JSR 299: Web Beans

Web Beans Expert Group

Version: Public Review

Table of Contents

N o 011 (= o O = PP PP TP UPPPTTRPPPPTN 1
N o 1 o T PP PT PP 1
1.2. SUPPOILEA ENVITONIMIENLSeetteeiiti ettt e e ettt e e ettt ettt e et et e e e e et s e e e eebe s e e e eateneeeesbeneeeenbaaeeeenes 1
1.3. Relationship to Other SPECITICALIONSuuiieiiiii et e e e e eees 2

131 RAEONSNIPTO BIBeiiiiiiiiieiiit e e ettt e e e e eee 2
1.3.2. RAEONSNIP IO JSF ...oeiiiiii e e e e et e et e et e e et e e eee 2
1.3.3. Relationship to Java SErvIetS anNd JSPccouuuiiiiiiiie e e 2
1.4, INtroOdUCEOIY EXAIMPIES ... ettt ettt ettt e et et e e et et s e et e et s e e e e et e e e esbeneeeeebaneeeenes 2
LA.0 JSF EXAMPIE <. e et eee 2
142 BB @XAMPIE ..ottt et e e e e e ana 4
1.4.3. INtErCEPLOr EXAMPIE ... et e e ettt e e e eee 4
1.4.4. DECOratOr EXAMPIEu it ettt e et eee 5

2. BEAN AEFINITION ..ueiiiet e et e e et ettt et e e e e e 7
2.1. Functionality provided by the container tothebean ... 7
2,2, BN B IS ittt et e 8
P2 R = T1 0o 1o PP 9

2.3.1. Default DINING TYPE ... et 9
2.3.2. Defining New DINAING tYPES ...covviiiiiii et 10
2.3.3. Declaring the bindings of abean using anNnOtationsc..uiviiiiiiiiieii e 10

2.3.4. Declaring the bindings of abean uSINg XMLiiiiiiiiii e 11

2.3.5. Specifying bindings of aninjected field ... 11
2.3.6. Specifying bindings of a method or constructor parametercoooovvviiieiiii i, 11

S o o= S PP PPPT 12
2.4.1. BUIIT-IN SCOPEEYPES ..ottt ettt ettt ettt et e et et et e e e aaa e e eeaans 12
2.4.2. DEfiNING NEW SCOPE LYPIES ... eeietiiee et e ettt et ettt et e et e et e e et e e e eaa e e eeaans 13
2.4.3. Declaring the bean scope USiNg @NNOLALIONSiiieeinieiiii e 13
2.4.4. Declaring the bean scope uSiNg XIML ..o 13

245, DEFAUIT SCOPE ... eeeet ettt ettt ettt ettt aaans 13

2.5, DEPIOYMENT TYPES ..ttt ettt ettt ettt ettt e e et et a et e ea e e aa e e aaans 14
2.5.1. BUIlt-iN dePIOYMENE LYPES ... ettt ettt et e e e e e eeaans 14
2.5.2. Defining New deplOYMENT TYPESceeeei et 14
2.5.3. Declaring the deployment type of abean using annotationsccovvvviveviievineiiieeeieee, 15

2.5.4. Declaring the deployment type of abean using XMLoooiiiiiiiiiiii e 15

2.5.5. Default deplOyMENE TYPE oeeeei ettt e e e 15
2.5.6. Enabled deplOoymMeNt TYPESccuuuiiiii e 16
2.5.7. Deployment tyPe PreCEOBINCEiiieei ettt ettt e e et e e et e e e 16

2.6. BEANNAIMIES ... ittt 17
2.6.1. Declaring the bean name using @NNOLALTIONSuiiiiiiiiiiiii e 17
2.6.2. Declaring the bean Name USING XML ... e 17

2.6.3. DEfault DEAN NAIMESooiii et 17
2.6.4. BEANSWItN NO NAITIEiiitiiiiie et ettt e e e et e e naa e eeaans 17

S (= 151011 o1 S PP PP TPPT 17
2.7.1. DEfiNING NEW SLEIEOLYPES ... ieieti ettt e ettt ettt e et e et e e et e e e eaa e e eenans 18
2.7.1.1. Declaring the default scope and deployment type for astereotypeoevvveeveieeennnn. 18

2.7.1.2. Specifying interceptor bindings for aStereotypeovvvveiiiiiiiiiiiieiii e, 19

2.7.1.3. Specifying name defaulting for aStereotypeovvveveiiiiiiiiie e 19

2.7.1.4. Restricting bean scopes and types using a StEr€otYPeovvevvueveeiinieieiii e 19

2.7.1.5. Stereotypes with additional StErEOtYPESovviveiiiiiii e 20

2.7.2. Declaring the stereotypes for abean using annotationsSooveeveieiieiiieeeii e 20
2.7.3. Declaring the stereotypes for abean using XMLcoouuiiiiiiiiiiiii e 20

2.7.4, SHEFEOLYPE FESLIICLIONS ...vui et e ettt ettt et e e e e e et e e e abi e eenans 20
2.7.5. BUIIT-IN SLEIEOLYPES ... ieeiti ettt ettt e et et e e e aaa e e eaans 21

3. Bean iMPIEMENTALIONcouuiieei e ettt ettt et 22
3.1. Restriction upon bean iNSEANTIBLIONuuuiiiiiii e 22
3.2 SIMPIEDEANS ...t et 22

3.2.1. Which Java classes ar€ DEANS?c.uuuiiiiiii e 22
3.2.2. Beantypesof asimplebean ... 23

JSR-299 Public Review

JSR 299: Web Beans

3.2.3. Declaring asimple bean using anNOtatiONSooieuuuieiiiiii e 23
3.2.4. Declaring asimple bean USING XIML ... oo 24
3.2.5. BEAN CONSITUCTONS ...evueitieeei ettt ettt ettt et et et e e e e e e e e eenas 24
3.2.5.1. Declaring abean constructor using anNotationS.c..vveviuiineiiiiineeecinee e 24

3.2.5.2. Declaring abean constructor using XML.oviiiiiiiiiiiii e 25

3.2.5.3. BEaAN CONSLIUCLOr PAIrAIMELENSieveeeeieeet et e ettt ettt e e e e e e e 25

3.2.6. Specidizing asimPIEeDEaN ... 26
3.2.7. Default name for asimplebeanoovoiiiiii 26

330 SESSIONBBANS ... e 26
3.3.1. EJB remove methods of SeSSIoNDEaNScooeuuiiiiiiiiii i 27
332 WhIiCh EIBS@r€DEANS? ...t 27
3.3.3. Bean types Of @ SESSION DEANcveiiiiiiiii e 27
3.3.4. Declaring asession bean using annOLatioNnscoouueiiiiiiiineiii e 27
3.3.5. Declaring asession bean USING XML ... 28
3.3.6. SPeCializZing @ SESSION DEANuuiiiiii e 28
3.3.7. Default name for aSession BDEaANoovvviiiii 28
3.3.8. SESSION DEAN PrOXIES ...evtiiiiiii e ettt 29

34, ProduCer MEINOGS ittt e et e e ettt 29
3.4.1. Bean types of aproducer MEthOdiiiiiiiiiiiii e 29
3.4.2. Declaring a producer method USING aNNOLELIONSuuiiiiiiieiiiie e 30
3.4.3. Declaring a producer method USING XIMLoviiiiiii e 30
3.4.4. Producer MethOd PArAMELEScceuueiieiii ettt et e et e e e e e e b s 30
3.4.5. Specidizing aproducer MEthOdooouuiiiiii e 31
3.4.6. DIiSPOSAl MELNOUSceeetiie ittt e et eeaa s 31
3.4.7. Disposed parameter of adisposal Methodooooviiiiiiiii 31
3.4.8. Declaring a disposal method USING aNNOLEEIONSc.uuuiiiiiiieiiii e 32
3.4.9. Declaring adisposal Method USING XMLuiiiiiiiiii e 32
3.4.10. Digposal MEthO PArAIMELE'Sccuuniieiii et e e e b 32
3.4.11. Digposal MEthOd reSOIULIONceuuiiiiiii et 33
3.4.12. Default name for aproducer MEthodcoeueiiiiiiiii e 33

T (oo (U Tor= g 1= o PP 33
3.5.1. Bean types of aproduCer fIEldv oo 34
3.5.2. Declaring a producer field USINg @NNOLALIONScvevviniiiiiiieie e 34
3.5.3. Declaring a producer field USING XIML .coevuiiiiii e 34
3.5.4. Default name for aproducer fIeldooouuuiiiii 34

3L6. RESOUICES ...ttt ettt ettt et e e e e e et e et et e e e e e e e e 35
3.6.1. Declaring aresource USING XML .oouuuiiii et 35

AN Y I (= o U (=S PP PPTRPPPPN 36
3.7.1. BEaN tYPES OFf AIMS FESOUICE ... eeeeeieeeeii ettt ettt ettt e et e e et e e e e b s 37

3.7.2. Declaring aJMS resource USING XML ...coouuiiiiii e 37

R e g T= o= B = o PR PT 37
3.8.1. Declaring an injected field USING aNNOLELIONSiievvineiiiiie e 38
3.8.2. Declaring an injected field USING XIML ..coovuiiiiiii e 38

3.9, INItIAliZEr MELNOAS ...t ettt e e 38
3.9.1. Declaring an initializer method USING BNNOLELIONSuuiiiiiiie e 39
3.9.2. Declaring an initializer method USING XMLoouiiiiiiii e 39
3.9.3. Initializer Method PArAMELEN'Scouuiiieii e e 39

3.10. The @NEW DINAING LY ... iieiei e et e et e et e e e e b s 39
3.11. Support for ComMMON ANNOLELIONSeeeeeie ettt et e e e e b eeeaen s 41
3.12. The Bean 0bject fOr @hEaNiiiii e 41
4. Inheritance, specialization and realiZationccccuiiiiiiiiii e 43
4.1. Inheritance of type-level MEtadalalc.uuiiiiii e 43
4.2. Inheritance of member-level MEtadataloovveuiiiiii 44
4.3, SPECIAIIZALION ...t 45
4.3.1. USING SPECTAIIZALION ...eevviiieiii ettt 46
4.3.2. Direct and indirect SPECIAliZatIONc.uuuiiiiiiii e 46
4.3.3. INCONSIStENt SPECIAIIZALTION ...e.vviiieiii e 47

o < [z (o P UPT 47
AA.1.USING FEAITZALTONiiieiii ettt et e 47

5. Lookup, dependency injection and EL reSOlULIONvviiiiiiiiiiiii e 49
5.1. Unsatisfied and ambiguous dEPenTENCIEScoeeuiniiiii e 49
5.2. Primitive types and NUIT VBIUESuuiiiiii et e 49

JSR-299 Public Review

JSR 299: Web Beans

5.3. Injected referenCe ValIGITYiiieiiiieii e e 49
L O T 0| o0 (=SSP 50
5.4.1. UNproxyable DEaN TYPESceeeeiieii e 50
5.4.2. ClENt ProXY INVOCEHION ... ceeeeieieiii ettt ettt e e et e e e ab e e e e ban s 50

5.5. The default binding at iNJECLION POINESc.uuuiiiiii e 51
5.6, GENENIC LYPE HEEIEIS ... ettt e 52
5.7. ANNOLELiON tYPE HEEIEIS ..eveieeit e e ettt 52
5.8. INjECtion POINE MELAOAIAceuueiieiii e et e e e e e b 53
5.8.1. INjecting INJECLIONPOINTc.uuiiiiiii e et e e b e e e ra s 53

5.9. The MaNager ODJECEoouuiiiiiii ettt e et e e e e e b 54
5.9.1. ReSOIVING AEPENTENCIESceeviiiieiii ettt et e et e e b s 54
5.9.2. Obtaining contextual INSIANCESuuiiiiiii e 55

5.10. DYNAMIC TOOKUD ..ttt ettt e e et e e ettt e e e e bt e e e e b s 56
5.11. Typesafe resolution @ gOrithimoooieiii e 57
5.11.1. Binding annotations With MEMDENSuiiiiii e 58
5.121.2. MUItIPIEDINGINGS ...t e 58

5.12. EL NBME FESOIULION ...eiitieeeeit ettt ettt e et e e et e e e et e e e e bt eeeeban s 59
5.13. Name resolution @lgorithmot 59
6. BEAN [ITECYCIE ...t ettt aaaa 60
6.1. The Contextual INTEITACE iiiii et e e e 60
I O 1= (oo PRSPPI 60
R R B T 1 (o (o PRSP 61
6.4. Lifecycle of SIMPIEDEANScooiiiii 61
6.5. Lifecycle of stateful SESSION DEANSuuiiiiiii e 61
6.6. Lifecycle of stateless session and SiNGleton BEaNSuiiiiiiiiiiii 62
6.7. Lifecycle of producer MELOOScoouuiiiiiii e e 62
6.8. Lifecycle of ProduCer fIEIASc..uu e 63
6.9. LIfECYCIE Of FESOUICESiiitiiee ittt e et e e e et e eeaans 65
6.10. LifECyCle Of IMS FTESOUICESeevti ettt ettt e e et e e et et e et e e e et e eeeaans 65
B.11. LIifECYCIE Of EIBS ...oviiiiiiii ettt ettt e 66
6.12. LIifECYCIE OF SEIVIELS ...t ettt e e eeaans 66
7. 1Nt CEPLOr SANA UECOMBLOIS ... eeiiti ettt ettt ettt ettt ettt et e e e et e e et e e e et reeeaba e eennans 67
7.1 BUSINESS MELNOMS ...ttt ettt et e et et e et e e e e e e aaans 67
A 1111 (0= oo £ TP RPPT 67
7.2.1. BUSINESS MEtNO INLEICEPLOISiiiiitii ettt e eeaans 67

7.2.2. Lifecycle callback INTErCEPLOISccuuiiiiiii e 67

7.2.3. SUPPOIt FOr @INLEICEPLOIS .. .eiitieeeiet ettt et e e et et e eeeaans 68
7.2.4. INterceptor DINAINGS .. .cccuviieiiie e ettt e 68
7.2.4.1. Interceptor binding types with additional interceptor bindingscccoovvvviiiiiiiennnn, 68

7.2.4.2. Interceptor bindings for SLErEOLYPESceevviiiiiii e 68

7.2.5. WED BEANS INTEICEPLONS ..vuiiiiiiiie ettt ettt ettt e e et e e et e e eeaans 69
7.2.5.1. Declaring a Web Beans interceptor using annotationsooeeveeivieeiinneeeiiinneeennnns 69

7.2.5.2. Declaring aWeb Beans interceptor using XMLc.ooviiiiiiiiiiiiiiinieeeei e, 69

7.2.6. Binding a Web Beansinterceptor toasimplebean or EJBcccuiviiiiiiiiiiiiiinieii e, 69
7.2.6.1. Binding a Web Beans interceptor using annotationscoeeeevenieviiiiieeiiiineeennnn. 70

7.2.6.2. Binding aWeb Beansinterceptor using XMLcooouiiiiiiiiiiiiiiiieccei e 70

7.2.7. Interceptor enablement and OFderiNgoouvuiiiiiiiii e 70
7.2.8. The Interceptor object fOr an INtErCEPLONviiiueiieiiei e 71

7.2.9. INLErCEPLOr FESOIULIONeeeti ettt ettt et e et e et e e eeaans 71
7.2.9.1. Interceptors with multiple BINAINGScoovuiiiiiiii e 72

7.2.9.2. Interceptor binding types with MEMDErScouuiiiiiiiiii e 72

7.2.10. INterceptor StACK CrEBLIONuiiiiii e et eaans 73
7.2.11. INLErCEPLOr INVOCAIONvuiiiiiiiie ettt et et e et e e e et e eeeaans 73

AR D= olo - 1o £ TP UPPT 73
7.3.1. Declaring adecorator USiNg anNNOLBLIONScceuuuiiieiiiieeieii et e e e e e e e eeaens 74
7.3.2. Declaring adecorator USING XML ...coeueiiiiii e e 74

7.3.3. Decorator delegate @ttriDULEScoouueiiiiiii e 74

7.3.4. Decorated types Of @ UECOIAIOTcuuuiiiiiii ettt e e e e eaans 75

7.3.5. Decorator enablement and OFderiNgooeuuuiiiiiiii e 75
7.3.6. The Decorator ObjeCt fOr @TECOMEIONc.uuuriiiiiii e 76

7.3.7. DECOIAOr FESOIULIONeeeiti ettt ettt e e et e et e e et e e eeaans 76
7.3.8. DECOrator SEACK CIEALION ieeeeieeeiii et e ettt et e e et e e e e eeaans 76

JSR-299 Public Review

JSR 299: Web Beans

7.3.9. DECOIAOr INVOCELIONeevvieiiiti ettt ettt et e e e e e et et e e et e e e aaa e e eeaans 7

S I Y= 01 PP 78
8.1. Event types and DiNAING tYPESn i 78
8.2. Firing an event viathe Manager INterfaceooouuu i 78
8.3. Observing events viathe ObServer INterfaceoooveuiiiiiiii e 79
8.4. OBSEIVEr NOLITICAION ...ceevtiiieei e ettt e et e e e e b 79
8.5. OBSEIVEr MENOUS ... e ettt e 80
8.5.1. Event parameter of an observer Methoduuiiiiiiiiii e 80
8.5.2. Declaring an observer method USING aNNOLELIONSiiiieiieiiii e 80
8.5.3. Declaring an observer method USING XMLcoovviiiiiiii e 80
8.5.4. Observer Method ParamELErSccouueiiiii e 81
8.5.5. CoNditioNal ODSEIVEN'Suiiiiiii ettt e e e 81
8.5.6. TransaCtional OBSEIVEIScceei i e 81
8.5.7. ASYNCIIONOUS ODSEIVEN'S ... ittt ettt e et e e b 82
8.5.8. Observer object for an observer Methodoviiiiiiiii e 82

8.6. ThE EVENL INEEITACE ... ettt e et e et e e e b 83
8.7. OBSEIVES TESOIULION ... ittt et e et ettt e e ettt e e bt e e e e b as 85
8.7.1. Event binding typesS With MEMDEIScoouuiiiiii e 85
8.7.2. Multiple event DINGINGScoeuii e 86

8.8. IMS BVENE MEPPINGS .t eeetie ettt ettt ettt et e e ettt et e e et aba e e e e et e et e bb e e e e bb e e e eban s 86
9. SCOPES ANA CONTEXESvuieiiiti ettt ettt e ettt e e et e ettt et ettt e et e tb e e e et s e e e e tb s e e e etareeeebeneeennans 87
9.1, The CONEXE INLEITACE ... et et ettt e e et e eeaans 87
9.2. Normal SCOPES AN PSEUAO-SCOPESevvruetitti ettt e ettt e ettt e ettt e e e et e e e et r e e e eaa e e e st e eeeaans 87
9.3. DEPENUENt PSEUAO-SCOPEvuetetti ettt ettt e e et e e et e ettt e et et e et et e e e et e e e eba e e esbanaeeeeaans 88
0.3.1. DEPendent OJECESceeuii i e 89
9.3.1.1. Dependent objectsof asimplebean or EJBooovvviiiiiiiiiiii e 89

9.3.1.2. Dependent objects of aproducer Methodcooviviiiiiiiiiii e, 89

9.3.1.3. Dependent 0bjectS Of @ SErVIEuiiiiiiiii 89

9.3.2. Dependent 0DJECt AESIFUCTIONoiieeeiiieei e 89

9.4. Passivating SCopPes and SErTaliZAHONcouuuuiiiiiii e 90
9.5. Context management for DUITT-iN SCOPEScvuuuiiiiiii e e 90
9.5.1. Request CONLEXE HIFECYCIE ... e 91
9.5.2. SeSSION CONLEXE [IFECYCIE ..uiieiiiie e e 91

9.5.3. Application CONEXE lIFECYCIEuuniiiii e e 91
9.5.4. Conversation CONEXt HIFECYCIE ... iiiiei i e 91

9.6. Context management fOr CUSIOM SCOPESvuuuuuiieiti ettt e ettt e e ettt e ettt e e e et e e et e e et e eeeaans 93
10. XML DASEA MELAOALA ... oeeeetiieeeeii e et e ettt e ettt e et e et e e e e et e e e eabe e eeeebenaeeees 94
10.1. XML namespace for aJaVapackageooveeiuiiiiii e 94
10.2. Stereotype, binding type and interceptor binding type declarationscocvevviiiiiiiiiieiiieeeeeann, 95
10.2.1. Child elements of a stereotype declarationcooceeuuiiiiiiiiiiii e 95
10.2.2. Child elements of an interceptor binding type declarationccccooveiiiiiiiiiiiiiieiiiiineees 96

10.3. BEAN ECIAIAHIONS .. .coviiieiiiie et ettt e e et e e e et e e e e et e eeeat e aee 96
10.3.1. Child elements of abean declarationoooouiiiiiii i 97
10.3.2. Type-level metadatafor abeancooooiiiiiii 97
10.3.3. Bean coNStructor deClarationSc.uuiiiiiiiiieiii e 98
10.3.4. FieldS Of @DEAN ...cooviiiiiii e 98
10.3.5. Field initial value deClarationsoveieiiiiiiiiii et 99
10.3.6. MethodS Of @DEANiiiiiiiee e 100

10.4. Producer method and field deClarationsSoveiiiiiiiii e 101
10.4.1. Child elements of aproducer field declarationccooveiiiiiiiiiiiiii e 101
10.4.2. Child elements of a producer method declarationcoeeuiiieiiiiiniiiii e, 102
10.4.3. Return type and bindings of a producer method or fieldcccoovviiiiiiiii e, 102
10.4.4. Member-level metadata for a producer method or fieldcooveiiiiiiiiiiii 102

10.5. Interceptor and decorator AeCIAIratioNSc.uuueiiiii ettt 103
10.5.1. Decorator delegate @ttribULEoooiiiiiiii e 103

10.6. INJECLioN POINE AECIAIALIONSceeeviee ettt et et e et e e e b s 104
10.7. INliNE DEAN dECIAratiONSiiiiiiiiie et 104
10.8. Specifying bean typesand DindiNgSooiiiiiiiii e 105
10.9. ANNOLELTON MEMDENS ..ottt e et e e et e et e e e et e e et et e e e eaan s 107
10.10. Deployment dECIaratioNScceuuuieiiiii et 107
10.10.1. The <Deploy> deClarationccuuiiierieiiiei e e e e e e e ean s 107
10.10.2. The <Interceptors> deClarationcocvuuuiieiiiii e 108

JSR-299 Public Review

JSR 299: Web Beans

10.10.3. The <Decorators™ deClalrationoveeeeuiieiiiiiie ettt 108
o= 1 o] PSPPI 109
BT] o] (o g = (o] £ T PSPPI 109

11.2. DEPlOoyMENE PrODIEMIS ...ttt ettt e et e ettt e e e et e e e b e e e eaa s 109

11,3, EXECULION BITOFS ...eeeiti ettt e e ettt e ettt e e ettt e e ettt e e e et e e ettt e e e e et e e et et e e e e et e e et e bb e e e e ebanas 110

12. Packaging and deployMENTcoouuiiiiii e 111
12.1. DePloymMeNt HIFECYCIE ...niii e e 111

12.2. BEAN TISCOVEY ...ttt e e ettt e e et b e e et et e e e e et e e e et b e e e eban s 111

12.3. BEAN FEGISIIAION ...iiiiiieieii ettt e et e ettt e e et e e et e e et e e b 112

12.4. Providing additional XML based metadatavveiiiiiiiiii e 112

12.5. Initialization and deplOyMENt EBVENTESiiiii e 112

12.6. Child CONLAINEIS ...ttt e et e e et e e et et e e e e et e e e e et e e e e eaan s 113
12.6.1. CUITENE CONLBINEYtuueieiti ettt et e et e et b e e et et e e e et e e e e e aeeeeaan s 114

JSR-299 Public Review

Chapter 1. Architecture

Web Beans provides a powerful new set of services to Java EE components. This specification defines:

« The lifecycle and interactions of stateful components bound to well-defined contexts, where the set of contexts is ex-
tensible

* A sophisticated, typesafe dependency injection mechanism, including a facility for choosing between various compon-
ents that implement the same Java interface at deployment time

* Integration with the Unified Expression Language (EL), allowing any component to be used directly within a JSF or
JSP page

« Generalization of the method and component lifecycle interceptors defined by EJB 3.0 to other kinds of components,
along with an improved approach to binding interceptors to components and a new type of interceptor, called a decor-
ator

< An event notification model
« A web conversation context in addition to the three standard web contexts defined by the Java Servlet specification

* An SPI alowing third-party frameworks that execute in the Java EE environment to integrate cleanly with Web Beans

To take advantage of these facilities, the Java EE component developer provides additional component-level and applica-
tion-level metadata in the form of Java annotations and/or XM L -based deployment descriptors.

A Java EE component is called a bean if instances of the component may be bound to a Web Beans context and injected
into other components. Web Beans supports various kinds of beans, including EJB 3 session beans, JavaBeans and Java
EE resources. An instance of a bean that is bound to a context is called a contextual instance of the bean. Contextual in-
stances may be injected into other Java EE components by the Web Beans dependency injection service.

The use of Web Beans significantly simplifies the task of creating Java EE applications by integrating the Java EE web tier
with Java EE enterprise services. In particular, Web Beans allows EJB 3 components to be used as JSF managed beans,
thus integrating the programming models of EJB and JSF.

It's even possible for third-party frameworks to integrate with Web Beans. Any framework may provide beans to, or obtain
beans from, the Web Beans dependency injection service.

1.1. Contracts

This specification defines the responsibilities of:

« the application developer who uses the functionality provided by Web Beans, along with

» the responsibilities of the vendor who implements the functionality defined by this specification and provides a
runtime environment in which the application executes.

This runtime environment is called the container. The container may be a Java EE container or an embeddable EJB Lite
container.

1.2. Supported environments

An application that takes advantage of the functionality provided by Web Beans may be designed to execute in either the
Java EE 6, Java EE 5 or Java SE environments. If the application executes in a Java SE environment, the embeddable EJB
Lite container provides Java EE services such as transaction management and persistence.

Any Java EE 5 compliant container may support Web Beans. However, certain functionality defined by this specification
is optional for Java EE 5 containers. Thisis the case only when explicitly noted in this specification.

Java EE 6 and embeddable EJB Lite containers must support all functionality defined by this specification.

JSR-299 Public Review 1

Architecture

1.3. Relationship to other specifications

An application developer using Web Beans creates Java EE components such as EJBs, Servlets and JavaBeans and then
provides additional Web Beans metadata that defines additional behavior in terms of the Web Beans context model. These
components may take advantage of the services defined by this specification, together with the enterprise and presentation-
al aspects defined by other Java EE platform technologies.

In addition, this specification defines an SPI that allows aternative, non-platform technologies to integrate with Web
Beans, for example, alternative web presentation technol ogies.

Open issue: the annotations for dependency injection, scope and interceptor binding are currently defined in the package
j avax. webbeans. To make these annotations more easily consumable by other specifications, should they instead be cat-
egorized by concern into packages such asj avax. dependency, j avax. cont ext s and j avax. i nt er cept ors?

1.3.1. Relationship to EJB

EJB defines a programming model for application components that access transactional resources in a multi-user environ-
ment. EJB allows concerns such as role-based security, transaction demarcation, concurrency and scalability to be spe-
cified declaratively using annotations and XML deployment descriptors and enforced by the EJB container at runtime.

EJB components may be stateful, but are not by nature contextual. References to stateful component instances must be ex-
plicitly passed between clients and stateful instances must be explicitly destroyed by the application.

Web Beans enhances the EJB component model with contextual lifecycle management and other Web Beans services.

Any session bean instance obtained via the Web Beans dependency injection service is a contextual instance of the bean. It
is bound to a context and available to other beans that execute in that context. The container automatically creates the in-
stance when it is needed by aclient. When the context ends, the container automatically destroys the instance.

Additionally, the container provides certain Web Beans services, including dependency injection, interceptors and decorat-
orsto al EJB instances, even non-contextua instances which were not obtained via the Web Beans dependency injection
service. Any EJB instance may inject other beans via the Web Beans dependency injection service.

Message-driven and entity beans are by nature not contextual objects may not be injected into other components.

1.3.2. Relationship to JSF

JavaServer Faces is aweb-tier presentation framework that provides a component model for graphical user interface com-
ponents, a managed bean component model for application logic, and an event-driven interaction model that binds the two
component models. The managed bean component model is a contextual model where managed beans are bound to one of
the three web tier contexts and may hold contextua state.

Web Beans allows any bean to fulfill the role of the managed bean in a JSF application. Thus, a JSF application may take

advantage of the more sophisticated context and dependency injection model defined by this specification. JSF pages dir-
ectly access beans, including EJB session beans, using Unified EL .

1.3.3. Relationship to Java Servlets and JSP

Servlets are by nature not contextual objects and may not be injected into other components. However, in the Java EE 6
environment, Servlets may inject beans via the Web Beans dependency injection service.

JSP pages directly access beans using Unified EL .
1.4. Introductory examples
The following examples demonstrate the Web Beans programming model.

1.4.1. JSF example

The following JSF page defines alogin prompt for aweb application:

JSR-299 Public Review 2

Architecture

<f:view>
<h: f ormp
<h: panel Gid col ums="2" rendered="#{!1ogin.| oggedl n}">
<h: out put Label for="usernanme">User nane: </ h: out put Label >
<h:input Text id="usernane" val ue="#{credential s. usernane}"/>
<h: out put Label for="passwor d">Passwor d: </ h: out put Label >
<h: i nput Text id="password" val ue="#{credential s. password}"/>
</ h: panel G'i d>
<h: commandBut t on val ue="Logi n" action="#{login.login}" rendered="#{!1ogin.| oggedln}"/>
<h: commandBut t on val ue="Logout" aci on="#{l ogi n. | ogout}" rendered="#{l ogi n.| oggedl n}"/>
</ h:form
</f:view

The Unified EL expressionsin this page refer to beans named cr edenti al s and | ogi n.
The credenti al s classis abean whose lifecycle is bound to the JSF request:

@nbde

public class Credentials {

private String usernane;
private String password;

public String getUsernane() { return usernane;
public void setUsername(String usernanme) { this.usernane = usernane; }

public String getPassword() { return password; }
public void setPassword(String password) { this.password = password; }

The @nbdel annotation is a stereotype that identifies the credenti al s class as a bean which acts as a model object in an
MV C architecture.

The Logi n classis abean whose lifecycle is bound to the HTTP session:

@sessi onScoped @bde
public class Login {

@urrent Credentials credentials;
@er si st enceCont ext EntityManager user Dat abase;

private User user;
public void login() {

Li st <User> results = userDat abase. creat eQuery(
"select u from User u where u.usernane=:usernane and u. passwor d=: password")
. set Paranet er ("usernanme”, credentials.getUser Nanme())
. set Par anet er ("password", credentials.getPassword())
.getResul tList();

if ('results.isEnpty()) {
user = results.get(0);

}

}

public void | ogout() {
user = null;

}

publ i c bool ean isLoggedln() {
return user!=null
}

@r oduces @uoggedln User getCurrentUser() {
if (user==null)
t hrow new Not Loggedl nException();

el se {
return user;
}

The @essi onScoped annotation is a scope type that specifies the lifecycle of instances of Logi n.

JSR-299 Public Review 3

Architecture

The @our rent annotation is a binding annotation and causes the Cr edent i al s bean to be injected into an instance of Logi n
when it is created by the container.

The Common Annotations @er si st enceCont ext annotation causes a JPA Enti t yManager to beinjected by the container.

The @ogged! n annotation is aso a binding annotation. The method annotated @r oduces is a producer method, which
will be called whenever another bean in the system needs the currently logged-in user, for example, whenever the user at-
tribute of the Docunent Edi t or classisinjected by the container:

@ndel
public class Document Editor {

@current Docunent documnent;
@oggedl n User user;
@er si st enceCont ext EntityManager docDat abase;

public void save() {
docunent . set Cr eat edBy(current User) ;
em per si st (docunent) ;

}

When the login form is submitted, JSF sets the entered username and password onto an instance of the cr edenti al s bean
that is automatically instantiated and provided by the container. Next, JSF calls the | ogi n() method on an instance of Lo-
gi n that is automatically instantiated and provided by the container. This instance continues to exist for and be available to
other requests in the same HTTP session, and provides the User object representing the current user to any other bean that
requiresit (for example, Docurrent Edi t or). If the producer method is called before the | ogi n() method initializes the user
object, it throws aNot Logged| nExcept i on.

1.4.2. EJB example
Our Logi n class may take advantage of the functionality defined by EJB:

@bt at ef ul @bessi onScoped @vbdel
public class Login {

@urrent Credentials credentials;
@Per si st enceCont ext EntityManager user Dat abase;

private User user;
@ransact i onAttri but e(REQUI RES_NEW

@Rol esAl | owed(" guest")
public void login() {

}

public void logout() {
user = null;

}

publ i c bool ean isLoggedln() {
return user!=null;

@Rol esAl | owed("user")
@r oduces @uoggedln User getCurrentUser() {

}
}

The @t at ef ul annotation specifies that this bean is an EJB stateful session bean. The @ransactionAttribute and
@0l esAl | owed annotations declare the EJB transaction demarcation and security attributes.

1.4.3. Interceptor example

Interceptors allow common, cross-cutting concerns to be applied to beans via custom annotations. Interceptor types may
be individually enabled or disabled at deployment time.

The Aut hori zati onl nt er cept or class defines a custom authorization check:

JSR-299 Public Review 4

Architecture

@secure @ nterceptor
public class Authorizationlnterceptor {

@oggedl n User user;

@\r oundl nvoke public void authorize(lnvocationContext ic) {
try {
if (luser.isBanned()) {
System out. println("Authorized");
i c.proceed();

}

el se {
System out. println("Not authorized");
t hrow new Not Aut hori zedExcepti on();

}

catch (Not Aut henti cat edExcepti on nae) {
System out. println("Not authenticated");
t hr ow nae;

The @ nt er cept or annotation identifies the Aut hori zat i onl nt er cept or class as an interceptor. The @ecur e annotation
isacustom interceptor binding type.

@ nt er cept or Bi ndi ngType
@rar get ({ TYPE, METHOD})
@Ret ent i on(RUNTI VE)

public @nterface Secure {}

The @ecur e annotation is used to apply the interceptor to a bean:

@nbdel

public class Docunent Editor {
@urrent Docunent docunent;
@oggedl n User user;
@er si st enceCont ext EntityManager em
@ecur e
public void save() {

docunent . set Cr eat edBy(current User) ;
em per si st (docunent) ;

When the save() method is invoked, the aut hori ze() method of the interceptor will be called. The invocation will pro-
ceed to the Docunent Edi t or class only if the authorization check is successful.

1.4.4. Decorator example

Decorators are similar to interceptors, but apply only to beans of a particular Java interface. Like interceptors, decorators
may be easily enabled or disabled at deployment time. Unlike interceptors, decorators are aware of the semantics of the in-
tercepted method.

For example, the Dat aAccess interface might be implemented by many beans:

public interface DataAccess {

public oject |oad(Object id);
public Object getld();

public void save();
public void delete();

public C ass getDataType();

The Dat aAccessAut hori zat i onDecor at or class defines the authorization checks:

@Decor at or

JSR-299 Public Review 5

Architecture

public abstract class DataAccessAut hori zati onDecor at or
i mpl enent s Dat aAccess {

@ecor at es Dat aAccess del egat e;
@oggedl n User user;

public void save() {
aut hori ze("save");
del egat e. save();

}

public void delete() {
aut hori ze("del ete");
del egat e. del ete();

}

private void authorize(String action) {
try {
oj ect id = del egate. getld();
Cl ass type = del egate. get Dat aType();
if (user.hasPerm ssion(action, type, id))

{
}

el se {
System out. println("Not authorized for " + action);
t hr ow new Not Aut hori zedExcepti on(action);

Systemout. println("Authorized for " + action);

}

catch (Not Aut henti cat edException nae) {
System out. println("Not authenticated");
t hrow nae;

The @ecor at or annotation identifies the Dat aAccessAut hori zati onDecor at or class as a decorator. The @ecor at es an-
notation identifies the delegate attribute, which the decorator uses to delegate method calls to the container. The decorator
applies to any bean that implements Dat aAccess.

The decorator intercepts invocations just like an interceptor. However, unlike an interceptor, the decorator contains func-
tionality that is specific to the semantics of the method being called.

Decorators may be declared abstract, relieving the developer of the responsibility of implementing all methods of the dec-
orated interface. If a decorator does not implement a method of a bean type, the decorator will simply not be called when
that method isinvoked upon the decorated bean.

JSR-299 Public Review 6

Chapter 2. Bean definition

A Java EE component is a bean if the lifecycle of its instances may be managed by the container according to the Web
Beans context model. A bean may bear Web Beans-specific metadata defining its lifecycle and interactions with other
components.

Speaking more abstractly, a bean is a source of contextual objects which define application state and/or logic. These ob-
jects are called contextual instances of the bean. The container creates and destroys these instances and associates them
with the appropriate context. Contextual instances of a bean may be injected into other objects (including other bean in-
stances) that execute in the same context, and may be used in EL expressions that are evaluated in the same context.

A bean comprises the following attributes:

e A (nonempty) set of bean types
* A (nonempty) set of bindings

» A scope

e A deployment type

e Optionally, abean name

e A set of interceptor bindings

¢ A bean implementation

In most cases, a bean developer provides the bean implementation by writing business logic in Java code. The devel oper
then defines the remaining attributes by providing additional Web Beans specific metadata, or by allowing them to be de-
faulted by the container. In certain other cases, for example resources defined in Section 3.6, “Resources’, the developer
provides only the Web Beans specific metadata and the bean implementation is provided by the container.

It is sometimes convenient to use XML instead of annotations to define this metadata. The beans. xni file format defined
in Chapter 10, XML based metadata supports XML declaration of beans.

A bean implementation may be a Java class, an EJB session bean class, a producer method or field or a proxy object for a
resource, as specified in Chapter 3, Bean implementation. The other attributes of the bean are either:

» declared explicitly by annotating the implementation class,

e declared explicitly inbeans. xm , or

« defaulted by the container.

The deployment type, bean types and bindings of a bean determine where itsinstances will be injected by the container.

The bean developer may also create interceptors and/or decorators or reuse existing interceptors and/or decorators. Thein-
terceptor bindings of a bean determine which interceptors will be applied at runtime. The bean types and bindings of a
bean determine which decorators will be applied at runtime. Interceptors, decorators and interceptor bindings are specified
in Chapter 7, Interceptors and decorators.

A bean implementation may produce or consume events. The event notification facility is specified in Chapter 8, Events.

2.1. Functionality provided by the container to the bean

A bean is provided by the container with the following capabilities:

« transparent creation and destruction and scoping to a particular context, specified in Chapter 6, Bean lifecycle and
Chapter 9, Scopes and contexts,

« scoped resolution by bean type and binding annotation type when injected into a Java-based client, as defined by Sec-
tion 5.9.1, “Resolving dependencies’,

JSR-299 Public Review 7

Bean definition

» scoped resolution by name when used in a Unified EL expression, as defined by Section 5.12, “EL name resolution”,
« lifecycle callbacks and automatic injection of other bean instances, specified in Chapter 3, Bean implementation,
« method interception, callback interception, and decoration, as defined in Chapter 7, Interceptors and decorators, and

« event notification, as defined in Chapter 8, Events.

2.2. Bean types

A bean type defines a client-visible type of the bean. A bean may have multiple bean types. For example, the following
bean has three bean types:

public cl ass BookShop
ext ends Busi ness
i npl enent s Shop<Book> {

}
The bean types are Book Shop, Busi ness and Shop<Book>.

Meanwhile, this session bean has only the local interfaces BookShop and Audi t abl e as bean types, since the bean classis
not a client-visible type.

@t at ef ul
public class BookShopBean
ext ends Busi ness
i npl enent s BookShop, Auditable {

}
Therules for determining the set of bean types for abean are defined in Chapter 3, Bean implementation.

The bean types of abean are used by the resolution algorithms defined in Chapter 5, Lookup, dependency injection and EL
resolution.

A bean type may be a parameterized type with an actual type parameter. For the purposes of the typesafe resolution al-
gorithm defined in Section 5.11, “ Typesafe resolution algorithm”, parameterized bean types are considered identical by the
container only if both the type and the type parameters (if any) areidentical.

However, bean types may not declare a type variable or wildcard. If the type of an injection point is a parameterized type
with atype variable or wildcard, aDefi ni ti onExcept i on isthrown by the container at deployment time.

Aside from this restriction, almost any Java type may be a bean type of a bean:

* A bean type may be an interface, a concrete class or an abstract class, and may be declared final or have final methods.
* A bean type may be an array type. Two array types are considered identical only if the element typeisidentical.

< A bean type may be a primitive types. Primitive types are considered to be identical to their corresponding wrapper
typesinj ava. | ang.

However, certain additional restrictions are specified in Section 5.4.1, “Unproxyable bean types’ for beans with a normal
scope, as defined in Section 9.2, “Normal scopes and pseudo-scopes”.

All beans have the bean typej ava. | ang. Obj ect .

A client of abean may typecast its reference to any instance of the bean to any bean type of the bean. For example, if our
simple bean was injected to the following field:

@Current Shop<Book> bookShop;

Then the following typecast islegal and will not result in an exception:

Busi ness biz = (Business) bookShop;

JSR-299 Public Review 8

Bean definition

Likewise, if our session bean was injected to the following field:

@current BookShop bookShop;

Then the following typecast islegal and will not result in an exception:

Audi t abl e aud = (Auditabl e) bookShop;

2.3. Bindings

For a given bean type, there may be multiple beans which implement the type. For example, an application may have two
implementations of the interface Paynent Processor :

cl ass SynchronousPaynent Processor
i npl enent s Paynent Processor {

cl ass Asynchr onousPaynent Processor
i mpl enents Paynent Processor {

}

A client that needs a Paynent Processor that processes payments synchronously needs some way to distinguish between
the two different implementations. One approach would be for the client to explicitly specify the class that implements that
Payment Processor interface. However, this approach creates a hard dependence between client and implementa
tion—exactly what use of the interface was designed to avoid!

A binding type represents some client-visible semantic associated with a type that is satisfied by some implementations of
the type (and not by others). For example, we could introduce binding types representing synchronicity and asynchron-
icity. In Java code, binding types are represented by annotations.

@ynchr onous
cl ass SynchronousPaynent Processor
i mpl enents Paynent Processor {

@\synchr onous
cl ass Asynchr onousPaynent Processor
i mpl enents Paynent Processor {

}

Finally, binding types are applied to injection points to distinguish which implementation is required by the client. For ex-
ample, when the container encounters the following injected field, an instance of Synchr onousPaynent Processor will be
injected:

@ynchronous Paynent Processor paynent Processor;

But in this case, an instance of Asynchr onousPaynent Processor Will beinjected:

@\synchronous Paynent Processor payment Processor;

The container inspects the binding annotations and type of the injected attribute to determine the bean instance to be injec-
ted, according to the resolution algorithm defined in Chapter 5, Lookup, dependency injection and EL resolution.

Binding types are also used as event selectors by observers of events, as defined in Chapter 8, Events, and to bind decorat-
orsto beans, as specified in Section 7.3, “Decorators’.

2.3.1. Default binding type

If a bean does not explicitly declare a binding, the bean has exactly one binding, of type: j avax. webbeans. Current. This
is called the default binding.

JSR-299 Public Review 9

Bean definition

The following declarations are equivalent:

@cur r ent
public class Oder {}

public class Oder {}

The default binding is aso assumed for any injection point that does not explicitly declare a binding. The following declar-
ations are equivalent:

public class Oder {
public Oder(@urrent OrderProcessor processor) { ... }
}

public class Oder {
public Order(OrderProcessor processor) { ... }

2.3.2. Defining new binding types

A binding type is a Java annotation defined as @rarget ({ METHOD, FIELD, PARAMETER, TYPE}) and
@Ret ent i on(RUNTI MVE) .

A binding type may be declared by specifying the @i ndi ngType meta-annotation.

@Bi ndi ngType

@Ret ent i on(RUNTI ME)

@rar get ({ MVETHOD, FI ELD, PARAMETER, TYPE})
public @nterface Synchronous {}

@Bi ndi ngType

@Ret ent i on(RUNTI MVE)

@ar get ({ METHOD, FI ELD, PARAMETER, TYPE})
public @nterface Asynchronous {}

Alternatively, the @i ndi ngType meta-annotation may be omitted, and the binding type may be declared in beans. xni .

<nyapp: Synchr onous>
<Bi ndi ngType/ >
</ nyapp: Synchr onous>

A binding type may define annotation members.

@i ndi ngType
@Ret ent i on(RUNTI ME)
@ar get ({ METHOD, FI ELD, PARAMETER, TYPE})
public @nterface PayBy {
Paynent Met hod val ue();

Binding annotation member values are significant to the typesafe resolution algorithm.

2.3.3. Declaring the bindings of a bean using annotations
A bean's bindings are declared by annotating the implementation class or producer method or field with the binding types.

@.DAP
cl ass LdapAut henti cat or
i npl enents Aut henticator {

public class Shop {

@°r oduces @A |
public List<Product> getAllProducts() { ... }

@°r oduces @N shlLi st
public List<Product> getWshList() { }

JSR-299 Public Review 10

Bean definition

@°r oduces @shoppi ngCar't
public List<Product> getShoppingCart() { }

}
Any bean may declare multiple binding types.

@ynchronous @Rel i abl e
cl ass SynchronousRel i abl ePaynent Processor
i mpl enents Paymnent Processor {

2.3.4. Declaring the bindings of a bean using XML

If abeanisdeclared in beans. xni , bindings may be specified using the binding type names:

<myapp: Synchr onousPaynment Pr ocessor >
<myapp: Synchr onous/ >
<nmyapp: Rel i abl e/ >

</ myapp: Synchr onousPaynent Pr ocessor >

2.3.5. Specifying bindings of an injected field

Binding types may be applied to injected fields (see Section 3.8, “Injected fields") to determine the bean that is injected,
according to the typesafe resol ution algorithm defined in Section 5.11, “ Typesafe resolution algorithm”.

@.DAP Aut henticat or authenticator;

A bean may only be injected to an injection point if it has all the bindings of the injection point.

@ynchronous @Rel i abl e Paynment Processor paynent Processor;
@\ | List<Product> cat al og;

@N shLi st List<Product> wi shLi st;

@hoppi ngCart List<Product> cart;

For a bean defined in XML, the bindings of afield may be specified using XML:

<nmyapp: paynment Pr ocessor >
<nyapp: Paynent Pr ocessor >
<myapp: Asynchr onous/ >
<myapp: Rel i abl e/ >
</ myapp: Paynent Processor >
</ nyapp: paynment Processor >

When the bindings of afield are specified using XML, any binding annotations of the field are ignored.

2.3.6. Specifying bindings of a method or constructor parameter

Binding types may be applied to parameters of producer methods, initializer methods, disposal methods or bean construct-
ors (see Chapter 3, Bean implementation) to determine the bean instance that is passed when the method is called by the
container. The container uses the typesafe resolution algorithm defined in Section 5.11, “ Typesafe resolution algorithm” to
determine values for these parameters.

For example, when the container encounters the following producer method, an instance of Synchr onousPayment Pr o-
cessor Will be passed to the first parameter and an instance of Asynchr onousPaynent Processor Will be passed to the
second parameter:

@r oduces
Payment Processor get Payment Processor (@ynchr onous Payment Processor sync,
@\synchronous Paynment Processor async) {
return i sSynchronous() ? sync : async;

JSR-299 Public Review 11

Bean definition

}

For a bean defined in XML, the bindings of a method parameter may be specified using XML:

<nyapp: get Paynment Pr ocessor >
<Pr oduces/ >
<nyapp: Paynent Pr ocessor >
<nmyapp: Synchr onous/ >
</ myapp: Paynent Processor >
<nyapp: Paynent Pr ocessor >
<myapp: Asynchr onous/ >
</ myapp: Paynent Processor >
</ nyapp: get Paynment Pr ocessor >

When the bindings of a parameter are specified using XML, any binding annotations of the parameter are ignored.

2.4. Scopes

Unlike JSF managed beans, Java EE components such as Servlets, EJBs and JavaBeans do not have a well-defined scope.
These components are either:

» gingletons, such as EJB singleton beans, whose state is shared between all clients,
« stateless objects, such as Servlets and statel ess session beans, which do not contain client-visible state, or

e objects that must be explictly created and destroyed by their client, such as JavaBeans and stateful session beans,
whose state is shared by explicit reference passing between clients.

Scoped objects, by contrast, exist in awell-defined context:

« they may be automatically created when needed and then automatically destroyed when the context in which they were
created ends, and

« their stateis automatically shared by clients that execute in the same context.

All beans have a scope. The scope of a bean determines the lifecycle of its instances, and which instances of the bean are
visible to instances of other beans, as defined in Chapter 9, Scopes and contexts. A scope type is represented by an annota-
tion type.

For example, an object that represents the current user is represented by a session scoped object:

@r oduces @essi onScoped User getCurrentUser() { ... }

An object that represents an order is represented by a conversation scoped object:

@Conver sat i onScoped
public class Oder {

}

A list that contains the results of a search screen might be represented by a request scoped object:

@r oduces @Request Scoped @Naned("orders")
Li st <Order> get Order SearchResults() { ... }

The set of scope typesis extensible.

2.4.1. Built-in scope types

There are several standard scope types defined by this specification. The @equest Scoped, @ppl i cati onScoped and
@essi onScoped annotations defined in Section 9.5, “Context management for built-in scopes’ represent the standard
scopes defined by the Java Servlets specification. The @onver sat i onScoped annotation represents the conversation scope
defined in Section 9.5.4, “Conversation context lifecycle”. In addition, there is the @ependent pseudo-scope for depend-
ent objects, as defined in Section 9.3, “ Dependent pseudo-scope”.

JSR-299 Public Review 12

Bean definition

2.4.2. Defining new scope types

A scope type is a Java annotation defined as @rar get ({ TYPE, METHOD, FIELD}) and @Ret enti on(RUNTI ME) . All scope
types must also specify the @copeType meta-annotation.

For example, the following annotation declares a "business process scope”:

@copeType
@ar get ({ TYPE, METHOD, FIELD})

@Ret ent i on(RUNTI ME)
public @nterface Busi nessProcessScoped {}

An application or third-party framework might provide a context implementation for this custom scope (see Section 9.6,
“Context management for custom scopes’).

2.4.3. Declaring the bean scope using annotations

The bean's scope is defined by annotating the implementation class or producer method or field with a scope type.

A bean implementation class or producer method or field may specify at most one scope type annotation. If an implement-
ation class or producer method or field specifies multiple scope type annotations, a Def i ni ti onExcept i on iSthrown by the
container at deployment time.

The following examples demonstrate the use of built-in scope types:

@Request Scoped
public class ProductlList inplenments DatalMdel { ... }

public class Shop {

@°r oduces @bessi onScoped @N shLi st
public List<Product> getWshList() { }

@°r oduces @onver sati onScoped @hoppi ngCart
public List<Product> getShoppingCart() { }

}

Likewise, a bean with the custom business process scope may be declared by annotating it with the
@usi nessPr ocessScoped annotation:;

@usi nessProcessScoped
public class Oder {

}

Alternatively, a scope type may be specified using a stereotype annotation, as defined in Section 2.7.2, “ Declaring the ste-
reotypes for a bean using annotations’.

2.4.4. Declaring the bean scope using XML
If the bean is declared in beans. xni , the scope may be specified using the scope annotation type name:

<myapp: Product Li st >
<Request Scoped/ >
</ myapp: Product Li st >

If more than one scope typeis specified in XML, aDef i ni ti onExcept i on isthrown by the container at deployment time.

Alternatively, a scope type may be specified using a stereotype declared in XML, as defined in Section 2.7.3, “Declaring
the stereotypes for abean using XML”.

2.4.5. Default scope

When no scope is explicitly declared by annotating the implementation class or producer method or field, or by using
XML, the scope of abean is defaulted.

JSR-299 Public Review 13

Bean definition

The default scope for a bean which does not explicitly declare a scope depends upon its declared stereotypes:

< |f the bean does not declare any stereotype with a declared default scope, the default scope for the bean is @ependent .

e |If all stereotypes declared by the bean that have some declared default scope have the same default scope, then that
scope is the default scope for the bean.

« If there are two different stereotypes declared by the bean that declare different default scopes, then there is no default
scope and the bean must explicitly declare a scope. If it does not explicitly declare a scope, aDef i ni ti onException is
thrown by the container at deployment time.

If abean explicitly declares a scope, any default scopes declared by stereotypes are ignored.

2.5. Deployment types

In many applications, there are various implementations of a particular type, and the implementation used at runtime varies
between different deployments of the system. Therefore, a developer may associate a particular implementation of a bean
type with a certain deployment scenario.

A deployment type represents a deployment scenario. Beans may be classified by deployment type, and thereby associated
with various deployment scenarios.

Deployment types allow the container to identify which beans should be enabled for use in a particular deployment of the
system. The deployment type also determines the precedence of a bean, used by the resolution algorithms specified in
Chapter 5, Lookup, dependency injection and EL resolution.

The set of deployment typesis extensible.

2.5.1. Built-in deployment types

There are two standard deployment types defined by this specification: @r oduct i on and @t andar d.

All standard beans defined by this specification, and provided by the container, are defined using the @t andar d deploy-
ment type. For example, the Conver sat i on object defined in Section 9.5.4, “Conversation context lifecycle” and the van-
ager object defined in Section 5.9, “The Manager object” have this deployment type. No bean may be declared with the
@t andar d deployment type unless explicitly required by this specification.

Application beans may be defined using the @r oduct i on deployment type.

2.5.2. Defining new deployment types

A deployment type is a Java annotation defined as @rar get ({ TYPE, METHOD, FIELD}) and @et enti on(RUNTI ME) . All de-
ployment types must also specify the @epl oynent Type meta-annotation.

Applications and third-party frameworks may define their own deployment types. For example, the following deployment
type might identify beans which are used only at a particular site at which the application is deployed:

@epl oynment Type

@rarget ({ TYPE, METHOD, FIELD})
@Ret ent i on(RUNTI ME)

public @nterface Australian {}

This deployment type might be used by a third-party framework that integrates with the container:

@epl oyment Type

@rarget ({ TYPE, METHOD, FIELD})
@Ret ent i on(RUNTI MVE)

public @nterface DaoFranmework {}

This deployment type might be used to define mock objects for integration testing:

@epl oynment Type
@rarget ({ TYPE, METHOD, FIELD})
@Ret ent i on(RUNTI VE)

JSR-299 Public Review 14

Bean definition

public @nterface Mk {}

2.5.3. Declaring the deployment type of a bean using annotations
The deployment type of the bean is declared by annotating the implementation class or producer method or field.

An implementation class or producer method or field may specify at most one deployment type. If multiple deployment
type annotations are specified, aDef i ni ti onExcepti on isthrown by the container at deployment time.

Open issue: is this too restrictive? We could allow multiple deployment types to be specified, and ignore all but the
highest-precedence enabled deployment type.

This bean has the deployment type @r oduct i on:

@r oduct i on
public class Oder {}

This bean has the deployment type @bck:

@bck
public class MickOrder extends Order {}

By default, if no deployment type annotation is explicitly specified, a producer method or field inherits the deployment
type of the bean in which it is defined.

This producer method has the deployment type @r oduct i on:

@r oducti on
public class Login {

@°r oduces
public User getUser() { ... }

}
This producer method has the deployment type @ust ral i an:

@°r oducti on
public class TaxPolicies {

@roduces @\wustralian
public TaxPolicy getAustralianTaxPolicy() { ... }

}

Alternatively, a deployment type may be specified using a stereotype annotation, as defined in Section 2.7.2, “Declaring
the stereotypes for a bean using annotations’.

2.5.4. Declaring the deployment type of a bean using XML
When a bean is declared in beans. xm , the deployment type may be specified using atag with the annotation type name:

<nyapp: Austral i anTaxPol i cy>
<depl oynent : Austral i an/ >
</ nyapp: Austr al i anTaxPol i cy>

If more than one deployment type is specified in XML, aDefi ni ti onExcept i on isthrown by the container at deployment
time.

Alternatively, a deployment type may be specified using a stereotype declared in XML, as defined in Section 2.7.3,
“Declaring the stereotypes for a bean using XML".

2.5.5. Default deployment type

When no deployment type is explicitly declared by annotating the implementation class or producer method or field, or by

JSR-299 Public Review 15

Bean definition

use of XML, the deployment type is defaulted.

The default deployment type for a bean which does not explicitly declare a deployment type depends upon its declared ste-
reotypes:

e |f abean does not declare any stereotype with a declared default deployment type, then the default deployment typeis
@r oducti on.

« Otherwise, the default deployment type for the bean is the highest-precedence default deployment type declared by any
stereotype declared by the bean.

Thus, the following declarations are equivalent:

@Pr oducti on
public class Oder {}

public class Oder {}

If abean explicitly declares a deployment type, any default deployment type declared by stereotypes are ignored.

2.5.6. Enabled deployment types

In a particular deployment, only some deployment types are enabled. Beans declared with a deployment type that is not
enabled are not available to the resolution algorithms defined in Chapter 5, Lookup, dependency injection and EL resolu-
tion.

The container inspects the deployment type of each bean that exists in a particular deployment (see Section 12.2, “Bean
discovery”) to determine whether the bean is enabled in this deployment. If the deployment type is enabled, an instance of
the bean may be obtained by lookup, injection or EL resolution. Otherwise, the bean is never instantiated by the container.

By default, only the built-in deployment types are enabled. To enable a custom deployment type, a <Depl oy> €lement must
beincluded in abeans. xni file and the deployment type must be declared using the annotation type name.

<WebBeans>
<Depl oy>
<St andar d/ >
<Pr oducti on/ >
<nyf wk: DaoFr amewor k/ >
<depl oynent : Austral i an/ >
<nyf wk: Mock/ >
</ Depl oy>
</ WbBeans>

If a<Depl oy> element is specified, only the explicitly declared deployment types are enabled. The @t andar d deployment
type must be declared. If the @t andar d deployment type is not declared, a Depl oynent Except i on is thrown by the con-
tainer at deployment time.

If no <Depl oy> element is specified in any beans. xni file, only the @t andar d and @r oduct i on deployment types are en-
abled.

If the <Depl oy> element is specified in more than one beans. xm document, a Depl oynent Except i on isthrown by the con-
tainer at deployment time.

2.5.7. Deployment type precedence

In aparticular deployment, all enabled deployment types are strongly ordered in terms of precedence. The precedence of a
deployment type is used by the resolution algorithms defined in Chapter 5, Lookup, dependency injection and EL resolu-
tion.

If a<Depl oy> element is specified, the order of the deployment type declarations determines the deployment type preced-
ence. Deployment types which appear later in this list have a higher precedence than deployment types which appear earli-
er. The @t andar d deployment type must appear first and always has the lowest precedence of any deployment type.

If no <Depl oy> element is specified, the @r oduct i on deployment type has a higher precedence than the @t andar d de-

JSR-299 Public Review 16

Bean definition

ployment type.

2.6. Bean names

A bean may have a bean name. A bean with a name may be referred to by its bean name in Unified EL expressions. A val-
id bean name is a period-separated list of valid EL identifiers.

There is no relationship between the bean name of a session bean and the EJB name of the bean.
In certain circumstances, multiple beans may share the same name.

Names are used by the EL name resolution algorithm defined in Section 5.11, “Typesafe resolution agorithm”. This al-
lows a bean to be used directly in a JSP or JSF page.

For example, a bean with the name pr oduct s could be used like this:

<h: out put Text val ue="#{products.total }"/>

Resources and JM S resources do not have names.

2.6.1. Declaring the bean name using annotations

To specify the name of a bean, the @aned annotation is applied to the implementation class or producer method or field.
This bean is named pr oduct s:

@Narred(" pr oduct s")
public class ProductList inplements DataMbdel { ... }

If the @amed annotation does not specify the val ue member, the default name is assumed.

2.6.2. Declaring the bean name using XML

If the bean is declared in beans. xn , the name may be specified using <Naned>:

<myapp: Product Li st >
<Naned>pr oduct s</ Named>
</ nyapp: Product Li st >

If the <Named> element is empty, the default name is assumed.

2.6.3. Default bean names

In the following circumstances, a default name must be assigned by the container:

« Animplementation class or producer method or field of a bean defined using annotations declares a @waned annotation
and no name is explicitly specified by the val ue member.

e Anempty <Naned> element is specified by a bean defined in XML.

* A bean declares a stereotype that declares an empty @aned annotation, and the bean does not explicitly specify a
name.

The default name for a bean depends upon the bean implementation. The rules for determining the default name for a bean
are defined in Chapter 3, Bean implementation.

2.6.4. Beans with no name

If neither <Naned> nor @ared is specified, by the bean or its stereotypes, a bean has no name.

2.7. Stereotypes

JSR-299 Public Review 17

Bean definition

In many systems, use of architectural patterns produces a set of recurring bean roles. A stereotype allows a framework de-
veloper to identify such arole and declare some common metadata for beans with that rolein a central place.

A stereotype encapsulates any combination of

e adefault deployment type,

e adefault scope,

e arestriction upon the bean scope,

e arequirement that the bean implement or extend a certain type, and

e aset of interceptor bindings.

A stereotype may also specify that all beans with the stereotype have defaulted bean names.

A bean may declare zero, one or multiple stereotypes.

2.7.1. Defining new stereotypes

A beans dtereotype is a Java annotation defined as @rarget ({TYPE, METHOD, FIELD}), @arget(TYPE),
@rar get (METHOD) , @ar get (FI ELD) Of @ar get ({ METHOD, FI ELD}) and @ret enti on(RUNTI MVE) .

A stereotype may be declared by specifying the @t er eot ype meta-annotation.

@5t er eot ype

@rar get (TYPE)

@Ret ent i on(RUNTI MVE)

public @nterface Action {}

Alternatively, the @t er eot ype meta-annotation may be omitted, and the stereotype may be declared in beans. xni .

<nyfwk: Acti on>
<St er eot ype/ >
</ nyfwk: Acti on>

A stereotype may not declare any binding annotation. If a stereotype declares a binding annotation, a Def i ni t i onExcep-
ti on isthrown by the container at deployment time.

2.7.1.1. Declaring the default scope and deployment type for a stereotype

A stereotype may declare at most one scope. If a stereotype declares more than one scope, a Def i ni ti onException iS
thrown by the container at deployment time.

A stereotype may declare at most one deployment type. If a stereotype declares more than one deployment type, a Def i ni -
ti onExcept i on isthrown by the container at deployment time.

For example, the following stereotype might be used to identify action classesin aweb application:

@Request Scoped

@roduction

@5t er eot ype

@ar get (TYPE)

@Ret ent i on(RUNTI ME)

public @nterface Action {}

<myfwk: Acti on>
<Request Scoped/ >
<Pr oducti on/ >
<St er eot ype/ >

</ nyfwk: Acti on>

Then actions would have scope @equest Scoped and deployment type @r oduct i on unless the scope or deployment type
explicitly specified by the bean.

JSR-299 Public Review 18

Bean definition

2.7.1.2. Specifying interceptor bindings for a stereotype

A stereotype may declare zero, one or multiple interceptor bindings, as defined in Section 7.2.4.2, “Interceptor bindings
for stereotypes’.

We may specify interceptor bindings that apply to al actions:

@Request Scoped

@secur e
@ransacti onal
@Pr oducti on

@5t er eot ype

@rar get (TYPE)

@Ret ent i on(RUNTI MVE)

public @nterface Action {}

<nmyfwk: Acti on>
<Request Scoped/ >
<nyf wk: Secur e/ >
<nmyfwk: Transacti onal / >
<Pr oducti on/ >
<St er eot ype/ >

</ nyfwk: Acti on>

2.7.1.3. Specifying name defaulting for a stereotype

A stereotype may declare an empty @amed annotation. If a stereotype declares a non-empty @aned annotation, a Def i ni -
ti onExcepti on isthrown by the container at deployment time.

We may specify that every bean with the stereotype has a defaulted name when a name is not explicitly specified by the
bean:

@Request Scoped

@secur e

@r ansact i onal
@\anmed

@Pr oducti on

@5t er eot ype

@rar get (TYPE)

@Ret ent i on(RUNTI ME)

public @nterface Action {}

<myf wk: Acti on>
<Request Scoped/ >
<Naned/ >
<nyf wk: Secur e/ >
<nmyfwk: Transacti onal / >
<Pr oducti on/ >
<St er eot ype/ >

</ nyfwk: Acti on>

2.7.1.4. Restricting bean scopes and types using a stereotype
If all actions are request scoped, we can make this restriction explicit:

@Request Scoped

@ecur e
@r ansacti onal
@Pr oducti on

@5t er eot ype(support edScopes=Request Scoped. cl ass)
@rar get (TYPE)

@Ret ent i on(RUNTI ME)

public @nterface Action {}

We may even require that all actions extend some Act i onBase class:

@Request Scoped

@ecur e
@ransacti onal
@Pr oducti on

@t er eot ype(requi redTypes=Act i onBase. cl ass)
@rar get (TYPE)
@Ret ent i on(RUNTI MVE)

JSR-299 Public Review 19

Bean definition

public @nterface Action {}
Scope and type restrictions may not be specified when a stereotype is declared in XML.

2.7.1.5. Stereotypes with additional stereotypes
A stereotype may declare other stereotypes.

@\udi t abl e

@\ct i on

@5t er eot ype

@rar get (TYPE)

@Ret ent i on(RUNTI MVE)

public @nterface Auditabl eAction {}

<myf wk: Audi t abl eActi on>
<St er eot ype/ >
<nyfwk: Audi t abl e/ >
<nyfwk: Acti on/ >

</ nyf wk: Audi t abl eActi on>

Stereotype declarations are transitive—a stereotype declared by a second stereotype is inherited by all beans and other ste-
reotypes that declare the second stereotype.

Stereotypes declared @rar get (TYPE) may not be applied to stereotypes declared @rar get ({ TYPE, METHOD, FIELD}),
@rar get (METHOD) , @ar get (FI ELD) Of @ar get ({ METHOD, FI ELD}) .

2.7.2. Declaring the stereotypes for a bean using annotations
Stereotype annotations may be applied to a bean implementation class or producer method or field.

@Action

public class LoginAction { ... }

The default deployment type and default scope declared by the stereotype may be overridden by the bean:

@mbck @\pplicationScoped @Action
public class MdckLogi nActi on extends Logi nAction { ... }

Multiple stereotypes may be applied to the same bean:

@ao @\ction
public class LoginAction { ... }

2.7.3. Declaring the stereotypes for a bean using XML

If the bean is declared in beans. xn , stereotypes may be declared using the stereotype annotation type name:

<nmyapp: Logi nActi on>
<nmyf wk: Acti on/ >
</ myapp: Logi nActi on>

2.7.4. Stereotype restrictions

A stereotype may place certain restrictions upon the beans that declare the stereotype.

If a stereotype declares ar equi r edType, and the bean types do not include the type, a Defi ni ti onExcepti on isthrown by
the container at deployment time.

If a stereotype explicitly declares a set of scope types using support edScopes, and the bean scope is not in that set, a
Def i ni ti onExcepti on isthrown by the container at deployment time.

If a bean declares multiple stereotypes, it must satisfy every restriction declared by every declared stereotype.

JSR-299 Public Review 20

Bean definition

2.7.5. Built-in stereotypes

The built-in @bdel stereotypeisintended for use with beans that define the model layer of an MV C web application archi-
tecture such as JSF:

@\aned
@Request Scoped

@5t er eot ype

@rarget ({ TYPE, METHOD, FIELD})
@Ret ent i on(RUNTI MVE)

public @nterface Mdel {}

In addition, the special-purpose @ nt er cept or and @ecor at or stereotypes are defined in Chapter 7, Interceptors and dec-
orators.

JSR-299 Public Review 21

Chapter 3. Bean implementation

A bean implementation implements the bean types of the bean. The developer must follow certain rules when defining a
bean implementation. However, the rules depend upon what kind of bean it is. The container provides built-in support for
the following kinds of bean:

e Simple beans (Java classes)

* Session beans

* Producer methods and fields

» Resources (Java EE resources, persistence contexts, persistence units, remote EJBs and web services)
e JMSresources (topics and queues)

An application or third-party framework may support other kinds of beans by implementing the Bean interface and regis-
tering the implementation with the container, as defined in Section 12.3, “Bean registration”.

3.1. Restriction upon bean instantiation

Most beans are implemented by an annotated Java class, possibly an EJB bean class, called the implementation class of the
bean. Implementation classes are defined in Section 3.2, “ Simple beans” and Section 3.3, “ Session beans”.

This specification places very few restrictions upon the implementation class of abean. In particular, the classis a concrete
class and is not required to implement any special interface or extend any special superclass. Therefore, bean implementa-
tion classes are easy to instantiate and unit test.

However, if the application directly instantiates an implementation class of a bean, instead of |etting the container perform
instantiation, the resulting instance is not a contextual instance and the capabilities listed in Section 2.1, “Functionality
provided by the container to the bean” will not be available to that particular instance. In a deployed application, it is the
container that is responsible for instantiating beans and initializing their dependencies.

If the application requires full control over instantiation of a bean, a producer method may be used. A producer method is
just an annotated method of another bean that is invoked by the container to instantiate the bean. Producer methods are
defined in Section 3.4, “Producer methods’. However, a similar restriction exists for producer methods: if the application
calls the producer method directly, instead of letting the container call it, the returned object is not a contextual instance
and the capabilities listed in Section 2.1, “Functionality provided by the container to the bean” will not be available to the
returned object.

3.2. Simple beans

A simple bean is a bean that is implemented by a Java class. This class is called the implementation class of the smple
bean.

The implementation class of a simple bean may not be a non-static inner class or a parameterized type.
The implementation class of a simple bean may not be an abstract class, unless the simple bean is a decorator.

If the implementation class of a simple bean is annotated with both the @ nt er cept or and @ecor at or stereotypes, a
Def i ni ti onExcepti on isthrown by the container at deployment time.

Note that multiple simple beans may share the same implementation class. This occurs when beans are defined using
XML. Only one simple bean per implementation class may be defined using annotations.

If asimple bean has a public field, it must have scope @ependent . If asimple bean with a public field declares any scope
other than @ependent , aDef i ni ti onExcept i on iSthrown by the container at deployment time.

3.2.1. Which Java classes are beans?

A top-level Javaclassisasimple bean if it meets the following conditions:

JSR-299 Public Review 22

Bean implementation

e Itisnot aparameterized type.
* |tisnot anon-static inner class.
¢ Itisaconcreteclass, or is annotated @ecor at or .

* Itisnot annotated with any of the following annotations:

» the JPA @ntity annotation,
» the EJB component-defining annotations.

¢ It does not implement any of the following interfaces:

* javax.servlet. Servlet

* javax.servlet.Filter

* javax.servlet. Servl et ContextLi stener

* javax.servlet.http. HtpSessionListener

* javax.servlet. Servl et Request Li st ener

* javax.ejb.EnterpriseBean
* |t doesnot extend j avax. f aces. conponent . Ul Conponent .
e Itisnot declared asan EJB bean classinej b-j ar. xni .
e Itisnot declared asa JPA entity inorm xni .

It has an appropriate constructor—either:

» theclass has a constructor with no parameters, or

» theclass declares a constructor annotated @ni ti al i zer.
All Java classes that meet these conditions are simple beans and thus no specia declaration is required to define a smple

bean. Additional simple beans with the same implementation class may be defined using XML, by specifying the class in
beans. xm .

3.2.2. Bean types of a simple bean

The set of bean types for a simple bean contains the implementation class, every superclass and all interfaces it imple-
ments directly or indirectly.

Note the additional restrictions upon bean types of beans with normal scopes defined in Section 5.4.1, “Unproxyable bean
types’.
3.2.3. Declaring a simple bean using annotations

A simple bean with a constructor that takes no parameters does not require any special annotations. The following classes
are beans:

public class Shop { .. }
cl ass Paynent Processor | npl inplenments Paynent Processor { ... }

An implementation class may also specify a scope, name, deployment type, stereotypes and/or bindings:

@Conver sati onScoped @Current
public class ShoppingCart { ... }

JSR-299 Public Review 23

Bean implementation

A simple bean may extend another simple bean:

@aned("| ogi nActi on")

public class LoginAction { ... }

@bck

@Narred("1 ogi nActi on")

public class MdckLogi nAction extends Logi nAction { ... }

The second bean is a"mock object" that overrides the implementation of Logi nActi on when running in an embedded EJB
Lite based integration testing environment.

3.2.4. Declaring a simple bean using XML
Simple beans may be declared in beans. xn using the implementation class name.

<nyapp: O der > _
<depl oynent : St agi ng/ >
<Conver sat i onScoped/ >

</ rryébb: O der >

A simple bean may even be declared at any injection point declared in XML, as defined in Section 10.7, “Inline bean de-
clarations’, in which case no bindings are specified.

If the implementation class of a simple bean defined in XML is a parameterized type or a non-static inner class, a Def i ni -
ti onExcepti on isthrown by the container at deployment time.

If the implementation class of a simple bean defined in XML is an abstract class, and the simple bean is not a decorator, a
Def i ni ti onExcept i on isthrown by the container at deployment time.

If the implementation class of a simple bean defined in XML is annotated @ nt er cept or, then the bean must be explicitly
declared as an interceptor in XML, as defined in Section 7.2.5.2, “Declaring a Web Beans interceptor using XML”. If a
simple bean defined in XML has an implementation class annotated @ nt er cept or and is not declared as an interceptor in
XML, aDefinitionExcepti onisthrown by the container at deployment time.

If the implementation class of asimple bean defined in XML is annotated @ecor at or , then the bean must be explicitly de-
clared as a decorator in XML, as defined in Section 7.3.2, “ Declaring a decorator using XML". If asimple bean defined in
XML has an implementation class annotated @ecor at or and is not declared as a decorator in XML, aDef i ni ti onExcep-
ti on isthrown by the container at deployment time.

3.2.5. Bean constructors

When the container instantiates a simple bean, it calls the bean constructor. The bean constructor is a constructor of the
implementation class.

The application may call bean constructors directly. However, if the application directly instantiates the bean, no paramet-
ers are passed to the constructor by the container; the returned object is not bound to any context; no dependencies are in-
jected by the container; and the lifecycle of the new instance is not managed by the container.

3.2.5.1. Declaring a bean constructor using annotations.
The bean constructor may be identified by annotating the constructor @ ni ti al i zer.

@sessi onScoped
public class ShoppingCart {

private User custoner;
@nitializer

publ i ¢ Shoppi ngCart (User custoner) {
this. customer = custoner;
}

publ i ¢ Shoppi ngCart (Shoppi ngCart original) {
this. customer = original.custoner;
}

JSR-299 Public Review 24

Bean implementation

Shoppi ngCart () {}

@onver sat i onScoped
public class Oder {

private Product product;
private User custoner;

@nitializer

public Order(@sel ected Product product, User custoner) {
thi s. product = product;
t his. customer = custoner;

}

public Order(Order original) {
this. product = original.product;
this.customer = original.custoner;

}
Order() {}

If a simple bean defined using annotations does not explicitly declare a constructor using @ni ti al i zer, the constructor
that accepts no parametersis the bean constructor.

If a simple bean defined using annotations has more than one constructor annotated @ ni ti al i zer, a Defi niti onExcep-
ti on isthrown by the container at deployment time.

If a bean constructor has a parameter annotated @i sposes, Or @bser ves, aDefi niti onExcepti on isthrown by the con-
tainer at deployment time.

3.2.5.2. Declaring a bean constructor using XML.

For a simple bean defined using XML, the bean constructor may be specified by listing the parameter types of the con-
structer, in order, as direct children of the element that declares the bean.

<nyapp: Shoppi ngCart >
<Conver sat i onScoped/ >
<nyapp: User/ >

</ myapp: Shoppi ngCart >

<myapp: Or der >
<Conver sat i onScoped/ >
<myapp: Pr oduct >
<Sel ect ed/ >
</ nyapp: Pr oduct >
<myapp: User/ >
</ myapp: O der >

If a simple bean defined using XML does not explicitly declare constructor parameters in XML, the constructor that ac-
cepts no parametersis the bean constructor.

If asimple bean declared in XML does not have a constructor with the parameter types declared in XML, aNonexi st ent -
Const ruct or Except i on iSthrown by the container at deployment time.

When a bean constructor is declared in XML, the container ignores binding annotations applied to Java constructor para-
meters.

Open issue: should it default to use the constructor annotated @ ni ti al i zer ?

3.2.5.3. Bean constructor parameters

If the bean constructor has parameters, the container calls the method Manager . get I nst anceTol nj ect () defined in Sec-
tion 5.9.1, “Resolving dependencies’ to determine a value for each parameter and calls the constructor with those paramet-

JSR-299 Public Review 25

Bean implementation

er values.

3.2.6. Specializing a simple bean

If an implementation class of a simple bean X defined using annotations is annotated @peci al i zes, then the implementa-
tion class of X must directly extend the implementation class of another simple bean Y defined using annotations. Then:

e X inheritsal bindings of Y, and
¢ if Y hasaname, X hasthesamenameasY.

We say that X directly specializes Y, and we can be certain that Y will never be instantiated or called by the container if X
is enabled.

If the implementation class of X does not directly extend the implementation class of another simple bean, a Defi ni -
ti onExcept i on isthrown by the container at deployment time.

For example, MockLogi nAct i on directly specializes Logi nAct i on:

public class LoginAction { ... }

@bck @pecializes
public class MyckLogi nAction extends Logi nAction { ... }

If asimple bean X defined in XML declares the <Speci al i zes> element, then the implementation class of X must be the
implementation class of another smple bean Y defined using annotations. Then:

e Xinheritsall bindings of Y, and
¢ if Y hasaname, X hasthesamenameasY.

We say that X directly specializes Y, and we can be certain that Y will never be instantiated or called by the container if X
isenabled.

3.2.7. Default name for a simple bean

The default name for a ssimple bean is the unqualified class name of the bean implementation class, after converting the
first character to lower case.

For example, if the implementation classis named Pr oduct Li st , the default bean nameis pr oduct Li st .

3.3. Session beans

An session bean is a bean that isimplemented by an EJB 3-style session bean. The bean classis called the implementation
class of the session bean.

A dtateless session bean must belong to the @ependent pseudo-scope. A singleton bean must belong to either the
@ppl i cati onScoped scope or to the @ependent pseudo-scope. If a session bean specifies an illegal scope, a Def i ni -
ti onExcepti on isthrown by the container at deployment time.

Note that multiple session beans may share the same implementation class. This occurs when beans are defined using
XML.

However, in any deployment, there may be at most one most specialized enabled session bean for any particular session
bean. Therefore, for each distinct EJB name in amodule, there is at most one bean that may be called at runtime. If thereis
more than one most specialized enabled session bean for a particular session bean, a Depl oynent Excepti on is thrown by
the container at deployment time. This restriction exists because the container is not aware of the bindings of the client in-
jection point when the container intercepts the lifecycle calbacks of the EJB, as defined in Section 6.11, “Lifecycle of
EJBS'.

Open issue: we can remove this restriction now.

JSR-299 Public Review 26

Bean implementation

If the implementation class of a session bean is annotated @ nt erceptor Or @ecorator, a DefinitionException IS
thrown by the container at deployment time.

3.3.1. EJB remove methods of session beans

If asession bean is a stateful session bean:

» If thescopeis @ependent , the application may call any EJB remove method of an instance of the session bean.
« Otherwise, the application may not directly call any EJB remove method of any instance of the session bean.

If the application directly calls an EJB remove method of an instance of a session bean that is a stateful session bean and
declares any scope other than @ependent , an Unsuppor t edQper at i onExcept i on iSthrown.

If the application directly calls an EJB remove method of an instance of a session bean that is a stateful session bean and
has scope @ependent then no parameters are passed to the method by the container. Furthermore, the container ignores
the instance instead of destroying it when Bean. destroy() is called, as defined in Section 6.5, “Lifecycle of stateful ses-
sion beans’.

3.3.2. Which EJBs are beans?

All session beans exposing an EJB 3.x client view and declared via an EJB component defining annotation on the EJB
bean class are beans, and thus no specia declaration is required. Additional beans for these EJBs may be defined using
XML, by specifying the bean classin beans. xni .

All session beans exposing an EJB 3.x client view and declared in ej b-j ar. xm are also beans. Additional beans for these
EJBs may be defined using XML, by specifying the bean class and EJB name in beans. xni .

3.3.3. Bean types of a session bean

The set of bean types for a session bean contains all local interfaces of the bean that do not have wildcard type parameters
or type variables and their superinterfaces. If the EJB has a bean class local view and the bean class is not a parameterized
type, the set of bean types contains the bean class and al superclasses. In addition, j ava. | ang. Obj ect is a bean type of
every session bean.

Remote interfaces are not included in the set of bean types.

3.3.4. Declaring a session bean using annotations
A session bean does not reguire any special annotations. The following EJBs are beans:

@i ngl et on
class Shop { .. }

@3t at el ess
cl ass Paynent Processor | npl inplenments Paynent Processor { ... }

An implementation class may also specify a scope, name, deployment type, stereotypes and/or bindings:

@onver sati onScoped @5t at eful @urrent @mbdel
public class ShoppingCart { ... }

A session bean implementation class may extend another bean implementation class:

@t at el ess
@aned("| ogi nActi on")
public class LoginActionlnpl inplenments LoginAction { ... }

@t at el ess

@bck

@Narred(" | ogi nActi on")

public class MockLogi nActi onl npl extends Logi nActionlmpl { ... }

JSR-299 Public Review 27

Bean implementation

3.3.5. Declaring a session bean using XML

Session beans may be declared in beans. xm using the bean class name (for EJBs defined using a component-defining an-
notation) or bean class and EJB name (for EJBs defined in ej b-j ar. xm).

<myapp: Or der Bean> '
<depl oynent : St agi ng/ >
<Conver sat i onScoped/ >

</ rryébb: O der Bean>

<myapp: Or der Bean ej bNane="RushOrder">
<myapp: Rush/ >
<Conver sat i onScoped/ >

</ nyébb: O der Bean>
Theej bName attribute declares the EJB name of an EJB definedinej b-j ar. xni .

If an entity or message-driven bean class is declared in XML, a Defi ni ti onExcepti on is thrown by the container at de-
ployment time.

3.3.6. Specializing a session bean

If an implementation class of a session bean X defined using annotations is annotated @peci al i zes, then the implementa-
tion class of X must directly extend the implementation class of another session bean Y defined using annotations. Then:

e Xinheritsal bindings of Y, and
¢ if Y hasaname, X hasthe sasmenameasY.

Furthermore:

e X must support al local interfaces supported by Y, and
« if Y supports a bean-classlocal view, X must also support a bean-class local view.
Otherwise, aDefi ni ti onExcept i on iSthrown by the container at deployment time.

We say that X directly specializes Y, and we can be certain that Y will never be instantiated or called by the container if X
is enabled.

If the implementation class of X does not directly extend the implementation class of another session bean, a Defi ni -
ti onExcepti on isthrown by the container at deployment time.

For example, MockLogi nAct i onBean directly specializes Logi nAct i onBean:

@t at el ess
public class Logi nActi onBean i nplenments Logi nAction { ... }

@t at el ess @wbck @peci al i zes
public class MdckLogi nActi onBean extends Logi nActionBean { ... }

If asession bean X defined in XML declares the <Speci al i zes> element, then the implementation class of X must be the
implementation class of another session bean Y defined using annotations. Then:

e Xinheritsall bindings of Y, and
¢ if Y hasaname, X hasthesamenameasY.

We say that X directly specializes Y, and we can be certain that Y will never be instantiated or called by the container if X
is enabled.

3.3.7. Default name for a session bean

JSR-299 Public Review 28

Bean implementation

The default name for a session bean is the unqualified class name of the bean implementation class, after converting the
first character to lower case.

For example, if the bean classis named Pr oduct Li st , the default bean nameis pr oduct Li st .

3.3.8. Session bean proxies

EJB local object references do not implement all local interfaces of the EJB. A local object reference may not be typecast
to different local interface type, as required by Section 2.2, “Bean types’. Therefore, the container proxies the local object
reference. A session bean proxy implements al local interfaces of the EJB.

When the proxy object is invoked, the proxy obtains the appropriate EJB local object reference and del egates the invoca-
tion to the local object reference.

All session bean proxies must be serializable.

When a session bean is invoked via the session bean proxy, the interface returned by SessionCon-
text. get | nvokedBusi nessl nterface() Will be specific to the container implementation. Portable applications should not
rely upon the interface returned by this method.

3.4. Producer methods

A producer method acts as a source of objects to be injected, where:

» theobjectsto beinjected are not required to be instances of beans, or
< theconcrete type of the objectsto be injected may vary at runtime, or
» the objects require some custom initialization that is not performed by the bean constructor.

A producer method must be a method of a simple bean implementation class or session bean implementation class. A pro-
ducer method may be either static or non-static. If the bean is a session bean, the producer method must be either a busi-
ness method of the EJB or a static method of the bean class.

If aproducer method sometimes returns a null value, then the producer method must have scope @ependent . If a producer
method returns a null value at runtime, and the producer method declares any other scope, an 1 11 egal Product Excepti on
is thrown by the container. This restriction allows the container to use a client proxy, as defined in Section 5.4, “Client
proxies’.

If the producer method return type is a parameterized type, it must specify actual type parameters for each type parameter.
If a producer method return type contains a wildcard type parameter or type variable, a Defi ni ti onExcepti on is thrown
by the container at deployment time.

The application may call producer methods directly. However, if the application calls a producer method directly, no para-
meters will be passed to the producer method by the container; the returned object is not bound to any context; and itslife-
cycleis not managed by the container.

A bean may declare multiple producer methods.

3.4.1. Bean types of a producer method

The bean types of a producer method depend upon the method return type:

« |If thereturn type is an interface, the set of bean types contains the return type, al interfaces it extends directly or indir-
ectly andj ava. | ang. oj ect .

< |If areturn typeis primitive or is a Java array type, the set of bean types contains exactly two types: the method return
typeandj ava. | ang. vj ect .

« If the return type is a class, the set of bean types contains the return type, every superclass and al interfaces it imple-
ments directly or indirectly.

JSR-299 Public Review 29

Bean implementation

Note the additional restrictions upon bean types of beans with normal scopes defined in Section 5.4.1, “Unproxyable bean
types’.

3.4.2. Declaring a producer method using annotations

A producer method may be declared by annotating a method with the @r oduces annotation.

public class Shop {
@°r oduces Paynent Processor get Paynent Processor() { ... }
@°r oduces Li st <Product > get Products() { ... }

}

A producer method may also specify scope, name, deployment type, stereotypes and/or bindings.

public class Shop {

@°r oduces @\ppl i cationScoped @Catal og @Naned("cat al 0og")
Li st <Product> getProducts() { ... }

}

If aproducer method is annotated @ ni ti al i zer or @est r uct or, has a parameter annotated @i sposes, or has a paramet-
er annotated @bser ves, aDefiniti onExcepti on iSthrown by the container at deployment time.

3.4.3. Declaring a producer method using XML

For a bean defined in XML, a producer method may be declared using the method name, the <Pr oduces> element, the re-
turn type, and the parameter types of the method:

<nmyapp: Shop>

<myapp: get Product s>
<Pr oduces>
<Appl i cati onScoped/ >
<util:List>
<nyapp: Product/ >
<myapp: Cat al og/ >
</util:List>
<Naned>cat al og</ Named>
</ Produces>
</ myapp: get Pr oduct s>

</ nyapp: Shop>

When a producer method is declared in XML, the container ignores binding annotations applied to the Java method or
method parameters.

If the implementation class of a bean declared in XML does not have a method with the name and parameter types de-
clared in XML, aNonexi st ent Met hodExcept i on isthrown by the container at deployment time.

3.4.4. Producer method parameters

If the producer method has parameters, the container calls the method Manager . get | nst anceTol nj ect () defined in Sec-
tion 5.9.1, “Resolving dependencies’ to determine a value for each parameter and calls the producer method with those
parameter values.

public class OderFactory {

@°r oduces @onver sati onScoped
public O der createCurrent Order(@lew O der order, @el ected Product product)

order. set Product (product);
return order;

JSR-299 Public Review 30

Bean implementation

<myapp: Or der Fact ory>
<myapp: creat eCurrent O der >
<Pr oduces>
<Conver sat i onScoped/ >
<myapp: Order/ >
</ Produces>
<myapp: Or der >
<New/ >
</ nyapp: Or der >
<nyapp: Product >
<myapp: Sel ect ed/ >
</ nyapp: Pr oduct >
</ nyapp: creat eCurrent O der >

</ nyapp: Or der Fact ory>

3.4.5. Specializing a producer method

If aproducer method X is annotated @peci al i zes, then it must be non-static and directly override another producer meth-
od Y. Then:

e Xinheritsal bindings of Y, and
e if Y hasaname, X hasthe samenameasY.
We say that X directly specializes Y, and we can be certain that Y will never be called by the container if X is enabled.

If the method is static or does not directly override another producer method, a Def i ni ti onExcepti on is thrown by the
container at deployment time.

For example:

@bck
public class MdckShop extends Shop {

@verride @ppecializes

@r oduces

Payment Processor get Payment Processor () {
return new MockPaynent Processor();

}

@verride @pecializes

@r oduces

Li st <Product > get Products() {
return PRODUCTS;

}

3.4.6. Disposal methods
A disposal method allows the application to perform customized cleanup of an object returned by a producer method.

A disposal method must be a method of a simple bean implementation class or session bean implementation class. A dis-
posal method may be either static or non-static. If the bean is a session bean, the disposal method must be a business meth-
od of the EJB or a static method of the bean class.

A bean may declare multiple disposal methods.

3.4.7. Disposed parameter of a disposal method

Each disposal method must have exactly one disposed parameter, of the same type as the corresponding producer method
return type. When searching for disposal methods for a producer method, the container considers the type and bindings of
the disposed parameter. If a disposed parameter resolves to a producer method according to the typesafe resolution al-

JSR-299 Public Review 31

Bean implementation

gorithm, the container must call this method when destroying an instance returned by that producer method.

If the disposed parameter does not resolve to any producer method according to the typesafe resolution algorithm, an un-
sati sfi edDependencyExcept i on iSthrown by the container at deployment time.

3.4.8. Declaring a disposal method using annotations

A disposal method may be declared using annotations by annotating a parameter @i sposes. That parameter is the dis-
posed parameter.

public class UserDat abaseEntityManager {

@°r oduces @Conver sati onScoped @Jser Dat abase

public EntityManager create(EntityManagerFactory enf) {
return enf.createEntityManager();

}

public void cl ose(@i sposes @Jser Dat abase EntityManager en) {
em cl ose();
}

If amethod has more than one parameter annotated @i sposes, aDefi ni ti onExcept i on isthrown by the container.

If a disposal method is annotated @r oduces, @nitial i zer Or @estructor, Or has a parameter annotated @bser ves, a
Def i ni ti onExcepti on isthrown by the container at deployment time.

3.4.9. Declaring a disposal method using XML

For a bean defined in XML, a disposal method may be declared using the method name, the <bi sposes> element, and the
parameter types of the method:

<nmyf wk: User Dat abaseEnt i t yManager >

<nmyf wk: cr eat e>
<Pr oduces>
<Conver sat i onScoped/ >
<j pa: Enti t yManager >
<nyapp: User Dat abase/ >
</j pa: Enti t yManager >
</ Produces>
<j pa: Enti t yManager Fact ory/ >
</ nyfwk: cr eat e>

<nmyf wk: cl ose>
<Di sposes>
<j pa: Enti t yManager >
<myapp: User Dat abase/ >
</j pa: Enti t yManager >
</ Di sposes>
</ nyfwk: cl ose>

</ myf wk: User Dat abaseEnt i t yManager >

When a disposal method is declared in XML, the container ignores binding annotations applied to the Java method para-
meters.

If the implementation class of a bean declared in XML does not have a method with the name and parameter types de-
clared in XML, aNonexi st ent Met hodExcept i on iSthrown by the container at deployment time.

3.4.10. Disposal method parameters

In addition to the disposed parameter, a disposal method may declare additional parameters, which may also specify bind-
ings. The container calls Manager . get | nst anceTol nj ect () to determine a value for each parameter of a disposal method
and calls the disposal method with those parameter values.

public void cl ose(@i sposes @ser Dat abase EntityManager em @uogger Log log) { ... }

<nyf wk: cl ose>

JSR-299 Public Review 32

Bean implementation

<Di sposes>

<j pa: Enti t yManager >
<myapp: User Dat abase/ >

</j pa: Enti t yManager >

</ Di sposes>

<myfwk: Log>
<nyf wk: Logger/ >

<nyfwk: Log>

</ nyfwk: cl ose>

3.4.11. Disposal method resolution

When searching for disposal methods for a producer method, the container searches for disposal methods which satisfy the
following rules:

e Thedisposal method must be declared by an enabled bean.
* The disposed parameter must resolve to the producer method, according to the typesafe resolution algorithm.

If there are multiple disposal methods for a producer method, a Def i ni ti onExcepti on is thrown by the container at de-
ployment time.

3.4.12. Default name for a producer method

The default name for a producer method is the method name, unless the method follows the JavaBeans property getter
naming convention, in which case the default name is the JavaBeans property name.

For example, this producer method is named pr oduct s:

public class Shop {

@°r oduces @\aned
public List<Product> getProducts() { ... }

}

This producer method is named paynent Pr ocessor :

public class Shop {

@r oduces @\aned
publ i ¢ Paynent Processor paynent Processor() { ... }

3.5. Producer fields

A producer field isadlightly ssimpler alternative to a producer method.

A producer field must be a field of a simple bean implementation class or session bean implementation class. A producer
field may be either static or non-static.

If aproducer field sometimes contains a null value when accessed, then the producer field must have scope @ependent . If
a producer method contains a null value at runtime, and the producer field declares any other scope, an 111 egal Pr oduc-
t Exception is thrown by the container. This restriction allows the container to use a client proxy, as defined in Sec-
tion 5.4, “Client proxies’.

If the producer field return type is a parameterized type, it must specify actual type parameters for each type parameter. If
a producer field return type contains a wildcard type parameter or type variable, a Def i ni ti onExcept i on isthrown by the
container at deployment time.

The application may access producer fields directly. However, if the application accesses a producer field directly, the re-
turned object is not bound to any context; and its lifecycle is not managed by the container.

JSR-299 Public Review 33

Bean implementation

A bean may declare multiple producer fields.

3.5.1. Bean types of a producer field

The bean types of a producer field depend upon the field type:

« If thefield type is an interface, the set of bean types contains the field type, all interfaces it extends directly or indir-
ectly andj ava. | ang. vj ect .

« |If afield type is primitive or is a Java array type, the set of bean types contains exactly two types: the field type and
j ava. | ang. Obj ect .

< |f thefield typeisaclass, the set of bean types contains the field type, every superclass and al interfaces it implements
directly or indirectly.

Note the additional restrictions upon bean types of beans with normal scopes defined in Section 5.4.1, “Unproxyable bean
types’.

3.5.2. Declaring a producer field using annotations
A producer field may be declared by annotating a field with the @r oduces annotation.

public class Shop {
@°r oduces Paynent Processor paynment Processor =;
@°r oduces Li st <Product> products =;

}

A producer field may also specify scope, name, deployment type, stereotypes and/or bindings.

public class Shop {

@°r oduces @M\pplicationScoped @atal og @Naned("cat al 0g")
Li st <Product> products =;

3.5.3. Declaring a producer field using XML
For abean defined in XML, a producer field may be declared using the field name, the <Pr oduces> element, and the type:

<myapp: Shop>

<myapp: pr oduct s>
<Pr oduces>
<Appl i cati onScoped/ >
<util:List>
<myapp: Product />
<myapp: Cat al og/ >
</util:List>
<Naned>cat al og</ Named>
</ Produces>
</ nyapp: pr oduct s>

</ myapp: Shop>

When aproducer field is declared in XML, the container ignores binding annotations applied to the Java field.

If the implementation class of a bean declared in XML does not have a field with the name and type declared in XML, a
Nonexi st ent Met hodExcept i on isthrown by the container at deployment time.

3.5.4. Default name for a producer field

The default name for a producer field is the field name.

JSR-299 Public Review 34

Bean implementation

For example, this producer field is named pr oduct s:

public class Shop {

@r oduces @\aned
public List<Product> products = ...;

3.6. Resources

A resource is a bean that represents a reference to a Java EE resource, persistence context, persistence unit, remote EJB or
web service. Resources may be declared in beans. xni , allowing direct injection of an EE resource, entity manager, entity
manager factory, EJB remote object or web service reference.

@cust oner Dat abase Dat asour ce cust oner Dat a;

@Cust oner Dat abase EntityManager cust oner Dat abaseEntityManager;

@Cust oner Dat abase EntityManager Fact ory cust oner Dat abaseEnt it yManager Fact ory;
@urrent Paynent Servi ce renpt ePaynent Servi ce;

The lifecycle of an injected reference is identical to the semantics of Java EE injection using @Resource,
@er si st enceCont ext , @er si stencelnit, @JB Or @ébSer vi ceRef .

A resource always has scope @ependent .
A resource may not declare a bean name.

Resources are aways declared using XML.

3.6.1. Declaring aresource using XML

A resource may be declared in beans. xn using an element that represents the Java type of the resource:

« For a Java EE resource, the EE resource type must be specified—for example j avax. sql . Dat asour ce for a JDBC
datasource.

« For apersistence context, j avax. j pa. Enti t yManager must be specified.

e For apersistence unit, j avax. j pa. Enti t yManager Fact or y must be specified.
« For aremote EJB, an EJB remote interface type must be specified.

e For aweb service, aweb service type must be specified.

The bean type of the resource is this specified type.

Each resource declaration must contain a child <Resource>, <Persi st enceCont ext >, <Persi st enceUnit>, <EJB> Of
<WebSer vi ceRef > element.

e For aJava EE resource, a INDI name or mapped name must be specified using the <nane> or <mappedNane> child ele-
ments of the <Resour ce> element.

e For a persistence context, a persistence unit name must be specified using the <uni t Name> child element of the
<Per si st enceCont ext > €lement.

e For a persistence unit, a persistence unit name must be specified using the <unitNarme> child element of the
<Per si st enceUni t > element.

e For aremote EJB, a INDI name, mapped name or EJB link must be specified using the <name>, <mappedNane> or
<ej bLi nk> child elements of the <e1B> element.

JSR-299 Public Review 35

Bean implementation

* For aweb service, a INDI name or mapped name must be specified using the <name> or <mappedNane> child elements
of the <webServi ceRef > element. Optionally, a URL pointing to a WSDL document may be specified using the
<wsdl Locat i on> child element.

<t hei r app: Payment Ser vi ce>
<WebSer vi ceRef >
<name>. .. </ name>
<wsdl Locati on>. .. </wsdl Locati on>
<WebSer vi ceRef >
</t hei r app: Paynment Servi ce/ >

<t hei r app: Paynent Ser vi ce>
<EJB>
<ej bLi nk>. .. </ ej bLi nk>
<EJB>
</t hei r app: Paynent Servi ce/ >

The semantics are the subelements of <Resource>, <PersistenceContext>, <PersistenceUnit>, <EJB> and
<WebServi ceRef > are identical to the semantics of the annotation members of @esource, @ersistenceContext,
@ersi st enceUni t, @JB and @ebSer vi ceRef .

Optionally, one or more bindings may be specified.

<j avaxsgql : Dat asour ce>
<Resour ce>
<nanme>j ava: conp/ env/ j dbc/ Cust oner Dat asour ce</ nane>
</ Resour ce>
<myapp: Cust oner Dat abase/ >
</j avaxsql : Dat asour ce>

<j pa: Enti t yManager >
<Per si st enceCont ext >
<uni t Name>Cust oner Dat abase</ uni t Nane>
</ Per si st enceCont ext >
<myapp: Cust oner Dat abase/ >
</j pa: Enti t yManager >

<j pa: Enti t yManager Fact ory>
<Per si st encelni t >
<uni t Name>Cust oner Dat abase</ uni t Nane>
</ Per si st encelni t >
<myapp: Cust oner Dat abase/ >
</j pa: Enti t yManager Fact ory>

If no binding is explicitly specified, the default binding @ur r ent is assumed.

Open issue: do we need to allow specification of aut hent i cat i on and shar eabl e?

3.7. IMS resources

Beans that send JM S messages must interact with at least two different objects defined by the IMS API:

e tosend amessage to a queue, the bean must interact with a QueueSessi on and the QueueSender , or
* to send amessage to atopic, the bean must interact with a Topi cSessi on and the Topi cPubl i sher.

A JMSresource is a bean that represents a JIMS queue or topic. IMS resources may be declared in beans. xni , and allow
direct injection of any of the following JM S objects:

e For aqueue, the Queue, QueueConnect i on, QueueSessi on and/or QueueSender May beinjected.
» For atopic, the Topi ¢, Topi cConnect i on, Topi cSessi on and/or Topi cPubl i sher may be injected.

The lifecycles of the injected objects are managed by the container, and therefore the application need not explicitly
cl ose() any injected IMS object. If the application callscl ose() on an instance of a JMS resource, an Unsuppor t edQper -
ati onExcept i on iSthrown by the container.

JSR-299 Public Review 36

Bean implementation

For example:

@Paynent Processor QueueSender paynent Sender ;
@raynment Processor QueueSessi on payment Sessi on;

public void sendMessage() {
MapMessage nsg = paynent Sessi on. cr eat eMapMessage() ;

'p'ai/ment Sender . send(Q) ;

@°rices Topi cPublisher pricePublisher;
@rices Topi cSession priceSession;

public void sendMessage(String price) {
pricePublisher.send(priceSession.createText Message(price));
A IMS resource always has scope @ependent .
JM S resources must explicitly declare at least one binding, and must not declare the @ur r ent binding type.
A IMS resource may not declare a bean name.

JMS resources are always declared using XML.

3.7.1. Bean types of a JMS resource

The bean types of a JM S resource depend upon whether it represents a queue or topic.

e |If the IMS resource represents a queue, the bean types are Queue, QueueConnect i on, QueueSessi on and QueueSender .

« |If the IMS resource represents a topic, the bean types are Topi ¢, Topi cConnect i on, Topi cSessi on and Topi cPubl i sh-
er.

In addition, j ava. | ang. Ooj ect isabean type of every IMS resource.

3.7.2. Declaring a JMS resource using XML
A IMS resource may be declared using the <Topi c> or <Queue> elementsin beans. xni . A binding must also be specified.

Each JMS resource declaration must contain a child <Resour ce> element. A JNDI name or mapped name must be spe-
cified using the <nane> or <mappedNare> child elements of the <Resour ce> element.

Open issue: do we need to explicitly specify the connection factory, using the constructor injection syntax, or does the con-
tainer just know which one to use?

<j ms: Queue>
<Resour ce>
<nane>j ava: conp/ env/ j ns/ Paynent Queue</ nane>
</ Resour ce>
<myapp: Paynent Processor/ >
</j ms: Queue>

<j ms: Topi c>
<Resour ce>
<nane>j ava: conp/ env/j ns/ Pri ces</ nane>
</ Resour ce>
<myapp: Pri ces/ >
</j ms: Topi c>

Open issue: do we need to allow specification of t r ansact ed and acknow edgeMvde for the session?

3.8. Injected fields

Aninjected field is a non-static, non-final field of a bean implementation class, of a Servlet, or of any EJB session or mes-
sage driven bean class.

JSR-299 Public Review 37

Bean implementation

Injected fields are initialized by the container immediately after instantiation and before any methods of the instance are
invoked. The container calls the method Manager . get | nst anceTol nj ect () defined in Section 5.9.1, “Resolving depend-
encies’ to determine a value for each injected field.

Any EJB session or message driven bean may declare injected fields and have those fields injected by the container.

Open issue: are injected fields allowed to be declared transient? If so, should they be reinjected after deserialization
(activation)?

If afield isaproducer field or a decorator delegate attribute, it is not an injected field.

3.8.1. Declaring an injected field using annotations
Aninjected field may be declared by annotating the field with any binding type.

@Conver sat i onScoped
public class Oder {

@>el ect ed Product product;
@urrent User custoner;

3.8.2. Declaring an injected field using XML

For bean defined in XML, an injected field may be declared using the field name and a child element representing the type
of thefield:

<wamx0dm>_
<Conver sat i onScoped/ >

<nyapp: pr oduct >
<myapp: Pr oduct >
<myapp: Sel ect ed/ >
</ nyapp: Product />
</ nyapp: pr oduct >

<nmyapp: cust oner >
<myapp: User/ >
</ nyapp: cust ormer >

</ nyapp: O der >
When an injected field is declared in XML, the container ignores binding annotations applied to the Javafield.
If the type element does not declare any binding, the default binding @ur r ent is assumed.

If the implementation class of a bean declared in XML does not have a field with the name and type declared in XML, a
Nonexi st ent Fi el dExcept i on iSthrown by the container at deployment time.

3.9. Initializer methods

An initializer method is a non-static method of a bean implementation class, of a Servlet, or of any EJB session or message
driven bean class.

Initializer methods are called by the container immediately after injected fields have been initialized by the container and
before any other methods of the instance are invoked.

If the bean is a session bean, the initializer method is not required to be a business method of the session bean.

Method interceptors are never called when the container calls an initializer method.

A bean implementation class may declare multiple (or zero) initializer methods.

The application may call initializer methods directly, but then no parameters will be passed to the method by the container.

Any EJB session or message driven bean may declare initializer methods and have the methods called by the container.

JSR-299 Public Review 38

Bean implementation

3.9.1. Declaring an initializer method using annotations
An initiaizer method may be declared by annotating the method @ni ti al i zer .

@Conver sat i onScoped
public class Order {

private Product product;
private User custoner;

@nitializer
voi d set Product (@el ect ed Product product)
{

}

@nitializer
public void setCustoner(User custoner)

this. product = product;

this.custoner = custoner;

If an initializer method is annotated @r oduces or @est r uct or , has a parameter annotated @i sposes, or has a parameter
annotated @bser ves, aDef i ni ti onExcepti on isthrown by the container at deployment time.

3.9.2. Declaring an initializer method using XML

For a bean defined in XML, an initializer method may be declared using the method name, the <I ni ti al i zer > element
and the parameter types of the method.

<myapp: Or der > '
<Conver sat i onScoped/ >

<myapp: set Product >
<Initializer/>
<myapp: Pr oduct >
<myapp: Sel ect ed/ >
</ nyapp: Pr oduct >
</ nyapp: set Or der >

<myapp: set Cust ormer >
<Initializer/>
<myapp: User/ >

</ nyapp: set Cust oner >

</ nyapp: Or der >

When an initializer method is declared in XML, the container ignores binding annotations applied to the Java method para-
meters.

If the implementation class of a bean declared in XML does not have a method with the name and parameter types de-
clared in XML, aNonexi st ent Met hodExcept i on isthrown by the container at deployment time.

3.9.3. Initializer method parameters

An initializer method may have any number of parameters. If the initializer method has parameters, the container calls
Manager . get | nst anceTol nj ect () to determine a value for each parameter and calls the initializer method with those
parameter values.

3.10. The @ewbinding type

Sometimes, the scope of a bean is inconvenient for a particular usecase. One solution to this problem is to obtain an inde-
pendent instance of the bean implementation and inject it as a dependent object of some other bean, or even bind it to a
different context using a producer method.

The @ew annotation or <New> element may be applied to any injection point whose typeis either:

JSR-299 Public Review 39

Bean implementation

« avalid simple bean implementation class, as defined in Section 3.2.1, “Which Java classes are beans?’, or

* the bean class of asession bean with abean class local view.

When the built-in binding type @ewis applied to an injection point, a bean isimplicitly defined with:

* SCOpe @ependent ,

e deployment type @t andard,

e @ewasthe only binding,

¢ no bean name,

e no stereotypes, and such that

< theimplementation classis the declared type of the injection point.

If the injection point type satisfies the definition of a simple bean implementation class, Section 3.2.1, “Which Java classes
are beans?’, then the bean is a simple bean. If the injection point type satisfies the definition of a session bean implementa-
tion class, Section 3.3.2, “Which EJBs are beans?’, then the bean is a session bean.

Furthermore, this bean:

* has the same bean constructor, initializer methods and injected fields as a bean defined using annotations—that is, it
has any bean constructor, initializer method or injected field declared by annotations that appear on the implementation
class,

« has no observer methods, producer methods or fields or disposal methods,

» has the same interceptors as a bean defined using annotations—that is, it has al the interceptor bindings declared by
annotations that appear on the implementation class, and

* hasno decorators.
For example:

@r oduces @RrRequest Scoped

Payment creat ePaynent (@ew Paynment paynent, Order order) {
paynent . set Or der (or der);
return payment;

<myapp: cr eat ePaynent >

<Pr oduces>
<Request Scoped/ >
<myapp: Paynent />
</ Produces>

<nyapp: Paynent >
<New/ >
</ nyapp: Paynent >

<myapp: Order/ >

</ nyapp: cr eat ePaynent >

The Paynent is created as a dependent object of the producer method bean and is bound to the request context when re-
turned by the method. It is now the current instance of the producer method bean. When the request context ends, the pay-

ment s passed to the corresponding disposal method (if any), and then finally destroyed when all dependent objects of the
producer method are destroyed.

If the @ew annotation or <New> element is be applied to an injection point whose type is neither a valid simple bean imple-
mentation class, nor the bean class of a session bean with a bean class local view, a Defi niti onExcept i on is thrown by
the container at deployment time.

The @lew annotation or <New> element may not appear in conjunction with any other binding. If the @ew binding does ap-

JSR-299 Public Review 40

Bean implementation

pear in conjunction with some other binding, aDef i ni ti onExcept i on isthrown by the container at deployment time.

No bean defined using annotations or XML should explicitly declare the @ew binding.

3.11. Support for Common Annotations

In addition to the capabilities defined by this specification, simple beans also support certain functionality defined by the
Common Annotations for the Java Platform and Enterprise JavaBeans specifications.

The following functionality is provided by the container when annotations are applied to the implementation class of a
simple bean:

« dependency injection via @JB, @er si st enceCont ext and @esour ce

e @ost Construct and @r eDest roy callbacks

e interception, asdefined inj avax. i nt er cept or

@er si st enceCont ext (t ype=EXTENDED) is not supported for simple beans.

Open issue: should @r ePassi vat e and @ost Act i vat e be supported for simple beans?
Open issue: what restrictions exist upon invoking dependencies from @r eDest r oy ?

Support for @JB, @er si st enceCont ext , @esour ce and @esour ces IS not required when a plugin container isused in a
Java EE 5 environment.

This simple bean makes use of annotations defined by the Common Annotations and EJB specifications:

@bessi onScoped
@nt ercept ors(M/Transacti onl nt ercept or. cl ass)
public class ShoppingCart {

private User custoner;

private Order order;

private @Resource Connection connection;

private @JB Paynent Processor payment Processor;

private @PersistenceContext(type=EXTENDED) EntityManager entityManager;

@nitializer

Shoppi ngCart (User custoner) {
this.custoner = custoner;
}

@ost Const ruct
void retrieveOrder() {

order = entityManager.find(Order.class, custoner.getld());
}

@°r eDestr oy

voi d updateOrder() {
entityManager. nmerge(order);

}

Of course, session beans may take advantage of all functionality defined by the EJB specification.

3.12. The Bean object for a bean

The abstract class Bean provides everything the container needs to manage instances of a certain bean.

public abstract class Bean<T>
i npl ements Cont ext ual <T> {

private final Manager manager;

prot ect ed Bean(Manager nanager) {
t hi s. manager =manager ;
}

JSR-299 Public Review 41

Bean implementation

protected Manager get Manager () {
return manager;

public abstract
public abstract
public abstract
public abstract
public abstract

public abstract
public abstract

public abstract

Set <Type> get Types();

Set <Annot at i on> get Bi ndi ngs() ;

Cl ass<? extends Annotation> get ScopeType();

Cl ass<? extends Annotati on> get Depl oynment Type();
String get Name();

bool ean isSerializable();
bool ean i sNul | abl e();

Set <l nj ecti onPoi nt > get | nj ectionPoi nts();

Note that concrete subclasses of Bean must implement the operations defined by the Cont ext ual interface defined in Sec-
tion 6.1, “The Contextua interface”.

An instance of Bean exists for every enabled bean in a deployment.

An application or third party framework may add support for new kinds of beans beyond those defined by the this specific-
ation (simple beans, session beans, producer methods and fields, resources and JM S resources) by extending Bean and re-
gistering beans with the container, using the mechanism defined in Section 12.3, “Bean registration”.

JSR-299 Public Review

42

Chapter 4. Inheritance, specialization and realization

Multiple beans may share the same implementation. The implementation of one bean may be shared by a second bean in
two different ways:

« Theimplementation of the second bean may extend the implementation of the first bean using Java inheritance
e The second bean may be declared to have the same implementation using XML

In either case, there are three possible reasons for reusing the implementation of the first bean. Either:

* The second bean specializes the first bean in a particular deployment scenario. In that deployment, the second bean
completely replaces the first, fulfilling the same role in the system.

e The implementation of the first bean is generic, and was designed to fulfill multiple roles in the system. The second
bean realizes one of these roles. Other beans may also share the implementation of the first bean, and fulfill other roles.

e The second bean is simply reusing the Java implementation, and otherwise bears no relation to the first bean. The first
bean may not even have been designed for use as a contextual object.

The three cases are quite dissimilar.

By default, Java implementation reuse is assumed. In this case, the producer, disposal and observer methods of the first
bean are not inherited by the second bean.

The bean developer may explicitly specify that the second bean specializes or redlizes the first through use of an annota-
tion.

In the case of specialization, the specialized bean receives all invocations, including producer, disposal and observer meth-
od invocations that would have been received by the first bean. In a particular deployment, there may be only one bean
that fulfills the specific role. The specialized bean inherits, and may not override, the bindings and name of the first bean.

In the case of realization, the second bean inherits the producer, disposal and observer methods of the generic bean, but in
this case, the inherited members have a distinct identity, since the second bean has its own role in the system, distinct from
al the other beans that share the implementation of the generic bean. The second bean must declare a distinct set of bind-
ings and name (if any).

However, in all three cases, the inheritance of type-level metadata is controlled via use of the Java @ nherited meta-
annotation.

4.1. Inheritance of type-level metadata

Suppose aclass X is extended directly or indirectly by the implementation class of asimple or session bean Y.

e |If X is annotated with a binding type, stereotype or interceptor binding type Z then Y inherits the annotation if and
only if Z declares the @ nheri t ed meta-annotation and neither Y nor any intermediate class that is a subclass of X and
asuperclass of Y declares an annotation of type Z.

« If X is annotated with a scope type Z then Y inherits the annotation if and only if Z declares the @ nheri t ed meta
annotation and neither Y nor any intermediate class that is a subclass of X and a superclass of Y declares a scope type.

e If X is annotated with a deployment type Z then Y inherits the annotation if and only if Z declares the @ nherited
meta-annotation and neither Y nor any intermediate class that is a subclass of X and a superclass of Y declares a de-
ployment type.

Scope types and deployment types explicitly declared by and inherited from the class X take precedence over default
scopes and deployment types declared by stereotypes.

Suppose aclass X isthe implementation class of asimple or session bean Y declared using XML.

e If X is annotated with a binding type, stereotype or interceptor binding type Z then Y inherits the annotation if and

JSR-299 Public Review 43

Inheritance, specialization and realization

only if Z declares the @ nherit ed meta-annotation and Y does not explicitly declare an annotation of type Z using
XML.

If X is annotated with a scope type Z then Y inherits the annotation if and only if Z declares the @ nheri t ed meta-
annotation and Y does not explicitly declare a scope type using XML.

If X is annotated with a deployment type Z then Y inherits the annotation if and only if Z declares the @ nheri ted
meta-annotation and Y does not explicitly declare a deployment type using XML.

Scope types and deployment types explicitly declared by and inherited from the class X take precedence over default scope
and deployment types declared by stereotypes.

For annotations defined by the bean specification:

all built-in scope types are declare @ nher i t ed,
all built-in stereotypes are declared @ nheri t ed,
no built-in binding type is declared @ nheri t ed, and

the built-in deployment type is not declared @ nheri t ed.

For annotations defined by the application or third-party extensions, it is recommended that:

scope types should be declared @ nheri t ed,

binding types should not be declared @ nheri t ed,
deployment types should not be declared @ nheri t ed,
interceptor binding types should be declared @ nheri t ed, and

stereotypes may be declared @ nher i t ed, depending upon the semantics of the stereotype.

However, in special circumstances, these recommendations may be ignored.

4.2. Inheritance of member-level metadata

Suppose aclass X is extended directly or indirectly by the implementation class of asimple or session bean Y.

If X declares an injected field x then Y inherits x.

If X declares an initializer method, @ost Const ruct method or @r eDest roy method x() then Y inherits x() if and
only if neither Y nor any intermediate class that is a subclass of X and a superclass of Y overrides the method x() .

If X declares a non-static method x() annotated with an interceptor binding type Z then Y inherits the binding if and
only if neither Y nor any intermediate class that is a subclass of X and a superclass of Y overrides the method x() .

If X declares a non-static producer, disposal, or observer method x() then Y does not inherit this method unless Y is
explicitly declared to specialize or realize X.

If X declares a non-static producer field x then Y does not inherit this field unless Y is explicitly declared to speciadize
or realize X.

If Y isadecorator and X declares a delegate attribute x then Y inherits x if and only if neither Y nor any intermediate
classthat isasubclass of X and a superclass of Y defines a delegate attribute.

Suppose aclass X isthe implementation class of asimple or session bean Y declared using XML.

If X declaresaninjected field x then Y inheritsx, unless Y explicitly declaresx using XML.

If X declares an initializer method, @ost Const ruct method or @r eDest r oy method x() then'Y inheritsx(), unlessY
explicitly declaresx() using XML.

JSR-299 Public Review 44

Inheritance, specialization and realization

e |If X declares a non-static method x() annotated with an interceptor binding type Z then Y inherits the binding, unless
Y explicitly declaresx() using XML.

e |If X declares a non-static producer, disposal, or observer method x() then Y does not inherit this method, unless Y is
explicitly declared to specialize or realize X.

e |If X declares a non-static producer field x then Y does not inherit this method, unless Y is explicitly declared to spe-
cializeor realize X.

e If Y isadecorator and X declares a delegate attribute x then Y inheritsx, unless'Y explicitly declares a delegate attrib-
ute using XML.

4.3. Specialization

If two beans both support a certain bean type, and share at |east one binding, then they are both eligible for injection to any
injection point with that declared type and binding. The container will choose the bean with the highest priority enabled
deployment type.

Consider the following beans:

@Current @Asynchronous
public class AsynchronousService inplements Service{

}

@bck @Current
public class MockAsynchronousServi ce extends AsynchronousService {

}

Suppose that the deployment type @bck is enabled:

<WebBeans>
<Depl oy>
<St andar d/ >
<Pr oducti on/ >
<nyf wk: Mock/ >
</ Depl oy>
</ WbBeans>

Then the following attribute will receive an instance of MockAsynchr onousSer vi ce:

@current Service service;

However, if the bean with the lower priority deployment type declares a binding that is not declared by the bean with the
higher priority deployment type, then the bean with the higher priority deployment type will not be eligible for injection to
an injection point with that binding.

Therefore, the following attribute will receive an instance of AsynchronousServi ce even though the deployment type
@wbck isenabled:

@urrent @A\synchronous Service service;

Thisisauseful feature in many circumstances, however, it is not always what isintended by the devel oper.

The only way one bean can completely override alower-priority bean at al injection pointsisif it implements al the bean
types and declares al the bindings of the lower-priority bean. However, if the lower-priority bean declares a producer
method, then even thisis not enough to ensure that the lower-priority bean is never called!

To help prevent developer error, the first bean may:

e directly extend the implementation class of the lower-priority bean , in the case of a bean declared using annotations,
or

« declare the same implementation class as the lower-priority bean, in the case of abean declared using XML, or

JSR-299 Public Review 45

Inheritance, specialization and realization

« directly override the lower-priority producer method, in the case of a producer method bean, and then

explicitly declare that it specializes the lower-priority bean.

4.3.1. Using specialization

A bean declared using annotations may declare that it specializes a lower-priority bean using the @peci al i zes annota-
tion. A bean declared using XML may declare that it specializes alower-priority bean using the <Speci al i zes> element.

Then the first bean will inherit the bindings and name of the lower-priority bean:

e The bindings of a bean X that specializes alower-priority bean Y include all bindings of Y, together with al bindings
declared explicitly by X.

* If abean X specializes alower-priority bean Y with a name, the name of X isthe same asthe name of Y. If X declares
aname explicitly, aDef i ni ti onExcept i on isthrown by the container at deployment time.

For example, the following bean would have the inherited bindings @ur rent and @synchr onous:

@bck @pecializes
public class MockAsynchronousServi ce extends AsynchronousService {

}
If AsynchronousSer vi ce declared a name:

@urrent @\synchronous @aned("asyncService")
public class AsynchronousService inplenments Service{

}
Then the name would also automatically be inherited by MockAsynchr onousSer vi ce.

When an enabled bean specializes alower-priority bean, we can be certain that the lower-priority bean is never instantiated
or called by the container. Even if the lower-priority bean defines a producer method, the method will be called upon an
instance of the first bean.

Specialization applies only to simple beans, as defined in Section 3.2.6, “ Specializing a simple bean”, session beans, as

defined in Section 3.3.6, “ Specializing a session bean” and producer methods, as defined in Section 3.4.5, “ Specializing a
producer method”.

4.3.2. Direct and indirect specialization

The @peci al i zes annotation or <Speci al i zes> XML element is used to indicate that one bean directly specializes anoth-
er bean.

Formally, abean X is said to specialize another bean Y if either:

e Xdirectly speciaizesY, or
e abean Z exists, such that X directly specializes Z and Z specidizesY.
If X specializes'Y but does not directly specialize Y, we say that X indirectly specializes Y.

If, in a particular deployment, a bean with a certain bean type and set of bindings is not specialized by any other enabled
bean, we call it the most specialized bean for that combination of type and bindings in that deployment.

Any non-static producer methods (see Section 3.4, “Producer methods’), producer fields (see Section 3.5, “Producer
fields"), disposal methods (see Section 3.4.6, “Disposal methods’) or observer methods (see Section 8.5, “ Observer meth-
ods”) of any bean are invoked upon an instance of the most specialized enabled bean that specializes the bean, as defined
by Section 6.7, “Lifecycle of producer methods’, Section 6.8, “Lifecycle of producer fields’ and Section 8.4, “Observer
notification”.

JSR-299 Public Review 46

Inheritance, specialization and realization

4.3.3. Inconsistent specialization

If, in aparticular deployment, either

» some enabled bean X specializes another enabled bean Y and X does not have a higher precedencethan Y, or
« morethan one enabled bean directly specializes the same bean

we say that inconsistent specialization exists, and an | nconsi st ent Speci al i zati onExcept i on iS thrown by the container
at deployment time.

4.4. Realization

Third-party frameworks and libraries often define generic classes that are intended for reuse by the application.
Consider the following generic class that defines a producer method, a disposal method and an observer method:

@\pp! i cat i onScoped
public abstract class PersistenceContext {

protected abstract EntityManager createEntityManager();
@°r oduces @Conver sati onScoped EntityManager getEntityManager() {

return createEntityManager();
}

voi d cl oseEntityManager (@i sposes EntityManager em {
em cl ose();
}

voi d beforeDirectJdbcQuery(@bserves @efore DirectJdbcQuery event, EntityManager em {
em flush();
}

}

This classisintended to fulfill multiple roles in the system—for every database in use by the application, there should be a
bean that extends this class and provides an implementation of cr eat eEnt i t yManager () . However, each bean that extends
Per si st enceCont ext heeds to define a different set of bindings for the producer and disposal methods. Furthermore, the
observer method should be inherited by all beans that extend this class.

However, it is not necessary to force all subclasses to override the producer and disposal methods just in order to override
the bindings.

Instead, any bean that extends a generic class may:

« directly extend the generic class, in the case of abean declared using annotations, or
e declarethat the generic class is the implementation class, in the case of a bean declared using XML, and then

explicitly declare that it realizes the generic class.

4.4.1. Using realization

A bean declared using annotations may declare that it realizes a generic class by annotating the implementation class with
the @real i zes annotation. A bean declared using XML may declare that it realizes a generic class using the <Real i zes>
element.

Then the first bean will inherit producer, disposal and observer methods declared by the generic class:

e |If ageneric class Y declares a non-static producer method or field with a certain combination of scope, stereotypes,
bindings and interceptor bindings, then every bean X that realizes Y also has a producer method or field with the same
scope, stereotypes and interceptor bindings. The bindings for this inherited producer method or field consist of all
bindings declared by the producer method or field of Y, excluding all bindings of Y, together with the bindings de-
clared explicitly by X. The deployment type of the inherited producer method or field is the deployment type of X.

JSR-299 Public Review 47

Inheritance, specialization and realization

e |If ageneric class Y declares a non-static disposal method with a disposed parameter with a certain combination of
bindings, then every bean X that realizes Y aso has a disposal method. The bindings of the disposed parameter of this
inherited disposal method consist of all bindings declared by the disposed parameter of the disposal method of Y, ex-
cluding al bindings of Y, together with the bindings declared explicitly by X.

e |f ageneric classY declares a non-static observer method with an event parameter with a certain combination of event
bindings, then every bean X that realizes Y also has an observer method. The event bindings of the event parameter of
this inherited observer method consist of all event bindings declared by the event parameter of the observer method of
Y.

Open issue: do we need a way to inherit the bindings of X to the event bindings of the observer method?

For example, the following bean would have a producer method with binding @custoner Dat abase, Scope
@onver sat i onScoped and deployment type @t agi ng, a disposal method with binding @ust oner Dat abase and an ob-
server method with event type bi r ect JdbcQuery and event binding @ef or e:

@5t agi ng @ust oner Dat abase @weal i zes
public cl ass Custoner Dat abasePer si st enceCont ext ext ends Persi st enceCont ext {

@verride protected EntityManager createEntityManager() { ... }
}

Realization applies only to simple beans and session beans.

JSR-299 Public Review 48

Chapter 5. Lookup, dependency injection and EL resolution

The container injects contextual instances to the following kinds of injection point:

« Any injected field of a bean implementation class
* Any parameter of abean constructor, initializer method, producer method or disposal method
* Any parameter of an observer method, except for the event parameter

Contextual instances of beans may also be obtained by evaluating EL expressions which refer to the bean by name, or by
dynamic lookup viaan API.

In general, a bean type or bean name does not uniquely identify a bean. When resolving a bean at an injection point, the
container considers bean type, bindings and deployment type precedence. When resolving a bean name in EL, the contain-
er considers name and deployment type precedence. This allows bean devel opers to decouple type from implementation.

The container is required to ensure that any injected reference to a contextual instance of a bean may be cast to any bean
type of the bean.

The container is required to support circularities in the bean dependency graph.

5.1. Unsatisfied and ambiguous dependencies

An unsatisfied dependency exists at an injection point when no enabled bean has the bean type and bindings declared by
the injection point.

An ambiguous dependency exists at an injection point when in the set of enabled beans with the bean type and bindings
declared by the injection point there exists no unique bean with a higher precedence than all other beansin the set.

The container must validate all injection points of all enabled beans at deployment time to ensure that there are no unsatis-
fied or ambiguous dependencies. If an unsatisfied or ambiguous dependency exists, an Unsat i sfi edDependencyExcept i on
or Anbi guousDependencyExcept i on iSthrown by the container at deployment time, as defined in Section 5.9.1, “Resolving
dependencies’.

The method Bean. get | nj ecti onPoi nt s() may be used to determine the dependencies of a bean.

5.2. Primitive types and null values

For the purposes of typesafe resolution and dependency injection, primitive types and their corresponding wrapper typesin
the package j ava. | ang are considered identical and assignable. If necessary, the container performs boxing or unboxing
when it injects avalue to afield or parameter of primitive or wrapper type.

However, if an injection point of primitive type resolves to a bean that may be null, such as a producer method with a non-
primitive return type or a producer field with a non-primitive type, aNul | abl eDependencyExcept i on isthrown by the con-
tainer at deployment time.

The method Bean. i sNul | abl e() may be used to detect if abean has null values.

5.3. Injected reference validity

References to contextual instances of a bean are valid only for a certain period of time. The application should not invoke
amethod of an invalid reference.

The validity of an injected reference depends upon whether the scope of the injected bean is a normal scope or a pseudo-
scope.

« Any reference to a bean with a normal scope is valid as long as the application maintains a hard reference to it.
However, it may only be invoked when the context associated with the normal scope is active. If it isinvoked when the
context isinactive, a Cont ext Not Act i veExcept i on isthrown by the container.

JSR-299 Public Review 49

L ookup, dependency injection and EL resolution

« Any reference to a bean with a pseudo-scope (such as @ependent) isvalid until the bean instance to which it refersis
destroyed. It may be invoked even if the context associated with the pseudo-scope is not active. If the application in-
vokes amethod of areference to an instance that has already been destroyed, the behavior is undefined.

5.4. Client proxies

Clients of a bean with a normal scope, as defined in Section 9.2, “Normal scopes and pseudo-scopes’, do not hold a direct
reference to the contextual instance of the bean (the object returned by Bean. creat e()). Instead, their referenceisto acli-
ent proxy object. A client proxy implements/extends all bean types of the bean and delegates all method calls to the current
instance (as defined in Section 9.2, “Normal scopes and pseudo-scopes’) of the bean.

There are anumber of reasons for this indirection:

e The container must guarantee that when any valid injected reference to a bean of normal scope is invoked, the invoca
tion is always processed by the current instance of the injected bean. In certain scenarios, for example if a request
scoped bean is injected into a session scoped bean, or into a Servlet, this rule requires an indirect reference. (Note that
the @ependent pseudo-scopeis not a normal scope.)

« The container may use a client proxy when creating beans with circular dependencies. Thisis only necessary when the
circular dependencies are initialized via a simple bean constructor or producer method parameter. (Beans with scope
@ependent hever have circular dependencies.)

e Findly, client proxies are serializable, even when the bean itself is not. Therefore the container must use a client proxy
whenever a bean with normal scope is injected into a bean with a passivating scope, as defined in Section 9.4,
“Passivating scopes and serialization”. (On the other hand, beans with scope @ependent must be serialized along with
their client.)

Client proxies are never required for a bean whose scope is a pseudo-scope such as @ependent .
All client proxies must be serializable.

Client proxies may be shared between multiple injection points. For example, a particular container might instantiate ex-
actly one client proxy object per bean. (However, this strategy is not required by this specification.)

5.4.1. Unproxyable bean types

Certain legal bean types cannot be proxied by the container:

» classes without a non-private constructor with no parameters,
» classeswhich are declared final or have final methods,

e primitive types,

e and array types.

If an injection point whose declared type cannot be proxied by the container resolves to a bean with anormal scope, an un-
pr oxyabl eDependencyExcept i on isthrown by the container at deployment time.

5.4.2. Client proxy invocation

Every time a method of the bean isinvoked upon a client proxy, the client proxy must:

« obtain the context object by calling Manager . get Cont ext (), passing the bean scope, then

< obtain an instance of the bean by calling Cont ext . get (), passing the Bean instance representing the bean and t r ue as
the value of the cr eat e parameter, and

« invoke the method upon the bean.

The behavior of all methods declared by j ava. | ang. Obj ect , except for t oSt ri ng() , is undefined for a client proxy. Port-

JSR-299 Public Review 50

L ookup, dependency injection and EL resolution

able applications should not invoke any method declared by j ava. | ang. Obj ect, except for t oSt ri ng(), on aclient proxy.

5.5. The default binding at injection points

If an injection point declares no binding, the default binding @ur r ent is assumed.
The following are equivalent:

@Conver sat i onScoped
public class Oder {

private Product product;
private User custoner;

@nitializer
public void init(@el ected Product product, User customer)

t hi s. product = product;
t hi s. customer = custoner;

@Conver sat i onScoped
public class Oder {

private Product product;
private User custoner;

@nitializer
public void init(@bel ected Product product, @ourrent User customer)
{

thi s. product = product;

this.custoner = custoner;

Asarethe following:

<nyapp: Order>
<Conver sat i onScoped/ >

<myapp:init>
<Initializer/>
<nyapp: Product >
<myapp: Sel ect ed/ >
</ nyapp: Pr oduct >
<myapp: User/ >
</ nyapp:init>

</ nyapp: Or der >

<myapp: Or der >
<Conver sat i onScoped/ >

<myapp:init>
<Initializer/>
<myapp: Pr oduct >
<myapp: Sel ect ed/ >
</ nyapp: Pr oduct >
<nyapp: User >
<Current/>
</ nyapp: User >
</ nyapp:init>

</ nyapp: Or der >

The following definitions are equivalent:

public class Paynment {
public Paynment (Bi gDeci mal amount) { ... }

@nitializer Payment (Order order) {
t hi s(order. get Amount () ;

JSR-299 Public Review 51

L ookup, dependency injection and EL resolution

public class Paynent {
publ i ¢ Paynent (Bi gDeci nal anount) { ... }

@nitializer Payment (@urrent Order order) {
t hi s(order. get Anount () ;
}

Asarethe following:

<myapp: Paynent >
<nyapp: O der/ >
</ nyapp: Paynent >

<nyapp: Paynment >
<myapp: Or der >
<Current/>
</ nyapp: Or der >
</ nmyapp: Paynent >

5.6. Generic type literals

The Javalanguage does not currently support aliteral syntax for parameterized types. Therefore, the following helper class
alowsinlineinstantiation of an object that represents a parameterized type.

public abstract class TypelLiteral <T> {

protected TypeLiteral () {
if (!(getd ass().getSuperclass() == TypeLiteral.class)) {
throw new Runti meException("Not a direct subclass of TypeLiteral");

if (!(getd ass().getCenericSuperclass() instanceof ParaneterizedType)) {
t hrow new Runti neException("M ssing type paranmeter in TypeLiteral");
}

}

public final Type getType() {
Par anet eri zedType paraneterized = (ParaneterizedType) getd ass()
. get Generi cSupercl ass();
return paraneterized. get Act ual TypeArgunents()[0];

@uppr essWar ni ngs("unchecked")
public final Cass<T> get RawType() {
Type type = get Type();
if (type instanceof d ass) {
return (Cl ass<T>) type;
} else if (type instanceof ParaneterizedType) ({
return (C ass<T>) ((ParaneterizedType) type).get RawType();
} else if (type instanceof CenericArrayType) {
return (O ass<T>) Object[].class;
} else {
t hrow new Runti neException("lllegal type parameter in TypeLiteral");
}

An object that represents any parameterized type may be obtained by subclassing TypelLi teral .

TypeLiteral type = new TypeLiteral <List<String>>() {};

This object may be passed to APIs that perform typesafe resol ution.

5.7. Annotation type literals

The Java language does not currently support a literal syntax for inline instantiation of annotation values. Therefore, the
following helper class allows inline instantiation of annotation type instances.

JSR-299 Public Review 52

L ookup, dependency injection and EL resolution

public abstract class AnnotationLiteral <T extends Annotation>
i npl enents Annotation {

protected AnnotationLiteral () {
if (!(getd ass().getSuperclass() == AnnotationLiteral.class)) {
t hrow new Runti meExcepti on(
"Not a direct subclass of AnnotationLiteral");

}
if (!(getd ass().getGenericSuperclass() instanceof ParaneterizedType)) {
t hrow new Runti meExcepti on(
"M ssing type paranmeter in AnnotationLiteral");

}

@uppr essWar ni ngs("unchecked")
public final C ass<T> annotationType() {
Par anet eri zedType paraneteri zed = (ParaneterizedType) getd ass()
. get Generi cSupercl ass();
return (C ass<T>) paraneterized. get Act ual TypeArgunents()[0];

An instance of an annotation type may be obtained by subclassing Annot at i onLi teral .

public abstract class PayByBi ndi ng
ext ends Annot ati onLit eral <PayBy>
i mpl enents PayBy {}

PayBy payby = new PayByBi nding() { public value() { return CHEQUE;, } };

Annotation values are often passed to APIs that perform typesafe resolution.

5.8. Injection point metadata

Theinterface | nj ecti onPoi nt provides access to metadata about an injection point.

public interface InjectionPoint {
public Type get Type();
publ i ¢ Set <Annot ati on> get Bi ndi ngs() ;
publ i ¢ Bean<?> get Bean();
public Menber get Menber();
public <T extends Annotation> T get Annot ati on(Cl ass<T> annot ati onType);
public Annotation[] getAnnotations();
publi c bool ean i sAnnot ati onPresent (O ass<? extends Annotati on> annotationType);

e Theget Bean() method returnsthe Bean object representing the bean that defines the injection point.

e Theget Type() and get Bi ndi ngs() methods return the declared type and bindings of the injection point. If the injec-
tion point is declared in XML, the type and bindings are determined according to Section 10.8, “ Specifying bean types
and bindings’.

e Theget Merber () method returns the Fi el d object in the case of field injection, the Met hod object in the case of meth-
od parameter injection or the Const r uct or object in the case of constructor parameter injection.

e Theget Annotation() and get Annot ati ons() methods return annotations of the field in the case of field injection, or
annotations of the parameter in the case of method parameter or constructor parameter injection. get Annot ati on() re-
turns anull value if no annotation of the given type exists at the injection point.

5.8.1. Injecting I nj ect i onPoi nt

Occasionally, a component with scope @ependent needs to access metadata relating to the object into which it is injected.
For example, the following producer method creates injectable Logger s. The log category of a Logger depends upon the
class of the object into which it isinjected:

@°r oduces Logger createlLogger (I njectionPoint injectionPoint) {
return Logger. getLogger(injectionPoint.getMenber().getDeclaringd ass().getNane());
}

JSR-299 Public Review 53

L ookup, dependency injection and EL resolution

The container must provide a bean with deployment type @t andar d, sScope @ependent , bean type I nj ect i onPoi nt and
binding @urrent .

Whenever a @ependent scoped object is instantiated by the container for injection into a second bean, any injection
point of type | nj ecti onPoi nt and binding @ur r ent receives an instance of I nj ecti onPoi nt that represents the injec-
tion point of the second bean.

Otherwise, when a @ependent scoped object is instantiated by the container to receive a producer method, producer
field, observer or disposa method invocation, during EL expression evaluation, or as a result of a direct cal to the
Manager API, any injection point of type | nj ecti onPoi nt and binding @ur r ent receives anull value.

Open issue: should we say that an exception is thrown by the container, instead of just passing a null value?

If a bean that declares any scope other than @ependent has an injection point of type I nj ectionPoi nt and binding
@urrent, abDefinitionException isthrown by the container at deployment time.

If an object that is not a bean has an injection point of type I nj ecti onPoi nt and binding @urrent, abefiniti onExcep-
ti on isthrown by the container at deployment time.

5.9. The manager object

Theinterfacej avax. webbeans. Manager provides operations for obtaining contextual instances of beans.

5.9.1. Resolving dependencies

Implementations of Bean maintain a reference to an instance of Manager . When the Bean implementation performs depend-
ency injection, it must obtain the contextual instances to inject by calling Manager . get | nst anceTol nj ect (), passing an
instance of 1 nj ecti onPoi nt that represents the injection point and the instance of Cr eat i onal Cont ext that was passed to
Bean. create().

public interface Manager {

}

public <T> T getlnstanceTol nject(InjectionPoint ij, Creational Context<?> ctx);

An alternative version of this method is called when observer methods are invoked, as defined in Section 8.5.4, “ Observer
method parameters’.

public interface Manager {

}

public <T> T getlnstanceTol nject(IlnjectionPoint ij);

Manager . get | nst anceTol nj ect () returns a contextual instance or client proxy to be injected to the given injection point.

TODO: exceptionsif InjectionPoint is honsense.

Theget | nst anceTol nj ect () method must:

| dentify the bean by calling Manager . r esol veByType() , passing the type and bindings of the injection point.

If resol veByType() did not return a bean, throw an Unsat i sfi edDependencyExcepti on Or, if resol veByType() re-
turned more than one bean, throw an Anbi guousDependencyExcept i on.

If the bean has a normal scope and the type cannot be proxied by the container, as defined in Section 5.4.1,
“Unproxyable bean types’, throw an Unpr oxyabl eDependencyExcept i on.

Otherwise, obtain an instance of the bean (or a client proxy) by calling Manager . get I nst ance() , passing the Bean ob-
ject representing the bean, and return it. Alternatively, return an incompletely initialized instance of the bean that was

JSR-299 Public Review 54

L ookup, dependency injection and EL resolution

registered by calling Cr eat i onal Cont ext . push() , as defined in Section 6.1, “The Contextual interface”

5.9.2. Obtaining contextual instances

Occasionally, the application or third-party framework must interact directly with the container via programmatic API call.
Thisis useful in generic framework code—when we need to obtain a contextual instance, but the type or bindings vary dy-
namically, for example. Thus, the Manager interface provides additional operations for resolving a bean by type or name.
The container provides an implementation of this interface to the application.

The container provides a built-in bean with bean type Manager , scope @ependent , deployment type @t andar d and bind-
ing @ur rent . Thus, any bean may obtain an instance of Manager by injecting it:

@urrent Manager manager;

Alternatively, the application may obtain the Manager object from IJNDI. The container must register an instance of Man-
ager With namej ava: conp/ Manager in JNDI at deployment time.

A contextual instance of a bean may be obtained by calling Manager . get I nst ance() , passing the Bean object representing
the bean.

public interface Manager {

public <T> T getlnstance(Bean<T> bean);

Manager . get | nst ance() returns a contextual instance or client proxy for the given bean.

e If the given Bean instance represents a bean with a normal scope, as defined in Section 9.2, “Normal scopes and
pseudo-scopes’, Manager . get | nst ance() must return aclient proxy.

e Otherwiseg, if the Bean instance represents a bean with a pseudo-scope, as defined in Section 9.2, “Normal scopes and
pseudo-scopes’, Manager . get | nst ance() must:

» obtain the context object by calling Manager . get Cont ext () , passing the bean scope, then

» obtain an instance of the bean by calling Cont ext . get (), passing the Bean instance representing the bean and an
instance of Cr eat i onal Cont ext .

The Manager . get | nst anceBy Type() methods obtain a contextual instance of a bean:

public interface Manager {

public <T> T getlnstanceByType(C ass<T> type, Annotation... bindings);
public <T> T getlnstanceByType(TypelLiteral <T> type, Annotation... bindings);

Thefirst argument is a bean type, the remaining arguments are instances of binding annotation types.
For example:

Paynment Processor pp = nmnager. get | nst anceByType(Paynent Processor. cl ass,
synchr onousAnnot ati on,
payByAnnot ati on) ;

If no bindings are passed to get | nst anceBy Type() , the default binding @ur r ent is assumed.

If a parameterized type with a type parameter or wildcard is passed to r esol veByType(), an ||| egal Ar gunent Except i on
is thrown.

If two instances of the same binding type are passed to get | nst anceByType(), & Dupl i cat eBi ndi ngTypeException iS

JSR-299 Public Review 55

L ookup, dependency injection and EL resolution

thrown.

If an instance of an annotation that is not a binding type is passed to get | nst anceByType(), an I | | egal Ar gument Excep-
ti on isthrown.

Theget I nst anceByType() method must:

e ldentify the bean by calling Manager . r esol veByType() , passing the given type and bindings.

e If resol veByType() did not return a bean, throw an unsati sfi edDependencyExcept i on Of, if resol veByType() re-
turned more than one bean, throw an Anbi guousDependencyExcept i on.

e Otherwise, obtain an instance of the bean (or a client proxy) by calling Manager . get I nst ance() , passing the Bean ob-
ject representing the bean, and return it.

5.10. Dynamic lookup

In certain situations, injection is not the most convenient way to obtain a reference to a contextual instance. For example, it
may not be used when:

e thebindings vary dynamically at runtime, or

* depending upon the deployment, there may be no bean which satisfies the type and bindings.

In these situations, the application may directly call Manager . get | nst anceByType() .

Alternatively, an instance of the I nst ance interface may be injected via use of the @t ai ns binding:

@t ai ns | nst ance<Paynent Processor > paynent Processor ;

Additional bindings may be specified at the injection point:

@t ai ns @ayBy(CHEQUE) | nstance<Payment Processor > paynent Processor;

The nst ance interface provides a method for obtaining instances of beans of a specific type:
public interface Instance<T> {
public T get(Annotation... bindings);
}
If two instances of the same binding type are passed to get (), aDupl i cat eBi ndi ngTypeExcept i on iSthrown.
If an instance of an annotation that is not abinding typeis passed to get (), ani 11 egal Ar gunent Except i on iSthrown.

The @t ai ns annotation or <t ai ns> element may be applied to any injection point of type | nst ance where an actual
type parameter is specified.

If the type of the injection point is not of type I nst ance, if no actual type parameter is specified, or if the type parameter
contains atype variable or wildcard, aDef i ni ti onExcept i on iSsthrown by the container at deployment time.

Whenever the @t ai ns annotation appears at an injection point, an implicit bean exists with:

e exactly the bean type and bindings that appear at the injection point,
* deployment type @t andar d,

* @ependent SCOpE,

e no bean name, and

* animplementation provided automatically by the container.

JSR-299 Public Review 56

L ookup, dependency injection and EL resolution

The get () method of the provided implementation of | nst ance must call Manager . get | nst anceByType() , passing the fol-
lowing parameters:

e dl bindings declared at the injection point, except @bt ai ns

e al bindings passed to I nst ance. get ()

Open issue: if no bean satisfies the type and bindings, should an exception be thrown, or a null value returned.
The application may obtain a contextual instance by calling the get () method:

@bt ai ns @ayBy(CHEQUE) | nst ance<Paynent Processor > paynent Processor;
Aﬁhotation bi ndi ng = processSynchronously ?

new SynchronousBi ndi ng() {} : new AsynchronousBi ndi ng() {};
paynent Processor. get (bi ndi ng) . process(paynent);

In this example, the returned bean has bean type Paynent Processor and binding @rayBy(CHEQUE) along with either
@ynchronous OF @\synchr onous.

When the application calls I nst ance. get () to obtain a contextual instance dynamically, it may need to pass instances of
binding annotation types. The helper classj avax. webbeans. Annot ati onLi t eral makes it easier to implement binding an-
notation types:

public class SynchronousBi ndi ng
ext ends Annot ati onLit eral <Synchr onous>
i mpl enents Synchronous {}

public abstract class PayByBi ndi ng
ext ends Annot ati onLit er al <PayBy>
i mpl enents PayBy {}

Then the application may easily instantiate instances of the binding type:

Payment Processor pp = paynent Processor. get(new SynchronousBi ndi ng(),
new PayByBi ndi ng() { public Paynent Method value() { return CHEQUE;, } });

5.11. Typesafe resolution algorithm

The process of matching abean to an injection point is called typesafe resolution. The container considers bean type, bind-
ings, and deployment precedence when resolving a bean to be injected to an injection point.

Typesafe resolution usually occurs at container deployment time, allowing the container to warn the user if any enabled
beans have unsatisfied or ambiguous dependencies.

Ther esol veByType() method of the Manager interface returns the result of the typesafe resolution.

public interface Manager {

public <T> Set <Bean<T>> resol veByType(C ass<T> api Type, Annotation... bindings);
public <T> Set <Bean<T>> resol veByType(TypeLiteral <T> api Type, Annotation... bindings);

If no bindings are passed to r esol veBy Type() , the default binding @ur r ent is assumed.

If a parameterized type with a type parameter or wildcard is passed to r esol veByType(), an I | | egal Ar gunent Except i on
isthrown.

If two instances of the same binding type are passed to r esol veByType(), @ Dupl i cat eBi ndi ngTypeExcept i on iSthrown.

If an instance of an annotation that is not a binding type is passed to r esol veByType(), an | | | egal Ar gunent Except i on iS
thrown.

JSR-299 Public Review 57

L ookup, dependency injection and EL resolution

The following a gorithm must be used by the container when resolving a bean by type:

e Fird, the container identifies the set of matching enabled beans which have the given bean type. For this purpose,
primitive types are considered to be identical to their corresponding wrapper typesinj ava. | ang, array types are con-
sidered identical only if their element types are identical and parameterized types are considered identical only if both
the type and all type parameters are identical.

¢ Next, the container considers the given bindings. If no bindings were passed to r esol veByType(), the container as-
sumes the binding @cur r ent . The container narrows the set of matching beans to just those where for each given bind-
ing, the bean declares a binding with (@) the same type and (b) the same annotation member value for each member
which is not annotated @onBi ndi ng (see Section 5.11.1, “Binding annotations with members”).

* Next, the container examines the deployment types of the matching beans, as defined in Section 2.5.7, “ Deployment
type precedence”’, and returns the set of beans with the highest precedence deployment type that occurs in the set. If
there are no matching beans, an empty set is returned.

5.11.1. Binding annotations with members
According to the algorithm above, binding types with members are supported:

@Pay By (CHEQUE)
cl ass ChequePaynent Processor inpl enents Paynent Processor { ... }

@ayBy(CREDI T_CARD)
cl ass Credit CardPaynent Processor inplenments Paynent Processor { ... }

Then only chequePaynent Processor isacandidate for injection to the following attribute:

@PayBy(CHEQUE) Paynent Processor paynent Processor;

On the other hand, only cr edi t Car dPaynent Processor isacandidate for injection to this attribute:

@PayBy(CREDI T_CARD) Paynent Processor paynent Processor;

The container callsthe equal s() method of the annotation member value to compare values.
An annotation member may be excluded from consideration using the @onBi ndi ng annotation.

@i ndi ngType
@Ret ent i on(RUNTI MVE)
@ar get ({ METHOD, FI ELD, PARAMETER, TYPE})
public @nterface PayBy {
Payment Met hod val ue();
@NonBi ndi ng String coment ();
}

Array-valued or annotation-valued members of a binding type must be annotated @onBi ndi ng. If an array-valued or an-

notation-valued member of a binding type is not annotated @onBi ndi ng, a Defi ni ti onExcepti on is thrown by the con-
tainer at deployment time.

5.11.2. Multiple bindings
According to the algorithm above, a bean implementation class or producer method or field may declare multiple bindings:

@ynchronous @rayBy(CHEQUE)
cl ass ChequePaynent Processor inpl ements Paynent Processor { ... }

Then chequePaynent Processor would be considered a candidate for injection into any of the following attributes:

@rayBy(CHEQUE) Paynent Processor payment Processor;
@ynchronous Payment Processor paynent Processor;

@ynchronous @PayBy(CHEQUE) Paynent Processor paynent Processor;

JSR-299 Public Review 58

L ookup, dependency injection and EL resolution

A bean must declare all of the bindings that are specified at the injection point to be considered a candidate for injection.

5.12. EL name resolution

The container must provide a Unified EL ELResol ver to the Serviet engine and JSF implementation that resolves bean
names. When this resolver is called with a null base object, it calls the method Manager . get | nst anceByNane() to obtain
an instance of the bean named in the EL expression:

public interface Manager {

public nject getlnstanceByNane(String nane);

}

For example:

Obj ect pp = manager. get | nst anceByNane(" paynent Processor");
Theget I nst anceByName() method must:

e ldentify the bean by calling Manager . r esol veByNane() , passing the name.
e Ifresol veByNane() returned an empty set, return anull value.
¢ Otherwisg, if resol veByNanme() returned more than one bean, throw an Anbi guousDependencyExcept i on.

« Otherwisg, if exactly one bean was returned, obtain an instance of the bean by calling Manager . get | nst ance(),
passing the Bean instance representing the bean.

For each distinct name that appears in the EL expression, get | nst anceByName() must be called at most once. Even if a
name appears more than once in the same expression, the container may not call get I nst anceByNane() multiple times
with that name. This restriction ensures that there is a unique instance of each bean with scope @ependent in any EL eval-
uation.

Open issue: qualified names are supported. The ELResol ver implements support for qualified namesin Unified EL. How
exactly does this work?

5.13. Name resolution algorithm

The process of matching a bean to aname used in EL is called name resolution. Since there is no typing information avail-
ablein EL, the container may consider only bean names.

Ther esol veByNane() method of the Manager interface performs name resol ution.

public interface Manager {

publ i ¢ Set <Bean<?>> resol veByNane(String nane);

}

The following a gorithm must be used by the container when resolving a bean by name:

« The container identifies the set of matching enabled beans which have the given name.

< Next, the container examines the deployment types of the matching beans, as defined in Section 2.5.7, “ Deployment
type precedence’, and returns the set of beans with the highest precedence deployment type that occurs in the set. If
there are no matching beans, an empty set is returned.

The name resolution agorithm usually occurs at runtime.

JSR-299 Public Review 59

Chapter 6. Bean lifecycle

The lifecycle of a contextual instance of a bean is managed by the context object for the bean's scope, as defined in
Chapter 9, Scopes and contexts. The context implementation collaborates with the container viathe Cont ext and Cont ex-
tual interfacesto create and destroy contextual instances.

The actual mechanics of bean creation and destruction varies according to what kind of bean it is:

e To create acontextual instance of a session bean, the container creates an EJB local object reference

* To create acontextual instance of a producer method bean, the container calls the producer method

» To create acontextual instance of a producer field bean, the container retrieves the current value of the field
e To create acontextua instance of asimple bean, the container calls the bean constructor

« Todestroy acontextua instance of a stateful session bean, the container removes the EJB instance

* Todestroy acontextua instance of a producer method bean, the container calls the disposal method, if any

When the container injects a dependency or resolves an EL name, and there is no existing instance of the bean cached by
the context object for the bean scope, the context object automatically creates a new contextual instance of the bean. When
acontext is destroyed, the context object automatically destroys any instances associated with that context.

To create and destroy contextual instances, the context object calls operations defined by the interface Cont ext ual .

6.1. The cont ext ual interface

The cont ext ual interface defines operations to create and destroy contextual instances of a certain type:

public interface Contextual <T> {
public T create(Creational Context<T> creational Context);
public void destroy(T instance);

}

Any implementation of Contextual is caled a contextual type. In particular, the Bean abstract class defined in Sec-
tion 3.12, “The Bean object for abean” implements Cont ext ual , so all beans are contextual types.

The container and third party frameworks may define implementations of the Cont ext ual interface that do not extend
Bean, but it is not recommended that applications directly implement Cont ext ual .

The interface Cr eat i onal Cont ext provides an operation that allows the cr eat e() method to register an incompletely ini-
tialized contextual instance with the container. A contextual instance is considered incompletely initialized until the cr e-
at e() method returns the instance.

public interface Creational Context<T> {
voi d push(T inconpl etel nstance);
}

If create() calscreational Context. push(), it must aso return the instance passed to push() .
The implementation of Cont ext ual isnot required to call Cr eat i onal Cont ext . push() . However, invocation of push() by
aBean with normal scope between instantiation and injection hel ps the container minimize the use of client proxy objects.

6.2. Creation

The Cont ext ual . creat e() method isresponsible for creating new instances of a bean.

Thecreat e() method performs the following tasks:

¢ obtains an instance of the bean,

e createsthe interceptor and decorator stacks and binds them to the instance,

JSR-299 Public Review 60

Bean lifecycle

* injectsany dependencies,
e satsany initial field values defined in XML, and
o cdlsthe @ost Const ruct method, if necessary.

If any exception occurs while creating an instance, the exception is rethrown by the cr eat e() method. If the exception isa
checked exception, it iswrapped and rethrown as an (unchecked) cr eat i onExcept i on.

6.3. Destruction

The Cont ext ual . dest roy() method isresponsible for destroying instances of a contextual type.

Thedest roy() method performs the following tasks:

e callsdisposa method, if necessary,

e callsthe @r eDest r oy method, if necessary, and

« destroysall dependent objects of the instance, as defined in Section 9.3.2, “ Dependent object destruction”.
If any exception occurs while destroying an instance, the exception is caught by the dest r oy() method.

If the application invokes a contextual instance after it has been destroyed, the behavior is undefined.

6.4. Lifecycle of simple beans

When the cr eat e() method of the Bean object that represents a simple bean is called:

« Fird, the container calls the bean constructor to obtain an instance of the bean. For each constructor parameter, the
container passes the object returned by Manager . get | nst anceTol nj ect () . The container is permitted to return an in-
stance of a container-generated subclass of the bean implementation class, allowing interceptor and decorator bindings.

« Next, the container initializes the values of any attributes annotated @JB, @er si st enceCont ext Or @Resource, as
defined in the Common Annotations for the Java Platform and EJB 3.0 specifications.

« Next, the container initializes the values of all injected fields. For each injected field, the container sets the value to the
object returned by Manager . get | nst anceTol nj ect () .

« Next, the container initializes the values of any fields with initial values specified in XML, as defined in Sec-
tion 10.3.5, “Field initial value declarations’.

¢ Next, the container cals al initializer methods. For each initializer method parameter, the container passes the object
returned by Manager . get | nst anceTol nj ect () .

* Next, the container builds the interceptor and decorator stacks for the instance as defined in Section 7.2.10,
“Interceptor stack creation” and Section 7.3.8, “ Decorator stack creation” and binds them to the instance.

« Finaly, the container callsthe @ost Const ruct method, if any.

When the dest roy() method is called:

e The container callsthe @r eDest r oy method, if any.

« Findly, the container destroys dependent objects.

6.5. Lifecycle of stateful session beans

When the creat e() method of a Bean object that represents a stateful session bean that is called, the container creates and
returns a session bean proxy, as defined in Section 3.3.8, “ Session bean proxies’.

JSR-299 Public Review 61

Bean lifecycle

When the dest roy() method is called, the container removes the stateful session bean. The @r eDest r oy callback must be
invoked by the container.

If the underlying EJB was already removed by direct invocation of a remove method by the application, the container ig-
nores the instance.

Note that the container performs additional work when the underlying EJB is created and removed, as defined in Sec-
tion 6.11, “Lifecycle of EJBS’

6.6. Lifecycle of stateless session and singleton beans

When the creat e() method of a Bean object that represents a stateless session or singleton session bean is called, the con-
tainer creates and returns a session bean proxy, as defined in Section 3.3.8, “ Session bean proxies’.

When the dest roy() method is called, the container simply discards the proxy and all underlying EJB local object refer-
ences.

Note that the container performs additional work when the underlying EJB is created and removed, as defined in Sec-
tion 6.11, “Lifecycle of EIBS’

6.7. Lifecycle of producer methods

Any Java object may be returned by a producer method. It is not required that the returned object be an instance of another
bean. However, if the returned object is not an instance of another bean, the container will provide none of the following
capabilities:

* injection of other beans

» lifecycle callbacks

« method and lifecycle interception

In the following example, the producer method returns instances of other beans:

@sessi onScoped
public class Paynent StrategyProducer {

private Paynent StrategyType paynent Strat egyType;

public void setPayment Strat egyType(Paynent Strat egyType type) {
paynment St rat egyType = type;

@r oduces Paynent Strat egy get Paynent Strat egy(@CreditCard Payment Strategy creditCard,
@heque Paynent Strategy cheque,
@nl i ne Paynent Strategy online) {
switch (paynent StrategyType) {

case CREDIT_CARD: return creditCard;

case CHEQUE: return cheque;

case ONLINE: return online;

default: throw new ||| egal StateException();

}

In this case, the object returned by the producer method has already had its dependencies injected, receives lifecycle call-
backs and has interception enabled.

But in this example, the returned objects are not contextual instances:

@sessi onScoped
public class Paynent Strat egyProducer {

private Paynment StrategyType paynent Strat egyType;

public void setPaynment Strat egyType(Paynment Strat egyType type) {
paynment Strat egyType = type;

JSR-299 Public Review 62

Bean lifecycle

@°r oduces Paynent Strat egy getPaynent Strategy() {
switch (paynent StrategyType) {
case CREDI T_CARD: return new CreditCardPaynent Strategy();
case CHEQUE: return new ChequePaynent Strategy();
case ONLINE: return new OnlinePayment Strategy();
default: throw new ||| egal StateException();

}

In this case, the object returned by the producer method will not have any dependencies injected by the container, receives
no lifecycle callbacks and does not have interception enabled.

When the creat e() method of a Bean object that represents a producer method is called, the container must invoke the
producer method, passing the object returned by Manager . get | nst anceTol nj ect () to each parameter.

* If the producer method is stetic, the container must invoke the method.

» Otherwisg, if the producer method is non-static, the container must:

» obtain the Bean object for the most specialized bean that specializes the bean which declares the producer method,
and then

» obtain an instance of the most specialized bean, by calling Manager . get I nst ance() , passing the Bean object rep-
resenting the bean, and

» invoke the producer method upon thisinstance.

The return value of the producer method, after method interception completes, is the new contextual instance to be re-
turned by Bean. create() .

If the producer method returns a null value and the producer method bean has the scope @ependent , thecreat e() method
returns anull value.

Otherwise, if the producer method returns a null value, and the scope of the producer method is not @ependent , thecr e-
at e() method throwsan 111 egal Product Excepti on.

When the dest roy() method is called, and if there is a disposal method for this producer method, the container must in-
voke the disposal method, passing the instance given to destroy() to the disposed parameter, and the object returned by
Manager . get | nst anceTol nj ect () to each of the other parameters.

» If thedisposal method is static, the container must invoke the method.

» Otherwiseg, if the disposal method is non-static, the container must:

» obtain the Bean object for the most specialized bean that specializes the bean which declares the disposal method,
and then

» obtain an instance of the most specialized bean, by calling Manager . get I nst ance() , passing the Bean object rep-
resenting the bean, and

e invoke the disposal method upon this instance.

Finally, the container destroys dependent objects.

6.8. Lifecycle of producer fields
Any Java object may be the value of a producer field. It is not required that the returned object be an instance of another

bean. However, if the object is not an instance of another bean, the container will provide none of the following capabilit-
ies.

* injection of other beans

JSR-299 Public Review 63

Bean lifecycle

« lifecycle callbacks
* method and lifecycle interception
In the following example, the producer field contains an instance of another bean:

@sessi onScoped
public class Paynent StrategyProducer {

@r oduces Paynent Strategy payment Strat egy;

@Cr edit Card Paynent Strategy creditCard;
@heque Paynent Strategy cheque;
@nl i ne Paynent Strategy online;

public void setPayment StrategyType(Paynent StrategyType type) {
switch (paynment StrategyType) {
case CREDI T_CARD: paynent Strategy = creditCard;
case CHEQUE: paynent Strategy = cheque;
case ONLINE: paynent Strategy = online;
default: throw new |11 egal Argnent Excepti on();

In this case, the object contained by the producer field has already had its dependencies injected, received lifecycle call-
backs and has interception enabled.

But in this example, the returned objects are not contextual instances:

@sessi onScoped
public class Paynent StrategyProducer {

@r oduces Paynent Strategy payment Strat egy;
public void setPaynent Strat egyType(Paynent Strat egyType type) {
switch (paynent StrategyType) {
case CREDI T_CARD: paynent Strategy = new CreditCardPaynent Strategy();
case CHEQUE: paynent Strategy = new ChequePaymnent Strategy();

case ONLINE: paynent Strategy = new Onli nePaynment Strategy();
default: throw new ||| egal Argnment Exception();

In this case, the object contained by the producer field does not have any dependencies injected by the container, receives
no lifecycle callbacks and does not have interception enabled.

When the cr eat e() method of aBean object that represents a producer field is called, the container must access the produ-
cer field to obtain the current value of the field.

» If the producer method is static, the container must access the field value.

e Otherwiseg, if the producer method is non-static, the container must:

» obtain the Bean object for the most specialized bean that specializes the bean which declares the producer field, and
then

» obtain an instance of the most specialized bean, by calling Manager . get I nst ance() , passing the Bean object rep-
resenting the bean, and

» accessthefield value of thisinstance.

The value of the producer field is the new contextual instance to be returned by Bean. create() .

If the producer field contains a null value and the producer field bean has the scope @ependent , the creat e() method re-
turnsanull value.

Otherwise, if the producer field contains a null value, and the scope of the producer method is not @ependent , the cr e-

JSR-299 Public Review 64

Bean lifecycle

ate() method throwsan 111 egal Product Excepti on.

6.9. Lifecycle of resources

An instance of aresource is a proxy object, provided by the container, that implements the declared bean type, delegating
the actual implementation of the methods directly to the underlying Java EE resource, entity manager, entity manager fact-
ory, EJB remote object or web service reference.

A resource proxy object is a dependent object of the object it isinjected into.
Resource proxy objects are serializable.

When the creat e() method of a Bean object that represents a IMS resource is called, the container creates and returns a
proxy object that implements the bean type of the resource.

The methods of this proxy object delegate to the underlying implementation, which is obtained using the metadata
provided in the resource declaration.

e A JavaEE resourceis obtained using the INDI name or mapped name specified by <Resour ce>.

e A persistence context is obtained using the persistence unit name specified by <Per si st enceCont ext >.
* A persistence unit is obtained using the persistence unit name specified by <Per si st enceUni t >.

< A remote EJB is obtained using the INDI name, mapped name or EJB link specified by <eiB>.

* A web serviceis obtained using the INDI name or mapped name specified by <webSer vi ceRef >.

When the dest r oy() method is called, the container discards the proxy object.

6.10. Lifecycle of JIMS resources

An instance of a JMS resource is a proxy object, provided by the container, that implements al the bean types defined in
Section 3.7, “JMS resources’, delegating the actual implementation of these methods directly to the underlying IMS ob-
jects.

A IMS resource proxy object is a dependent object of the object it isinjected into.
JM S resource proxy objects are seriaizable.

When the creat e() method of a Bean object that represents a IMS resource is called, the container creates and returns a
proxy object that implements all the bean types of the IMS resource.

The methods of this proxy object delegate to JIM'S objects obtained as needed using the metadata provided by the IMS re-
source declaration and using standard IMS APIs.

e ThenDestination isobtained using the INDI name or mapped name specified by <Resour ce>.
* Theappropriate Connect i onFact ory for the topic or queue is obtained automatically.

e The Connection is obtained by calling QueueConnecti onFact ory. cr eat eQueueConnecti on() Of Topi cConnecti on-
Fact ory. creat eTopi cConnecti on() . The container is permitted to share a connection between multiple proxy objects.

e The session object is obtained by caling QueueConnection.createQueueSession() OF TopicConnec-
tion. createTopi cSession().

e The MessageProducer oObject is obtained by caling QueueSession.createSender() OF TopicSes-
sion. creat ePubl i sher().

Open issue: alternatively, the Connect i onFact ory is obtained using dependency injection.

When the dest r oy() method is called, the container must ensure that all IMS objects created by the proxy object are des-
troyed by calling cl ose() if necessary.

JSR-299 Public Review 65

Bean lifecycle

e The connecti on is destroyed by calling Connecti on. cl ose() if necessary. If the connection is being shared between
multiple proxy objects, the container is not required to close the connection when the proxy is destroyed.

e The sessi on object is destroyed by calling Sessi on. cl ose() .
e TheMessageProducer object isdestroyed by calling MessagePr oducer . cl ose() .

Thecl ose() method of a IMS resource proxy object always throws an Unsuppor t edQper at i onExcept i on.

6.11. Lifecycle of EJBs

From time to time the EJB container creates EJB instances. The container must perform dependency injection upon any
EJB session or message-driven bean instance, regardless of whether it is a contextual instance.

When the EJB container creates a new instance of an EJB, the container must perform the following steps after Java EE in-
jection has been performed and before the @ost Const ruct callback occurs:

< Fird, the container initializes the values of al injected fields. For each injected field, the container sets the value to the
object returned by Manager . get | nst anceTol nj ect () .

« Next, if the EJB instance is a contextual instance of a bean, the container initializes the values of any fields with initial
values specified in XML, as defined in Section 10.3.5, “Field initial value declarations”.

* Next, the container cals al initializer methods. For each initializer method parameter, the container passes the object
returned by Manager . get | nst anceTol nj ect () .

e Finaly, the container builds the interceptor and decorator stacks for the instance as defined in Section 7.2.10,
“Interceptor stack creation” and Section 7.3.8, “ Decorator stack creation” and binds them to the instance.

When the EJB container removes an instance of an EJB, the container destroys al dependent objects, after the
@r eDest r oy callback completes.

6.12. Lifecycle of Servlets

The container must perform dependency injection upon any Servlet when it is instantiated. When the Servlet container cre-
ates a new instance of a Servlet, the container performs the following steps.

« Fird, the container initializes the values of al injected fields. For each injected field, the container sets the value to the
object returned by Manager . get | nst anceTol nj ect () .

« Next, the container cals al initializer methods. For each initializer method parameter, the container passes the object
returned by Manager . get | nst anceTol nj ect () .

When the Servlet container destroys a Servlet, the container destroys all dependent objects.

In aJava EE 5 environment, the container is not required to support injected fields or initializer methods of Servlets.

JSR-299 Public Review 66

Chapter 7. Interceptors and decorators

Beans support interception as defined by the package j avax. i nt er cept or . Interceptors may be bound to a smple bean,
session bean or EJB session or message driven bean using thej avax. i ntercept or. | nt er cept or s annotation, or by using
aWeb Beansinterceptor binding.

Interceptors are usually used to implement cross-cutting concerns, functionality that is orthogonal to the type system. In
addition, this specification provides support for decorators. A decorator intercepts method invocations for a specific bean
type. Unlike interceptors, decorators are typesafe, and cannot be used to implement cross-cutting concerns.

Producers, resources and JM S resources may not declare interceptors or decorators.

7.1. Business methods

Method inter ception by interceptors and decorators applies to business method invocations of a simple bean or EJB session
or message driven bean.

For asimple bean, a method invocation is considered a business method invocation if:

» the method was invoked upon an object obtained by calling Manager . get | nst ance(), passing the Bean object repres-
enting the simple bean (this includes any instance of the bean injected by the container), and

e themethod is non-private and non-static.

Invocations of initializer methods by the container during bean creation are not considered to be business method invoca-
tions.

Invocations of @r eDest roy and @ost Const ruct callbacks by the container are not considered to be business method in-
vocations.

All invocations of producer methods, disposal methods and observer methods are considered to be business method invoc-
aions.

Business method invocations of an EJB session or message driven bean are defined by the EJB specification.

Self-invocations of a simple bean are considered to be business method invocations. However, self-invocations of an EJB
session or message driven bean are not considered to be business method invocations.

7.2. Interceptors

An interceptor may be a method interceptor, alifecycle callback interceptor, or both.

7.2.1. Business method interceptors

An interceptor method for business method invocations is a method of an interceptor with return type oj ect and asingle
parameter of typej avax. i nt er cept or. | nvocat i onCont ext , annotated @ ound! nvoke.

Interceptor methods for business method invocations are called by the container when a business method is invoked.

If an interceptor has an interceptor method for business method invocations, we describe it as a business method inter cept-
or.

7.2.2. Lifecycle callback interceptors

An interceptor method for a lifecycle calback is a method of an interceptor implementation class with return type voi d
and a single parameter of type javax.interceptor.|nvocationContext, annotated @ost Construct, @reDestroy,
@r ePassi vat e OF @ost Acti vate.

Interceptor methods for a lifecycle callbacks are called by the container when the corresponding @ost Construct,
@r eDest r oy, @r ePassi vat e O @ost Act i vat e vents occur.

JSR-299 Public Review 67

Interceptors and decorators

If an interceptor has an interceptor method for alifecycle callback, we describe it as alifecycle callback interceptor.

7.2.3. Support for @nterceptors

Any bean implementation class may declare interceptors using @ nt er cept or s. The semantics are fully defined by the EJB
specification.

7.2.4. Interceptor bindings

As an extension to the functionality defined by the j avax. i nt er cept or package, this specification provides an aternative
method of binding interceptors to simple beans and EJB session and message-driven beans.

Even when interceptors are bound using this mechanism, the interception semantics are defined by the EJB specification.

An interceptor binding type is a Java annotation defined as @rarget ({TYPE, METHOD}) Or @arget(TYPE) and
@Ret ent i on(RUNTI ME) .

An interceptor binding type may be declared by specifying the @ nt er cept or Bi ndi ngType meta-annotation.

@ nt er cept or Bi ndi ngType

@ar get ({ TYPE, METHOD})

@Ret ent i on(RUNTI MVE)

public @nterface Transactional {}

Alternatively, the @ nt er cept or Bi ndi ngType meta-annotation may be omitted, and the interceptor binding type may be
declared in beans. xni .

<nmyfwk: Transacti onal >
<I nt er cept or Bi ndi ngType/ >
</ nyfwk: Transact i onal >

Multiple interceptors may be bound to the same interceptor binding type or types.

7.2.4.1. Interceptor binding types with additional interceptor bindings
An interceptor binding type may declare other interceptor bindings.

@ nt er cept or Bi ndi ngType

@rar get ({ TYPE, METHOD})

@Ret ent i on(RUNTI ME)

@r ansacti onal

public @nterface DataAccess {}

<nyf wk: Dat aAccess>
<| nt er cept or Bi ndi ngType/ >
<nyfwk: Transacti onal / >

</ nmyf wk: Dat aAccess>

Interceptor bindings are transitive—an interceptor binding declared by an interceptor binding type is inherited by al beans
and other interceptor binding types that declare that interceptor binding type.

Interceptor binding types declared @rarget (TYPE) may not be applied to interceptor binding types declared
@rarget ({ TYPE, METHOD}) .

7.2.4.2. Interceptor bindings for stereotypes
Interceptor bindings may be applied to a stereotype by annotating the stereotype annotation:

@r ansact i onal

@pecur e

@°r oducti on

@Request Scoped

@5t er eot ype

@rar get (TYPE)

@Ret ent i on(RUNTI MVE)

public @nterface Action {}

JSR-299 Public Review 68

Interceptors and decorators

An interceptor binding declared by a stereotype are inherited by any bean that declares that stereotype.

If a stereotype declares interceptor bindings, it must be defined as @rar get (TYPE) .

7.2.5. Web Beans interceptors

A Web Beans interceptor is a simple bean with an implementation class that is also an interceptor class as defined by the
EJB specification. Web Beans interceptors must declare at least one interceptor binding.

A Web Beans interceptor may be either a business method interceptor, alifecycle callback interceptor or both.

Web Beans lifecycle callback interceptors may only declare interceptor binding types that are defined as @rar get (TYPE) .
If a lifecycle callback interceptor declares an interceptor binding type that is defined @rarget ({TYPE, METHOD}), a
Def i ni ti onExcepti on isthrown by the container at deployment time.

If aWeb Beans interceptor does not declare any interceptor binding, a Def i ni ti onExcept i on isthrown by the container at
deployment time.

Open issue: do we need to support defining interceptor methodsin XML?
Open issue: should we support injection into interceptor methods?

A Web Beans interceptor with scope @ependent must be serializable. If a Web Beans interceptor has scope @ependent
and is not serializable, aDef i ni ti onExcept i on isthrown by the container at deployment time.

7.2.5.1. Declaring a Web Beans interceptor using annotations

A Web Beans interceptor may be declared by annotating the interceptor implementation class with the @ nt er cept or ste-
reotype, along with at least one interceptor binding type.

@ransacti onal @ nterceptor
public class Transactionlnterceptor {

@\r oundl nvoke
public Onject manageTransaction(lnvocati onContext ctx) { ... }

7.2.5.2. Declaring a Web Beans interceptor using XML

Additional Web Beans interceptors may be declared in beans. xm , using the interceptor implementation class name and
the <I nt er cept or > element:

<nyfwk: Transacti onl nt er cept or >
<Interceptor/>
<nmyfwk: Transacti onal / >

</ myfwk: Transacti onl nt er cept or >

When an interceptor is declared in XML, the container ignores any interceptor binding annotations applied to the inter-
ceptor class.

If the interceptor implementation class is already annotated @ nt er cept or, two different Web Beans interceptors exist,
with different interceptor bindings.

7.2.6. Binding a Web Beans interceptor to a simple bean or EJB

A Web Beans lifecycle callback interceptor may be bound to any simple bean that is not an interceptor or decorator or to
any EJB session or message-driven bean by declaring, at the class level, the same interceptor bindings that were declared
by the interceptor.

A Web Beans business method interceptor may be bound to al non-static, non-private, non-final methods of a simple bean
that is not an interceptor or decorator or to al business methods of an EJB session or message-driven bean by declaring the
same interceptor bindings, at the class level, that were declared by the interceptor.

A Web Beans business method interceptor may be bound to a non-static, non-private, non-final method of a simple bean

JSR-299 Public Review 69

Interceptors and decorators

that is not an interceptor or decorator or to a business method of an EJB session or message-driven bean by declaring the
same interceptor bindings, at the method level, that were declared by the interceptor.

If a simple bean implementation class that is not an interceptor or decorator is declared final, or has any non-static, non-
private, final methods, and also declares an interceptor binding or a stereotype with interceptor bindings, a Def i ni ti onEx-
cepti on isthrown by the container at deployment time.

If anon-static, non-private method of a simple bean implementation class is declared final and aso declares an interceptor
binding, an Def i ni ti onExcept i on isthrown by the container at deployment time.

7.2.6.1. Binding a Web Beans interceptor using annotations

Interceptor bindings may be declared by annotating the implementation class of a ssimple bean or the bean class of an EJB
session or message-driven bean with an interceptor binding type.

In the following example, the Tr ansact i onl nt er cept or Will be applied at the class level, and therefore applies to al busi-
ness methods of the class:

@r ansacti onal
public class ShoppingCart { ... }

In this example, the Tr ansact i onl nt er cept or will be applied at the method level:

public class ShoppingCart {

@r ansact i onal
public void placeOder() { ... }

}

Web Beans interceptors may be enabled or disabled at deployment time. Disabled interceptors are never called at runtime.

7.2.6.2. Binding a Web Beans interceptor using XML
Class-level or method-level interceptor binding types may be applied to any bean declared in beans. xmi .
In the following example, the Tr ansact i onl nt er cept or Will be applied at the class level:

<nyapp: Shoppi ngCart >
<nyfwk: Transacti onal / >
</ myapp: Shoppi ngCart >

In thisexample, the Transact i onl nt er cept or Will be applied at the method level:

<myapp: Shoppi ngCart >
<nyapp: pl aceOr der >
<nmyf wk: Transacti onal / >
</ nyapp: pl aceOr der >
</ myapp: Shoppi ngCart >

7.2.7. Interceptor enablement and ordering

By default, interceptors bound via interceptor bindings are not enabled. An interceptor must be explicitly enabled by list-
ing its implementation class under the <I nt er cept or s> element in beans. xm .

<I nt ercept ors>
<nmyf wk: Transacti onl nt ercept or/ >
<nyf wk: Loggi ngl nt ercept or/ >

</ | nt er cept or s>

The order of the interceptor declarations determines the interceptor ordering. Interceptors which occur earlier in thelist are
caled first.

If a class listed under the <I nt er cept or s> element is not the implementation class of at least one interceptor, a Depl oy-
ment Except i on isthrown by the container at deployment time.

JSR-299 Public Review 70

Interceptors and decorators

If the implementation class of an interceptor with a disabled deployment type is listed under the <I nt er cept or s> element,
aDepl oyment Except i on isthrown by the container at deployment time.

If the <I nt er cept or s> element is specified in more than one beans. xm document, a Depl oynent Except i on is thrown by
the container at deployment time.

Interceptors declared using @ nt er cept ors Or inej b-j ar. xn are called before interceptors declared using Web Beans in-
terceptor bindings.

Interceptors are called before decorators.

7.2.8. The Interceptor object for an interceptor

The Bean object for an interceptor must extend the abstract class | nt er cept or .

public abstract class Interceptor extends Bean<(bject> {

protected | nterceptor(Manager manager) {
super (manager) ;

public abstract Set<Annotation> getlnterceptorBindi ngTypes();

public abstract Method get Met hod(I nterceptionType type);

AninterceptionType identifiesthe kind of lifecycle callback or business method.
public enum I nterceptionType {

ARCUND_I NVOKE, POST_CONSTRUCT, PRE_DESTROY, PRE_PASSI VATE, POST_ACTI VATE
}

The get Met hod() method returns the interceptor method for the specified kind of lifecycle callback or business method.
The get Met hod() method must return a null value if the interceptor does not intercepts callbacks or business methods of
the given type.

7.2.9. Interceptor resolution

The following method returns the ordered list of enabled interceptors for a set of interceptor bindings.

public interface Manager {

Li st<I nterceptor> resol vel nterceptors(lntercepti onType type
Annot ation... interceptorBindings);

If two instances of the same interceptor binding type are passed to r esol vel nt er cept ors(), @Dupl i cat eBi ndi ngTypeEx-
cepti on isthrown.

If no interceptor binding type instance is passed to r esol vel nterceptors(), anll | egal Ar gument Except i on isthrown.

If an instance of an annotation that is not an interceptor binding typeis passed to resol vel nterceptors(), anlllegal Ar-
gunent Except i on isthrown.

The following a gorithm must be used by the container when resolving interceptors:

e Fird, the container identifies the set of matching enabled interceptors where for each declared interceptor binding,
there exists an interceptor binding in the set of given bindings or, recursively, meta-annotations of those binding types,
with (a) the same type and (b) the same annotation member value for each member which is not annotated
@WonBi ndi ng (see Section 7.2.9.2, “Interceptor binding types with members’).

* Next, the container narrows the set of matching interceptors according to whether the interceptor intercepts the given
kind of lifecycle callback or business method.

JSR-299 Public Review 71

Interceptors and decorators

* Next, the container orders the matching interceptors according to the interceptor ordering specified in Section 7.2.7,
“Interceptor enablement and ordering” and returns the resulting list of interceptors. If no matching interceptors exist in
the set, an empty list is returned.

7.2.9.1. Interceptors with multiple bindings

An interceptor class may specify multiple interceptor bindings, in which case the interceptor will be applied only to simple
beans and EJBs that also declares al the bindings at the class level, and to methods of simple beans and EJBs where al the
bindings appear at either the method or class level.

Consider the following interceptor:

@ransacti onal @ecure @ nterceptor
public class Transactional Securitylnterceptor {

@Ar oundl nvoke
public void aroundlnvoke() { ... }

}

This interceptor will be bound to all methods of this bean:

@ransacti onal @Becure
public class ShoppingCart { ... }

The interceptor will aso be bound to the pl acer der () method of this bean:

@r ansact i onal
public class ShoppingCart {

@secur e
public void placeOder() { ... }

}

However, it will not be bound to the pl acear der () method of this bean, since the @ecur e interceptor binding does not
appear:

@r ansact i onal
public class ShoppingCart {

public void placeOder() { ... }

7.2.9.2. Interceptor binding types with members
According to the interceptor resolution algorithm defined above, interceptor binding types may have annotation members.
This interceptor binding type declares a member:

@ nt er cept or Bi ndi ngType
@rar get ({ TYPE, METHOD})
@Ret ent i on(RUNTI ME)
public @nterface Transactional {
bool ean requiresNew() default false;

Any interceptor with that interceptor binding type must select a member value:

@ransactional (requiresNew=true) @ nterceptor
public class RequiresNewTlransactionl nterceptor {

@\r oundl nvoke
public Onject manageTransacti on(l nvocati onContext ctx) { ... }

}

The Requi r esNewTr ansact i onl nt er cept or appliesto this bean:

JSR-299 Public Review 72

Interceptors and decorators

@ransacti onal (requiresNew=true)
public class ShoppingCart { ... }

But not to this bean:

@r ansacti onal
public class ShoppingCart { ... }

Annotation member values are compared using equal s() .
An annotation member may be excluded from consideration using the @onBi ndi ng annotation.

@ nt er cept or Bi ndi ngType
@rar get ({ TYPE, METHOD})
@Ret ent i on(RUNTI ME)
public @nterface Transactional {
@onBi ndi ng bool ean requi resNew() default false;
}

Array-valued or annotation-valued members of an interceptor binding type must be annotated @wonBi ndi ng. If an array-
valued or annotation-valued member of an interceptor binding type is not annotated @onBi ndi ng, aDefi ni ti onExcept i on
isthrown by the container at deployment time.

7.2.10. Interceptor stack creation

When a simple bean or EJB session or message-driven bean is created, the container must:

< |dentify the interceptors for each lifecycle callback and business method by calling Manager . r esol vel nt er cept or s()
passing the interceptor bindings for the callback or business method, including al interceptor bindings defined at the
classlevel, method level and by stereotypes.

* ldentify the interceptors defined using the @ nt er cept or s annotation for each lifecycle callback and business method.

« For each unique interceptor, call Manager . get | nst ance() , passing the I nt er cept or object, to obtain an instance of the
interceptor. For a given interceptor and a given intercepted instance, the container must call Manager . get | nst ance()
exactly once.

« For each lifecycle callback and business method build an ordered list of returned interceptor instances.

The resulting ordered lists of interceptor instances are called interceptor stacks.

7.2.11. Interceptor invocation

Whenever a business method or lifecycle callback is invoked on an instance of a simple bean or EJB session or message
driven bean, the container intercepts the method invocation and invokes interceptors of the callback or business method.

The container identifies the first interceptor in the interceptor stack for the method. If no such interceptor exists, the con-
tainer starts processing the decorator stack, as defined in Section 7.3.9, “Decorator invocation”. Otherwise, the container
builds an instance of j avax. i nterceptor. I nvocationCont ext and calls the appropriate interceptor method of the inter-
ceptor.

When any interceptor is invoked by the container, it may in turn call | nvocat i onCont ext . proceed() . The container then
identifies the first interceptor in the interceptor stack for the method such that the interceptor has not previously been in-
voked during this business method or lifecycle callback invocation. If no such interceptor exists, the container starts pro-
cessing the decorator stack. Otherwise, the container calls the appropriate interceptor method.

Eventually, by recursion, the interceptor stack is exhausted of uninvoked interceptors.

7.3. Decorators

A decorator implements one or more bean types and intercepts business method invocations for methods defined by the
implemented bean types. These bean types are called decorated types.

JSR-299 Public Review 73

Interceptors and decorators

A decorator is a simple bean. The set of decorated types of a decorator includes all interfaces implemented directly or in-
directly by the implementation class, except for j ava. i 0. Seri al i zabl e. The decorator implementation class and its super-
classes are not decorated types of the decorator. The decorator class may be abstract.

Alternative definition: the set of decorated types includes all interfaces implemented directly and indirectly by both the
decorator implementation class and the declared type of the delegate attribute.

Decorators may be bound to any simple bean that implements an interface and is not an interceptor or decorator, or to any
EJB session or message-driven bean. Decorators are called by the container according to the semantics defined in Sec-
tion 7.3.9, “Decorator invocation”.

A decorator with scope @ependent must be serializable. If a decorator has scope @ependent and is not serializable, a
Def i ni ti onExcepti on isthrown by the container at deployment time.

7.3.1. Declaring a decorator using annotations
A decorator is declared by annotating the implementation class with the @ecor at or stereotype.

@ecor at or
cl ass Ti mest anpLogger inplenments Logger { ... }

7.3.2. Declaring a decorator using XML

Additional decorators may be declared in beans.xm, using the decorator implementations class name and the
<Decor at or > element:

<nmyf wk: Ti nest anpLogger >
<Decor at or/ >

</ r'ryfwk Ti mest anpLogger >

If the decorator implementation class is already annotated @ecor at or , two different decorators exist.

7.3.3. Decorator delegate attributes

All decorators have a delegate attribute.
A delegate attribute is a non-static, non-final field of a decorator implementation class.
The delegate attribute may be declared using the @ecor at es annotation or <Decor at es> €lement:

@ecor at or
cl ass Ti mest anpLogger inplenents Logger {
@ecor at es Logger | ogger;

<nmyf wk: Ti nest anpLogger >
<Decor at or/ >
<nmyf wk: | ogger >
<Decor at es>
<myf wk: Logger/ >
</ Decor at es>
</ myf wk: | ogger >
</ nyf wk: Ti nest anpLogger >

In this case, the decorator is bound to any simple bean or EJB session or message-driven bean that has the type of the del-
egate attribute as a bean type.

The declared type of the delegate attribute must be a Java interface type. If the declared type of a delegate attribute is not a
Javainterface type, aDef i ni ti onExcept i on isthrown by the container at deployment time.

The delegate may optionally declare one or more bindings:

@ecor at or
cl ass Ti mest anpLogger inplenments Logger {
@pecor at es @ebug Logger | ogger;

JSR-299 Public Review 74

Interceptors and decorators

<myf wk: Ti nest anpLogger >
<Decor at or/ >
<nyf wk: | ogger >
<Decor at es>
<nmyf wk: Logger >
<nyf wk: Debug/ >
</ nyfwk: Logger >
</ Decor at es>
</ nyfwk: | ogger >
</ nyfwk: Ti nest anpLogger >

In this case, the decorator is bound to any simple bean or EJB session or message-driven bean that has the type of the del-
egate attribute as a bean type, and declares all the bindings specified by the delegate attribute.

All delegate bindings must be explicitly declared. If no binding is explicitly declared by the delegate attribute, the set of
bindings is empty.

A decorator must have exactly one delegate attribute. If a decorator has more than one delegate attribute, or does not have
adelegate attribute, aDef i ni ti onExcept i on isthrown by the container at deployment time.

If a decorator applies to a simple bean, and the bean implementation class is declared final, a Defi ni ti onException is
thrown by the container at deployment time.

If a decorator applies to a simple bean with a non-static, non-private, final method, and the decorator also implements that
method, aDef i ni ti onExcept i on iSsthrown by the container at deployment time.

7.3.4. Decorated types of a decorator

A decorator is not required to implement al of the bean types of its delegate attribute. If a decorator does not implement a
bean type of the delegate attribute, that API will not be intercepted by the decorator.

A decorator may be an abstract Java class, and is not required to implement all methods of its bean types. If a decorator
does not implement a method of one of its bean types, that method will not be intercepted by the decorator.

The declared type of the decorator delegate attribute must implement or extend all of the decorated types of the decorator.
If adecorator delegate attribute does not implement or extend a decorated type of the decorator, aDef i ni ti onExcepti on IS
thrown by the container at deployment time.

7.3.5. Decorator enablement and ordering

By default, decorators are not enabled. A decorator must be explicitly enabled by listing its implementation class under the
<Decor at or s> element in beans. xm .

<Decor at or s>
<myf wk: Ti nest anpLogger/ >
<myfwk: | dentitylLogger/>
</ Decor at or s>

The order of the decorator declarations determines the decorator ordering. Decorators which occur earlier in the list are
caled first.

If a class listed under the <Decor at or s> element is not the implementation class of at least one decorator, a Depl oynen-
t Except i on isthrown by the container at deployment time.

If the implementation class of a decorator with a disabled deployment type is listed under the <Decor at or s> element, a De-
pl oyment Except i on isthrown by the container at deployment time.

If the <Decor at or s> element is specified in more than one beans. xm document, a Depl oynent Except i on isthrown by the
container at deployment time.

Decorators are called after interceptors.

Would it be better to unify interceptors and decorators into a single stack, so that they can be interleaved?

JSR-299 Public Review 75

Interceptors and decorators

7.3.6. The Decor at or object for a decorator

The Bean object for an interceptor must extend the abstract class Decor at or .

public abstract class Decorator extends Bean<Obj ect> {

protected Decorat or (Manager manager) {
super (manager) ;
}
public abstract Type get Del egat eType();
public abstract Set<Annotation> get Del egat eBi ndi ngs();

public abstract void setDel egat e(bj ect instance, Object del egate);

7.3.7. Decorator resolution

The following method returns the ordered list of enabled decorators for a set of bean types and a set of bindings.

public interface Manager {

}

Li st <Decor at or > resol veDecor at or s(Set <Type> types, Annotation... bindings);

The first argument is the set of bean types of the decorated bean. The annotations are bindings declared by the decorated
bean.

If two instances of the same binding type are passed to resol veDecor at ors(), & Dupl i cat eBi ndi ngTypeExcepti on IS
thrown.

If an instance of an annotation that is not a binding type is passed to r esol veDecorat ors(), an I 11 egal Ar gument Excep-
ti on isthrown.

If the set of bean typesis empty, an 111 egal Ar gunent Except i on isthrown.

The following a gorithm must be used by the container when resolving decorators:

First, the container identifies the set of matching enabled decorators where the declared type of the delegate attribute is
one of the given bean types. For this purpose, primitive types are considered to be identical to their corresponding
wrapper typesinj ava. | ang, array types are considered identical only if their element types are identical and paramet-
erized types are considered identical only if both the type and al type parameters are identical.

Next, the container considers the given bindings. If no bindings were passed to r esol veDecor at or s() , the container
assumes the binding @zur r ent . The container narrows the set of matching decorators to just those where for each bind-
ing declared by the decorator delegate attribute, there is a given binding with (a) the same type and (b) the same an-
notation member value for each member which is not annotated @onBi ndi ng (see Section 5.11.1, “Binding annota-
tions with members’).

Next, the container orders the matching decorators according to the decorator ordering specified in Section 7.3.5,
“Decorator enablement and ordering” and returns the resulting list of decorators. If no matching decorators exist in the
set, an empty list isreturned..

7.3.8. Decorator stack creation

When asimple or session bean is created, the container must:

Identify the decorators for the bean by calling Manager . r esol veDecor at or s() passing the bean types and bindings of
the bean.

For each decorator, call Manager . get | nst ance() , passing the Decor at or object, to obtain an instance of the decorator.

JSR-299 Public Review 76

Interceptors and decorators

» For each returned decorator instance, call Decor at or . set Del egat e() to inject an object that implements the declared
type of the delegate attribute to the del egate attribute of the decorator instance.

* Build an ordered list of the decorator instances.

The resulting ordered list of decorator instancesis called the decorator stack.

7.3.9. Decorator invocation

Whenever a business method is invoked on an instance of a ssmple bean or EJB session or message-driven bean, the con-
tainer intercepts the business method invocation and, after processing the interceptor stack, as defined in Section 7.2.11,
“Interceptor invocation”, invokes decorators of the bean.

The container searches for the first decorator in the decorator stack for the instance that implements the method that is be-
ing invoked as a business method. If no such decorator exists, the container invokes the business method of the intercepted
instance. Otherwise, the container calls the method of the decorator.

When any decorator isinvoked by the container, it may in turn invoke a method of the delegate attribute. The container in-
tercepts the delegate invocation and searches for the first decorator in the decorator stack for the instance such that:

» thedecorator implements the method that is being invoked upon the delegate, and
« thedecorator has not previously been invoked during this business method invocation.

If no such decorator exists, the container invokes the business method of the intercepted instance. Otherwise, the container
calls the method of the decorator.

Eventually, by recursion, the decorator stack is exhausted of uninvoked decorators.

JSR-299 Public Review 77

Chapter 8. Events

Beans may produce and consume events. This facility allows beans to interact in a completely decoupled fashion, with no
compile-time dependency between the two beans.

An event comprises:

« A Javaobject—the event object
* A (possibly empty) set of instances of binding types—the event bindings

The event object acts as a payload, to propagate state from producer to consumer. The event bindings act as topic selectors,
allowing the consumer to narrow to set of eventsit observes.

An event consumer observes events of a specific type, the observed event type, with a specific set of instances of event
binding types, the observed event bindings.

8.1. Event types and binding types

An event object is an instance of a concrete Java class with no type variables or wildcards. The event types of the event in-
clude all superclasses and interfaces of the class of the event object.

An event binding typeisjust an ordinary binding type as specified in Section 2.3.2, “Defining new binding types’ with the
exception that it may be declared @rar get ({FI ELD, PARAMETER}) .

More formaly, an event binding type is a Java annotation defined as @rarget ({FIELD, PARAMETER}) Of
@arget ({METHOD, FIELD, PARAMETER, TYPE}) and @retention(RUNTI ME). All event binding types must specify the
@i ndi ngType meta-annotation.

An event consumer will be notified of an event if the observed event type it specifiesis one of the event types of the event,
and if all the observed event bindings it specifies are event bindings of the event.

8.2. Firing an event via the manager interface

The manager interface provides a method for firing events:

public interface Manager {

public void fireEvent (Object event, Annotation... bindings);

}

Thefirst argument is the event object:

public void login() {
ﬁﬁﬁager .fireEvent (new Loggedl nEvent (user));

}

If the type of the event object passed to fi r eEvent () contains type variables or wildcards, an 111 egal Ar gunent Except i on
is thrown.

The remaining arguments are the event bindings, optional instances of event binding types:

public void login() {
User user = ...;
manager . fireEvent (user, new Loggedl nBi nding() {});

}

where Logged! nBi ndi ng is an implementation of the event binding type Logged! n:

JSR-299 Public Review 78

Events

public class Loggedl nBi ndi ng
ext ends Annot ati onLiteral <Logged| n>
i mpl enents Loggedlin {}

8.3. Observing events via the tbserver interface

An observer consumes events and allows the application to react to events that occur.
Observers of eventsimplement the tbser ver interface.

public interface Observer<T> {

public void notify(T event);

An observer instance may be registered with the container by calling Manager . addCbser ver () :

public interface Manager {
public <T> Manager addCbserver (Observer<T> observer, C ass<T> event Type,
Annot ation... bindings);

public <T> Manager addCbserver (Observer <T> observer, Typeliteral <T> event Type,
Annot ati on... bindings);

The first parameter is the observer object. The second parameter is the observed event type. The remaining parameters are
optional observed event bindings. The observer is notified when an event object that is assignable to the observed event
typeis raised with the observed event bindings.

An observer instance may be deregistered by calling Manager . r emoveCbser ver () :

public interface Manager {

public <T> Manager renoveObserver (Cbserver<T> observer, Typeliteral <T> event Type,
Annot ati on... bindings);

public <T> Manager renpveCbserver (Observer<T> observer, C ass<T> event Type,
Annot ation. .. bindings);

If the observed event type passed to addCbser ver () Of removeCbser ver () containstype variables or wildcards, an I 1 | eg-
al Ar gunent Except i on isthrown.

If two instances of the same binding type are passed to addCbserver () Or renoveCbserver (), & Dupl i cat eBi ndi ng-
TypeExcept i on isthrown.

If an instance of an annotation that is not a binding type is passed to addObser ver () Of renoveCbserver (), anlllegal Ar-
gunent Except i on isthrown.
8.4. Observer notification

When an event is fired by the application, the container must:

e determine the observers for that event by calling Manager . r esol veGbser ver s() , passing the event object and all event
bindings, then,

« for each observer, call thenoti fy() method of the avser ver interface, passing the event object.

Observers may throw exceptions. If an observer throws an exception, the exception aborts processing of the event. No oth-
er observers of that event will be called. Thefi reEvent () method rethrows the exception.

JSR-299 Public Review 79

Events

Any observer called before completion of a transaction may call set Rol | backOnl y() to force a transaction rollback. An
observer may not directly initiate, commit or rollback JTA transactions.

8.5. Observer methods

An observer method is an observer defined via annotations, instead of by explicitly implementing the coser ver interface.
Unlike regular observers, observer methods are automatically discovered and registered by the container.

An observer method must be a method of a simple bean implementation class or session bean implementation class. An
observer method may be either static or non-static. If the bean is a session bean, the observer method must be a business
method of the EJB or a static method of the bean class.

There may be arbitrarily many observer methods with the same event parameter type and bindings.

A bean may declare multiple observer methods.

8.5.1. Event parameter of an observer method

Each observer method must have exactly one event parameter, of the same type as the event type it observes. When
searching for observer methods for an event, the container considers the type and bindings of the event parameter.

If the event parameter does not explicitly declare any binding, the observer method observes events with no binding.

If the type of the event parameter contains type variables or wildcards, a Def i ni ti onExcept i on isthrown by the container
at deployment time.

8.5.2. Declaring an observer method using annotations

A observer method may be declared using annotations by annotating a parameter @bser ves. That parameter is the event
parameter.

public void afterLogi n(@bserves Loggedl nEvent event) { ... }

If a method has more than one parameter annotated @ser ves, aDef i ni ti onExcepti on isthrown by the container at de-
ployment time.

If an observer method is annotated @r oduces, @ni ti al i zer Or @estruct or, OF has a parameter annotated @i sposes, a
Def i ni ti onExcepti on isthrown by the container at deployment time.

The event parameter may declare bindings:

public void afterLogi n(@bserves @dm n Loggedl nEvent event) { ... }

8.5.3. Declaring an observer method using XML

For a beans defined in XML, an observer method may be declared using the method name, the <oser ves> element, and
the parameter types of the method:

<nyapp: aft er Logi n>
<CObserves>
<myapp: Loggedl nEvent / >
</ Cbserves>
</ nyapp: af t er Logi n>

<nyapp: aft er Logi n>
<Cbserves>
<nyapp: Logged| nEvent >
<myapp: Adnmi n/ >
</ nyapp: Logged!| nEvent >
</ Cbserves>
</ nyapp: af t er Logi n>

JSR-299 Public Review 80

Events

When an observer method is declared in XML, the container ignores binding annotations applied to the Java method para-
meters.

If the implementation class of a bean declared in XML does not have a method with parameters that match those declared
in XML, aNonexi st ent Met hodExcept i on isthrown by the container at deployment time.

8.5.4. Observer method parameters

In addition to the event parameter, observer methods may declare additional parameters, which may declare bindings. The
container calls the method Manager . get I nst anceTol nj ect () defined in Section 5.9.1, “Resolving dependencies’ to de-
termine avalue for each parameter of an observer method and calls the observer method with those parameter values.

public void afterLogi n(@bserves Loggedl nEvent event, @mnager User user, @uogger Log log) { ... }
public void afterAdm nLogi n(@bserves @\dni n Loggedl nEvent event, @uogger Log log) { ... }

<myapp: af t er Logi n>

<Observes>
<nyapp: Logged| nEvent />
</ Cbserves>

<myapp: User >
<nyapp: Manager/ >
</ nmyapp: User >

<myf wk: Log>
<nyf wk: Logger/ >
</ nyf wk: Log>

</ nmyapp: af t er Logi n>

<myapp: af t er Adm nLogi n>

<Cbserves>
<nyapp: Logged| nEvent >
<nyapp: Adm n/ >
</ nyapp: Logged!| nEvent >
</ Observes>

<nyfwk: Log>
<nyf wk: Logger/ >
</ nyf wk: Log>

</ nyapp: af t er Admi nLogi n>

8.5.5. Conditional observers

Conditional observers are observer methods which are notified of an event only if an instance of the bean that defines the
observer method already exists in the current context.

A conditional observers may be declared by annotating the event parameter with the @ f Exi st s annotation.

public void refreshOnDocunent Updat e(@ f Exi sts @bserves @Jpdated Docunent doc) { ... }

Conditional observers may be declared in XML by adding a child <I f Exi st s> €element to the <tbser ves> element.

<myapp: r ef reshOnDocunent Updat e>
<Observes>
<| f Exi sts/ >
<nyapp: Docunent >
<myapp: Updat ed/ >
</ nyapp: Docunent >
</ Cbserves>
</ myapp: r ef reshOnDocunent Updat e>

8.5.6. Transactional observers

Transactional observers are observer methods which receive event natifications during the before or after completion

JSR-299 Public Review 81

Events

phase of the transaction in which the event was fired. If no transaction isin progress when the event is fired, they are noti-
fied at the same time as other observers.

» A before completion observer is called during the before completion phase of the transaction.
e An after completion observer is called during the after completion phase of the transaction.

e An after success observer is called during the after completion phase of the transaction, only when the transaction
completes successfully.

* An after failure observer is called during the after completion phase of the transaction, only when the transaction fails.

A transactional observer may be declared by annotating the event parameter of the observer method or in XML by a child
element of the <hser ves> element.

voi d onDocurent Updat e(@bserves @A\fter Transacti onSuccess @Jpdat ed Docunment doc) { ... }

<myapp: onDocunent Updat e>
<CObserves>
<After Transacti onSuccess/ >
<nyapp: Docunent >
<myapp: Updat ed/ >
</ nyapp: Docunent >
</ Cbserves>
</ myapp: onDocunent Updat e>

e The @Bef oreTransact i onConpl eti on annotation or <Bef or eTr ansact i onConpl et i on> element specifies that the ob-
server method is a before completion observer.

e The@fterTransactionConpl eti on annotation or <Af t er Tr ansact i onConpl et i on> element specifies that the observ-
er method is an after completion observer.

 The@fterTransactionSuccess annotation or <Af t er Tr ansact i onSuccess> element specifies that the observer meth-
od is an after success observer.

e The@fterTransactionFail ure annotation or <Af t er Tr ansact i onFai | ur e> element specifies that the observer meth-
od is an after failure observer.

A transactional observer may not specify more than one of the four types. If atransactional observer specifies more than
one of the four types, aDef i ni ti onExcepti on isthrown by the container at deployment time.

8.5.7. Asynchronous observers
Asynchronous observers are observer methods which receive event notifications asynchronously.

An asynchronous observer may be declared by annotating the event parameter of the observer method @synchr onousl y
or in XML by achild <Asynchr onous! y> element of the <bser ves> element.

voi d onDocunent Updat e(@bserves @\synchronously @Jpdated Docunent doc) { ... }

<nyapp: onDocunent Updat e>
<Observes>
<Asynchr onousl y/ >
<nyapp: Docunent >
<myapp: Updat ed/ >
</ nyapp: Docunent >
</ Cbserves>
</ myapp: onDocunent Updat e>

An asynchronous observer may also be a transactional observer. However, it may not be a before completion observer. If

an asynchronous observer is specified as a before completion observer, aDefi ni ti onExcepti on isthrown by the container
at deployment time.

8.5.8. Observer object for an observer method

For every observer method of an enabled bean, the container is responsible for providing and registering an appropriate

JSR-299 Public Review 82

Events

implementation of the wser ver interface, that delegates event notifications to the observer method.

Thenoti fy() method of the tbser ver implementation for an observer method either invokes the observer method imme-
diately, or registers the observer method for later invocation during the transaction completion phase, viaa JTA Synchr on-
i zati on oObject.

* If the observer method is an asynchronous transactional observer and there is currently a JTA transaction in progress,
the observer object calls the observer method asynchronously during the appropriate transaction completion phase. At
the appropriate point during the completion phase of the transaction, the container invokes the observer method asyn-
chronously. TODO: define client invocation context.

e Otherwiseg, if the observer method is a transactional observer and there is currently a JTA transaction in progress, the
observer object calls the observer method during the appropriate transaction completion phase. At the appropriate point
during the completion phase of the transaction, the container invokes the observer method. If the observer is a method
of an EJB, the method is called with the same client invocation context as the call to the JTA Synchroni zat i on inter-
face.

e Otherwise, if the observer method is an asynchronous observer, the container calls the observer method asynchron-
oudly. TODO: define client invocation context.

e Otherwise, the container calls the observer immediately. If the observer is a method of an EJB, the method is called in
the client invocation context of the code that called Event . fire().

To invoke an observer method, the container must pass the event object to the event parameter and the object returned by
Manager . get | nst anceTol nj ect () to each of the other parameters.

* |f the observer method is static, the container must invoke the method.

* Otherwisg, if the observer method is non-static, the container must:

« obtain the Bean object for the most specialized bean that specializes the bean which declares the observer method,
and then

» obtain the context object by calling Manager . get Cont ext () , passing the bean scope, then

» obtain an instance of the bean by calling Cont ext . get (), passing the Bean instance representing the bean and
f al se if this observer method is a conditional observer or t r ue otherwise as the value of the cr eat e parameter, and
then

» if theget () method returned a non-null value, invoke the observer method on the returned instance

Observer methods may throw exceptions:

« |If the observer isatransactiona or asynchronous observer, any exception is caught and logged by the container.

« Otherwise, the exception is rethrown by the noti fy() method of the observer object. If the exception is a checked ex-
ception, it iswrapped and rethrown as an (unchecked) Gbser ver Except i on.

The observer object is registered by calling Manager . addoser ver (), passing the event parameter type as the observed
event type, and the bindings of the event parameter as the observed event bindings.
8.6. The Event interface
Alternatively, an instance of the Event interface may be injected via use of the @i r es binding:
@ires Event<Logged| nEvent > | ogged| nEvent ;
Additional bindings may be specified at the injection point:

@ires @\dm n Event<Loggedl nEvent > | oggedl nEvent ;

JSR-299 Public Review 83

Events

The Event interface provides a method for firing events of a specific type, and a method for registering observers for
events of the same type:

public interface Event<T> {
public void fire(T event, Annotation... bindings);
public void observe(Qoserver<T> observer, Annotation... bindings);
}
Thefirst parameter of fire() isthe event object. The remaining parameters are event bindings.

Thefirst parameter of observe() isthe observer object. The remaining parameters are the observed event bindings.

If two instances of the same binding type are passed to fire() or observes(), @ Dupli cat eBi ndi ngTypeException iS
thrown.

If an instance of an annotation that is not a binding type is passed to fire() Or observes(), an !l egal Argument Excep-
ti on isthrown.

The @i res annotation or <Fi r es> element may be applied to any injection point of type Event , where an actual type para-
meter is specified.

If the type of the injection point is not of type Event , if no actual type parameter is specified, or if the type parameter con-
tains atype variable or wildcard, a Def i ni ti onExcept i on isthrown by the container at deployment time.

Whenever the @i r es annotation appears at an injection point, an implicit bean exists with:

e exactly the bean type and bindings that appear at the injection point,
* deployment type @t andar d,

* @ependent SCOpE,

* no bean name, and

* animplementation provided automatically by the container.

Theftire() method of the provided implementation of Event must call Manager . fireEvent (), passing the following para-
meters:

e theevent object passed to Event . fire()

« al bindings declared at the injection point, except @i r es
e all bindings passed to Event . fire()

The application may fire events by calling thefire() method:

@ires @oggedl n Event <User > | oggedl nEvent ;

if (user.isAdmin()) {
| oggedl nEvent . fire(user, new Adm nBi ndi ng() {});

el se {
| oggedl nEvent . fire(user);

In this example, an event of type User , with bindings @ ogged! n and, sometimes, @dni n occurs.

The observe() method of the provided implementation of Event must call Manager . addGbser ver (), passing the follow-
ing parameters.

* theobserver object passed to Event . obser ve()

< dl bindings declared at the injection point, except @i r es

JSR-299 Public Review 84

Events

» al bindings passed to Event . obser ve()
The application may register observers by calling the obser ve() method:

@ires @oggedl n Event <User > | oggedl nEvent;

ii)'ggedl nEvent . observe(new Observer<User>() { public void notify(User user) { ... } });

8.7. Observer resolution

The method Manager . r esol veObser ver s() resolves observers for an event:

public interface Manager {

public <T> Set<Cbserver<T>> resol veCbservers(T event, Annotation... bindings);

}

Thefirst parameter of resol veObservers() isthe event object. The remaining parameters are event bindings.

If the type of the event object passed to resol veObservers() contains type variables or wildcards, an 111 egal Ar gu-
ment Except i on iSthrown.

If two instances of the same binding type are passed to resol veObservers(), a Dupl i cat eBi ndi ngTypeException IS
thrown.

If an instance of an annotation that is not a binding type is passed to r esol veCbservers(), an i1 egal Argument Excepti on
isthrown.

When searching for observers for an event, the container searches for observers which satisfy the following rules:

« theevent object must be assignable to the observed event type, taking type parameters into consideration, and

« for each observed event binding, (a) an instance of the binding type must have been passedto fi reEvent () and (b) any
member values of the binding type must match the member values of the instance passed tofi reEvent ().

8.7.1. Event binding types with members
Asusual, the binding type may have annotation members:

@Event Bi ndi ngType

@rar get (PARAVETER)

@Ret ent i on(RUNTI ME)

public @nterface Role {
String val ue();

}

Consider the following event:

public void login() {
final User user = ...;
manager . fireEvent (new Loggedl nEvent (user),
new Rol eBi nding() { public String value() { return user.getRole(); });

}

Where Rol eBi ndi ng is an implementation of the binding type Rol e:

public abstract class Rol eBi ndi ng
ext ends Annot ati onLiteral <Rol e>
i mpl enents Role {}

Then the following observer method will always be notified of the event:

public void afterLogi n(@hbserves Loggedl nEvent event) { ... }

JSR-299 Public Review 85

Events

Whereas this observer method may or may not be notified, depending upon the value of user . get Rol e() :

public void after Adm nLogi n(@bserves @Rol e("admi n") Loggedl nEvent event) { ... }
Asusual, the container uses equal s() to compare event binding type member values.
8.7.2. Multiple event bindings

An event parameter may have multiple bindings:

public void afterDocunment Updat edByAdm n(@bserves @Jpdated @yAdm n Docunment doc) { ... }

Then this observer method will only be notified if all the observed event bindings are specified when the event is fired:

manager . fi reEvent (docunent, new Updat edBi ndi ng() {}, new ByAdm nBi nding() {});

Other, less specific, observers will also be notified of this event:

public void afterDocunment Updat ed(@bserves @Jpdated Docunent doc) { ... }

public void afterDocunent Event (@bserves Docunent doc) { ... }

8.8. IMS event mappings

An event type may be mapped to a JIM S resource.

<j ms: Topi c>
<Resour ce>
<nane>j ava: conp/ env/j ms/ Event s</ name>
</ Resour ce>
<nyapp: Logged| nEvent / >
</j ms: Topi c>

Multiple event types may be mapped to the same JM S resource.

<j ms: Topi c>
<Resour ce>
<nanme>j ava: conp/ env/ j ms/ Event s</ name>
</ Resour ce>
<myapp: Loggedl nEvent / >
<myapp: Docunent / >
</j nms: Topi c>

All observers of mapped event types must be asynchronous observers. If an observer for a mapped event type is not an

asynchronous observer, a Depl oyment Except i on isthrown by the container at deployment time.

When an event type is mapped to IM S, the container must:

e send a message containing the serialized event and its event bindings to the IMS destination whenever an event with

that typeisfired, and

e register a message consumer with the IMS destination, and notify all observers of the event type whenever a message

containing an event of that typeis received.

Thus, events of a mapped event type are distributed to other processes which have the same event type mapped to the same

JMSS destination.

JSR-299 Public Review

86

Chapter 9. Scopes and contexts

Associated with every scope type is a context object. The context object determines the lifecycle and visibility of instances
of al beans with that scope. In particular, the context object defines:

* When anew instance of any bean with that scopeis created
« When an existing instance of any bean with that scope is destroyed
* Which injected references refer to any instance of a bean with that scope

Each context object is represented by an instance of the Cont ext interface.

9.1. The cont ext interface

The cont ext interface provides an operation for obtaining contextual instances with a particular scope of any contextual
type.

public interface Context {
public C ass<? extends Annotation> get ScopeType();

public <T> T get (Contextual <T> bean);
public <T> T get (Contextual <T> bean, Creational Context<T> creational Context);

bool ean isActive();

}

The cont ext SPI is called by the container and may be called by third party frameworks. It should not be called directly by
the application.

The context object is responsible for creating and destroying contextua instances by calling operations of the Cont ext ual
interface defined in Section 6.1, “ The Contextual interface”.

Theget () method may either:

e return an existing instance of the given contextual type, or
e if noCreational Cont ext isgiven, return anull value, or

e if aCreational Context isgiven, create a new instance of the given contextual type by calling Cont ext ual . creat e()
and return the new instance.

The get () method may not return a null value unless no Cr eat i onal Cont ext IS given, or Cont ext ual . creat e() returns a
null value.

The get () method may not create a new instance of the given contextual type unlessacreat i onal Cont ext iSgiven.

The cont ext implementation is responsible for destroying any contextual instance it creates by passing the instance to the
destroy() method of the Cont ext ual object representing the contextual type. A destroyed instance must not subsequently
be returned by the get () method.

At a particular point in the execution of the program a scope may be inactive with respect to the current thread. When a
scope is inactive, any invocation of the get () from the current thread upon the Cont ext object for that scope resultsin a
Cont ext Not Acti veExcepti on.

Otherwise, we say that the scope is active.

Thei sActive() method returnsf al se when the scope of the context object isinactive, and t rue when it is active.

9.2. Normal scopes and pseudo-scopes

Most scopes are normal scopes. The context object for a normal scope type is a mapping from each enabled contextual

JSR-299 Public Review 87

Scopes and contexts

type with that scope to an instance of that contextual type. There may be no more than one mapped instance per contextual
type per thread. The set of all mapped instances of contextual types with a certain scope for a certain thread is called the
context for that scope associated with that thread.

A context may be associated with one or more threads. A context with a certain scope is said to propagate from one point
in the execution of the program to another when the set of mapped instances of contextual types with that scope is pre-
served.

The context associated with the current thread is called the current context for the scope. The mapped instance of a contex-
tual type associated with a current context is called the current instance of the contextual type.

The get () operation of the Cont ext object for an active normal scope returns the current instance of the given contextual
type.

At certain points in the execution of the program a context may be destroyed. When a context is destroyed, all mapped in-
stances of contextual types with that scope are destroyed by passing them to the Cont ext ual . dest roy() method.

Contexts with normal scopes must obey the following rule:

Suppose beans A, B and z all have normal scopes. Suppose A has an injection point x, and B has an injection point y. Sup-
pose further that both x and y resolve to bean z according to the typesafe resolution algorithm. If a is the current instance
of A, and b is the current instance of B, then both a. x and b. y refer to the same instance of z. This instance is the current
instance of z.

Any scope that is not a normal scope is called a pseudo-scope. The concept of a current instance is not well-defined in the
case of a pseudo-scope.

All pseudo-scopes must be explicitly declared @copeType(nornal =f al se), to indicate to the container that no client
proxy is required.

All scopes defined by this specification, except for the @ependent pseudo-scope, are normal scopes.

9.3. Dependent pseudo-scope

The @ependent scope type is a pseudo-scope. beans declared with scope type @ependent behave differently to beans
with other built-in scope types.

When abean is declared to have @ependent scope:

« Noinjected instance of the bean is ever shared between multiple injection points.
* Any injected instance of the bean is bound to the lifecycle of the bean, Servlet or EJB into which it isinjected.
¢ Any instance of the bean that is used to evaluate a Unified EL expression exists to service that evaluation only.

« Any instance of the bean that receives a producer method, producer field, disposal method or observer method invoca
tion exists to service that invocation only.

Every invocation of the get () operation of the cont ext object for the @ependent scope with the value t r ue for the cre-
at e parameter returns a new instance of the given bean.

Every invocation of the get () operation of the Cont ext object for the @ependent scope with the valuef al se for thecr e-
at e parameter returns anull value.

The @ependent scope isinactive except:

< when an instance of a bean with scope @ependent is created by the container to receive a producer method, producer
field, disposal method or observer method invocation, or

« whileaUnified EL expression is evaluated, or
« while an observer method is invoked, or

« when the container is creating or destroying a contextual instance of abean or injecting its dependencies, or

JSR-299 Public Review 88

Scopes and contexts

« when the container is injecting dependencies of an EJB or Servlet or when a @ost Const ruct Or @r eDest r oy callback
isinvoked by the EJB container.

The @ependent scope is even active during invocation of interceptors and decorators of observer methods and intercept-
ors and decorators of @ost Construct and @r eDest roy callbacks.

9.3.1. Dependent objects

A bean, EJB or Servlet may obtain an instance of a bean with scope @ependent via dependency injection or by calling
Manager . get | nst ance() , Manager . get | nst anceByType() OF | nst ance. get () when the @ependent scopeis active.

In either case, the instance of the bean with scope @ependent is called a dependent object.

Instances of interceptors or decorators with scope @ependent are also dependent objects of the bean they intercept or dec-
orate.

9.3.1.1. Dependent objects of a simple bean or EJB

A @ependent scoped contextual instance is said to be a dependent object of a simple bean or EJB session or message-driv-
en bean instance if:

* itwasinjected into any field, the bean constructor, any observer method or any initializer method of the instance, or

e it was created by adirect call to Manager or I nst ance during invocation of the bean constructor, an observer method,
an initializer method or a @ost Const ruct or @r eDest r oy callback of the instance.

9.3.1.2. Dependent objects of a producer method

A @ependent scoped contextual instance is said to be a dependent object of a producer method bean instance if:

« it wasinjected into the producer method or disposal method call that produced or disposed the instance, or

e it was created by a direct call to Manager or | nst ance during invocation of the producer method or disposal method
that produced or disposed the instance.

9.3.1.3. Dependent objects of a Servlet

A @ependent scoped contextual instance is said to be a dependent object of a Servlet if:

e itwasinjected into any field or initializer method of the Servlet, or

* itwascreated by adirect call to Manager or I nst ance during invocation of an initializer method of the Servlet.

9.3.2. Dependent object destruction

The container is responsible for destroying @ependent scoped contextual instances by passing them to the Cont ext u-
al . destroy() method.

The container must:

« destroy all dependent objects of a contextual bean instance when the instance is destroyed,
» destroy all dependent objects of an EJB or Servlet when the EJB or Servlet is destroyed,

e destroy all @ependent scoped contextual instances created during an EL expression evaluation when the evaluation
completes, and

e destroy any @ependent scoped contextual instance created to receive a producer method, producer field, disposal
method or observer method invocation when the invocation completes.

Finally, the container is permitted to destroy any @ependent scoped contextual instance at any time if the instance is no

JSR-299 Public Review 89

Scopes and contexts

longer referenced by the application (excluding weak, soft and phantom references).

9.4. Passivating scopes and serialization

A passivating scope reguires that instances of beans with that scope be serializable, so that their state may be stored to disk
when the scope becomes inactive. The process of storing the state of contextual instances belonging to a scope that is
about to become inactive to disk is caled context passivation. Passivating scopes must be explicitly declared
@scopeType(passi vati ng=true).

For example, the built-in session and conversation scopes defined in Section 9.5, “Context management for built-in
scopes’ are passivating Scopes.

The container must validate that every bean declared with a passivating scope truly is serializable:

« EJB loca objects are seridizable. Therefore, a session bean may declare any passivating scope.

« Simple beans are not required to be serializable. If a simple bean declares a passivating scope, and the implementation
classis not serializable, aDef i ni ti onExcept i on isthrown by the container at deployment time.

e |f aproducer method or field declares a passivating scope and returns a non-serializable object at runtime, an 111 egal -
Pr oduct Except i on isthrown by the container.

The built-in session and conversation scopes are passivating. No other built-in scope is passivating.

A contextual instance of a bean may be serialized under one of two circumstances:

« the bean declares a passivating scope, and context passivation occurs, or
e thebeanisan EJB stateful session bean, and it is passivated by the EJB container.

In either case, any non-transient field that holds a reference to another bean must be serialized along with the bean that is
being serialized. Therefore, the reference must be to a serializable type.

Client proxies are seriaizable. Therefore, any reference to a bean which declares a normal scope is serializable. On the
other hand, dependent objects (including interceptors and decorators with scope @ependent) of a stateful session bean or
of abean with a passivating scope must be serialized and deserialized along with their owner:

« EJB local objects are seridizable. Therefore, any reference to a session bean of scope @ependent is serializable.

¢ A simple bean of scope @ependent may or may not be serializable. If a simple bean of scope @ependent and a non-
seridizable implementation class is injected into a stateful session bean, into a non-transient field, bean constructor
parameter or initializer method parameter of a bean which declares a passivating scope, or into a parameter of a produ-
cer method which declares a passivating scope, an Unseri al i zabl eDependencyExcept i on must be thrown by the con-
tainer at deployment time.

e |f aproducer method or field of scope @ependent returns a non-serializable object for injection into a stateful session
bean, into a non-transient field, bean constructor parameter or initializer method parameter of a bean which declares a
passivating scope, or into a parameter of a producer method which declares a passivating scope, an 111 egal Produc-
t Except i on isthrown by the container.

« The container must guarantee that JM S resource proxy objects are seriaizable.

The method Bean. i sSeri al i zabl e() may be used to detect if abean is serializable.

9.5. Context management for built-in scopes

The container provides an implementation of the Cont ext interface for each of the built-in scopes.

For each of the built-in normal scopes, contexts propagate across any Java method call, including invocation of EJB local
business methods. The built-in contexts do not propagate across remote method invocations or to asynchronous processes
such as JIMS message listeners or EJB timer service timeouts.

JSR-299 Public Review 90

Scopes and contexts

9.5.1. Request context lifecycle

The request context is provided by a built-in context object for the built-in scope typej avax. webbeans. Request Scoped.

» Therequest scope is active during the ser vi ce() method of any Servlet in the web application. The request context is
destroyed at the end of the servlet request, after the Servlet servi ce() method returns.

* Therequest scope is active during any Java EE web service invocation. The reguest context is destroyed after the web
service invocation completes.

* Therequest scope is active during any remote method invocation of any EJB, during any call to an EJB timeout meth-
od and during message delivery to any EJB message-driven bean. The request context is destroyed after the remote
method invocation, timeout or message delivery completes.

Openissue: currently it isimpossible to intercept timeout methods. This needs to be fixed in EJB 3.1.

Open issue: istherequest context (and application context) active during serviet filter execution?

9.5.2. Session context lifecycle

The session context is provided by a built-in context object for the built-in passivating scope type
j avax. webbeans. Sessi onScoped.

The session scope is active during the ser vi ce() method of any servlet in the web application.

The session context is shared between all servlet requests that occur in the sasme HTTP servlet session. The session context
is destroyed when the HTTPSessi on isinvalidated or times out.

9.5.3. Application context lifecycle

The application context is provided by a built-in context object for the built-in scope type
j avax. webbeans. Appl i cati onScoped.

e Theapplication scopeis active during the ser vi ce() method of any servlet in the web application.
* Theapplication scope is active during any Java EE web service invocation.

« The application scope is aso active during any remote method invocation of any EJB, during any call to an EJB
timeout method and during message delivery to any EJB message-driven bean.

The application context is shared between all servlet requests, web service invocations, EJB remote method invocations,
EJB timeouts and message deliveries to message driven beans that execute within the same application. The application
context is destroyed when the application is undeployed.

9.5.4. Conversation context lifecycle

The conversation context is provided by a built-in context object for the built-in passivating scope type
j avax. webbeans. Conver sat i onScoped.

» For a JSF faces request, the context is active from the beginning of the apply request values phase, until the responseis
complete.

» For aJSF non-faces request, the context is active during the render response phase.

The conversation context provides access to state associated with a particular conversation. Every JSF request has an asso-
ciated conversation. This association is managed automatically by the container according to the following rules:

* Any JSF request has exactly one associated conversation

e The conversation associated with a JSF request is determined at the end of the restore view phase and does not change
during the request

JSR-299 Public Review 91

Scopes and contexts

Any conversation isin one of two states: transient or long-running.

e By default, aconversation is transient
* A transient conversation may be marked long-running by calling Conver sat i on. begi n()
* A long-running conversation may be marked transient by calling Conver sat i on. end()

All long-running conversations have a string-valued unique identifier, which may be set by the application when the con-
versation is marked long-running, or generated by the container.

The container provides a built-in bean with bean type j avax. webbeans. Conver sati on, SCOpe @equest Scoped, deploy-
ment type @t andar d and binding @ur r ent , Nnamed j avax. webbeans. conver sati on.

public interface Conversation {
public void begin();
public void begin(String id);
public void end();
publ i ¢ bool ean i sLongRunni ng();
public String getld();
public | ong getTineout();
public void setTineout(long mlliseconds);

}

If the conversation associated with the current JSF request is in the transient state at the end of a JSF request, it is des-
troyed, and the conversation context is also destroyed.

If the conversation associated with the current JSF request is in the long-running state at the end of a JSF request, it is not
destroyed. Instead, it may be propagated to other requests according to the following rules:

« Thelong-running conversation context associated with a request that renders a JSF view is automatically propagated to
any faces request (JSF form submission) that originates from that rendered page.

< Thelong-running conversation context associated with a request that results in a JSF redirect (via a navigation rule) is
automatically propagated to the resulting non-faces request, and to any other subsequent request to the same URL. This
isaccomplished via use of a GET request parameter named ci d containing the unique identifier of the conversation.

e Thelong-running conversation associated with a request may be propagated to any non-faces request via use of a GET
request parameter named ci d containing the unique identifier of the conversation. In this case, the application must
manage this request parameter.

When no conversation is propagated to a JSF request, the request is associated with a new transient conversation.
All long-running conversations are scoped to a particular HTTP servlet session and may not cross session boundaries.

In the following cases, a propagated long-running conversation cannot be restored and reassociated with the request:

¢ When the HTTP servlet session is invalidated, all long-running conversation contexts created during the current ses-
sion are destroyed.

e The container is permitted to arbitrarily destroy any long-running conversation that is associated with no current JSF
request, in order to conserve resources.

If the propagated conversation cannot be restored, the request is associated with a new transient conversation.

The method Conver sat i on. set Ti meout () IS a hint to the container that a conversation should not be destroyed if it has
been active within the last given interval in milliseconds.

Open issue: allow the request to be blocked if the conversation cannot be restored.

The container ensures that a long-running conversation may be associated with at most one request at a time, by blocking
or rejecting concurrent requests.

Open issue: define a mechanismfor "blocking” requests. For example, allow the request to be redirected.

JSR-299 Public Review 92

Scopes and contexts

9.6. Context management for custom scopes

A custom implementation of Cont ext may be associated with any scope type at any point in the execution of the applica-
tion, by calling Manager . addCont ext () .

public interface Manager {

publ i c Manager addContext (Context context);

}

For example:

manager . addCont ext (new Met hodCont ext ());

Every time Manager . get I nst ance() iscalled, for example, during instance or EL name resolution, the container must call
Manager . get Cont ext () tO retrieve an active context object associated with the bean scope. The get Cont ext () method
searches for an active context object for the given scope type. If no active context object exists for the given scope type,
get Cont ext () must throw a Cont ext Not Act i veExcept i on. If more than one active context object exists for the given
scope type, get Cont ext () must throw an 111 egal St at eExcept i on.

public interface Manager {

publ i c Context get Context(C ass<? extends Annotation> scopeType);

JSR-299 Public Review 93

Chapter 10. XML based metadata

The beans. xni file provides an alternative to the use of Java annotations for bean definition. For example, this XML de-
claration defines a simple bean with an injected field and an initializer method:

<myapp: MockAsynchr onousCr edi t Car dPaynent Pr ocessor >
<myapp: Asynchr onous/ >
<myapp: PayBy>CREDI T_CARD</ nmyapp: PayBy>
<Sessi onScoped/ >
<nyf wk: Mock/ >
<myfwk: Servi ce transactional ="true"/>
<Naned>asyncCr edi t Car dPaynent Pr ocessor </ Naned>

<nyapp: synchr onousPr ocessor >
<nyapp: Paynent Pr ocessor >
<myapp: Synchr onous/ >
<myapp: PayBy>CREDI T_CARD</ myapp: PayBy>
</ myapp: Paynent Processor >
<nyapp: synchr onousPr ocessor >

<myapp:init>
<Initializer/>
<nyf wk: Syst enConfi g/ >
</ nyapp:init>

</ myapp: MockAsynchr onousCr edi t Car dPaynent Pr ocessor >

It isthe equivalent to the following declaration using annotations:

@\synchr onous
@rayBy(CREDI T_CARD)
@sessi onScoped
@bck
@ser vi ce(transacti onal =true)
@aned(" asyncCr edi t Car dPaynent Processor ")
cl ass MockAsynchronousCr edi t Car dPaynment Processor {
@ynchronous @PayBy(CREDI T_CARD) Payment Processor synchronousProcessor;

@nitializer void init(SystenConfig config) { ... }

XML-based bean declarations define additional beans—they do not redefine or disable any bean that was declared via an-
notations.

Thefileformat is typesafe and extensible:

< Multiple namespaces are accommodated, each representing a Java package.
* XML elements belonging to these namespaces represent Java types, fields and methods.

» Each namespace may declare an XML schema.

10.1. XML namespace for a Java package

Every Java package has a corresponding XML namespace. The namespace URN consists of the package name, with the
prefix urn:java:. For example, the package comnydomain.nyapp has the XML namespace
urn:java: com nydomai n. myapp.

<WebBeans xml ns="urn:j ava:j avax. webbeans"
xm ns: myapp="urn:java: com nydomai n. nyapp" >

</ V‘ébBéans>

Each namespace may, optionally, have a schema.

<WebBeans xm ns="urn:j ava:j avax. webbeans"
xm ns: myapp="urn:java: com nydomai n. nyapp"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemaLocati on="urn:j ava: j avax. webbeans http://java. sun. conij ee/ web- beans- 1. 0. xsd

JSR-299 Public Review 94

XML based metadata

urn:java: com mydonmai n. nyapp http://nydomai n. com xsd/ myapp- 1. 2. xsd" >

</ WebiBéans>

An XML element belonging to a namespace represents a Java type in the corresponding Java package, or a method or field
of atype in that package. There are exactly six exceptions to this rule: the root <webBeans> element together with the
<val ue>, <Depl oy>, <I nt er cept or s>, <Decor at or s> and <Ar r ay> elements in the namespace ur n: j ava: j avax. webbeans
do not correspond to Java types or members of Javatypes.

A class, interface or annotation type is represented by an element with the same name as the type, in the namespace corres-
ponding to the Java package. For example, the element <List> in the namespace urn:java:java.util represents
java.util.List.

Type parameters may be specified by child elements of the element that represents the type. For example:

<util:List>
<nyapp: Product/ >
</futil:List>

Members of atype may be specified by child elements of the element that represents the type, in the same namespace as
the element that represents the type. For example:

<myapp: Shoppi ngCart >
<nyapp: paynment Processor >

</ nryébb: paynent Processor >
</ myapp: Shoppi ngCart >

Primitive types may be represented by the XML element that represents the corresponding wrapper type in j ava. | ang,
since primitive and wrapper types are considered identical for the purposes of typesafe resolution, and assignable for the
purposes of injection. For example, the element <I nt eger > in the namespace ur n: j ava: j ava. | ang represent both i nt and
java.lang. | nteger.

Java array types may be represented by an <Array> element in the namespace ur n: j ava: j avax. webbeans, with a child
element representing the element type. For example:

<Array>
<myapp: Pr oduct />
</ Array>

The namespace ur n: j ava: j avax. webbeans is called the Web Beans namespace.

If abeans. xm file contains any XML element without a declared namespace, a Def i ni ti onExcept i on is thrown by the
container at deployment time.

10.2. Stereotype, binding type and interceptor binding type declarations

An XML element that appears as a direct child of the root <webBeans> element is interpreted as a binding type, interceptor
binding type or stereotype declaration if it has a direct child <BindingType>, <InterceptorBindingType> Of
<St er eot ype> element in the Web Beans namespace, as defined in Section 2.3.2, “Defining new binding types’, Sec-
tion 7.2.4, “Interceptor bindings’ and Section 2.7.1, “Defining new stereotypes’.

The name of the XML element is interpreted as a Java type name in the package corresponding to the child element
namespace. If no such Java type exists in the classpath, a Nonexi st ent TypeExcept i on is thrown by the container at de-
ployment time. If the type is not an annotation type, a Defi ni ti onExcepti on is thrown by the container at deployment
time.

If the annotation type is already declared as a binding type, interceptor binding type or stereotype using annotations, the
annotations are ignored by the container and the XML -based declaration is used.

If a certain annotation type is declared more than once as a binding type, interceptor binding type or stereotype using
XML, aDepl oyrment Except i on iSthrown by the container at deployment time.

10.2.1. Child elements of a stereotype declaration

JSR-299 Public Review 95

XML based metadata

Every direct child element of a stereotype declaration is interpreted as a Java type name in the package corresponding to
the child element namespace. If no such Java type exists in the classpath, a Nonexi st ent TypeExcept i on is thrown by the
container at deployment time. If the type is not an annotation type, a Def i ni ti onExcept i on is thrown by the container at
deployment time.

< |If the annotation type is a scope type, the default scope of the stereotype was declared.

« |If the annotation type is a deployment type, the default scope of the stereotype was declared.

» |If the annotation type is ainterceptor binding type, an interceptor binding of the stereotype was declared.
e |f theannotation typeisj avax. webbeans. Naned, a stereotype with name defaulting was declared.

e Otherwise, aDefi niti onExcepti on isthrown by the container at deployment time.

10.2.2. Child elements of an interceptor binding type declaration

Every direct child element of an interceptor binding type declaration is interpreted as a Java type name in the package cor-
responding to the child element namespace. If no such Java type exists in the classpath, a Nonexi st ent TypeExcept i on iS
thrown by the container at deployment time. If the type is not an annotation type, aDef i ni t i onExcept i on iSthrown by the
container at deployment time.

< |If the annotation type is an interceptor binding type, an inherited interceptor binding was declared, as defined in Sec-
tion 7.2.4.1, “Interceptor binding types with additional interceptor bindings”.

* Otherwise, aDefi niti onExcepti on isthrown by the container at deployment time.

10.3. Bean declarations

An XML element that appears as a direct child of the root <webBeans> element is interpreted as a bean declaration if it is
not a <Depl oy>, <I nt er cept or s> Of <Decor at or s> element in the Web Beans namespace, and does not have a direct child
<Bi ndi ngType>, <I nt er cept or Bi ndi ngType> Or <St er eot ype> element in the Web Beans namespace.

The name of the XML element is interpreted as a Java type name in the package corresponding to the child element
namespace. The container inspects the Java type and other metadata to determine what kind of bean is being declared. If
no such Javatype exists in the classpath, a Nonexi st ent TypeExcept i on iSthrown by the container at deployment time.

If the type is javax.jms. Queue Or javax.jns. Topic, it declares a JMS resource, as defined in Section 3.7.2,
“Declaring a M S resource using XML".

e Otherwise, if the element has a child <Resource>, <PersistenceContext>, <PersistenceUnit>, <EJB> O
<WebSer vi ceRef > element, it declares aresource, as defined in Section 3.6.1, “ Declaring aresource using XML".

« |f thetypeisan EJB bean class, a session bean was declared, as defined in Section 3.3.5, “ Declaring a session bean us-
ing XML".

e |f thetypeisaconcrete class, is hot an EJB bean class, and is not a parameterized type, a simple bean was declared, as
defined in Section 3.2.4, “ Declaring a simple bean using XML”.

* Otherwise, aDefi niti onExcepti on isthrown by the container at deployment time.

For example, the following XML file declares a simple bean with the implementation class
com nydomai n. myapp. Paynent Processor :

<WebBeans xml ns="urn:j ava:j avax. webbeans"
xm ns: myapp="urn:java: com nydomai n. nyapp"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
xsi : schemalLocati on="urn:j ava: j avax. webbeans http://java. sun. conij ee/ web- beans- 1. 0. xsd
urn:java: com nmydonmai n. nyapp http://nydonai n. com xsd/ nyapp-1. 2. xsd" >

<nyapp: Paynent Pr ocessor >

</ myapp: Paynent Processor >

JSR-299 Public Review 96

XML based metadata

</ WebBeans>

In addition, inline bean declarations may occur at injection points, as defined in Section 10.7, “Inline bean declarations’.
Inline bean declarations always declare simple beans.

10.3.1. Child elements of a bean declaration

The container inspects the direct child elements of the bean declaration. For each child element:

e |If the name of the child element is the name of a Java annotation type in the package corresponding to the child ele-
ment namespace, the container interprets the child element as declaring type-level metadata.

< If the name of the child element is the name of a Java class or interface in the package corresponding to the child ele-
ment namespace, the container interprets the child element as declaring a parameter of the bean constructor.

e Otherwiseg, if the child element namespace is the same as the namespace of the parent, the container interprets the ele-
ment as declaring amethod or field of the bean.

» If the name of the child element matches the name of both a method and a field of the bean implementation class, a
Def i ni ti onExcepti on isthrown by the container at deployment time.

e Otherwise, if the name of the child element matches the name of a method of the bean implementation class, is it
interpreted to represent that method.

* Otherwise, if the name of the child element matches the name of a field of the bean implementation class, isit in-
terpreted to represent that field.

* Otherwise, aDefi niti onExcepti on isthrown by the container at deployment time.

10.3.2. Type-level metadata for a bean
Type-level metadatais specified viadirect child elements of the bean declaration that represent Java annotation types.

The name of the child element is interpreted as the name of a Java annotation type in the package corresponding to the
child element namespace.

For each child element, the container inspects the annotation type:

« |f the annotation type is a deployment type, the deployment type of the bean was declared, as defined in Section 2.5.4,
“Declaring the deployment type of abean using XML".

< |If the annotation type is a scope type, the scope of the bean was declared, as defined in Section 2.4.4, “Declaring the
bean scope using XML".

« |If the annotation type is a binding type, a binding of the bean was declared, as defined in Section 2.3.4, “Declaring the
bindings of abean using XML".

« |f the annotation type is an interceptor binding type, an interceptor binding of the bean was declared, as defined in Sec-
tion 7.2.6.2, “Binding a Web Beans interceptor using XML".

< |f the annotation type is a stereotype, a stereotype of the bean was declared, as defined in Section 2.7.3, “ Declaring the
stereotypes for abean using XML".

e |If the annotation type is j avax. webbeans. Nane, the name of the bean was declared, as defined in Section 2.6.2,
“Declaring the bean name using XML".

« |f the annotation type isj avax. webbeans. Speci al i zes, the bean was declared to directly specialize the bean with the
same implementation class that was defined using annotations, as specified in Section 3.2.6, “ Specializing a simple
bean” and Section 3.3.6, “ Specializing a session bean”.

e If the annotation type is j avax. webbeans. I nt er cept or, Of j avax. webbeans. Decor at or the bean is an interceptor or
decorator, as defined in Section 10.5, “Interceptor and decorator declarations’.

JSR-299 Public Review 97

XML based metadata

e Otherwise, aDefi nitionExcepti on isthrown by the container at deployment time.

Open issue: define precisely how the Resource, EJB, WebServiceRef, PersistenceContext and PersistenceUnit tags are
parsed.

10.3.3. Bean constructor declarations

The bean constructor for asimple bean is declared by the list of direct child elements of the bean declaration that represent
Javaclass or interface types. The container interprets these elements as declaring parameters of the constructor.

<myapp: Or der >
<Conver sat i onScoped/ >
<nyapp: Paynent Pr ocessor >
<nyapp: Asynchr onous/ >
</ nyapp: Paynent Pr ocessor >
<myapp: User/ >
</ nyapp: Or der >

Each constructor parameter declaration is interpreted as an injection point declaration, as specified in Section 10.6,
“Injection point declarations’.

If the simple bean implementation class has exactly one constructor such that:

< theconstructor has the same number of parameters as the bean declaration has constructor parameter declarations, and

« the Javatype represented by each constructor parameter declaration is assignable to the Java type of the corresponding
constructor parameter

then the element is interpreted to represent that constructor, and that constructor is the bean constructor.

If more than one constructor exists which satisfies these conditions, a Def i ni ti onExcept i on isthrown by the container at
deployment time.

If no constructor of the simple bean implementation class satisfies these conditions, a Nonexi st ent Const r uct or Except i on
isthrown by the container at deployment time.

For any constructor parameter, the bean type declared in XML may be a subtype of the Java parameter type. In this case,
the container will use the bean type declared in XML when resolving the dependency.

10.3.4. Fields of a bean

A field of a bean is declared by a direct child element of the bean declaration. The name of the field is the same as the
name of the element.

If the bean implementation class has exactly one field with the same name as the child element, then the child element is
interpreted to represent that field.

Otherwise, if the bean implementation class does not have exactly one field with the specified name, a Def i ni ti onExcep-
ti on isthrown by the container at deployment time.

If more than one child element of a bean declaration represents the same field of the bean implementation class, a Def i ni -
ti onExcept i on isthrown by the container at deployment time.

A field declaration may contain child elements. If afield declaration has more than one direct child element, and at least
one of these elements is something other than a <val ue> element in the Web Beans namespace, a Def i ni ti onException iS
thrown by the container at deployment time.

An element that represents afield may declare an injected field, a producer field or afield with an initial value.

e |f the element contains a child <Pr oduces> element in the Web Beans namespace, a producer field was declared, as
defined in Section 3.5.3, “ Declaring a producer field using XML".

« |If the element contains a child <val ue> element in the Web Beans namespace, a field with an initial value of type Set
or Li st was declared, as defined in Section 10.3.5, “Field initial value declarations’.

JSR-299 Public Review 98

XML based metadata

« Otherwisg, if the element has exactly one child element, an injected field was declared, as defined in Section 3.8.2,
“Declaring an injected field using XML”.

e |f the element has a non-empty body, and no child elements, a field with an initial value was declared, as defined in
Section 10.3.5, “Field initial value declarations’.

* Otherwise, aDefi ni ti onExcepti on isthrown by the container at deployment time.

If afield declaration represents an injected field, the child element is interpreted as an injection point declaration, as spe-
cified in Section 10.6, “Injection point declarations’. If the declared type is not assignable to the Java type of the field, a
Def i ni ti onExcepti on isthrown by the container at deployment time.

The bean type declared in XML may be a subtype of the Java field type. In this case, the container will use the bean type
declared in XML when resolving the dependency.

10.3.5. Field initial value declarations

Theinitial value of afield of asimple bean or session bean with any one of the following types may be specified in XML:

e any primitivetype, or j ava. | ang wrapper type

e any enumerated type

* java.lang.String

* java.util.Date,java.sql.Date,java.sqgl.TinmeOrjava.sql.Ti mestanp

* java.util.Cal endar

e java. math. Bi gDeci nal Or j ava. mat h. Bi gl nt eger

* java.lang.d ass

* java.util.List<java.lang.String>0rjava.util.Set<java.lang.String>
® java.util.List<java.lang.C ass>0rljava.util.Set<java.lang.C ass>

e java.util.List<X>o0rjava.util.Set<X>whereXisanenumerated type.
Theinitial value of thefield is specified in the body of an XML element representing the field.

<nyapp: Confi g>
<nyapp: ver si on>1. 2. 5</ nyapp: ver si on>
<myapp: ti neout >1000</ nyapp: ti neout >
<myapp: adni ni strat or s>
<val ue>j uan</ val ue>
<val ue>ant oni o</ val ue>
<val ue>soni a</ val ue>
<val ue>sar a</ val ue>
</ nyapp: adm ni strat or s>
</ myapp: Confi g>

e Theinitial value of afield of primitive type or j ava. | ang wrapper type is specified using the Java literal syntax for
that type.

e Theinitia value of afield of typej ava. | ang. Stri ng is specified using the string value.

e Theinitial value of afield of enumerated type is specified using the unqualified name of the enumeration value.

e The initial value of a field of type java.util.Date, java.sql.Date, java.sql.Tine, java.sql.Tinestanp Of
java.util. Cal endar is opecified usng a format that can be pased by caling
j ava. t ext . Dat eFor mat . get Dat eTi nel nst ance() . parse() .

e Theinitia value of afield of typej ava. mat h. Bi gDeci mal Or j ava. mat h. Bi gl nt eger is specified using a format that
can be parsed by the constructor that accepts a string.

JSR-299 Public Review 99

XML based metadata

e Theinitial value of afield of typej ava. | ang. O ass is specified using the fully qualified Java class name.

Theinitial value of afield of typej ava. util.List orjava.util.Set isspecified by alist of <val ue> elements. The body
of the value element is specified using the string value, fully qualified Java class name or unqualified name of the enumer-
ation value.

If afield with an initial value specified in XML is not of one of the listed types, or if the initial value is not specified in the
correct format for the type of thefield, aDef i ni ti onExcept i on isthrown by the container at deployment time.

If an element representing a field specifies both an initial value and a type declaration, a Def i ni ti onExcepti on isthrown
by the container at deployment time.

10.3.6. Methods of a bean

A method of a bean is declared by a direct child element of the bean declaration. The name of the declared method is the
same as the name of the child element.

A method declaration may have any number of direct child elements.

The container inspects the direct child elements of the method declaration. For each child element, the name of the element
isinterpreted as a Java type name in the package corresponding to the element's namespace. If no such Java type existsin
the classpath, aNonexi st ent TypeExcept i on isthrown by the container at deployment time.

e |f thetypeisj avax. webbeans. Di sposes, the container searches for a direct child element of the child element and in-
terprets that element as declaring a disposed parameter of the disposal method.

* If thetypeisjavax. webbeans. Cbser ves, the container searches for a direct child element of the child element that is
not an <I f Exi st s>, <Aft er Transact i onConpl et i on>, <Aft er Transact i onSuccess>, <Aft er Transact i onFai | ure> Or
<Bef or eTr ansact i onConpl eti on> element in the Web Beans namespace, and interprets that element as declaring an
event parameter of the observer method.

« If the type is some other Java annotation type, the container interprets the child element as declaring method-level
metadata

« |f thetypeisaJavaclass or interface, the container interprets the child element as declaring a parameter of the method.
* Otherwise, aDefi niti onExcepti on isthrown by the container at deployment time.

If a method declaration has more than one direct child element which isan <i niti al i zer>, <Dest r uct or >, <Pr oduces>,
<Di sposes> OF <Cbserves> element in the Web Beans namespace, a Defi ni ti onExcepti on is thrown by the container at
deployment time.

If a<Di sposes> element does not contain exactly one direct child element, a Def i ni ti onExcept i on is thrown by the con-
tainer at deployment time.

If an <oserves> element does not contain exactly one direct child element that is not an «<IfExists>,
<After Transacti onConpl eti on>, <AfterTransacti onSuccess>, <AfterTransactionFail ure> or
<Bef or eTr ansact i onConpl et i on> element in the Web Beans namespace, a Def i ni ti onExcepti on is thrown by the con-
tainer at deployment time.

Each method parameter declaration and disposed parameter declaration is interpreted as an injection point declaration, as
specified in Section 10.6, “Injection point declarations’. An event parameter declaration is interpreted as a type declara
tion, as defined in Section 10.8, “ Specifying bean types and bindings’.

If the bean implementation class has exactly one method such that:

* the method name is the same as the name of the element that declares the method,
» the method has the same number of parameters as the element that declares the method has child elements, and

« the Java type represented by each method parameter declaration is assignable to the Java type of the corresponding
method parameter

JSR-299 Public Review 100

XML based metadata

then the element is interpreted to represent that method.

If more than one method exists which satisfies these conditions, a Def i ni ti onExcept i on isthrown by the container at de-
ployment time.

If no method of the bean implementation class satisfies these conditions, aNonexi st ent Met hodExcept i on is thrown by the
container at deployment time.

For any method parameter, the bean type declared in XML may be a subtype of the Java parameter type. In this case, the
container will use the bean type declared in XML when resolving the dependency.

If more than one child element of a bean declaration represents the same method of the bean implementation class, a
Def i ni ti onExcepti on isthrown by the container at deployment time.

An element that represents a method may declare an initializer method, an observer method, a producer method or a dis-
posal method. Alternatively, or additionally, it may declare method-level interceptor binding.

If the element contains a child <I ni tial i zes> element in the Web Beans namespace, an initializer method was de-
clared, as defined in Section 3.9.2, “Declaring an initializer method using XML”.

e |f the element contains a child <Pr oduces> element in the Web Beans namespace, a producer method was declared, as
defined in Section 3.4.3, “ Declaring a producer method using XML".

e |If the element contains a child <bi sposes> element in the Web Beans namespace, a disposal method was declared, as
defined in Section 3.4.9, “ Declaring a disposal method using XML".

* |If the element contains a child <tbser ves> element in the Web Beans namespace, an observer method was declared, as
defined in Section 8.5.3, “ Declaring an observer method using XML”.

< |If the element contains a child element whose name is the name of an interceptor binding type in the package corres-
ponding to the child element namespace, method-level interceptor binding was declared, as defined in Section 7.2.6.2,
“Binding a Web Beans interceptor using XML".

10.4. Producer method and field declarations

A producer method or field declaration is formed by adding a direct child <Pr oduces> element to an element that repres-
ents the method or field, as defined in Section 3.4.3, “Declaring a producer method using XML” and Section 3.5.3,
“Declaring aproducer field using XML".

<myapp: get Paynent Processor >
<Pr oduces>
<myapp: Paynent Processor/ >
</ Produces>

</nyébb:getPaynentProcessor>
<nyapp: paynent Processor >
<Pr oduces>
<myapp: Paynent Processor/ >

</ Pr oduces>
</ nyapp: paynent Processor >

10.4.1. Child elements of a producer field declaration
The container inspects the direct child elements of a producer field declaration.
If there is more than one direct child element, aDef i ni ti onExcept i on isthrown by the container at deployment time.

Otherwise, the direct child element is a <Produces> element in the Web Beans namespace, and declares the return type,
bindings and member-level metadata of the producer field.

The container inspects the direct child elements of the <Pr oduces> element. For each child element, the name of the ele-
ment is interpreted as a Java type name in the package corresponding to the child element namespace. If no such Javatype
existsin the classpath, aNonexi st ent TypeExcept i on isthrown by the container at deployment time.

JSR-299 Public Review 101

XML based metadata

« |If thetypeisaJavaclass or interface type, the type of the producer field was declared.
« |f thetypeisaJavaannotation type, it declares member-level metadata of the producer field.
* Otherwise, aDefi ni ti onExcepti on isthrown by the container at deployment time.

If more than one child element represents a Java class or interface type, or if no child element represents a Java class or in-
terface type, aDef i ni ti onExcept i on isthrown by the container at deployment time.

10.4.2. Child elements of a producer method declaration

The container inspects the direct child elements of a producer method declaration.

e |If achild element is the <Pr oduces> element in the Web Beans namespace, it declares the return type, bindings and
member-level metadata of the producer method.

« If the child element name is the name of an interceptor binding type in the package corresponding to the child element
namespace, it declares a method-level interceptor binding.

« Otherwise, the container interprets the child element as declaring a parameter of the producer method.

If there is more than one child <Pr oduces> element in the Web Beans namespace, a Defi ni ti onExcepti on is thrown by
the container at deployment time.

The container inspects the direct child elements of the <Pr oduces> element. For each child element, the name of the ele-
ment is interpreted as a Java type name in the package corresponding to the child element namespace. If no such Javatype
existsin the classpath, aNonexi st ent TypeExcept i on isthrown by the container at deployment time.

« |f thetypeisaJavaclass or interface type, the return type of the producer method was declared.
« |If thetypeisaJavaannotation type, it declares member-level metadata of the producer method.
e Otherwise, aDefi niti onExcept i on isthrown by the container at deployment time.

If more than one child element represents a Java class or interface type, or if no child element represents a Java class or in-
terface type, aDef i ni ti onExcepti on isthrown by the container at deployment time.

10.4.3. Return type and bindings of a producer method or field

Every XML producer method or field declaration has a direct child <Pr oduces> element. This element must, in turn, have
adirect child element which declares the return type of the producer method or the type of the producer field and which is
interpreted by the container as atype declaration, as defined in Section 10.8, “ Specifying bean types and bindings”.

This type declaration specifies the return type and bindings of the producer method bean, or the type and bindings of the
producer field bean. The type is used to calculate the set of bean types. The type declared in XML must be a supertype or
subtype of the Java method or field type. If the declared type is not a supertype or subtype of the Java method or field type,
aDefinitionException isthrown by the container at deployment time.

10.4.4. Member-level metadata for a producer method or field

Member-level metadata for a producer method or field declaration is specified via direct child elements of the <Pr oduces>
element that represent Java annotation types.

The name of each child element is interpreted as the name of a Java annotation type in the package corresponding to the
child element namespace. If the declared type is not a Java annotation type, a Def i ni ti onExcepti on isthrown by the con-
tainer at deployment time.

The container inspects the annotation type:

< |f the annotation type is a deployment type, the deployment type of the producer method or field was declared, as
defined in Section 2.5.4, “ Declaring the deployment type of abean using XML".

JSR-299 Public Review 102

XML based metadata

« If the annotation type is a scope type, the scope of the producer method or field was declared, as defined in Sec-
tion 2.4.4, “Declaring the bean scope using XML”.

« |If the annotation type is a stereotype, a stereotype of the producer method or field was declared, as defined in Sec-
tion 2.7.3, “Declaring the stereotypes for a bean using XML".

< |If the annotation type is j avax. webbeans. Nane, the name of the producer method or field was declared, as defined in
Section 2.6.2, “Declaring the bean name using XML".

e Otherwise, aDefi nitionExcepti on isthrown by the container at deployment time.

10.5. Interceptor and decorator declarations

A simple bean declaration is interpreted as an interceptor or decorator declaration if it contains a direct child
<l nt er cept or > Of <Decor at or > element in the Web Beans namespace.

For example, the following XML file declares an interceptor of class Requi r esTransact i onl nt er cept or , an interceptor of
class Requi resNewTr ansacti onl nt erceptor and a decorator of class Dat aAccessAut hori zati onDecorat or, all in the
Java package com nydomai n. nyf wk:

<WebBeans xm ns="urn:j ava:j avax. webbeans"
xm ns: myapp="urn:java: com nydomai n. nyapp"
xm ns: myf wk="urn: j ava: com nydomai n. nyf wk"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemalLocati on="urn:j ava: j avax. webbeans http://java. sun. conij ee/ web- beans- 1. 0. xsd
urn:java: com nmydonmai n. nyfwk http://nydonmai n. com xsd/ nmyf wk-1. 0. xsd
urn:java: com nmydomai n. nyapp http://nydomai n. com xsd/ nyapp- 1. 2. xsd" >

<myf wk: Requi resTransact i onl nt er cept or >
<Interceptor/>
<nyfwk: Transacti onal / >

</ nyf wk: Requi r esTr ansact i onl nt er cept or >

<nmyf wk: Requi r esNewTr ansact i onl nt er cept or >
<Interceptor/>
<nyfwk: Transacti onal requiresNew="true"/>
</ nyf wk: Requi r esNewTr ansact i onl nt er cept or >

<myf wk: Dat aAccessAut hori zat i onDecor at or >
<Decor at or/ >
<nmyf wk: dat aAccess>
<Decor at es>
<nyf wk: Dat aAccess/ >
</ Decor at es>
</ nyf wk: dat aAccess>
<myf wk: Dat aAccessAut hori zat i onDecor at or >

</ WebBeans>

If abean declaration that is not a simple bean declaration contains a child <I nt er cept or > Or <Decor at or > element, or if an
inline bean declaration contains a child <I nt er cept or > Or <Decor at or > element, aDef i ni ti onExcept i on iSthrown by the
container at deployment time.

If asimple bean declaration contains more than one direct child <I nt er cept or > Or <Decor at or > el ement in the Web Beans
namespace, a Def i ni ti onExcept i on iSthrown by the container at deployment time.

10.5.1. Decorator delegate attribute

Decorator declarations may declare the delegate attribute. A delegate declaration is a direct child element of the decorator
declaration. The name of the delegate attribute is the same as the name of the element.

If adirect child element of adecorator declaration:

e existsin the same namespace as its parent, and
e hasdirect child <Decor at es> element in the Web Beans namespace

then it isinterpreted as a del egate declaration.

JSR-299 Public Review 103

XML based metadata

If the bean implementation class has a field with the same name as the child element, then the child element is interpreted
to represent that field.

If the bean implementation class does not have have a field with the specified name, a Nonexi st ent Fi el dExcepti on IS
thrown by the container at deployment time.

If a delegate declaration has more than one direct child element, a Def i ni ti onExcept i on isthrown by the container at de-
ployment time. This child element is a <Decor at es> element in the Web Beans namespace. If the <Decor at es> element
does not, in turn, have exactly one direct child element, a Def i ni ti onExcept i on isthrown by the container at deployment
time.

The direct child element of the <Decor at es> element is interpreted as a type declaration as specified by Section 10.8,
“Specifying bean types and bindings’. If the declared bean type is not assignable to the type of the Java field, a Defi ni -
ti onExcepti on isthrown by the container at deployment time.

The bean type declared in XML may be a subtype of the Java field type. In this case, the container will use the bean type
declared in XML when resolving the dependency.

If simple bean declaration that is not a decorator declaration contains a direct child element that in turn contains a direct
child <Decor at es> element, aDef i ni ti onExcept i on isthrown by the container at deployment time.

10.6. Injection point declarations

An injection point declaration is either:

* atypedeclaration, as defined in Section 10.8, “ Specifying bean types and bindings’, or
« aninline bean declaration, as defined in Section 10.7, “Inline bean declarations’.

When the container encounters an injection point declaration, it interprets the name of the element as the name of a Java
class or interface in the package corresponding to the element namespace. If no such Java type exists in the classpath, a
Nonexi st ent TypeExcept i on isthrown by the container at deployment time.

« If the Java type is a parameterized type, the injection point declaration is a type declaration, and the declared type of
the injection point is the bean type of the type declaration, including actual type parameters.

e Otherwise, the container inspects the direct child elements. If the name of any direct child element is the name of a
binding type in the package corresponding to the child element namespace, the injection point declaration is a type de-
claration, and the declared type of the injection point is the bean type of the type declaration.

e Otherwise, if any direct child elements exit, the injection point declaration is an inline bean declaration, and the de-
clared type of the injection point is the implementation class of the bean.

» Otherwise, the injection point declaration is a type declaration, and the declared type of the injection point is the bean
type of the type declaration.

10.7. Inline bean declarations

An inline bean declaration is a simple bean declaration, as defined in Section 10.3, “Bean declarations’ that occurs as an
injection point declaration, instead of as adirect child of the <webBeans> element.

<nyapp: Adm n>
<Appl i cati onScoped/ >

<myapp: user nanme>gavi n</ nyapp: user nane>

<nyapp: nane>
<nyapp: Nanme>
<myapp: first Name>Gavi n</ nyapp: fi r st Nane>
<myapp: | ast Nanme>Ki ng</ nyapp: | ast Nane>
</ nyapp: Nane>
</ nyapp: nane>

</ nyapp: Adm n>

JSR-299 Public Review 104

XML based metadata

The name of the element is interpreted as the name of a Java class in the package corresponding to the element namespace.
This Java class is the implementation class of the simple bean.

Inline bean declarations may not explicitly specify a binding type. If an inline bean declaration explicitly specifies a bind-
ing type, aDefi ni ti onExcept i on isthrown by the container at deployment time.

For every inline injection point, the container generates a unique value for an implementati on-specific binding type. (For
example, a particular container implementation might generate the value com vendor . webbeans. I nl i ne(i d=12345) at
some injection point.) This generated value is the binding of the injection point, and the only binding of the simple bean.
The bean type of theinjection point isthe declared implementation class of the simple bean.

Thus, an inline bean declaration results in asimple bean that is bound only to the injection point at which it was declared.

10.8. Specifying bean types and bindings

Every injection point, event parameter and delegate attribute defined in XML must explicitly specify a bean type and com-
bination of bindings. XML-based producer method declarations must also explicitly specify the return type (which is used
to calculate the set of bean types) and bindings. A type declarationis:

e an element that represents a Java class or interface, or <Arr ay>,

o if the type is a parameterized type, a set of child elements that represent Java classes and/or interfaces, and are inter-
preted as the actua type parameters, or, if the typeis an array type, asingle child element that represents the array ele-
ment type,

« optionally, aset of child elements that represent Java annotation types, and are interpreted as bindings.
For example, the following XML fragment declares the type Li st <Pr oduct > with binding @\ | .

<util:List>
<nyapp: Al | / >
<myapp: Pr oduct / >
</util:List>

This XML fragment declares the type Pr oduct [] with binding @wvai | abl e.

<Array>
<myapp: Avai | abl e/ >
<myapp: Pr oduct />
</ Array>

When the container encounters a type declaration it interprets the element as a Java type:

e If theelement isan <Ar r ay> element in the Web Beans namespace, an array type was declared.

e Otherwise, the name of the element is interpreted as the name of a Java class or interface in the package corresponding
to the element namespace. If no such Java type exists in the classpath, a Nonexi st ent TypeExcepti on is thrown by the
container at deployment time. If the Javatypeisnot aclass or interface type, aDefi ni ti onExcept i on isthrown by the
container at deployment time.

Next, the container inspects every direct child element of the type declaration. The name of each child element is inter-
preted as the name of a Java type in the package corresponding to the child element namespace. If no such Javatype exists
in the classpath, aNonexi st ent TypeExcept i on isthrown by the container at deployment time.

e If thetypeisaJava annotation type, a binding was declared.

< |f thetypeisaJavaclass or interface type, an actual type parameter or array element type was declared.

e Otherwise, aDefi niti onExcepti on isthrown by the container at deployment time.

If multiple array element types are declared, aDef i ni ti onExcept i on isthrown by the container at deployment time.

If the number of declared actual type parameters is not the same as the number of parameters of the Java type, a Defi ni -

JSR-299 Public Review 105

XML based metadata

ti onExcepti on isthrown by the container at deployment time.

If atype parameter of the Java type is bounded, and the corresponding declared actual type parameter does not satisfy the
upper or lower bound, aDef i ni ti onExcept i on iSthrown by the container at deployment time.

If abinding declaration declares a Java annotation type that is not a binding type, aDef i ni ti onExcept i on isthrown by the
container at deployment time.

If no binding is declared, the default binding @ur r ent is assumed.

If the same binding type occurs more than once, aDupl i cat eBi ndi ngTypeExcept i on isthrown by the container at deploy-
ment time.

For fields, type declarations are specified as direct child elements of the field declaration:

<nyapp: O der >
<myapp: payment Pr ocessor >
<nyapp: Paynent Pr ocessor >
<nyapp: PayBy>CHEQUE</ nyapp: PayBy>
</ nmyapp: Paynent Pr ocessor >

</ nyapp: paynent Pr ocessor >

</ nyapp: Or der >

<nyapp: Shoppi ngCart >
<myapp: cat al og>
<util:List>
<nyapp: Al | / >
<nyapp: Product/ >
</util:List>
</ nyapp: cat al og>

</ myapp: Shoppi ngCart >

For methods, the method parameter declarations are type declarations:

<nmyapp: O der >

<nyapp: set Paynment Processor >
<Initializer/>

<nyapp: Paynent Pr ocessor >
<myapp: PayBy>CHEQUE</ nyapp: PayBy>
</ myapp: Paynent Pr ocessor >

<myf wk: Logger/ >
</ nyapp: set Paynment Pr ocessor >

</ nyapp: Or der >

For producer methods, the return type must also be specified:

<app: Shop>
<app: get Avai | abl ePr oduct s>

<Pr oduces>
<Appl i cati onScoped/ >
<Array>
<app: Avai | abl e/ >
<app: Product/ >
</ Array>
</ Produces>

<util:List>
<app: Al l />
<app: Product/ >
</util:List>

</ app: get Avai | abl ePr oduct s>

JSR-299 Public Review 106

XML based metadata

</ app: Shop>

For constructors, the constructor parameter declarations are type declarations:

<myapp: Order>
<Conver sat i onScoped/ >

<nyapp: Paynent Pr ocessor >

<myapp: PayBy>CHEQUE</ nyapp: PayBy>
</ myapp: Paynent Pr ocessor >
<myf wk: Logger/ >

</ nyapp: Or der >

10.9. Annotation members

Any binding or interceptor binding declaration must define the value of any annotation member without a default value,
and may additionally define the value of any annotation member with a default value. Annotation member values are
defined by attributes of the XML element which represents the Java annotation.

All attributes of any XML element which corresponds to a Java annotation are interpreted as members of the annotation.
The name of the attribute is interpreted as the name of the corresponding annotation member. The value of the attribute is
interpreted as the value of the annotation member. If there is no annotation member with the same name as the attribute, a
Nonexi st ent Memmber Except i on isthrown by the container at deployment time.

<nyfwk: Dat aAccess transactional ="true"/>

Alternatively, the value of an annotation member named val ue may be specified in the body of the XML element which
corresponds to the Java annotation. If the XML element has a non-empty body and also specifies an attribute named
val ue, aDefi ni ti onExcepti on isthrown by the container at deployment time. If the XML element has a non-empty body,
and there is no annotation member named val ue, & Nonexi st ent Merber Except i on is thrown by the container at deploy-
ment time.

<myapp: PayBy>CHEQUE</ nyapp: PayBy>

e Thevaue of amember of primitive type is specified using the Java literal syntax for that type.

e Thevaue of amember of typej ava. | ang. St ri ng is specified using the string value.

« Thevaue of amember of enumerated type is specified using the unqualified name of the enumeration value.
¢ Thevaue of amember of typej ava. | ang. d ass is specified using the fully qualified Java class name.

If the member value is not specified in the correct format for the type of the member, a Defi ni ti onExcepti on isthrown
by the container at deployment time.

If an XML element that refers to a Java annotation with a member with no default value does not declare a value for that
member, aDefi niti onExcept i on isthrown by the container at deployment time.
10.10. Deployment declarations

The <Depl oy>, <I nt er cept or s> and <Decor at or s> elements in the Web Beans namespace determine which beans, inter-
ceptors and decorators are enabled in a particular deployment.

10.10.1. The <Depl oy> declaration

Each direct child element of a <Depl oy> element is interpreted as the declaring an enabled deployment type, as specified in
Section 2.5.6, “Enabled deployment types’.

For each child element, the name of the child element is interpreted as the name of a Java annotation type in the package
corresponding to the child element namespace. If no such Java type exists in the classpath, a Defi ni ti onException is

JSR-299 Public Review 107

XML based metadata

thrown by the container at deployment time. If the type is not a deployment type, aDef i ni ti onExcept i on isthrown by the
container at deployment time.

If the same deployment type is declared more than once, aDef i ni ti onExcept i on iSthrown by the container at deployment
time.

10.10.2. The <I ntercept or s> declaration

Each direct child element of an <I nt er cept or s> element is interpreted as the declaring an enabled interceptor, as specified
in Section 7.2.7, “Interceptor enablement and ordering”.

For each child element, the name of the child element is interpreted as the name of a Java class in the package correspond-
ing to the child element namespace. If no such Java class exists in the classpath, a Def i ni ti onExcepti on isthrown by the
container at deployment time.

If the same interceptor is declared more than once, aDef i ni ti onExcept i on isthrown by the container at deployment time.

10.10.3. The <Decor at or s> declaration

Each direct child element of a <Decor at or s> element is interpreted as the declaring an enabled decorator, as specified in
Section 7.3.5, “Decorator enablement and ordering”.

For each child element, the name of the child element is interpreted as the name of a Java class in the package correspond-
ing to the child element namespace. If no such Java class exists in the classpath, a Def i ni ti onExcepti on isthrown by the
container at deployment time.

If the same decorator is declared more than once, aDef i ni ti onExcept i on isthrown by the container at deployment time.

JSR-299 Public Review 108

Chapter 11. Exceptions

Exceptions thrown by the container fall into three groups:

« Definition errors—occur when a single bean definition violates the rules of this specification

< Deployment problems—occur when there are problems resolving dependencies, or inconsistent specialization, in a par-
ticular deployment

* [Execution errors—occur at runtime

Definition errors are developer errors. They may be detected by tooling at development time, and are also detected by the
container at deployment time. If adefinition error exists in a deployment, the deployment will be aborted by the container.

Deployment problems are detected by the container at deployment time. If a deployment problem exists in a deployment,
the deployment will be aborted by the container.

Execution errors may not be detected until they actually occur at runtime.

All exceptions defined by this specification are runtime exceptions.

11.1. Definition errors

Definition errors are represented by instances of Def i ni ti onExcept i on and its subclasses.

public class DefinitionException extends Runti meException {
public DefinitionException(String nmessage) { ... }
}

This specification defines the following subclasses:

* Nonexi st ent TypeException

* Nonexi st ent Menber Except i on

* Nonexi stent Fi el dException

* Nonexi st ent Met hodExcepti on

* Nonexi st ent Const ruct or Excepti on

container implementations may define their own subclasses of Def i ni ti onExcepti on, and throw an instance of a subclass
anywhere that this specification requires aDef i ni ti onExcept i on to be thrown.

11.2. Deployment problems

Deployment problems are represented by instances of Depl oynent Except i on and its subclasses.

public cl ass Depl oynent Excepti on extends Runti meException {
publ i ¢ Depl oynent Exception(String nessage) { ... }
}

This specification defines the following subclasses:
* Unsati sfi edDependencyException

* Anbi guousDependencyExcepti on

®* Unserializabl eDependencyExcepti on

JSR-299 Public Review 109

Exceptions

* Nul | abl eDependencyExcepti on
* Unproxyabl eDependencyExcepti on
* Inconsi stent Speci al i zati onExcepti on

container implementations may define their own subclasses of Depl oynent Except i on, and throw an instance of a subclass
anywhere that this specification requires a Depl oynent Except i on to be thrown.

11.3. Execution errors

Execution errors are represented by instances of Execut i onExcept i on and its subclasses.

public class Executi onException extends Runti meException {

public ExecutionException(String nmessage) { ... }

This specification defines the following subclasses:

* CreationException

e |llegal Product Exception

* (bserver Exception

* Dupli cateBi ndi ngTypeExcepti on

* Cont ext Not Acti veException

JSR-299 Public Review 110

Chapter 12. Packaging and deployment

When an application is deployed, the container must perform bean discovery, detect definition errors and deployment
problems and raise events that allow third-party frameworks to integrate with the deployment lifecycle.

Bean discovery isthe process of determining:

< What beans, interceptors and decorators exist in the deployment archive
« Which beans, interceptors and decorators are enabled for this deployment
» The precedence of the enabled beans, and the ordering of enabled interceptors and decorators

Bean classes must be deployed in an EAR, WAR, EJB-JAR or JAR archive or directory in the application classpath that
has a file named beans. xn in the metadata directory (META- I NF, or VEB- | NF in the case of a WAR). If abean is deployed
to alocation that is not in the application classpath, or does not contain a file named beans. xm in the metadata directory,
it will not be discovered by the container.

Additional beans may be registered programatically with the container by the application or third-party framework after
the automatic bean discovery completes. Third-party frameworks may even provide the ability to register certain bean
definitions with a child container, thereby limiting their visibility to certain contexts.

12.1. Deployment lifecycle

When an application is deployed, the container performs the following steps:

» Fird, the container performs bean discovery and registers Bean and Gbserver objects for the discovered beans. The
container detects definition errors by validating the bean classes and metadata, throwing a Depl oyment Except i on and
aborting deployment of the application if any definition errors exist, as defined in Section 11.1, “ Definition errors’.

« Next, the container raises an event of type @ni ti ali zed Manager, alowing the application or third-party frameworks
to register additional Bean and Qbser ver objects.

* Next, the container detects deployment problems by validating bean dependencies and specialization, throwing a De-
pl oynment Except i on and aborting deployment of the application if any deployment problems exist, as defined in Sec-
tion 11.2, “ Deployment problems”.

» Next, the container raises an event of type @epl oyed Manager .

< Finaly, the container begins directing requests to the application.

12.2. Bean discovery

When bean discovery occurs, the container considers:

e any beans. xm filein any metadata directory of the application classpath,
e anyejb-jar.xm fileinany metadata directory of the application classpath that also contains abeans. xn file, and
e any Javaclassin any archive or directory in the classpath that has abeans. xm file in the metadata directory.

First, the container discovers all binding types, stereotypes and interceptor binding types declared in XML, according to
the rules of Section 10.2, “ Stereotype, binding type and interceptor binding type declarations’.

The container automatically discovers simple beans (according to the rules of Section 3.2.1, “Which Java classes are
beans?’) and session beans (according to the rules of Section 3.3.2, “Which EJBs are beans?’) deployed and/or declared in
these locations and searches the implementation classes for producer methods, producer fields, disposal methods and ob-
server methods declared using annotations.

The container discovers beans, disposal methods and observer methods defined using XML by parsing the beans. xni files
according to the rules of Chapter 10, XML based metadata.

JSR-299 Public Review 111

Packaging and deployment

Next, the container determines which beans, interceptors and decorators are enabled, according to the rules defined in Sec-
tion 2.5.6, “Enabled deployment types’, Section 7.2.7, “Interceptor enablement and ordering” and Section 7.3.5,
“Decorator enablement and ordering”, taking into account any <Depl oy>, <I nt er cept or s> and <Decor at or s> declarations
inthebeans. xn files.

Next, the container creates and registers Bean objects (that implement the rules of Chapter 6, Bean lifecycle) and toser ver
objects.

» For each enabled bean that is not an interceptor or decorator, the container creates an instance of Bean, and registers it
by calling Manager . addBean() .

* For each enabled interceptor, the container creates an instance of Interceptor and registers it by calling man-
ager . addl nterceptor ().

e For each enabled decorator, the container creates an instance of Decorator and registers it by calling man-
ager . addDecorator ().

* For each observer method of an enabled bean, the container creates an instance of Mhser ver that implements the rules
of Section 8.5.8, “Observer object for an observer method” and registersit by calling Manager . addoser ver () .
12.3. Bean registration

The manager API provides methods for registering a new bean with the container.

public interface Manager {
publ i ¢ Manager addBean(Bean<?> bean);
publ i c Manager addlnterceptor(lnterceptor interceptor);

publ i c Manager addDecor at or (Decorat or decorator);

}

These methods may be called at any time by the application or third-party framework.

12.4. Providing additional XML based metadata

The Manager API provides a method that allows the application or third-party framework to provide additional XML based
metadata specified in afile other than beans. xm .

public interface Manager {

publ i c Manager parse(lnputStream xm Strean;

}

The container parses the XML stream according to the rules of Chapter 10, XML based metadata.

This method may be called at any time by the application or third-party framework.

12.5. Initialization and deployment events

The container must fire an event when it has fully completed the bean discovery process, validated that there are no defini-
tion errors relating to the discovered beans, and registered Bean and Gbser ver objects for the discovered beans, but before
detecting deployment problems.

The event object must be the Manager object, and the event must have the following binding type:

@i ndi ngType
@Ret ent i on(RUNTI MVE)

JSR-299 Public Review 112

Packaging and deployment

@arget ({ FIELD, PARAVETER })
public @nterface Initialized {}

Any bean may observe this event.

public void initialized(@bserves @nitialized Manager nmanager) { ... }

A third party framework might take advantage of this event to register beans and interceptors with the container.

The container must fire a second event after it has validated that there are no deployment problems and before the deploy-
ment begins processing requests.

The event object must be the Manager object, and the event must have the following binding type:

@i ndi ngType

@Ret ent i on(RUNTI MVE)

@arget({ FIELD, PARAMETER })
public @nterface Deployed {}

The container must not allow any request to be processed by the deployment until all observers of this event return.

The request and application contexts are active when these events are fired.

12.6. Child containers

Bean definitions may be scoped to a child container. This specification only provides a programmatic APl for defining
child containers, since this feature is intended for use with third-party orchestration frameworks that integrate with the
container.

The manager API provides a method for creating a child container:

public interface Manager {

publ i c Manager createChil dManager();

}

A child container inherits all beans, interceptors, decorators, observers, and contexts defined by its direct and indirect par-
ent containers:

e every bean belonging to a parent container also belongs to the child container, is eligible for injection into other beans
belonging to the child container and may be obtained by dynamic lookup viathe child container,

* every interceptor and decorator belonging to a parent container also belongs to the child container and may be applied
to any bean belonging to the child container,

e every observer belonging to a parent container also belongs to the child container and receives events fired via the
child container, and

e every context object belonging to the parent container also belongs to the child container.

Beans and observers may be registered with a child container by calling addBean() or addObserver () on the Manager ob-
ject that represents a child container.

Beans and observers registered with a container are visible only to that container and its children—they are never visible to
direct or indirect parent containers, or to other children of the parent container:

« abean registered with the child container is not available for injection into any bean registered with a parent container,
» abean registered with a child container is not available for injection into a Servlet or EJB,

« abean registered with a child container may not be obtained by dynamic lookup viathe parent container, and

JSR-299 Public Review 113

Packaging and deployment

* an observer registered with the child container does not receive events fired via a parent container.

If a bean registered with a child container has the bean type and all bindings of some injection point of some bean re-
gistered with adirect or indirect parent container, a Depl oyment Except i on isthrow by the container at deployment time.

Interceptors and decorators may not be registered with a child container. The addi nt ercept or () and addDecor at or ()
methods throw Unsuppor t edQper at i onExcept i on Which called on a Manager object that represents a child container.

12.6.1. Current container

A child container may be associated with the current context for a normal scope by calling set current (), passing the nor-
mal scope type:

public interface Manager {

publi c Manager setCurrent (C ass<? extends Annotation> scopeType);

}

If the given scope is inactive when set Current () is called, a Cont ext Not Act i veExcept i on is thrown. If the given scope
typeisnot anormal scope, ani || egal Ar gunent Except i on iSthrown.

All EL evauations (as defined Section 5.12, “EL name resolution”), all calls to any injected Manager object or Manager
object obtained via JINDI lookup (as defined by Section 5.9, “The Manager object”), all callsto any injected Event object
(as defined in Section 8.6, “The Event interface”) and all callsto any injected | nst ance object (as defined by Section 5.10,
“Dynamic lookup”) are processed by the current container:

« If theroot container has no active normal scope such that the current context for that scope has an associated child con-
tainer, the root container is the current container.

« If theroot container has exactly one active normal scope such that the current context for that scope has an associated
child container, that child container is the current container.

e Otherwise, there is no well-defined current container, and the behavior is undefined. Portable frameworks and applica
tions should not depend upon the behavior of the container when two different current contexts have an associated
child container

A bean registered with a child container is only available to Unified EL expressions that are evaluated when that container
or one of its children is the current container.

JSR-299 Public Review 114

	JSR 299: Web Beans
	Table of Contents
	Chapter 1. Architecture
	1.1. Contracts
	1.2. Supported environments
	1.3. Relationship to other specifications
	1.3.1. Relationship to EJB
	1.3.2. Relationship to JSF
	1.3.3. Relationship to Java Servlets and JSP

	1.4. Introductory examples
	1.4.1. JSF example
	1.4.2. EJB example
	1.4.3. Interceptor example
	1.4.4. Decorator example

	Chapter 2. Bean definition
	2.1. Functionality provided by the container to the bean
	2.2. Bean types
	2.3. Bindings
	2.3.1. Default binding type
	2.3.2. Defining new binding types
	2.3.3. Declaring the bindings of a bean using annotations
	2.3.4. Declaring the bindings of a bean using XML
	2.3.5. Specifying bindings of an injected field
	2.3.6. Specifying bindings of a method or constructor parameter

	2.4. Scopes
	2.4.1. Built-in scope types
	2.4.2. Defining new scope types
	2.4.3. Declaring the bean scope using annotations
	2.4.4. Declaring the bean scope using XML
	2.4.5. Default scope

	2.5. Deployment types
	2.5.1. Built-in deployment types
	2.5.2. Defining new deployment types
	2.5.3. Declaring the deployment type of a bean using annotations
	2.5.4. Declaring the deployment type of a bean using XML
	2.5.5. Default deployment type
	2.5.6. Enabled deployment types
	2.5.7. Deployment type precedence

	2.6. Bean names
	2.6.1. Declaring the bean name using annotations
	2.6.2. Declaring the bean name using XML
	2.6.3. Default bean names
	2.6.4. Beans with no name

	2.7. Stereotypes
	2.7.1. Defining new stereotypes
	2.7.1.1. Declaring the default scope and deployment type for a stereotype
	2.7.1.2. Specifying interceptor bindings for a stereotype
	2.7.1.3. Specifying name defaulting for a stereotype
	2.7.1.4. Restricting bean scopes and types using a stereotype
	2.7.1.5. Stereotypes with additional stereotypes

	2.7.2. Declaring the stereotypes for a bean using annotations
	2.7.3. Declaring the stereotypes for a bean using XML
	2.7.4. Stereotype restrictions
	2.7.5. Built-in stereotypes

	Chapter 3. Bean implementation
	3.1. Restriction upon bean instantiation
	3.2. Simple beans
	3.2.1. Which Java classes are beans?
	3.2.2. Bean types of a simple bean
	3.2.3. Declaring a simple bean using annotations
	3.2.4. Declaring a simple bean using XML
	3.2.5. Bean constructors
	3.2.5.1. Declaring a bean constructor using annotations.
	3.2.5.2. Declaring a bean constructor using XML.
	3.2.5.3. Bean constructor parameters

	3.2.6. Specializing a simple bean
	3.2.7. Default name for a simple bean

	3.3. Session beans
	3.3.1. EJB remove methods of session beans
	3.3.2. Which EJBs are beans?
	3.3.3. Bean types of a session bean
	3.3.4. Declaring a session bean using annotations
	3.3.5. Declaring a session bean using XML
	3.3.6. Specializing a session bean
	3.3.7. Default name for a session bean
	3.3.8. Session bean proxies

	3.4. Producer methods
	3.4.1. Bean types of a producer method
	3.4.2. Declaring a producer method using annotations
	3.4.3. Declaring a producer method using XML
	3.4.4. Producer method parameters
	3.4.5. Specializing a producer method
	3.4.6. Disposal methods
	3.4.7. Disposed parameter of a disposal method
	3.4.8. Declaring a disposal method using annotations
	3.4.9. Declaring a disposal method using XML
	3.4.10. Disposal method parameters
	3.4.11. Disposal method resolution
	3.4.12. Default name for a producer method

	3.5. Producer fields
	3.5.1. Bean types of a producer field
	3.5.2. Declaring a producer field using annotations
	3.5.3. Declaring a producer field using XML
	3.5.4. Default name for a producer field

	3.6. Resources
	3.6.1. Declaring a resource using XML

	3.7. JMS resources
	3.7.1. Bean types of a JMS resource
	3.7.2. Declaring a JMS resource using XML

	3.8. Injected fields
	3.8.1. Declaring an injected field using annotations
	3.8.2. Declaring an injected field using XML

	3.9. Initializer methods
	3.9.1. Declaring an initializer method using annotations
	3.9.2. Declaring an initializer method using XML
	3.9.3. Initializer method parameters

	3.10. The @New binding type
	3.11. Support for Common Annotations
	3.12. The Bean object for a bean

	Chapter 4. Inheritance, specialization and realization
	4.1. Inheritance of type-level metadata
	4.2. Inheritance of member-level metadata
	4.3. Specialization
	4.3.1. Using specialization
	4.3.2. Direct and indirect specialization
	4.3.3. Inconsistent specialization

	4.4. Realization
	4.4.1. Using realization

	Chapter 5. Lookup, dependency injection and EL resolution
	5.1. Unsatisfied and ambiguous dependencies
	5.2. Primitive types and null values
	5.3. Injected reference validity
	5.4. Client proxies
	5.4.1. Unproxyable bean types
	5.4.2. Client proxy invocation

	5.5. The default binding at injection points
	5.6. Generic type literals
	5.7. Annotation type literals
	5.8. Injection point metadata
	5.8.1. Injecting InjectionPoint

	5.9. The Manager object
	5.9.1. Resolving dependencies
	5.9.2. Obtaining contextual instances

	5.10. Dynamic lookup
	5.11. Typesafe resolution algorithm
	5.11.1. Binding annotations with members
	5.11.2. Multiple bindings

	5.12. EL name resolution
	5.13. Name resolution algorithm

	Chapter 6. Bean lifecycle
	6.1. The Contextual interface
	6.2. Creation
	6.3. Destruction
	6.4. Lifecycle of simple beans
	6.5. Lifecycle of stateful session beans
	6.6. Lifecycle of stateless session and singleton beans
	6.7. Lifecycle of producer methods
	6.8. Lifecycle of producer fields
	6.9. Lifecycle of resources
	6.10. Lifecycle of JMS resources
	6.11. Lifecycle of EJBs
	6.12. Lifecycle of Servlets

	Chapter 7. Interceptors and decorators
	7.1. Business methods
	7.2. Interceptors
	7.2.1. Business method interceptors
	7.2.2. Lifecycle callback interceptors
	7.2.3. Support for @Interceptors
	7.2.4. Interceptor bindings
	7.2.4.1. Interceptor binding types with additional interceptor bindings
	7.2.4.2. Interceptor bindings for stereotypes

	7.2.5. Web Beans interceptors
	7.2.5.1. Declaring a Web Beans interceptor using annotations
	7.2.5.2. Declaring a Web Beans interceptor using XML

	7.2.6. Binding a Web Beans interceptor to a simple bean or EJB
	7.2.6.1. Binding a Web Beans interceptor using annotations
	7.2.6.2. Binding a Web Beans interceptor using XML

	7.2.7. Interceptor enablement and ordering
	7.2.8. The Interceptor object for an interceptor
	7.2.9. Interceptor resolution
	7.2.9.1. Interceptors with multiple bindings
	7.2.9.2. Interceptor binding types with members

	7.2.10. Interceptor stack creation
	7.2.11. Interceptor invocation

	7.3. Decorators
	7.3.1. Declaring a decorator using annotations
	7.3.2. Declaring a decorator using XML
	7.3.3. Decorator delegate attributes
	7.3.4. Decorated types of a decorator
	7.3.5. Decorator enablement and ordering
	7.3.6. The Decorator object for a decorator
	7.3.7. Decorator resolution
	7.3.8. Decorator stack creation
	7.3.9. Decorator invocation

	Chapter 8. Events
	8.1. Event types and binding types
	8.2. Firing an event via the Manager interface
	8.3. Observing events via the Observer interface
	8.4. Observer notification
	8.5. Observer methods
	8.5.1. Event parameter of an observer method
	8.5.2. Declaring an observer method using annotations
	8.5.3. Declaring an observer method using XML
	8.5.4. Observer method parameters
	8.5.5. Conditional observers
	8.5.6. Transactional observers
	8.5.7. Asynchronous observers
	8.5.8. Observer object for an observer method

	8.6. The Event interface
	8.7. Observer resolution
	8.7.1. Event binding types with members
	8.7.2. Multiple event bindings

	8.8. JMS event mappings

	Chapter 9. Scopes and contexts
	9.1. The Context interface
	9.2. Normal scopes and pseudo-scopes
	9.3. Dependent pseudo-scope
	9.3.1. Dependent objects
	9.3.1.1. Dependent objects of a simple bean or EJB
	9.3.1.2. Dependent objects of a producer method
	9.3.1.3. Dependent objects of a Servlet

	9.3.2. Dependent object destruction

	9.4. Passivating scopes and serialization
	9.5. Context management for built-in scopes
	9.5.1. Request context lifecycle
	9.5.2. Session context lifecycle
	9.5.3. Application context lifecycle
	9.5.4. Conversation context lifecycle

	9.6. Context management for custom scopes

	Chapter 10. XML based metadata
	10.1. XML namespace for a Java package
	10.2. Stereotype, binding type and interceptor binding type declarations
	10.2.1. Child elements of a stereotype declaration
	10.2.2. Child elements of an interceptor binding type declaration

	10.3. Bean declarations
	10.3.1. Child elements of a bean declaration
	10.3.2. Type-level metadata for a bean
	10.3.3. Bean constructor declarations
	10.3.4. Fields of a bean
	10.3.5. Field initial value declarations
	10.3.6. Methods of a bean

	10.4. Producer method and field declarations
	10.4.1. Child elements of a producer field declaration
	10.4.2. Child elements of a producer method declaration
	10.4.3. Return type and bindings of a producer method or field
	10.4.4. Member-level metadata for a producer method or field

	10.5. Interceptor and decorator declarations
	10.5.1. Decorator delegate attribute

	10.6. Injection point declarations
	10.7. Inline bean declarations
	10.8. Specifying bean types and bindings
	10.9. Annotation members
	10.10. Deployment declarations
	10.10.1. The <Deploy> declaration
	10.10.2. The <Interceptors> declaration
	10.10.3. The <Decorators> declaration

	Chapter 11. Exceptions
	11.1. Definition errors
	11.2. Deployment problems
	11.3. Execution errors

	Chapter 12. Packaging and deployment
	12.1. Deployment lifecycle
	12.2. Bean discovery
	12.3. Bean registration
	12.4. Providing additional XML based metadata
	12.5. Initialization and deployment events
	12.6. Child containers
	12.6.1. Current container

