology metamodel alignment: Registry: Ordering alignment, Naming: ID and
instance matching alignment, Index: Links and attribute alignment. Big Data and EAI integration
patterns. Reactive adaptive dataflow containers (criteria instead of hardcoded addresses).

Architecture:

Node (Metamodel, Functional API, Message IO, API: XSL declarative routes, ASM provider
functional interfaces).

Nodes:

Internal normalized metamodel (upper ontology) shared in common with other nodes regardless
their purpose or role (binding, alignment, augmentation, etc.) instantiating an Application
Services Model (ASM). Nodes are contextualized by their domain of knowledge into a
hierarchical structure.

Functional API which leverages ASM with query / filter / transform semantics.

Dataflow reactive event / message driven nodes. Nodes act as server / client peers in a protocol
/ dialog implementation. Exposed via Message aware REST endpoints.

Messages prompts (request) or augment (response) knowledge in intervening nodes
conversation scopes. Metamodels aggregate or refer to new knowledge.

Message encoding: XML Metamodel Flow serialization. Metadata (ie.: services / alignment).

Message flow / routes: publisher / subscriber subscriptions and processors (DCI) stated in
declaratively composable XSL templates. Pattern based discovery / matching. Discovery by
profile: criteria / patterns instead of endpoint addresses. Bus: dataflow streams (pipes). Actor /
role pattern.

Node ASM implementation interfaces: determines API needed to be implemented for a Node to
fulfill its purpose / role.

Services: Node has services API (Index, Naming, Registry) used for alignment / augmentation
and by the Node (or other contexts nodes) for endpoint interactions resolution.

Scopes (levels): knowledge, information, data in schema / instance (behavior) Message
encoded pairs. Message encoding (message, flow, rule, event, class, kind, resource). Node
data model: Node contexts / scopes: discovery / resolution. Domain translation.

Contexts: Node aggregation (parents, siblings, children dataflow: domain oriented translation)
into hierarchical domains (Nodes).

Message and Node services based communication flows. Ontological (domain / schema) and
instances driven grouping and arrangement of Nodes, messages and services. Query /
discovery / binding / alignment for Nodes exposing some 'schema' and 'instance' (in all three
data / info / knowledge levels for schema and behavior).

Metamodel: classes / aggregation:

Main Metamodel and upper ontology classes and instances are modelled following a simple
principle for mapping RDF quads to OOP classes and objects:

Classes are modelled as a quad hierarchy of OOP classes:

ClassName : (playerURI, occurrenceURI, attributeURI, valueURI);

A quad context URI (player) identifies an instance (in an ontology) of a given OOP class. All
ontology quads with the same context URI represent the same ‘instance’.

An instance (playerURI) may have many ‘occurrences’ (into different source quads). For
example: a resource into an statement.

For whatever occurrences a player instance may have there will be a corresponding ‘attribute’
and ‘value’ pair being, for example, if the player is having a subject role in an statement then the
attribute is the predicate and the value is the object of the given statement.

For input statements aggregation is done into Resource(s), Kind(s), Class(es), Event(s), Rule(s)
and Flow(s).

Given a Resource a Kind states it has a given Class for its occurrence into an Statement:

Peter : Employee in

(Peter, worksAt, IBM).

Given an Event a Rule states that some Flow is being accomplished for a given Kind (role):

GoodEmployee : Promotion is
SalaryRaiseFlow (for Employee Kind salary attribute update).

Update Metamodel for Flow nesting / Message encoding via quad players occurrence.(TBD.
Example):
(Event, Class, Resource, Statement);
(Class, Kind, Resource, Resource);
(Kind, Resource, Statement, Class);

Data (instance / class aggreg.): Resource (schema), Event (behavior).

Information (instance / class aggreg.): Kind (schema), Rule (behavior).

Knowledge (instance / class aggreg.): Class (schema), Flow (behavior).

Layers. TBD.

Functional DOM:
Functor (Type).
FunctorTerm (Member).
Application (Type instance members). Reified Metamodels.

Node : URI (schema / behavior)
Quads it produces / consumes when activated). Resource activation graphs.

Binding : (Binding, Node producer, Message pattern, Node consumer);

Binding via XSL declared subscriptions.

Message: encode / aggregate interaction state.

TBD.

Metamodel: inference / layering / reification:

Type inference: basic type inference (for aggregation and datasource syndication / merge) is
performed when aggregating (layers of) metamodels. Augmentation service nodes are expected
to provide more complete alignment facilities.

Typing via Resource Kinds: each SPO in a Statement has its corresponding Kind which has an
‘attribute’ and a 'value’ corresponding to its occurrence in this position in a triple.

For example, in the triple:

(Peter) (worksAt) (IBM)

Has a 'SubjectKind’ of (worksAt, IBM) for its Subject (Peter). Subject’s attribute and value are
(worksAt) and (IBM) respectively. This metadata could be used for basic type inference by
aggregating ‘Employees’ (worksAt domain) and specific employees (which work at IBM) or
‘range’ (metaclass). This way Kinds aggregate Classes with their occurrences having a Kind,
maybe, multiple Classes aggregated.

The same holds for classifying Predicates and Objects into their types and their corresponding
meta-types. Different Model layers (discussed below) have its own (Predicate based) SPO Sets
definitions and, thus, their own Statement and Kind structures.

Kinds reification may be performed given, for example, in this situation: 'Employee’ SubjectKind
becoming a 'Employee’ Subject (resource). This way attributes and links may be stated for the
'Employees’ set in general (Grammars model).

Aggregation: Data, information, knowledge layers.

Data, information, knowledge example: price, price variation, price tendency.

Knowledge aggregated in models should be capable of being abstracted in such a way that
general knowledge may be obtained from specific knowledge. Richer query / browsing and
inference capabilities should arise from such schema.

Data: [someNewsArticle] [subject] [climateChange]
Information: [someMedia] [names] [ecology]
Knowledge: [mention] [mentions] [mentionable]

Model Layers:

The first Model (Facts) is built from raw input triples (SPO Resources) and its Events, Kinds,
Rules, Classes and Flows are aggregated according its Statements quads and Resource
occurrences.

The second level (Signs) is the result of building statements via reification of Fact triples as
subjects, reification of Fact Kinds as predicates and reification of Fact resources as objects.

The third level (Behavior) is done performing the same procedure done in the second level in
respect to the first one (reification).

All levels aggregate Kinds, Classes, Events, Rules, Flows the same way as the first level.

Metamodel. Functional API semantics:

Functional properties: idempotence. Versions. Topics. Streams. Protocol headers (ordered
Etag: order relationship aligns contexts: attributes, identity / types).

In context of an attribute comparison: having same attribute / same value. In context of type /

identity comparison: being same type / same instance.

Comparison result values holds metadata (ie.: 0 being equal, negative / positive values
indicating encoded 'distance'). Contexts (type / instance / attributes) occurring in a (temporal /
revision) context.

Encode Functor / Monads, Function / Terms and Applications (flatMap, filter, etc.) as Resources
(XSL Templates bindings).

Functional DOM (ASM / Upper ontology):
Functor (Type).
FunctorTerm (Member).
Application (Type instance members).

Reified Metamodels (upper ontology).

Resource URI scheme / format for proper feature / activation Node patterns.

Reactive dataflow. Message (events) driven. Actor / Role pattern. DCI (Message, Publisher,
Subscriber: Subscription, Interaction: producer / consumer), Message Type (discovery bindings
by data kinds, roles and contexts).

Message semantics:

Message monads / patterns.
Referenced metamodel resources in Message body (links).

Message routing. Bindings, node as resource activation graphs: node quad, resource
aggregation activation graphs: build Message matching CSPOs to complete matching
statements and populate / dispatch contextualized Message result which applies to
corresponding bindings.

Activation (aggregation) example: attribute / value: activates Class. Class: activates Kind(s).
Kind: activates Statement(s). Message 'posted' in reply (bindings / dispatch) aggregated data,
information, knowledge schema / behavior.

Node : URI (schema / behavior)
Quads it produces / consumes when activated). Resource activation graphs.

Binding : (Binding, Node producer, Message pattern, Node consumer);

Binding via XSL declared subscriptions.

Message: encode / aggregate interaction state.

Functional API:

Metamodel ASM (AOM: data Application Object Model) should be to RDF / Semantic Web as

DOM
(Document Object Model) plus JavaScript is for HTML / XML.

DOM: Functor, Term and Application interfaces models OO representations of metamodels.
Dynamic Object Model.
Data. Variables. Placeholders. Upper ontology alignment.

All hierarchy classes (including Functor, Application and Term interfaces) are defined in terms of
RDF
Quads (OOP mapped).

Data input (event / message stream), Reactive activation (dataflow graph: templates),
Definitions (producer types).

AST / Monadic parser combinators on statements input / aggregation.

The Quad statements are of the form:

Quad : (Player, Occurrence, Attribute, Value);

Functor (functional wrapper of Resource):
(Functor, Resource, Term, Functor);

Term (bound function / dataflow op wrapper of Resource):
(Term, Resource, Functor, Functor);

Application: TBD.

Example: (‘Someone’ : Resource).flatMap(Employee : Kind) : EmploymentKind : Someone’s
jobs (reified Kind).

TBD.

Message IO: Encode Metamodel Flows:

(Resource hierarchy). Alignment metadata (attributes / values). Reactive: message / event
driven dataflow.

Reactive dataflow. Message / Event driven. Actor / Role pattern. DCI (Publisher, Subscriber,
Subscription, Interaction: producer / consumer instances, Message Type (bindings by data
kinds, roles and contexts).

Message encodes data / information / knowledge schema and behavior for a given event based
endpoint interaction. A Message (part) is susceptible to a Functional API query / transform in the
context of declarative stylesheets bindings (XSL).

Message as monads. Message patterns matching in bindings. Nesting of Metamodel resources
in Message body (links: attributes / values). Message routing (declarative bindings, node as

resource activation graphs: node quad, resource aggregation activation graphs).

Build Message matching CSPOs to complete matching statements and populate / dispatch
contextualized Message which applies to corresponding bindings).

Activation (aggregation) example: attribute / value: activates Class. Class: activates Kind(s).
Kind: activates Statement(s). Message 'posted' in reply populated. Bindings dispatch
Statements (within Message context).

The most elemental Message Flow is a Subject having an Object as its Property: SPO
Statement Message.

Given a Resource a Kind states it has a given Class for its occurrence into an Statement:

Peter : Employee in
(Peter, worksAt, IBM).

Given an Event a Rule states that some Flow is being accomplished for a given Kind (role):

GoodEmployee : Promotion is
SalaryRaiseFlow (for Employee Kind salary attribute update).

Metamodel Message flow (XML):

<Message>

<Flow>

<Rule>

<Event>

<Class>

<Kind>

<Resource>

</Resource>

</Kind>

</Class>

</Event>

</Rule>

<Property>

<Attribute>xyz</Attribute>

<Value>123</Value>

</Property>

</Flow>

</Message>

Message: XML like with nesting structure / repetitions / links / references (for XSL declarative
pub / sub pipes). Metadata. RESTFul HATEOAS (HAL / JSONLD).

Layers:
Data: Resource (schema), Event (behavior).
Information: Kind (schema), Rule (behavior).
Knowledge: Class (schema), Flow (behavior).

Encode (multiple) quads attributes / values (for a resource with the same parent).

Update Metamodel for nesting / encoding via quad players occurrence.(TBD. Example):
(Event, Class, Resource, Statement);

(Class, Kind, Resource, Resource);
(Kind, Resource, Statement, Class);

Metadata:
Flow encoding: order, contexts encoding.
Rule encoding: schema (attributes / links) type promotion encoding.
Event encoding: Data identity encoding.

Nodes: retain 'dialog' state (Metamodel + Messages) vars / placeholders. Message 'model':
data, schema / transforms, behavior. Lambda (server less) ‘runat’ features. Activation graph.

Resource REST endpoints (in / out Node templates). Declarative bindings (in templates) with
Functional API features (markup, reified Term, Functor, Application). Message IO: augmented
dialog / prompts protocol.

Message IO: Publish / Subscribe:

Dialog protocol: (post / prompt) pattern based (endpoint, queue, topics) semantics.

Transport: Nodes setup / discovery / dataflow bound by declaratively composed pipes (streams)
in XSL (patterns over bus / queue / topic endpoints). Functional API ‘callbacks’ (reactive typed /
bus pattern based publishers / subscribers) into templates.

Dialog / Flow Messages (IO: variables, wildcards, placeholders).

Example: Bindings posts its ‘schema’ on creation (Flow Message).

Augmentation / Client eventually ‘ask’ Binding for ‘data’ in its schemas. Client gets ‘augmented’
Flow(s) for its
requests. Nodes keep their Metamodel(s) updated (with references to other Nodes models /
resources).

Hypermedia (REST HATEOAS: HAL / JSONLD encoding) Messages holds links / patterns
(discovery) to other Nodes model resources / Messages.

TBD.

Message IO: XSL Based routing:

Node + metamodel + endpoints reactive distributed dataflow based activation graphs. Dialog
protocol: augmentation / enhancements.

Node reactive dataflow integration setup (bindings, routes, transforms in XSL declarative
reactive streams configuration): DCI (Message, Subscriptions, Processor)

Functional (API) transforms declared as resource instances into metamodel for markup
composition in XSL templates. Access Functional API from templates via resource
representations. DOM.

RESTFul Message metamodel layers endpoints Flows.

Node API:

Node components: Metamodel, Functional API, Message IO, API: XSL declarative routes, ASM
provider functional interfaces (Node implementations). Node services. Contexts.

Node Services:
Index service: Attribute / link (promotion) inference.
Naming service: type / identity inference / resolution.
Registry service: Contexts and ordering resolution (comparable).

Services complements functional interfaces / DOM to provide an application model.

Contexts: Discovery for various resource kinds, endpoints, message patterns.

Endpoints: each resource class instances into a Node is bound to a RESTful endpoint which
translates requests and responses (asynchronous Message events) by means of declarative
configuration via the use of XSL stylesheets and an HATEOAS Web Application framework.

Node Archetypes:

Binding: Implement Node for exposing data sources / Node syndication /
bindings (RDBMSs, services, protocols, formats, endpoints, etc.). Synchronization.

Augmentation: Implement Node interfaces for knowledge enrichment (data enhancement /
linking / augmentation, reasoning, inference, alignment learning, etc.). Services.

Client: implement user interaction, services, protocols (endpoints: REST, SOAP, SPARQL,
MVC, Web). Contexts.

Node deployment: Node contexts. Discovery (Subscription) resolver. Contexts. Message flows.
Domains.

Binding Node:

The main idea is to be able to merge diverse data sources (from existing applications databases
for example) and from they and their metadata expose 'declarative' application models which
can be used for domain driven front ends or services.

Bindings are meant to provide Node syndication / sync interactions with backend data sources
by the translation of data sources schema and instances into a common metamodel and an
upper alignment ontology (Functional DOM).

Message flow: Nodes contains declarative logic for knowledge aggregation, augmentation and
enhancements via the concept of a RESTful driven HATEOAS dialog protocol.

Alignment Node Service: ID / Merge (type / instance)

This kind of Node Service is meant to provide equivalence / identity knowledge regarding
subjects in the scope of a conversation. Type inference also should be provided as means of
query able knowledge regarding layers.

Infer identity: subject equivalence (URIs in different namespaces refer to the same objects /
resources).

Infer types: subject playing same roles in same contexts (promoted) to the same types.
Attributes / links of the new type should also be considered.

TBD: Encode type / identity relationships as order (comparison) of resources (ie.: set / superset
of attributes / values).

Naming services. Resolution.

Alignment Node Service: Ordering / contexts

Contextual comparison augmentation. Temporal, causal, others.

Provide means to compare subjects regarding some context. Example: in a dayOfWeek context,
friday is after monday. In an ‘academic’ context graduate is after undergraduate.

Comparison results helps to augment other alignment methods.

Registry services. Resolution.

Alignment Node Service: Attributes / links

Property / value attribute and links augmentation. Promotion of types and properties due to a
subject joining a new relationship.

Example: someone being hired, type promotion: employee; attribute / link augmentation: salary,
manager.

Example: (Ctx.: rel, Peter, Joe) : where neighbors, then friends, and then partners. Transitions.
Truth values (temporal, for ordered 'names').

Index services.

Service Nodes:

Index services.

Naming services.

Registry services.

Learning services.

Inference services

Reasoner services.

Dimensional services.

Analysis services.

TBD.

Client Node (service, protocol, app):

Implement Node to provide (platform specific) bindings to provide facilities for implementing
clients (Web App, expose service endpoints, etc.).

Declaratively bound (subscriptions) with other Nodes specifying ‘backend’ providers.

TBD.

Application (Binding Node):

General purpose dashboard. Reports over heterogeneous data sources (ASM).

Application (Client Node):

General purpose client / browser for Binding Node Application Services Model (ASM).

Business Domain Translation of Problem Spaces: TBD.

Generic client (browser).

Application Demo: Dashboard (CRUD enabled) of aligned / merged syndicated data sources.
Inferred business use cases (domain driven development) frontend. Flows.

Implementation Details

Functional expressions as Resources (Functor, Term, Application). Pattern IDs, variables,
placeholders, dialogs (dataflow: encode graph).

Actor / Role (class / metaclass). Context / Interaction. DCI reactive / dataflow. Promotion (event
roles).

Graph encoding. Naming scheme (Profile IO translation)

Dimensional reified quads: (Dimension, Fact, Measure / Unit, Value);

NLP: Substantive, Verb, Adjective (computer, computes, computed).

Upper (internal) OWL / RDFS ontology. Restrictions based alignment.

Infer equivalent properties by equivalent property domain / range (kinds). Domain / range kind
alignment, ID, links, order inference by equivalent property kinds. Encode inferred
schema as upper OWL / RDFS Statements.

Reactive Streams: Subscriber, Publisher, Subscription, Processor <T> (Web, XSL Declarative
Resource Dataflow Pipes).

Resource: Data. Subscription(s): Context (actors / roles). Processor(s): Interactions (behavior
instances).

Discovery. Internal upper ontology. Sust, Verb, Adj. Reify layers entities. Terms (reified
grammars, dimensional, rules). Constraints. Shapes. Domain / range, ordering rels comparisons
inference. Schema merge / sync.

Deployment

Deployment: Jena RDF / OWL backend. Parsed functional Metamodel. Nodes.

XSL Files (data, information, knowledge declarative schema-behavior bindings mapped into
metamodel).

RESTful Message IO:
For each metamodel entity class: Resource metamodel class, patterns and domain specific
templates with transforms encoded / parsed from metamodel.

Message flow: Filter handler (Servlet) request-response (async) through declarative template
transforms.

Templates referring other endpoints (template aggregation). Apply templates (reactive async,
request / response).

Topics. Streams (ordered events). Distributed contexts / scopes.

OWL upper ontology. Reified metamodel.

Appendix: Implementation details. Monads, DCI. Functional API

Apache Jena, Lucene, JCR, Stanbol.

Apache Metamodel. JBoss Teiid.

Cactoos.org (Declarative DSLs).

Node: Apache ServiceMix archetypes (RX Camel).

Monads:

Parameterized type M<T>.

Unit function (T -> M<T>).

Bind function: M<T> bind T -> M<U> = M<U> (map / flatMap: bind & bind function argument
returns a monad, map implemented on top of flatMap).

Join: liftM2(list1, list2, function).

Filter: Predicate.

Sequence: Monad<Iterable<T>> sequence(Iterable<Monad<T>> monads).

Order by contextual comparator (registry).

DCI (Data, Context, Interaction):

Functional API: TBD.

Message (Flow): HATEOAS: JSONLD / HAL encoding.

ASM: Semantic ORM: (Dynamic Object Model, Actor / Role, DCI, JAF). DOM: Functional
Functor (Type), Term (Member), Application (Type / Member instance binding).

Declarative discovery / activation. Reactive platform bindings (Java, JavaScript ASM) over
RESTFul Client Node Resource endpoints.

TBD.

