JSR-299: Contexts and Dependency Injection for
Java EE

JSR-299 Expert Group

Version: Revised Public Review Draft

Table of Contents

N o 011 (= o O = PP PP TP UPPPTTRPPPPTN 1
N o 1 o T PP PT PP 1
1.2. SUPPOILEA ENVITONIMIENLSeetteeiiti ettt e e ettt e e ettt ettt e et et e e e e et s e e e eebe s e e e eateneeeesbeneeeenbaaeeeenes 1
1.3. Relationship to Other SPECITICALIONSuuiieiiiii et e e e e eees 2

1.3.1. Relationship to the Java EE platform SpecifiCationcoouviiieiiiiiiiiiiiiiiecii e 2
1.3.2. RAEONSNIPTO BIBeieiiiiiiiieiet et et e et e e et e e e 2
1.3.3. Relationship to managed BEaNSuui i 2
1.3 4. RAEONSNIP IO JSF ...oeiiiii e e e ettt e et e e e e eee 2
1.4, INtroOdUCEOIY EXAIMPIES ... ettt ettt ettt e et et e e et et s e et e et s e e e e et e e e esbeneeeeebaneeeenes 3
LA.0 JSF EXAMPIE <. e et eee 3
142 BB @XAMPIE ..ottt et e e e e e ana 4
1.4.3. Java EE component environment eXamplecooouuieiiiiiiiiiiiiieeeeii e e 5
LA.A BVENE EXAIMPIE ...ttt ettt ettt e e et et e e et e et e e e et aene 5
1.4.5. DECOraOr EXAMPIEi ittt et e et e e e eee 6

2. BEAN AEFINITION ..ueiiiet e et e e et ettt et e e e e e 8
2.1. Functionality provided by the container tothebean ... 8
2,2, BN B IS ittt et 9

2.2.1. L0l DEBNTYPES ...oeeeieeeii et 9
2.2.2. Typecasting between DEaN tYPEScouve i 9

2 R =TT o 1o PP RUPPTI 10
2.3.1. BUIlt-IN DINAING TYPES ..ottt e 10
2.3.2. Defining NeW DINAING tYPES ...covviiiiiii et 11
2.3.3. Declaring the bindings of @beanooooiiiiii 11

2.3.4. Specifying bindings of aninjected fieldcooiiiiiiii 12
2.3.5. Specifying bindings of a method or constructor parameterccocovvviiiieiiiieviieeeeeeeeeen 12

P S o o= S PP PPPT 12
2.4.1. BUIIT-IN SCOPEEYPES ..ottt ettt ettt ettt et e et et et e e e aaa e e eeaans 13
2.4.2. DEfiNING NEW SCOPE LYPIES ... eeietiiee et e ettt et ettt et e et e et e e et e e e eaa e e eeaans 13
2.4.3. Declaring the AN SCOPEcoeuii e 13
2.4, DEFAUIT SCOPE ... eeeeti ettt ettt ettt e et et e e e e e aaans 14

2.5, DEPIOYMENT TYPES ..ttt ettt ettt ettt ettt e e et et a et e ea e e aa e e aaans 14
2.5.1. BUIlt-iN dePIOYMENE LYPES ... ettt ettt et e e e e e eeaans 14
2.5.2. Defining New deplOYMENT TYPESceeeei et 15
2.5.3. Declaring the deployment type of abean ... 15

2.5.4. Default deplOoYMENE TYPE oiieeiee ettt et e 16
2.5.5. Enabled deplOoymMeNt TYPEScouuuiiiii et 16
2.5.6. Deployment tyPe PreCEOBINCE i iieeei ettt ettt et e e et e eeaans 16

2.6. BEANEL NAIMES ...ttt ettt et e 17
2.6.1. Declaring the Dean EL NAIMEoiiiiiiiiii e 17
2.6.2. Default DEAN EL NAIMES ittt et e eaans 17
2.6.3. BEANSWItN MO NAITIEiiitiiiiiii ettt et e e et e e e e eeaans 17

S (= 151011 o1 S PP PP TPPT 17
2.7.1. DEfiNING NEW SLEIEOLYPES ... ieieti ettt e ettt ettt e et e et e e et e e e eaa e e eenans 18
2.7.1.1. Declaring the default scope and deployment type for astereotypeoevvveeveieeennnn. 18

2.7.1.2. Specifying interceptor bindings for aStereotypeovvvveiiiiiiiiiiiieiii e, 18

2.7.1.3. Specifying name defaulting for aStereotypeovvveveiiiiiiiiie e 19

2.7.1.4. Restricting bean scopes and types using a StEr€otYPeovvevvueveeiinieieiii e 19

2.7.1.5. Stereotypes with additional StErEOtYPESovviveiiiiiii e 19

2.7.2. Declaring the stereotypes for abeanoooiiiiiiiiiiiii 19

2.7.3. SLEFEOLYPE FESLIICLIONSvtteieiiti ettt ettt ettt e e e e et e e e eba e eeaans 20
2.7.4. BUIIT-IN SEEIEOLYPESieiiiiie ettt ettt ettt ettt e et e et et e e e et e eeaans 20

3. Bean iMPIEMENTALIONcouuiieei e ettt ettt et 21
3.1. Restriction upon bean iNSEANTIBLIONuuuiiiiiii e 21
3.2, MaANAEA DEANS ... e 21

3.2.1. Which Javaclassesaremanaged Deans?ooiiiiiiiiiiiii e 21
3.2.2. Bean types of amanaged DEANiiieiiiiiii e 22
3.2.3. Declaring amanaged DEAINoouuuniiiii e 22

JSR-299 Revised Public Review Draft

JSR-299: Contexts and Dependency Injection for Java EE

3.2.4. Managed beans with the @New bindingcooiiiiiiiiii e 22
3.2.5. BEAN CONSITUCTONS ...evueitieeei ettt ettt ettt et et et e e e e e e e e eenas 23
3.2.5.1. Declaring abean CONSIIUCIONuiiiiiiiiiii e 23

3.2.5.2. BEaAN CONSLIUCTON PAIrAIMELENSieveeeeieeei ettt e et ettt e e e e e e e ena e 24

3.2.6. Specidizing amanaged DEANiiiiiiii 24
3.2.7. Default name for amanaged DEANiiiiiiiiii 24

330 SESSIONBBANS ... e 24
3.3.1. EJB remove methods of SeSSIoNDEaNScooeuuiiiiiiiiii i 24
3.3.2. Bean types Of @ SESSION DEANoveuiiiiiiii e 25
3.3.3. Declaring asession DEANiiiiii 25
3.3.4. Session beans with the @NEewW bIiNdiNGoviiiiiii e 25
3.3.5. SpecializZing @SESSION DEANuiiiiiii e 26

34 ProduCer MEINOGS et et e et e et e e 26
3.4.1. Bean types of aproducer MEthOdiiiiiiiiiiiii e 26
3.4.2. Declaring aproducer MELNOuiiiiiiii e 27
3.4.3. Producer MethOd PAraMELE'Sceuueiiiiii ettt ettt e e et e e e e e ra s 27
3.4.4. Specidizing aproducer MEthOdcoouuiiiiiii e 27
3.4.5. DIiSPOSAl MELNOUSceeeiii ittt e e e b 28
3.4.6. Disposed parameter of adisposal Methodocooviiiiiiiiii 28
3.4.7. Declaring adisposal MELNOOccuuuiiiiiiiii e 28
3.4.8. Disposal MEthod PAr@MELES ... cieeiei ittt et e b e e e b 28
3.4.9. Disposal Method rESOIULIONoieeeieeiiii e e 29
3.4.10. Default name for aproducer MEthodcceuuiiiiiiii e 29

35 ProdUCEY FIEIOS ...t 29
3.5.1. Bean types of aproduCer fIEldi e 29

3.5.2. Declaring aproducer FIEldoooeeiiii 30
3.5.3. Default name for aproducer fIeldooeueiiiii 30

3.6 RESOUICES ...ttt e ettt e e et e e e e et et et et e e e e e e e 30
3.6.1. DECIANNG ATESOUICE ...cevvueeeeti ettt ettt et e e e et e e ettt e e e et e e e e bt e e e ebanes 31

AN Y I (= o U (=S PP PPTRPPPPN 31
3.7.1. BEaN tYPES OFf AIMS FESOUICE ... eeeeeieeeeii ettt ettt ettt e et e e et e e e e b s 32

3.7.2. DECIANNG AIMS TESOUITE .. .eevtieeeeei ettt ettt ettt ettt e et et e e ettt e e e e b e e e eban s 32

R e g T= o= B = o PR PT 32
3.8.1. Declaring an iNfeCted fIEldiiieei i 32

3.9, INItIAliZEr MELNOAS ... e e e et e e 32
3.9.1. Declaring an initializer MELhOMooviiiiiii e 33
3.9.2. Initializer Method PArAMELEN'Sceuui i e e 33

3.10. The default binding at iNJECLION POINESuiiiiii e 33
4. Inheritance and SPECIAIIZALIONcceuueiieii e et 35
4.1. Inheritance of type-level MEtadalalc.uuiiiiii 35
4.2. Inheritance of member-level MEtadataloovveuiiiiii 36
4.3, SPECIAIIZALION ...ttt 36
4.3.1. USING SPECTAIIZALION ..ottt et e et 37
4.3.2. Direct and indirect SPECIAliZatIONc.uuuiiiiiiiiei e 37
4.3.3. INCONSIStENt SPECIAIIZALTION ...eevei e 38

5. Lookup, dependency injection and EL reSOlULIONoviiiiiiiiiiii e 39
5.1. Typesafe resolution @lgorithm ... e 39
5.1.1. Unsatisfied and ambiguous dependenCiesSvvieuuiiiiiiiiie e 39
5.1.2. Primitive types and NUIT VAIUESooiiiiiiiiii e 39
5.1.3. Binding annotations With MEMDErSuiiiiiii e 40
.14 MURIPIEDINAINGS ... et e e e e 40

5.2. Name resolution algorithmoeeii e 40
LR A O IT 0| o0 (=TSPTSRO 41
5.3.1. UNproxyable DEaN TYPEScoeeiie i 41
5.3.2. ClENt ProXY INVOCEIION ... eeeetieieiit ettt et e et e et e e e e bt eeeban s 42

5.4. DEPENENCY INJECLION ...eiiiiiie e et e et e et e e e e e e b 42
541 INJECLADIE FEFEIENCES ...t et e e 42
5.4.2. Injected referenCe Validityoooeuuiiiiii 43
5.4.3. Injection using the DEaN CONSITUCLONuiiiiiii e 43
5.4.4. Injection of fieldsand initiaizer Methodsooooviiiiiiii e 43
5.4.5. Destruction of dependent ODJECESovveuiiiiiiii e 43
5.4.6. Invocation of producer or disposal MEthodScocouuiiiiiiiiiiii e 43

JSR-299 Revised Public Review Draft

JSR-299: Contexts and Dependency Injection for Java EE

5.4.7. Accessto producer FIEld VAIUESoiiiiiiiiii e 43
5.4.8. Invocation of observer Methodscooouuiiiiiii e 44
5.4.9. INjection POINt MELAJBLAuuiiiiii e e e e b 44

5.5, Programimatic IO0KUDieeuuueeiii ettt ettt ettt e e e et e e ettt e e e e b e e e b s 45
5.5.1 The INStaNCeINIEITACEui e e 45
5.5.2. ThE DUITT-IN INSLBNCE ...ceeii e e 46
5.5.3. USINg ANNOLAtTONLITEralceeviiiieiii e e 46

5.6. Integration With UNIifIed ELooooeiiiiii et e e 47
6. SCOPES QNG CONTEXESvuiiiiti ettt ettt ettt e e et e ettt e et e tb e e e et r e et e tbr e e e et e e e e abnaeeennans 48
6.1. The Contextual INTEITACE iiiii et e e e 48
I T = g oo = (o PSPPI 48
6.1.2. INSLANCE UESLIUCTION ... eeeeti ettt ettt et e e et e e et e e eeaans 48

6.2. The CONEXE INTEITACE ... it ettt e eeeaans 49
6.3. Normal SCOPES AN PSEUAO-SCOPESeevrueeiiti ettt ettt e ettt e e et e et et e e e et e e e et e e eeban e eeeeans 49
6.4. DEPENUENt PSEUAO-SCOPEvuuiiiiti ettt ettt ettt ettt e et et e e e et et et e e e eaa e et ebb e e esbanaeeeenans 50
6.4.1. Dependent SCOPE lITECYCIE ... e 50
6.4.2. DePendent ODJECEScoeui e 50
6.4.3. Dependent 0DJECt dESIFUCTIONooieveiiei e 51

6.5. Contextual instances and contextual FEFErENCESiiiiiiiiiii e 51
6.5.1. The active context ODJECt FOr @SCOPEvvivriiiiiii e 51

6.5.2. Contextual iNStance of aDEANoouuiiiiii 52
6.5.3. Contextual referencefor abEanooov i 52
6.5.4. Contextual referenCe Validityo.oiiiiiiiiii 52

6.6. Passivating SCopes and SErTaliZAHIONcoeuuuiiiiii et 52
6.7. Context management for DUITE-iN SCOPEScvuuuiiiiiiii e 53
6.7.1. Request CONEXE IFECYCIE ... i e 53
6.7.2. SESSION CONLEXE [IFECYCIE ..uiiiiii e 54
6.7.3. Application CONLEXE lIFECYCIEuuiiiie e 54
6.7.4. Conversation CONEXt HIFECYCIE ... iiiiii e 54

7. BEAN [ITECYCIE ...t ettt et 57
7.1. Lifecycle of Managed DEANSiiiiiiiiiii e 57
7.2. Lifecycle of stateful SESSION DEANSuuiiiiiii e 57
7.3. Lifecycle of stateless session and SiNgleton BEaNS ... 58
7.4. Lifecycle of producer MELOOScoouuiiiiiii e e 58
7.5. Lifecycle of produCer fIEIAScouuuiiii e 59
7.6. LIfECYCIE Of TESOUICES ... ittt et e e e et e eeeans 60
7.7. LIfECYCIE Of IMS FESOUICEScieitieeiiii ettt ettt e e et et e et e e e b e e eeaans 60
R oo = L o T PP 62
8.1. DeCcorator imPIEMENTBLION i et e et e e bt e e e b e e e b s 62
8.1.1. DECIArING A UECONBLONuieiettieeeeii ettt ettt et e ettt et et e e e et e e e et e e e e bb e e e eban s 62
8.1.2. Decorator delegate attriDULESuuiiiiii e 62
8.1.3. Decorated types Of @UECOMBIONuiiieiiiee et 63

8.2. Decorator enablement and OFAENINGoveeuueiieiii et 63
8.3. The Decorator ODjeCt fOr @ AECOIAIOTuuuiiiiii e 63
8.4, DECOTALON FESOIULIONeevtieeeiii ettt ettt ettt ettt ettt e e e e bt e e e et e e e et e e e e ban s 64
8.5. DECOrator StACK CrEALION iieiei ittt e e eeaa e 64
8.6. DECOALOr INVOCALTIONeevtie ettt ettt e ettt e e e et e e e et e e e e bt e e e eban s 64
S A o] S PSPPSRI 65
9.1. Event types and DiNAiNG LYPESvuniiiiii it 65
9.2. Observer resolution algOrithmooooiu e 65
9.2.1. Event binding typeswith members ... 65
0.2.2. MUItiple eVent DINAINGS oveiiiiiei e 66

0.3. The ObSEIVEr INEEITACE . .oieeee e et et et eeeaans 66
9.4, OBSEVEr NOLITICAIION ... iiiiti ettt e et e et e e eab e e eeaans 66
SRR T 1T = Y= o PRSP 67
0.5.1. TRE BVENL INTEITACE ...t e et e eaans 67

0.5.2. TREDBUIMT-TN EVENE ..eeiiiiii et e eaans 68

O.6. ODSENVEN MELNOASvuiiiiiii et ettt e e et e et e e e aaa e e eeaans 68
9.6.1. Event parameter of an observer Methodoouuiiiiiiiiiii e 68
9.6.2. Declaring an observer MEthOdo.uuiiiiii e 68
9.6.3. Observer MethOd PAraMELENSciieieie et e e e eeaans 69
9.6.4. Conditional 0bServer MEthOOSviiiiiiiii e 69

JSR-299 Revised Public Review Draft

JSR-299: Contexts and Dependency Injection for Java EE

9.6.5. Transactional 0bSErver MEINOOSuiiiiii e 69
9.6.6. Asynchronous obServer MEthOOSooviuuiiiiiii e 69

9.6.7. Observer object for an observer methodoooiiiiiiiiii e 70
9.6.8. ObSErVEr INVOCALTON CONEEXLvteeiiitie ettt et e e e e et e e e e eeaans 70

O.7. IMS EVENE MBPPINGS ... eeeeetie ettt ettt et e e ettt e et et e et et e e e ettt e e ettt r e e e eaar e e e ebareeeeban s eeeneans 71
10. Framework integration and the bean ManagErcoooiiiiiiiiiiii e 72
10.1. ThE BEAN INLEITACE ...oevtiiiiii e e e ettt e e et e e e et e e e e et e e e eataneeeees 72
10.2. The BEANMANAOEr ODJECTuiiiiiiiee ittt e e et e e et e e e et e e e eata e eeees 72
10.2.1. Obtaining a contextual reference for abean ..o 72
10.2.2. Obtaining an iNjectabl @ refErenCeoviiiiiiie e 73
10.2.3. ObtainNing aBeaN DY TYPE ... it 73
10.2.4. Obtaining aBean DY NAIMEuuiiiiiiii e e e 73
10.2.5. Obtaining the most Specialized DEANcc.uuiiiiiiiii e 74
10.2.6. BEAN FEQISLIALION ...c.vuiieiiiii et e et e et e e e e et e e e e et e e e eetanaeeen 74
10.2.7. ODSEIVEY FEQISITALION ...eevvtieeeiii ettt e ettt e ettt e e et e ettt e e eeb e e e eater e e e eeba e e eeebnaaeaees 74
10.2.8. FiFINQ 8N EVENL ...iiiiiieeiii et ettt e e et e e et et e e e et b e e e e et e e e eaba e e e eaba e eaee 75
10.2.9. ODSEIVEY FESOIULIONceiiieeeeeii ettt e et et e et e e e e et e e e eebe e e e eeba e eaens 75
10.2.10. DECOratOr FESOIULIONcevueieiii ettt e e et e e e e et e e e eeb e e e eaae e eaens 75
10.2.11. Dependency ValidatioNiieiiiiiieiii e 76
10.2.12. Enabled deploymMENt TYPESc.vuiei ittt et 76
10.2.13. ReQISIENING @ CONEEXEvuiiiiiiii ettt e e et e e et e e e e et e e e eaba e eeens 76
10.2.14. Obtaining the active Context fOr @SCOPEiiiiviiieiiii e 76

10.3. Alternative MEtBdEla SOUICESuuuieiiitt ettt e ettt e e et e e et e e e et e e e e et e e e eebe e e e eebanaeeees 77
10.4. Helper objects for Bean implementationscouuuiiiiiiiiiiiiiiiie e 78
LO.5. ACHIVITIES .euiieiiti e et ettt ettt e et e et e et e e et e e ea e aee 79
1O.5.1. CUITENE BCLIVITY .. eeeeiiiee ettt e ettt e e e e et e e e eebe e e e eeba e eeees 80

11. Packaging and deplOyMENTooouiiiiiiii e e e et e e e e e ee 82
11.1. DePloymMENt HIFECYCIE ...niiiie i e e e e e e e e ees 82
11.2. BEAN TISCOVENY ...ttt ettt ettt sttt e ettt e et e e e et et s e e e et ter e e e e et neeeeabeneeeenbaneeeees 82
11.3. Problems detected automatically by the ContaiNercooviiiiiiiiiii e 83
114, INIGAHZAHON BVENESveieiiii e e et e et e e et e e e e et e e e e et e eeeat e eees 83
11.4.1. BEfOreBeanDiSCOVEIY BVENTvuiiiiiiiieeeeii et et e e e et e e ea e eeeaaa e eens 83
11.4.2. ATterBEANDISCOVENY EVENEciiiiiieeeiii et e ettt e e et e et et e e e eete e e e eata e eaens 84
11.4.3. AfterDeploymentValidation BVENTcoouiiiiiiiiiii e 84

N 1< (o= oo = PP 86
AL INLErCEPLOr EXAMPIE ...ttt ettt e e et e e et e e e et e e et b e e e e e e 86
A2, INtErCeptor DINAINGS .. .oeviieiiii et e e e et e e 87
A.2.1. Interceptor binding types with additional interceptor bindingsccooevveiiiiniiiiiinniein, 87
A.2.2. Interceptor bindings for SLErEOLYPEScovuniiiiiii e 87

A.3. Interceptor iMpPlEMENTAIONooiiiiie ettt et eera s 87
A.3.1. BUSINESS MEtNO INTErCEPIONS .. .iiiviiieieiii ettt e b 88
A.3.2. Lifecycle callback INtErCEPIOrSuuuiiiiii e 88
A.3.3. Declaring @an iNtEICEPIONvuneiiiii et 88
A.3.4. Declaring the interceptor bindings of an iNtErCeptorooviiiiiiiiiiiiii e 88

A.4. Binding an interceptor t0 AhEaNvoiiiiiiii i 88
AAL BindiNg AN INEEICEPLONciiiii ettt e et e e e e e 89
A.4.2. SUPPOTE FOr @INEEICEPIONS ...vuieiiiti ettt e et e e e e e eran s 89

A.5. Interceptor enablement and OFdEIINGocovuniiiiiiii e 89
A.6. The Interceptor object fOr an INTErCEPLONciiiiii e 90
A7, INLErCEPLOr FESOIULION ..ottt ettt ettt e ettt e e et e e e e b e e e eba s 90
A.7.1. Interceptors with multiple DINAINGSccvuniiiiii e 90
A.7.2. Interceptor binding types with MEMDErSoviiiiiiiiii e 91

A8, INLErCEPtor SEACK CIEALIONievuieiiiti ettt ettt e et e e e b e e e b e e e ebin s 92
AL, INLErCEPLOr TNVOCELIONvueeieti ettt e et e et e e et e e e et e e e e et e e e eban s 92
S 1= o= T = = RO UPPPTTRUPPIN 93
B.1. GENENiC tYPE IITEIAlS ..oovniiieii e e e 93
B.2. ANNOation INSEANCE [ITEIAlS ... e e e e e 94
€. PACKBOES ...vuiieiii ettt ettt et et et e e et e e aaans 96
O T V= et a0 To = (oo H PSPPI 96
O T Y 101 = (o= o (o PRSP 96
ORI V= e (= olo = (o PRSPPI 96
O T Y- e ol | L= APPSR 96

JSR-299 Revised Public Review Draft

JSR-299: Contexts and Dependency Injection for Java EE

O V= o141 PP
O T V= e g 1= o o o PRSPPI
O T V= = Y= | PRSPPI

JSR-299 Revised Public Review Draft

Vi

Chapter 1. Architecture

This specification provides a powerful new set of servicesto Java EE components.

« The lifecycle and interactions of stateful components bound to well-defined lifecycle contexts, where the set of con-
textsis extensible

* A sophisticated, typesafe dependency injection mechanism, including a facility for choosing between various compon-
ents that implement the same Java interface at deployment time

* Integration with the Unified Expression Language (EL), allowing any component to be used directly within a JSF or
JSP page

« The ahility to decorate injected components

* An event notification model

* A web conversation context in addition to the three standard web contexts defined by the Java Servlets specification
* An SPI alowing third-party frameworks to integrate cleanly with the Java EE environment

To take advantage of these facilities, the Java EE component developer provides additional component-level in the form of
Java annotations and application-level metadata in the form of an XML descriptor.

The services defined by this specification allow Java EE components to be bound to lifecycle contexts, to be injected, and
to interact in aloosely coupled fashion by firing and observing events. Various kinds of objects are injectable, including
EJB 3 session beans, managed beans and Java EE resources. We refer to these objects in general terms as beans and to in-
stances of beans that are bound to contexts as contextual instances. Contextual instances may be injected into other objects
by the dependency injection service.

The use of these services significantly simplifies the task of creating Java EE applications by integrating the Java EE web
tier with Java EE enterprise services. In particular, EJB components may be used as JSF managed beans, thus integrating
the programming models of EJB and JSF.

It's even possible to integrate with third-party frameworks. Any framework may provide objects to be injected or obtain
contextual instances using the dependency injection service. The framework may even raise and observe events using the
event notification service.

1.1. Contracts
This specification defines the responsibilities of:

» the application devel oper who uses these services, and

« the vendor who implements the functionality defined by this specification and provides a runtime environment in
which the application executes.

This runtime environment is called the container. The container may be a Java EE container or an embeddable EJB Lite
container.

1.2. Supported environments

An application that takes advantage of these services may be designed to execute in either the Java EE 6, Java EE 5 or Java
SE environments. If the application executes in a Java SE environment, the embeddable EJB Lite container provides Java
EE services such as transaction management and persistence.

Any Java EE 5 compliant container may support these services. However, certain functionality defined by this specifica-
tion isoptional for Java EE 5 containers. Thisis the case only when explicitly noted in this specification.

Java EE 6 and embeddable EJB Lite containers must support all functionality defined by this specification.

JSR-299 Revised Public Review Draft 1

Architecture

1.3. Relationship to other specifications

An application developer creates Java EE components such as EJBs, servlets and JavaBeans and then provides additional
metadata that declares additional behavior defined by this specification. These components may take advantage of the ser-
vices defined by this specification, together with the enterprise and presentational aspects defined by other Java EE plat-
form technologies.

In addition, this specification defines an SPI that allows alternative, non-platform technologies to integrate with the con-
tainer, for example, alternative web presentation technologies.

1.3.1. Relationship to the Java EE platform specification

In the Java EE 6 environment, all component classes supporting injection, as defined by the Java EE 6 platform specifica-
tion, may inject beans via the dependency injection service.

The Java EE platform specification defines a facility for injecting resources that exist in the Java EE component eniron-
ment. Resources are identified by string-based names. This specification bolsters that functionality, adding the ability to in-
ject an open-ended set of object types, including, but not limited to, component environment resources, based upon
typesafe bindings.

1.3.2. Relationship to EJB

EJB defines a programming model for application components that access transactional resources in a multi-user environ-
ment. EJB allows concerns such as role-based security, transaction demarcation, concurrency and scalability to be spe-
cified declaratively using annotations and XML deployment descriptors and enforced by the EJB container at runtime.

EJB components may be stateful, but are not by nature contextual. References to stateful component instances must be ex-
plicitly passed between clients and stateful instances must be explicitly destroyed by the application.

This specification enhances the EJB component model with contextual lifecycle management.

Any session bean instance obtained via the dependency injection service is a contextual instance. It is bound to alifecycle
context and is available to other objects that execute in that context. The container automatically creates the instance when
it is needed by aclient. When the context ends, the container automatically destroys the instance.

M essage-driven and entity beans are by nature non-contextual objects and may not be injected into other objects.

The container performs dependency injection on al EJB instances, even those which are not contextual instances.

1.3.3. Relationship to managed beans

The managed beans specification defines the basic programming model for application components managed by the Java
EE container.

As defined by this specification, most Java classes, including all JavaBeans, are managed beans.

This specification defines contextua lifecycle management and dependency injection as generic services applicable to all
managed beans.

Any managed bean instance obtained via the dependency injection service is a contextual instance. It is bound to a life-
cycle context and is available to other objects that execute in that context. The container automatically creates the instance
when it is needed by aclient. When the context ends, the container automatically destroys the instance.

The container performs dependency injection on all managed bean instances, even those which are not contextual in-
stances.

1.3.4. Relationship to JSF

JavaServer Faces is aweb-tier presentation framework that provides a component model for graphical user interface com-
ponents and an event-driven interaction model that binds user interface components to objects accessible via Unified EL.

This specification allows any bean to be assigned a Unified EL name. Thus, a JSF application may take advantage of the

JSR-299 Revised Public Review Draft 2

Architecture

sophisticated context and dependency injection model defined by this specification.

1.4. Introductory examples

The following examples demonstrate the use of lifecycle contexts and dependency injection.

1.4.1. JSF example

The following JSF page defines alogin prompt for aweb application:

<f:view>
<h: fornme
<h: panel Gid col ums="2" rendered="#{!|ogi n. | oggedl n}">
<h: out put Label for="usernanme">User nane: </ h: out put Label >
<h: i nput Text id="usernane" val ue="#{credential s. usernane}"/>
<h: out put Label for="password">Passwor d: </ h: out put Label >
<h: i nput Text id="password" val ue="#{credential s. password}"/>
</ h: panel G'i d>
<h: commandBut t on val ue="Logi n" acti on="#{l ogi n. | ogin}" rendered="#{!I ogi n.| oggedl n}"/>
<h: conmandBut t on val ue="Logout" action="#{l ogi n.|ogout}" rendered="#{l ogi n.| oggedln}"/>
</ h: fornmp
</f:view

The Unified EL expressionsin this page refer to beans named cr edenti al s and | ogi n.
The credenti al s bean has alifecyclethat is bound to the JSF request:

@bdel
public class Credentials {

private String usernane;
private String password;

public String getUsernane() { return usernane; }
public void setUsername(String usernane) { this.usernane = usernane; }

public String getPassword() { return password;
public void setPassword(String password) { this.password = password; }

The @wbdel annotation defined in Section 2.7.4, “Built-in stereotypes’ is a stereotype that identifies the o edenti al s bean
asamodel object in an MV C architecture.

The Logi n bean has alifecycle that is bound to the HTTP session:

@bessi onScoped @vbdel
public class Login {

@urrent Credentials credentials;
@Jsers EntityManager user Dat abase;

private User user;
public void login() {
Li st<User> results = user Dat abase. creat eQuer y(
"select u from User u where u.usernane=:usernanme and u. password=: password")
. set Paranet er ("usernanme", credentials.getUsernane())

. set Par anet er ("password", credentials.getPassword())
.getResul tList();

if (!results.isEnpty()) {
user = results.get(0);
}

}

public void | ogout() {
user = null;

publ i c bool ean isLoggedln() {
return user!=null;
}

JSR-299 Revised Public Review Draft 3

Architecture

@r oduces @uoggedln User getCurrentUser() {
if (user==null) {
t hr ow new Not Logged| nException();

}
el se {

return user;
}

}

The @essi onScoped annotation defined in Section 2.4.1, “Built-in scope types’ is a scope type that specifies the lifecycle
of instances of Logi n.

The @urrent annotation defined in Section 2.3.1, “Built-in binding types’ is a binding type. Applied to afield, it causes
the credent i al s bean to be injected into any contextual instance of Logi n created by the container.

The @Jsser s annotation is a binding type defined by the application:

@i ndi ngType

@Ret ent i on(RUNTI MVE)

@ar get ({ METHOD, Fl ELD, PARAMETER, TYPE})
public @nterface Users {}

Applied to afield, it causesthe JPA Enti t yManager to beinjected by the container.
The @ogged! n annotation is another binding type defined by the application:

@3i ndi ngType

@Ret ent i on(RUNTI ME)

@rar get ({ MVETHOD, FI ELD, PARAMETER, TYPE})
public @nterface Loggedln {}

The @roduces annotation defined in Section 3.4.2, “Declaring a producer method” identifies the method get cur -
rent User () asaproducer method, which will be called whenever another bean in the system needs the currently logged-in
user, for example, whenever the user attribute of the bocunent Edi t or classisinjected by the container:

@hdel
public class Document Editor {

@urrent Docunent docunent;
@oggedl n User user;
@ocunents EntityManager docDat abase;

public void save() {
docunent . set Cr eat edBy(current User) ;
em per si st (docunent) ;

}

The @ocunent s annotation is another application-defined binding type. The use of distinct binding types enables the con-
tainer to distinguish which JPA persistence unit is required.

When the login form is submitted, JSF assigns the entered username and password to an instance of the & edenti al s bean
that is automatically instantiated by the container. Next, JSF callsthe ogi n() method of an instance of Logi n that is auto-
matically instantiated by the container. This instance continues to exist for and be available to other requests in the same
HTTP session, and provides the User object representing the current user to any other bean that requires it (for example,
Docunent Edi t or). If the producer method is called before the 1 ogi n() method initializes the user object, it throws a Not -
Loggedl nExcepti on.

1.4.2. EJB example

Alternatively, we could write our Logi n bean to take advantage of the functionality defined by EJB:

@5t at ef ul @Bessi onScoped @bdel
public class Login {

@urrent Credentials credentials;
@Jsers EntityManager user Dat abase;

JSR-299 Revised Public Review Draft 4

Architecture

private User user;

@ransact i onAttri but e(REQUI RES_NEW
@Rol esAl | owed(" guest")
public void login() {

}

public void | ogout() {
user = null;

}

publ i ¢ bool ean isLoggedln() {
return user!=null;
}

@Rol esAl | owed("user")
@r oduces @uoggedln User getCurrentUser() {

}

The EJB @3t at ef ul annotation specifies that this bean is an EJB stateful session bean. The EJB @r ansacti onAttribute
and @rol esAl | owed annotations declare the EJB transaction demarcation and security attributes of the annotated methods.

1.4.3. Java EE component environment example

In the previous examples, we injected container-managed persistence contexts using binding types. We need to tell the
container what persistence context is being referred to by which binding type. We can declare references to persistence
contexts and other resources in the Java EE component environment in Java code.

public cl ass Dat abases {

@r oduces @per si st enceCont ext (uni t Nanme="User Dat a")
@Jsers EntityManager user Dat abase;

@°r oduces @er si st enceCont ext (uni t Name=" Docunent Dat a")
@ocunents EntityManager docDat abase;

The JPA @er si st enceCont ext annotation identifies the JPA persistence unit.

1.4.4. Event example
Beans may raise events. For example, our Logi n class could raise events when a user logsin or out.

@sessi onScoped @bdel
public class Login {

@urrent Credentials credentials;
@Jsers EntityManager user Dat abase;

@.oggedl n Event <User > user Loggedl| nEvent ;
@oggedQut Event <User > user LoggedQut Event ;

private User user;
public void login() {
Li st<User> results = ...
if (!results.isEmpty()) {

user = results.get(0);
user Loggedl nEvent . fire(user);

}

public void |ogout() {
user LoggedQut Event . fire(user);
user = null;

}

publ i c bool ean isLoggedl n() {
return user!=null;

JSR-299 Revised Public Review Draft 5

Architecture

}
@r oduces @uoggedln User getCurrentUser() {
}

}

The method fire() of the built-in bean of type Event defined in Section 9.5.1, “The Event interface” allows the applica
tion to fire events. Events consist of an event object—in this case the user —and event bindings. Event bindings—such as
@ogged! n and @oggedout —allow observers to specify which events of a certain type they are interested in.

Other beans may observer these events and use them to synchronize their internal state, with no coupling to the bean pro-
ducing the events:

@essi onScoped
public class Perm ssions {

@°r oduces
private Set<Perm ssi on> perm ssions = new ArraylLi st <Perm ssi on>();

@Jsers EntityManager user Dat abase;
voi d onLogi n(@bserves @oggedl n User user) {
perm ssions = new HashSet (user Dat abase. creat eQuer y(
"select p from Perm ssion p where p.user.usernane=: usernane")

. set Par anmet er ("user nanme”, user.get Username())
.getResultList());

}

voi d onLogout (@bserves @oggedQut User user {
per m ssi ons. cl ear();
}

}

The @r oduces annotation applied to a field identifies the field as a producer field, as defined in Section 3.5, “Producer
fields’, akind of shortcut version of a producer method. This producer field allows the permissions of the current user to
be injected to any injection point of type @urrent Set <Per ni ssi on>.

The @»ser ves annotation defined in Section 9.6.2, “ Declaring an observer method” identifies the method with the annot-
ated parameter as an observer method that is called by the container whenever an event matching the type and bindings of
the annotated parameter isfired.

1.4.5. Decorator example

Decorators are similar to interceptors, but apply only to beans of a particular Java interface. Like interceptors, decorators
may be easily enabled or disabled at deployment time. Unlike interceptors, decorators are aware of the semantics of the in-
tercepted method.

For example, the Dat aAccess interface might be implemented by many beans:

public interface DataAccess {

public Object |oad(Ohject id);
public Object getld();

public void save();
public void delete();

public C ass getDataType();
}

The Dat aAccessAut hori zat i onDecor at or class defines the authorization checks:

@ecor at or

public abstract class DataAccessAut hori zati onDecor at or
i mpl enent s Dat aAccess {
@ecor at es Dat aAccess del egat e;

@Current Set<Perm ssion> perm ssions;

JSR-299 Revised Public Review Draft 6

Architecture

public void save() {
aut hori ze("save");
del egat e. save();

}

public void delete() {
aut hori ze("del ete");
del egate. del ete();

}

private void authorize(String action) {
oject id = del egate. getld();
Class type = del egate. get Dat aType();
if (perm ssions.contains(new Perm ssion(action, type, id))) {
System out. println("Authorized for " + action);

el se {
Systemout. println("Not authorized for " + action);
t hr ow new Not Aut hori zedExcepti on(action);

The @ecor at or annotation defined in Section 8.1.1, “Declaring a decorator” identifies the Dat aAccessAut hori zat i on-
Decor at or class as a decorator. The @ecor at es annotation defined in Section 8.1.2, “Decorator delegate attributes’ iden-
tifies the delegate attribute, which the decorator uses to delegate method calls to the container. The decorator applies to
any bean that implements Dat aAccess.

The decorator intercepts invocations just like an interceptor. However, unlike an interceptor, the decorator contains func-
tionality that is specific to the semantics of the method being called.

Decorators may be declared abstract, relieving the developer of the responsibility of implementing all methods of the dec-
orated interface. If a decorator does not implement a method of a decorated interface, the decorator will simply not be
called when that method is invoked upon the decorated bean.

JSR-299 Revised Public Review Draft 7

Chapter 2. Bean definition

A Java EE component is a bean if the lifecycle of its instances may be managed by the container according to the lifecycle
context model defined in Chapter 6, Scopes and contexts. A bean may bear metadata defining its lifecycle and interactions
with other components.

Speaking more abstractly, a bean is a source of contextual objects which define application state and/or logic. These ob-
jects are called contextual instances of the bean. The container creates and destroys these instances and associates them
with the appropriate context. Contextual instances of a bean may be injected into other objects (including other bean in-
stances) that execute in the same context, and may be used in EL expressions that are evaluated in the same context.

A bean comprises the following attributes:

A (nonempty) set of bean types
* A (nonempty) set of bindings

» A scope

e A deployment type

e Optionaly, abean EL name

e A set of interceptor bindings

¢ A bean implementation

In most cases, a bean developer provides the bean implementation by writing business logic in Java code. The devel oper
then defines the remaining attributes by providing additional metadata, or by allowing them to be defaulted by the contain-
er. In certain other cases, for example resources defined in Section 3.6, “Resources’, the developer provides only the
metadata and the bean implementation is provided by the container.

A bean implementation may be a Java class, an EJB session bean class, a producer method or field or a proxy object for a
resource, as specified in Chapter 3, Bean implementation. The other attributes of the bean are either:

» declared explicitly by annotating the bean class, or
« defaulted by the container.
The deployment type, bean types and bindings of a bean determine where its instances will be injected by the container.

The bean developer may also create interceptors and/or decorators or reuse existing interceptors and/or decorators. Thein-
terceptor bindings of a bean determine which interceptors will be applied at runtime. The bean types and bindings of a
bean determine which decorators will be applied at runtime. Interceptors, decorators and interceptor bindings are specified
in Appendix A, Interceptors.

A bean implementation may produce or consume events. The event notification facility is specified in Chapter 9, Events.

2.1. Functionality provided by the container to the bean

A beanis provided by the container with the following capabilities:

e transparent creation and destruction and scoping to a particular context, specified in Chapter 7, Bean lifecycle and
Chapter 6, Scopes and contexts,

« scoped resolution by bean type and binding annotation type when injected into a Java-based client, as defined by Sec-
tion 5.1, “Typesafe resolution algorithm”,

» scoped resolution by name when used in a Unified EL expression, as defined by Section 5.2, “Name resolution al-
gorithm”,

« lifecycle callbacks and automatic injection of other bean instances, specified in Chapter 3, Bean implementation and

JSR-299 Revised Public Review Draft 8

Bean definition

Chapter 5, Lookup, dependency injection and EL resolution,
« method interception, callback interception, and decoration, as defined in Appendix A, Interceptors, and

* event notification, as defined in Chapter 9, Events.

2.2. Bean types

A bean type defines a client-visible type of the bean. A bean may have multiple bean types. For example, the following
bean has three bean types:

public class BookShop
ext ends Busi ness
i npl enent s Shop<Book> {

}
The bean types are Book Shop, Busi ness and Shop<Book>.

Meanwhile, this session bean has only the local interfaces BookShop and Audi t abl e as bean types, since the bean class is
not a client-visible type.

@t at ef ul
public cl ass BookShopBean
ext ends Busi ness
i mpl enent' s BookShop, Auditable {

}
The rules for determining the set of bean types for abean are defined in Chapter 3, Bean implementation.
All beans have the bean typej ava. | ang. Obj ect .

The bean types of abean are used by the resolution algorithms defined in Chapter 5, Lookup, dependency injection and EL
resolution.

2.2.1. Legal bean types

Almost any Javatype may be abean type of a bean:

« A bean type may be an interface, a concrete class or an abstract class, and may be declared final or have final methods.
e A bean type may be an array type. Two array types are considered identical only if the element typeisidentical.

e A bean type may be a primitive types. Primitive types are considered to be identical to their corresponding wrapper
typesinj ava. | ang.

« A bean type may be a parameterized type with an actual type parameter. Parameterized bean types are considered
identical if both the type and the type parameters (if any) areidentical.

e A bean type may be araw type.
However, atype declaration containing atype variable or wildcard is not alegal bean type.

If an injection point is declared with a type that is not a legal bean type, the container automatically detects the problem
and treats it as a definition error, as defined in Section 11.3, “Problems detected automatically by the container”.

Note that certain additional restrictions are specified in Section 5.3.1, “Unproxyable bean types’ for beans with a normal
scope, as defined in Section 6.3, “Normal scopes and pseudo-scopes”.

2.2.2. Typecasting between bean types

A client of a bean may not in general typecast its contextua reference to an instance of a bean to another arbitrary bean
type of the bean. For example, if our managed bean was injected to the following field:

JSR-299 Revised Public Review Draft 9

Bean definition

@current Shop<Book> bookShop;

Then the following typecast is not legal and might result in an exception at runtime:

Busi ness biz = (Business) bookShop;

2.3. Bindings

For a given bean type, there may be multiple beans which implement the type. For example, an application may have two
implementations of the interface Paynent Processor :

cl ass SynchronousPayment Processor
i mpl enents Paynent Processor {

cl ass Asynchr onousPaynent Processor
i npl enent s Paynent Processor {

}

A client that needs a Paynent Processor that processes payments synchronously needs some way to distinguish between
the two different implementations. One approach would be for the client to explicitly specify the class that implements that
Payment Processor interface. However, this approach creates a hard dependence between client and implementa-
tion—exactly what use of the interface was designed to avoid!

A binding type represents some client-visible semantic associated with a type that is satisfied by some implementations of
the type (and not by others). For example, we could introduce binding types representing synchronicity and asynchron-
icity. In Java code, binding types are represented by annotations.

@ynchr onous
cl ass Synchr onousPaynent Processor
i mpl enents Payment Processor {

@\synchr onous
cl ass Asynchr onousPaynent Processor
i npl enent s Paynent Processor {

}

Finally, binding types are applied to injection points to distinguish which implementation is required by the client. For ex-
ample, when the container encounters the following injected field, an instance of Synchr onousPaynent Processor will be
injected:

@ynchr onous Paynent Processor paynent Processor;

But in this case, an instance of Asynchr onousPaynent Processor will beinjected:

@\synchronous Paynent Processor paynent Processor;

The container inspects the binding annotations and type of the injected attribute to determine the bean instance to be injec-
ted, according to the resolution algorithm defined in Chapter 5, Lookup, dependency injection and EL resolution.

Binding types are also used as event selectors by observers of events, as defined in Chapter 9, Events, and to bind decorat-
orsto beans, as specified in Chapter 8, Decorators.

2.3.1. Built-in binding types

Every bean has the built-in binding @ avax. i nj ect. Any, even if it does not explicitly declare this binding, except for
beans with the built-in binding @ avax. i nj ect . New defined in Section 3.2.4, “Managed beans with the @New binding”
and Section 3.3.4, “ Session beans with the @New binding”.

JSR-299 Revised Public Review Draft 10

Bean definition

If a bean does not explicitly declare a binding, the bean has exactly one additiona binding, of type
@ avax. i nj ect. Current . Thisiscalled the default binding.

The following declarations are equivalent:

@cur r ent
public class Oder {}

public class Oder {}

Both declarations result in a bean with two bindings: @ny and @urrent .

The default binding is also assumed for any injection point that does not explicitly declare abinding. The following declar-
ations, in which the use of the @ ni ti al i zer annotation identifies the constructor parameter as an injection point, are equi-
valent:

public class Oder {
@nitializer
public Order(@urrent OrderProcessor processor) { ... }

public class Oder {
@nitializer
public Order (O derProcessor processor) { ... }

2.3.2. Defining new binding types

A binding type is a Java annotation defined as @rarget ({ METHOD, FIELD, PARAMETER, TYPE}) and
@Ret ent i on(RUNTI ME) .

A binding type may be declared by specifying the @ avax. i nj ect . Bi ndi ngType meta-annotation.

@Bi ndi ngType
@Ret ent i on(RUNTI MVE)
@ar get ({ METHOD, FIELD, PARAVETER, TYPE})

public @nterface Synchronous {}

@i ndi ngType

@Ret ent i on(RUNTI MVE)

@ar get ({ METHOD, FI ELD, PARAMETER, TYPE})
public @nterface Asynchronous {}

A binding type may define annotation members.

@i ndi ngType
@Ret ent i on(RUNTI MVE)
@ar get ({ METHOD, FI ELD, PARAMETER, TYPE})
public @nterface PayBy {
Payment Met hod val ue();

2.3.3. Declaring the bindings of a bean
A bean's bindings are declared by annotating the bean class or producer method or field with the binding types.

@.DAP
cl ass LdapAut henti cat or
i npl enents Aut henticator {

public class Shop {

@°r oduces @A |
public List<Product> getAllProducts() { ... }

@°r oduces @N shlLi st
public List<Product> getWshList() { }

JSR-299 Revised Public Review Draft 11

Bean definition

@°r oduces @shoppi ngCar't
public List<Product> getShoppingCart() { }

}

Any bean may declare multiple binding types.

@ynchronous @Rel i abl e
cl ass SynchronousRel i abl ePaynent Processor
i mpl enents Paymnent Processor {

2.3.4. Specifying bindings of an injected field

Binding types may be applied to injected fields (see Section 3.8, “Injected fields") to determine the bean that is injected,
according to the typesafe resolution algorithm defined in Section 5.1, “ Typesafe resolution algorithm”.

@.DAP Aut henti cat or aut henticator;

A bean may only be injected to an injection point if it has all the bindings of the injection point.

@ynchronous @Rrel i abl e Paynent Processor paynent Processor;
@A\ | List<Product > cat al og;
@V shLi st List<Product> wi shLi st;

@hoppi ngCart Li st <Product > cart;

2.3.5. Specifying bindings of a method or constructor parameter

Binding types may be applied to parameters of producer methods, initializer methods, disposal methods or bean construct-
ors (see Chapter 3, Bean implementation) to determine the bean instance that is passed when the method is called by the
container. The container uses the typesafe resolution algorithm defined in Section 5.1, “ Typesafe resolution algorithm” to
determine values for these parameters.

For example, when the container encounters the following producer method, an instance of Synchr onousPaynent Pro-
cessor Will be passed to the first parameter and an instance of AsynchronousPaynent Processor Will be passed to the
second parameter:

@r oduces
Payment Processor get Payment Processor (@ynchronous Paynent Processor sync,
@\synchronous Paynent Processor async) {
return i sSynchronous() ? sync : async;

2.4. Scopes

Java EE components such as servlets, EJBs and JavaBeans do not have awell-defined scope. These components are either:

e singletons, such as EJB singleton beans, whose state is shared between all clients,
« stateless objects, such as servlets and stateless session beans, which do not contain client-visible state, or

« objects that must be explictly created and destroyed by their client, such as JavaBeans and stateful session beans,
whose state is shared by explicit reference passing between clients.

Scoped objects, by contrast, exist in awell-defined lifecycle context:

< they may be automatically created when needed and then automatically destroyed when the context in which they were

JSR-299 Revised Public Review Draft 12

Bean definition

created ends, and
« their stateis automatically shared by clients that execute in the same context.

All beans have a scope. The scope of a bean determines the lifecycle of its instances, and which instances of the bean are
visible to instances of other beans, as defined in Chapter 6, Scopes and contexts. A scope type is represented by an annota-
tion type.

For example, an object that represents the current user is represented by a session scoped object:

@r oduces @bessi onScoped User getCurrentUser() { ... }

An object that represents an order is represented by a conversation scoped object:

@onver sat i onScoped
public class Oder {

}
A list that contains the results of a search screen might be represented by arequest scoped object:

@r oduces @Request Scoped @Naned("orders")
Li st <Order> get Order SearchResults() { ... }

The set of scope typesis extensible.

2.4.1. Built-in scope types

There are several standard scope types defined by this specification. The @equest Scoped, @ppl i cati onScoped and
@essi onScoped annotations defined in Section 6.7, “Context management for built-in scopes’ represent the standard
scopes defined by the Java Servlets specification. The @onver sat i onScoped annotation represents the conversation scope
defined in Section 6.7.4, “Conversation context lifecycle”. In addition, there is the @ependent pseudo-scope for depend-
ent objects, as defined in Section 6.4, “ Dependent pseudo-scope”.

2.4.2. Defining new scope types

A scope type is a Java annotation defined as @rar get ({ TYPE, METHOD, FIELD}) and @Ret enti on(RUNTI ME) . All scope
types must also specify the @ avax. cont ext . ScopeType meta-annotation.

For example, the following annotation declares a "business process scope”:

@ nherited

@copeType

@arget ({ TYPE, METHOD, FIELD})

@Ret ent i on(RUNTI MVE)

public @nterface Busi nessProcessScoped {}

An application or third-party framework might provide a context implementation for this custom scope (see Sec-
tion 10.2.13, “Registering a Context”).

2.4.3. Declaring the bean scope
The bean's scope is defined by annotating the bean class or producer method or field with a scope type.

A bean class or producer method or field may specify at most one scope type annotation. |f a bean class or producer meth-
od or field specifies multiple scope type annotations, the container automatically detects the problem and treats it as a
definition error, as defined in Section 11.3, “ Problems detected automatically by the container”.

The following examples demonstrate the use of built-in scope types:

@Request Scoped
public class ProductList inplements DataModel { ... }

public class Shop {

JSR-299 Revised Public Review Draft 13

Bean definition

@°r oduces @pessi onScoped @N shLi st
public List<Product> getWshList() { }

@°r oduces @Conver sati onScoped @hoppi ngCart
publi c List<Product> get ShoppingCart() { }

}

Likewise, a bean with the custom business process scope may be declared by annotating it with the
@usi nessProcessScoped annotation:

@Busi nessProcessScoped
public class Oder {

}

Alternatively, a scope type may be specified using a stereotype annotation, as defined in Section 2.7.2, “ Declaring the ste-
reotypes for abean”.

2.4.4. Default scope

When no scope is explicitly declared by annotating the bean class or producer method or field the scope of a bean is de-
faulted.

The default scope for a bean which does not explicitly declare a scope depends upon its declared stereotypes:

< |If the bean does not declare any stereotype with a declared default scope, the default scope for the bean is @ependent .

« |If all stereotypes declared by the bean that have some declared default scope have the same default scope, then that
scope is the default scope for the bean.

e |f there are two different stereotypes declared by the bean that declare different default scopes, then there is no default
scope and the bean must explicitly declare a scope. If it does not explicitly declare a scope, the container automatically
detects the problem and treats it as a definition error, as defined in Section 11.3, “Problems detected automatically by
the container”.

If abean explicitly declares a scope, any default scopes declared by stereotypes are ignored.

2.5. Deployment types

In many applications, there are various implementations of a particular type, and the implementation used at runtime varies
between different deployments of the system. Therefore, a developer may associate a particular implementation of a bean
type with a certain deployment scenario.

A deployment type represents a deployment scenario. Beans may be classified by deployment type, and thereby associated
with various deployment scenarios.

Deployment types alow the container to identify which beans should be enabled for use in a particular deployment of the
system. The deployment type also determines the precedence of a bean, used by the resolution algorithms specified in
Chapter 5, Lookup, dependency injection and EL resolution.

The set of deployment typesis extensible.

2.5.1. Built-in deployment types

There are two standard deployment types defined by this specification: @ avax.inject.Production and
@ avax. i nj ect. St andard.

All standard beans defined by this specification, and provided by the container, are defined using the @t andar d deploy-
ment type. For example, the Conver sat i on object defined in Section 6.7.4, “ Conversation context lifecycle” and the Bean-
Manager object defined in Section 10.2, “The BeanManager object” have this deployment type. No bean may be declared
with the @t andar d deployment type unless explicitly required by this specification.

JSR-299 Revised Public Review Draft 14

Bean definition

Application beans may be defined using the @r oduct i on deployment type.

2.5.2. Defining new deployment types

A deployment type is a Java annotation defined as @rar get ({ TYPE, METHOD, FIELD}) and @Ret enti on(RUNTI ME) . All de-
ployment types must also specify the @ avax. i nj ect . Depl oyment Type meta-annotation.

Applications and third-party frameworks may define their own deployment types. For example, the following deployment
type might identify beans which are used only at a particular site at which the application is deployed:

@epl oyment Type

@ar get ({ TYPE, METHOD, FIELD})
@Ret ent i on(RUNTI MVE)

public @nterface Australian {}

This deployment type might be used by athird-party framework that integrates with the container:

@epl oynment Type

@rarget ({ TYPE, METHOD, FIELD})
@Ret ent i on(RUNTI MVE)

public @nterface DaoFranmework {}

This deployment type might be used to define mock objects for integration testing:

@epl oynment Type

@rarget ({ TYPE, METHOD, FIELD})
@Ret ent i on(RUNTI ME)

public @nterface Mck {}

2.5.3. Declaring the deployment type of a bean
The deployment type of the bean is declared by annotating the bean class or producer method or field.

A bean class or producer method or field may specify at most one deployment type. If multiple deployment type annota-
tions are specified, the container automatically detects the problem and treats it as a definition error, as defined in Sec-
tion 11.3, “Problems detected automatically by the container”.

Open issue: is this too restrictive? We could allow multiple deployment types to be specified, and ignore all but the
highest-precedence enabled deployment type.

This bean has the deployment type @r oduct i on:

@r oducti on
public class Oder {}

This bean has the deployment type @bck:

@bck
public class MockOrder extends Order {}

By default, if no deployment type annotation is explicitly specified, a producer method or field inherits the deployment
type of the bean in which it is defined.

This producer method has the deployment type @r oduct i on:

@Pr oducti on
public class Login {

@°r oduces
public User getUser() { ... }

}

This producer method has the deployment type @ust ral i an:

@°r oducti on
public class TaxPolicies {

JSR-299 Revised Public Review Draft 15

Bean definition

@°roduces @\ustralian
public TaxPolicy getAustralianTaxPolicy() { ... }

}

Alternatively, a deployment type may be specified using a stereotype annotation, as defined in Section 2.7.2, “Declaring
the stereotypes for abean”.

2.5.4. Default deployment type

When no deployment type is explicitly declared by annotating the bean class or producer method or field, the deployment
typeis defaulted.

The default deployment type for a bean which does not explicitly declare a deployment type depends upon its declared ste-
rectypes:

< |f abean does not declare any stereotype with a declared default deployment type, then the default deployment typeis
@r oduct i on.

e Otherwise, the default deployment type for the bean is the highest-precedence default deployment type declared by any
stereotype declared by the bean.

Thus, the following declarations are equival ent:

@°r oducti on
public class Oder {}

public class Oder {}

If abean explicitly declares a deployment type, any default deployment type declared by stereotypes are ignored.

2.5.5. Enabled deployment types

In a particular deployment, only some deployment types are enabled. Beans declared with a deployment type that is not
enabled are not available to the resolution algorithms defined in Chapter 5, Lookup, dependency injection and EL resolu-
tion.

The container inspects the deployment type of each bean that exists in a particular deployment (see Section 11.2, “Bean
discovery”) to determine whether the bean is enabled in this deployment. If the deployment type is enabled, an instance of
the bean may be obtained by lookup, injection or EL resolution. Otherwise, the bean is never instantiated by the container.

By default, only the built-in deployment types are enabled. To enable a custom deployment type, a <Depl oy> element must
beincluded in abeans. xn file and the deployment type must be declared using the annotation type name.

<Beans>
<Depl oy>
<Pr oducti on/ >
<nyf wk: DaoFr amewor k/ >
<site:Australian/>
<nyf wk: Mock/ >
</ Depl oy>
</ Beans>

If a<Depl oy> element is specified, the explicitly declared deployment types are enabled, together with @t andar d, which
need not be declared explicitly.

If no <Depl oy> element is specified in any beans. xni file, only the @t andar d and @r oduct i on deployment types are en-
abled.

If the <Depl oy> element is specified in more than one beans. xm document, the container automatically detects the prob-
lem and treats it as a deployment problem, as defined in Section 11.3, “Problems detected automatically by the container”.

2.5.6. Deployment type precedence

JSR-299 Revised Public Review Draft 16

Bean definition

In aparticular deployment, all enabled deployment types are strongly ordered in terms of precedence. The precedence of a
deployment type is used by the resolution algorithms defined in Chapter 5, Lookup, dependency injection and EL resolu-
tion.

If a<Depl oy> element is specified, the order of the deployment type declarations determines the deployment type preced-
ence. Deployment types which appear later in this list have a higher precedence than deployment types which appear earli-
er. The @t andar d deployment type always has the lowest precedence of any deployment type.

If no <Depl oy> element is specified, the @r oduct i on deployment type has a higher precedence than the @t andar d de-
ployment type.

2.6. Bean EL names

A bean may have abean EL name. A bean with a name may be referred to by its bean EL namein Unified EL expressions.
A valid bean EL nameis a period-separated list of valid EL identifiers.

There is no relationship between the bean EL name of a session bean and the EJB name of the bean.
In certain circumstances, multiple beans may share the same name.

Names are used by the EL name resolution algorithm defined in Section 5.1, “ Typesafe resolution algorithm”. This allows
abean to be used directly in a JSP or JSF page.

For example, a bean with the name pr oduct s could be used like this:

<h: out put Text val ue="#{products.total }"/>

Resources and JM S resources do not have names.

2.6.1. Declaring the bean EL name

To specify the name of a bean, the @ avax. annot at i on. Naned annotation is applied to the bean class or producer method
or field. Thisbean is named pr oduct s:

@Nared(" pr oduct s")
public class ProductlList inplements DataModel { ... }

If the @amed annotation does not specify the val ue member, the default name is assumed.

2.6.2. Default bean EL names

In the following circumstances, a default name must be assigned by the container:

e A bean class or producer method or field of a bean declares a @awaned annotation and no name is explicitly specified by
the val ue member.

¢ A bean declares a stereotype that declares an empty @anmed annotation, and the bean does not explicitly specify a
name.

The default name for a bean depends upon the bean implementation. The rules for determining the default name for a bean
are defined in Chapter 3, Bean implementation.

2.6.3. Beans with no name

If neither <Naned> nor @\ared is specified, by the bean or its stereotypes, a bean has no name.

2.7. Stereotypes

In many systems, use of architectural patterns produces a set of recurring bean roles. A stereotype allows a framework de-
veloper to identify such arole and declare some common metadata for beans with that rolein a central place.

JSR-299 Revised Public Review Draft 17

Bean definition

A stereotype encapsulates any combination of:

e adefault deployment type,

e adefault scope,

e arestriction upon the bean scope,

e arequirement that the bean implement or extend a certain type, and

e aset of interceptor bindings.

A stereotype may also specify that all beans with the stereotype have defaulted bean EL names.

A bean may declare zero, one or multiple stereotypes.

2.7.1. Defining new stereotypes

A beans dtereotype is a Java annotation defined as @rarget ({TYPE, METHOD, FIELD}), @rarget(TYPE),
@ar get (METHOD) , @ar get (FI ELD) Or @ar get ({ METHOD, FI ELD}) and @Ret enti on(RUNTI ME) .

A stereotype may be declared by specifying the @ avax. annot at i on. St er eot ype meta-annotation.

@bt er eot ype

@rar get (TYPE)

@Ret ent i on(RUNTI ME)

public @nterface Action {}

A stereotype may not declare any binding annotation. If a stereotype declares a binding annotation, the container automat-
ically detects the problem and treats it as a definition error, as defined in Section 11.3, “Problems detected automatically
by the container”.

2.7.1.1. Declaring the default scope and deployment type for a stereotype

A stereotype may declare at most one scope. If a stereotype declares more than one scope, the container automatically de-
tects the problem and treats it as a definition error, as defined in Section 11.3, “Problems detected automatically by the
container”.

A stereotype may declare at most one deployment type. If a stereotype declares more than one deployment type, the con-
tainer automatically detects the problem and treats it as a definition error, as defined in Section 11.3, “Problems detected
automatically by the container”.

For example, the following stereotype might be used to identify action classes in aweb application:

@Request Scoped

@r oduct i on

@5t er eot ype

@rar get (TYPE)

@Ret ent i on(RUNTI MVE)

public @nterface Action {}

Then actions would have scope @equest Scoped and deployment type @r oduct i on unless the scope or deployment type
explicitly specified by the bean.

2.7.1.2. Specifying interceptor bindings for a stereotype

A stereotype may declare zero, one or multiple interceptor bindings, as defined in Section A.2.2, “Interceptor bindings for
stereotypes’.

We may specify interceptor bindings that apply to al actions:

@Request Scoped

@secur e
@ransacti onal
@Pr oducti on

@5t er eot ype
@rar get (TYPE)

JSR-299 Revised Public Review Draft 18

Bean definition

@Ret ent i on(RUNTI MVE)
public @nterface Action {}

2.7.1.3. Specifying name defaulting for a stereotype

A stereotype may declare an empty @vamed annotation. If a stereotype declares a non-empty @amed annotation, the con-
tainer automatically detects the problem and treats it as a definition error, as defined in Section 11.3, “Problems detected
automatically by the container”.

We may specify that every bean with the stereotype has a defaulted name when a name is not explicitly specified by the
bean:

@Request Scoped

@secur e

@r ansacti onal
@\aned

@r oducti on

@5t er eot ype

@rar get (TYPE)

@Ret ent i on(RUNTI VE)

public @nterface Action {}

2.7.1.4. Restricting bean scopes and types using a stereotype
If al actions are request scoped, we can make this restriction explicit:

@Request Scoped

@secur e
@ransacti onal
@Pr oducti on

@5t er eot ype(support edScopes=Request Scoped. cl ass)
@rar get (TYPE)

@Ret ent i on(RUNTI MVE)

public @nterface Action {}

We may even require that all actions extend some Act i onBase class:

@Request Scoped

@secur e
@r ansacti onal
@Pr oducti on

@5t er eot ype(requi redTypes=Acti onBase. cl ass)
@rar get (TYPE)

@Ret ent i on(RUNTI MVE)

public @nterface Action {}

Scope and type restrictions may not be specified when a stereotype is declared in XML.

2.7.1.5. Stereotypes with additional stereotypes
A stereotype may declare other stereotypes.

@\udi tabl e

@\ction

@5t er eot ype

@rar get (TYPE)

@Ret ent i on(RUNTI MVE)

public @nterface Auditabl eAction {}

Stereotype declarations are transitive—a stereotype declared by a second stereotype is inherited by all beans and other ste-
reotypes that declare the second stereotype.

Stereotypes declared @rar get (TYPE) may not be applied to stereotypes declared @rar get ({ TYPE, METHOD, FIELD}),
@rar get (METHOD) , @rar get (FI ELD) Or @ar get ({ METHOD, FI ELD}) .

2.7.2. Declaring the stereotypes for a bean

Stereotype annotations may be applied to abean class or producer method or field.

JSR-299 Revised Public Review Draft 19

Bean definition

@\ct i on
public class LoginAction { ... }

The default deployment type and default scope declared by the stereotype may be overridden by the bean:

@bck @\pplicationScoped @\ction
public class MdckLogi nActi on extends Logi nAction { ... }

Multiple stereotypes may be applied to the same bean:

@ao @\ction
public class LoginAction { ... }

2.7.3. Stereotype restrictions
A stereotype may place certain restrictions upon the beans that declare the stereotype.

If astereotype declares ar equi r edType, and the bean types do not include the type, the container automatically detects the
problem and treats it as a definition error, as defined in Section 11.3, “ Problems detected automatically by the container”.

If a stereotype explicitly declares a set of scope types using suppor t edScopes, and the bean scope is not in that set, the
container automatically detects the problem and treats it as a definition error, as defined in Section 11.3, “Problems detec-
ted automatically by the container”.

If abean declares multiple stereotypes, it must satisfy every restriction declared by every declared stereotype.

2.7.4. Built-in stereotypes

The built-in @bdel stereotypeisintended for use with beans that define the model layer of an MV C web application archi-
tecture such as JSF:

@\aned

@Request Scoped

@bt er eot ype

@rarget ({ TYPE, METHOD, FIELD})
@Ret ent i on(RUNTI MVE)

public @nterface Mdel {}

In addition, the special-purpose @ nt er cept or and @ecor at or stereotypes are defined in Appendix A, Interceptors.

JSR-299 Revised Public Review Draft 20

Chapter 3. Bean implementation

A bean implementation implements the bean types of the bean. The developer must follow certain rules when defining a
bean implementation. However, the rules depend upon what kind of bean it is. The container provides built-in support for
the following kinds of bean:

* Managed beans

* Session beans

* Producer methods and fields

» Resources (Java EE resources, persistence contexts, persistence units, remote EJBs and web services)
e JMSresources (topics and queues)

An application or third-party framework may support other kinds of beans by implementing the interface Bean and regis-
tering the implementation with the container, as defined in Section 10.2.6, “Bean registration”.

3.1. Restriction upon bean instantiation

Most beans are implemented by an annotated Java class, possibly an EJB bean class, called the bean class of the bean.
Bean classes are defined in Section 3.2, “Managed beans” and Section 3.3, “ Session beans”.

This specification places very few restrictions upon the bean class of a bean. In particular, the class is a concrete class and
is not required to implement any special interface or extend any special superclass. Therefore, bean classes are easy to in-
stantiate and unit test.

However, if the application directly instantiates a bean class of a bean, instead of letting the container perform instanti-
ation, the resulting instance is not a contextual instance and the capabilities listed in Section 2.1, “Functionality provided
by the container to the bean” will not be available to that particular instance. In a deployed application, it is the container
that is responsible for instantiating beans and initializing their dependencies.

If the application requires full control over instantiation of a bean, a producer method may be used. A producer method is
just an annotated method of another bean that is invoked by the container to instantiate the bean. Producer methods are
defined in Section 3.4, “Producer methods’. However, a similar restriction exists for producer methods: if the application
calls the producer method directly, instead of letting the container call it, the returned object is not a contextual instance
and the capabilities listed in Section 2.1, “Functionality provided by the container to the bean” will not be available to the
returned object.

3.2. Managed beans

A managed bean is a bean that is implemented by a Java class. This class is called the bean class of the managed bean.
The basic lifecycle and semantics of managed beans are defined by the Managed Beans specification.

If the bean class of a managed bean is annotated with both the @ nt er cept or and @ecor at or stereotypes, the container
automatically detects the problem and treats it as a definition error, as defined in Section 11.3, “Problems detected auto-
matically by the container”.

If a managed bean has a public field, it must have scope @ependent . If a managed bean with a public field declares any

scope other than @ependent , the container automatically detects the problem and treats it as a definition error, as defined
in Section 11.3, “Problems detected automatically by the container”.

3.2.1. Which Java classes are managed beans?

A top-level Java class is a managed bean if it is defined to be a managed bean by any other Java EE specification, or if it
meets all of the following conditions:

e Itisnot aparameterized type.

JSR-299 Revised Public Review Draft 21

Bean implementation

e Itisnot anon-static inner class.
* Itisaconcrete class, or is annotated @ecor at or .
e Itisnot annotated with an EJB component-defining annotation or declared as an EJB bean classinej b-j ar. xm .

* It has an appropriate constructor—either:

» theclass has a constructor with no parameters, or

» theclass declares a constructor annotated @ ni ti al i zer.

All Java classes that meet these conditions are managed beans and thus no special declaration is required to define a man-
aged bean.

3.2.2. Bean types of a managed bean

The set of bean types for a managed bean contains the bean class, every superclass and all interfaces it implements directly
or indirectly.

Note the additional restrictions upon bean types of beans with normal scopes defined in Section 5.3.1, “Unproxyable bean
types’.

3.2.3. Declaring a managed bean

A managed bean with a constructor that takes no parameters does not require any specia annotations. The following
classes are beans:

public class Shop { .. }
cl ass Paynent Processor | npl inpl enments Paynent Processor { ... }

A bean class may also specify a scope, name, deployment type, stereotypes and/or bindings:

@Conver sati onScoped @Current
public class ShoppingCart { ... }

A managed bean may extend another managed bean:

@Nared("1 ogi nActi on")

public class LoginAction { ... }

@bck

@\aned("| ogi nActi on")

public class MdckLogi nActi on extends Logi nAction { ... }

The second bean is a "mock object" that overrides the implementation of Logi nActi on when running in an embedded EJB
Lite based integration testing environment.

3.2.4. Managed beans with the @ewbinding

Every class that satisfies the requirements of Section 3.2.1, “Which Java classes are managed beans?’ is a bean, with
scope, deployment type and bindings defined using annotations.

Additionally, for each such managed bean, a second managed bean exists which:

* hasthe same bean class,
< hasthe same bean constructor, initializer methods and injected fields defined by annotations, and

» hasthe same interceptor bindings defined by annotations.

JSR-299 Revised Public Review Draft 22

Bean implementation

However, this second bean:

e has scope @ependent ,

* has deployment type @t andar d,

e has@avax. i nj ect . New as the only binding,
* hasno bean EL name,

* hasno stereotypes, and

» hasno observer methods, producer methods or fields or disposal methods.

3.2.5. Bean constructors

When the container instantiates a managed bean, it calls the bean constructor. The bean constructor is a constructor of the
bean class.

The application may call bean constructors directly. However, if the application directly instantiates the bean, no paramet-
ers are passed to the constructor by the container; the returned object is not bound to any context; no dependencies are in-
jected by the container; and the lifecycle of the new instance is not managed by the container.

3.2.5.1. Declaring a bean constructor
The bean constructor may be identified by annotating the constructor @ ni ti al i zer.

@sessi onScoped
public class ShoppingCart {

private User customer;

@nitializer

publ i ¢ Shoppi ngCart (User custoner) {
this. customer = custoner;

}

publ i ¢ Shoppi ngCart (Shoppi ngCart original) {
this. customer = original.custoner;
}

Shoppi ngCart () {}

@Conver sat i onScoped
public class Oder {

private Product product;
private User custoner;

@nitializer

public Order(@sel ected Product product, User custoner) ({
t hi s. product = product;
this. customer = custoner;

}

public Order(Order original) {
this. product = original.product;
this.customer = original.custoner;

}
Order() {}

If amanaged bean does not explicitly declare a constructor using @ ni ti al i zer, the constructor that accepts no parameters
is the bean constructor.

JSR-299 Revised Public Review Draft 23

Bean implementation

If amanaged bean has more than one constructor annotated @ ni ti al i zer , the container automatically detects the problem
and treats it as a definition error, as defined in Section 11.3, “Problems detected automatically by the container”.

If abean constructor has a parameter annotated @i sposes, Or @bser ves, the container automatically detects the problem
and treats it as a definition error, as defined in Section 11.3, “Problems detected automatically by the container”.

3.2.5.2. Bean constructor parameters

A bean constructor may have any number of parameters. All parameters of a bean constructor are injection points.

3.2.6. Specializing a managed bean

If a bean class of a managed bean X is annotated @speci al i zes, then the bean class of X must directly extend the bean
class of another managed bean Y. Then X directly specializes Y, as defined in Section 4.3, “ Specialization”.

If the bean class of X does not directly extend the bean class of another managed bean, the container automatically detects
the problem and treats it as a definition error, as defined in Section 11.3, “Problems detected automatically by the contain-

e,
For example, MockLogi nAct i on directly specializes Logi nAct i on:

public class LoginAction { ... }

@bck @pecializes
public class MdckLogi nAction extends Logi nAction { ... }

3.2.7. Default name for a managed bean

The default name for a managed bean is the unqualified class name of the bean class, after converting the first character to
lower case.

For example, if the bean classis named Pr oduct Li st , the default bean EL nameis pr oduct Li st .

3.3. Session beans

An session bean is a bean that is implemented by a session bean with an EJB 3.x client view. The basic lifecycle and se-
mantics of an EJB session bean are defined by the EJB specification.

A dtateless session bean must belong to the @ependent pseudo-scope. A singleton bean must belong to either the
@wppl i cati onScoped Scope or to the @ependent pseudo-scope. If a session bean specifies an illegal scope, the container
automatically detects the problem and treats it as a definition error, as defined in Section 11.3, “Problems detected auto-
matically by the container”. A stateful session bean may have any scope.

When a contextual instance of a session bean is obtained via the dependency injection service, the behavior of Sessi on-
Cont ext . get | nvokedBusi nessl nt erface() is specific to the container implementation. Portable applications should not
rely upon the value returned by this method.

If the bean class of a session bean is annotated @ nt er cept or Or @ecor at or, the container automatically detects the prob-
lem and treats it as a definition error, as defined in Section 11.3, “ Problems detected automatically by the container”.

3.3.1. EJB remove methods of session beans

If asession bean is a stateful session bean:

» If thescopeis @ependent , the application may call any EJB remove method of an instance of the session bean.
« Otherwise, the application may not directly call any EJB remove method of any instance of the session bean.

If the application directly calls an EJB remove method of an instance of a session bean that is a stateful session bean and
declares any scope other than @ependent , an Unsuppor t edQOper at i onExcept i on iSthrown.

JSR-299 Revised Public Review Draft 24

Bean implementation

If the application directly calls an EJB remove method of an instance of a session bean that is a stateful session bean and
has scope @ependent then no parameters are passed to the method by the container. Furthermore, the container ignores
the instance instead of destroying it when Cont ext ual . destroy() is called, as defined in Section 7.2, “Lifecycle of state-
ful session beans”.

3.3.2. Bean types of a session bean

The set of bean types for a session bean contains all local interfaces of the bean that do not have type variables and their
superinterfaces. If the EJB has a bean class local view and the bean class is not a parameterized type, the set of bean types
contains the bean class and all superclasses. In addition, j ava. | ang. Obj ect isabean type of every session bean.

Remote interfaces are not included in the set of bean types.

3.3.3. Declaring a session bean
A session bean does not require any special annotations. The following EJBs are beans:

@i ngl et on
class Shop { .. }

@t at el ess
cl ass Paynent Processor | npl inplenments Paynent Processor { ... }

A bean class may also specify a scope, name, deployment type, stereotypes and/or bindings:

@Conver sat i onScoped @bt ateful @urrent @vbdel
public class ShoppingCart { ... }

A session bean class may extend another bean class:

@t at el ess
@\aned("| ogi nActi on")
public class LoginActionlnpl inplenments LoginAction { ... }

@t at el ess

@bck

@Nared("1 ogi nActi on")

public class MdckLogi nActionl npl extends Logi nActionlnmpl { ... }
3.3.4. Session beans with the @ewbinding

Every session bean with an EJB 3.x client view is a bean, with scope, deployment type and bindings defined using annota-
tions.

Additionally, for each such session bean, a second bean exists which:

* hasthe same bean class,
e hastheinitializer methods and injected fields defined by annotations, and
» hasthe same interceptor bindings defined by annotations.

However, this second bean:

* has scope @ependent ,

* has deployment type @t andar d,

e has@avax. i nj ect. Newas the only binding,
e hasnobean EL name,

* hasno stereotypes, and

JSR-299 Revised Public Review Draft 25

Bean implementation

» hasno observer methods, producer methods or fields or disposal methods.

3.3.5. Specializing a session bean

If abean class of asession bean X is annotated @peci al i zes, then the bean class of X must directly extend the bean class
of another session bean Y. Then X directly specializes Y, as defined in Section 4.3, “ Specialization”.

If the bean class of X does not directly extend the bean class of another session bean, the container automatically detects
the problem and treats it as a definition error, as defined in Section 11.3, “Problems detected automatically by the contain-

er.

Furthermore:

e X must support al local interfaces supported by Y, and
e if Y supports abean-class local view, X must also support a bean-classlocal view.

Otherwise, the container automatically detects the problem and treats it as a definition error, as defined in Section 11.3,
“Problems detected automatically by the container”.

For example, MockLogi nAct i onBean directly specializes Logi nAct i onBean:

@t at el ess
public class Logi nActi onBean i nplenments Logi nAction { ... }

@t at el ess @wbck @peci al i zes
public class MdckLogi nActi onBean extends Logi nActionBean { ... }

3.4. Producer methods

A producer method acts as a source of objects to be injected, where:

» theobjectsto beinjected are not required to be instances of beans, or
< theconcrete type of the objectsto be injected may vary at runtime, or
« the objects require some custom initialization that is not performed by the bean constructor.

A producer method must be a method of a managed bean class or session bean class. A producer method may be either
static or non-static. If the bean is a session bean, the producer method must be either a business method of the EJB or a
static method of the bean class.

If aproducer method sometimes returns a null value, then the producer method must have scope @ependent . If a producer
method returns a null value at runtime, and the producer method declares any other scope, an 1 11 egal Product Excepti on
is thrown by the container. This restriction allows the container to use a client proxy, as defined in Section 5.3, “Client
proxies’.

If the producer method return type is a parameterized type, it must specify actual type parameters for each type parameter.
If a producer method return type contains a wildcard type parameter or type variable, the container automatically detects
the problem and treats it as a definition error, as defined in Section 11.3, “Problems detected automatically by the contain-

er.

The application may call producer methods directly. However, if the application calls a producer method directly, no para-
meters will be passed to the producer method by the container; the returned object is not bound to any context; and itslife-
cycleis not managed by the container.

A bean may declare multiple producer methods.

3.4.1. Bean types of a producer method

The bean types of a producer method depend upon the method return type:

JSR-299 Revised Public Review Draft 26

Bean implementation

« If thereturn type is an interface, the set of bean types contains the return type, all interfaces it extends directly or indir-
ectly andj ava. | ang. Ovj ect .

e |If areturn typeis primitive or is a Java array type, the set of bean types contains exactly two types: the method return
type andj ava. | ang. bj ect .

< |If thereturn type is a class, the set of bean types contains the return type, every superclass and al interfaces it imple-
ments directly or indirectly.

Note the additional restrictions upon bean types of beans with normal scopes defined in Section 5.3.1, “Unproxyable bean
types’.

3.4.2. Declaring a producer method

A producer method may be declared by annotating a method with the @ avax. i nj ect . Produces annotation.

public class Shop {
@°r oduces Paynent Processor get Paynment Processor() { ... }
@roduces Li st <Product> getProducts() { ... }

}

A producer method may also specify scope, name, deployment type, stereotypes and/or bindings.

public class Shop {

@°r oduces @\ppl i cationScoped @Catal og @Naned("cat al og")
Li st <Product> get Products() { ... }

}

If a producer method is annotated @ni ti al i zer, has a parameter annotated @i sposes, or has a parameter annotated
@hbser ves, the container automatically detects the problem and treats it as a definition error, as defined in Section 11.3,
“Problems detected automatically by the container”.

If anon-static method of a session bean class is annotated @r oduces, and the method is not a business method of the EJB,
the container automatically detects the problem and treats it as a definition error, as defined in Section 11.3, “Problems de-
tected automatically by the container”.

3.4.3. Producer method parameters

An producer method may have any number of parameters. All producer method parameters are injection points.

public class OrderFactory {

@°r oduces @Conver sati onScoped
public Order createCurrentO der(@lew O der order, @el ected Product product)

{

order. set Product (product);
return order;

3.4.4. Specializing a producer method

If aproducer method X is annotated @peci al i zes, then it must be non-static and directly override another producer meth-
od Y. Then X directly specializes Y, as defined in Section 4.3, “ Specialization”.

If the method is static or does not directly override another producer method, the container automatically detects the prob-
lem and treats it as a definition error, as defined in Section 11.3, “ Problems detected automatically by the container”.

For example:

@mbck
public class MockShop extends Shop {

JSR-299 Revised Public Review Draft 27

Bean implementation

@verride @ppecializes

@r oduces

Paynent Processor get Paynent Processor () {
return new MockPaynent Processor();

}

@verride @ppecializes

@°r oduces

Li st <Product > get Products() {
return PRODUCTS;

}

3.4.5. Disposal methods
A disposal method allows the application to perform customized cleanup of an object returned by a producer method.

A disposal method must be a method of a managed bean class or session bean class. A disposal method may be either stat-
ic or non-static. If the bean is a session bean, the disposal method must be a business method of the EJB or a static method
of the bean class.

A bean may declare multiple disposal methods.

3.4.6. Disposed parameter of a disposal method

Each disposal method must have exactly one disposed parameter, of the same type as the corresponding producer method
return type. When searching for disposal methods for a producer method, the container considers the type and bindings of
the disposed parameter. If a disposed parameter resolves to a producer method according to the typesafe resolution al-
gorithm, the container must call this method when destroying an instance returned by that producer method.

If the disposed parameter does not resolve to any producer method according to the typesafe resolution algorithm, the con-
tainer automatically detects the problem and treats it as a deployment problem, as defined in Section 11.3, “Problems de-
tected automatically by the container”.

3.4.7. Declaring a disposal method

A disposal method may be declared by annotating a parameter @ avax. i nj ect . Di sposes. That parameter is the disposed
parameter.

public class UserDat abaseEntityManager {
@°r oduces @onver sati onScoped @Jser Dat abase

public EntityManager create(EntityManagerFactory enf) {
return enf.createEntityManager();
}

public void cl ose(@i sposes @Jser Dat abase EntityManager en) {
em cl ose();
}

}

If a method has more than one parameter annotated @i sposes, the container automatically detects the problem and treats
it as a definition error, as defined in Section 11.3, “Problems detected automatically by the container”.

If a disposal method is annotated @r oduces, Or @nitializer or has a parameter annotated @bser ves, the container
automatically detects the problem and treats it as a definition error, as defined in Section 11.3, “Problems detected auto-
matically by the container”.

If anon-static method of a session bean class has a parameter annotated @i sposes, and the method is not a business meth-
od of the EJB, the container automatically detects the problem and treats it as a definition error, as defined in Section 11.3,
“Problems detected automatically by the container”.

3.4.8. Disposal method parameters

JSR-299 Revised Public Review Draft 28

Bean implementation

In addition to the disposed parameter, a disposal method may declare additional parameters, which may also specify bind-
ings. These additional parameters are injection points.

public void cl ose(@i sposes @Jser Dat abase EntityManager em @uogger Log log) { ... }

3.4.9. Disposal method resolution

When searching for disposal methods for a producer method, the container searches for disposal methods which satisfy the
following rules:

e Thedisposal method must be declared by an enabled bean.
e Thedisposed parameter must resolve to the producer method, according to the typesafe resolution agorithm.

If there are multiple disposal methods for a producer method, the container automatically detects the problem and treats it
as adefinition error, as defined in Section 11.3, “ Problems detected automatically by the container”.

3.4.10. Default name for a producer method

The default name for a producer method is the method name, unless the method follows the JavaBeans property getter
naming convention, in which case the default name is the JavaBeans property name.

For example, this producer method is named pr oduct s:

public class Shop {

@r oduces @\aned
public List<Product> getProducts() { ... }

}
This producer method is named paynent Pr ocessor :

public class Shop {

@r oduces @\aned
publ i ¢ Paynent Processor payment Processor() { ... }

3.5. Producer fields

A producer field isadlightly ssmpler alternative to a producer method.

A producer field must be a field of a managed bean class or session bean class. A producer field may be either static or
non-static.

If a producer field sometimes contains a null value when accessed, then the producer field must have scope @ependent . If
a producer method contains a null value at runtime, and the producer field declares any other scope, an 111 egal Pr oduc-
t Except i on is thrown by the container. This restriction allows the container to use a client proxy, as defined in Sec-
tion 5.3, “Client proxies’.

If the producer field type is a parameterized type, it must specify actual type parameters for each type parameter. If a pro-
ducer field type contains a wildcard type parameter or type variable, the container automatically detects the problem and
treats it as a definition error, as defined in Section 11.3, “Problems detected automatically by the container”.

The application may access producer fields directly. However, if the application accesses a producer field directly, the re-
turned object is not bound to any context; and its lifecycle is not managed by the container.

A bean may declare multiple producer fields.

3.5.1. Bean types of a producer field

JSR-299 Revised Public Review Draft 29

Bean implementation

The bean types of a producer field depend upon the field type:

< |If the field type is an interface, the set of bean types contains the field type, all interfaces it extends directly or indir-
ectly andj ava. | ang. Ovj ect .

e |If afield type is primitive or is a Java array type, the set of bean types contains exactly two types: the field type and
j ava. | ang. Obj ect .

« |If thefield typeisaclass, the set of bean types contains the field type, every superclass and all interfaces it implements
directly or indirectly.

Note the additional restrictions upon bean types of beans with normal scopes defined in Section 5.3.1, “Unproxyable bean
types’.

3.5.2. Declaring a producer field

A producer field may be declared by annotating a field with the @ avax. i nj ect . Produces annotation.

public class Shop {
@°r oduces Paynent Processor paynent Processor =;

@°r oduces Li st <Product > products =;

}

A producer field may also specify scope, name, deployment type, stereotypes and/or bindings.

public class Shop {

@°r oduces @\ppl i cati onScoped @Catal og @Naned("cat al og")
Li st <Product> products =;

3.5.3. Default name for a producer field
The default name for a producer field is the field name.
For example, this producer field is named pr oduct s:

public class Shop {

@r oduces @\aned
public List<Product> products = ...;

3.6. Resources

A resource is a bean that represents a reference to a resource, persistence context, persistence unit, remote EJB or web ser-
vice in the Java EE component environment.

@ust oner Dat abase Dat asource cust oner Dat a;

@cust oner Dat abase EntityManager custoner Dat abaseEntityManager;

@cust oner Dat abase EntityManager Fact ory cust oner Dat abaseEnt it yManager Fact ory;
@Current Paynent Servi ce renpt ePaynent Servi ce;

A resource always has scope @ependent .

A resource may not declare a bean EL name.

JSR-299 Revised Public Review Draft 30

Bean implementation

3.6.1. Declaring a resource

A resource may be declared by specifying a Java EE component environment injection annotation as part of a producer
field declaration.

The bean type, bindings and deployment type of the resource are determined by the producer field declaration.

For a Java EE resource, @esour ce must be specified.

For a persistence context, @er si st enceCont ext must be specified.
For a persistence unit, @er si st enceuni t must be specified.

For aremote EJB, @JB must be specified.

For aweb service, @ebSer vi ceRef must be specified.

@\ébSer vi ceRef (nane="j ava: app/ servi ce/ Paynent Servi ce",
wsdl Locati on="http://theirdomai n. conl servi ces/ Paynent Servi ce. wsdl ")
Paynent Servi ce paynent Ser vi ce;

@EJB(ej bLi nk="../their.jar#Paynent Servi ce")
Payment Ser vi ce paynent Servi ce;

@Resour ce(nane="j ava: gl obal / env/ j dbc/ Cust ormer Dat asour ce")
@ust oner Dat abase Dat asour ce cust oner Dat abase;

@Per si st enceCont ext (uni t Name=" Cust orrer Dat abase")
@Cust oner Dat abase EntityManager cust oner Dat abasePer si st enceCont ext ;

@Per si st encelni t (uni t Name=" Cust oner Dat abase")
@ust oner Dat abase EntityManager Fact ory cust oner Dat abasePer si st enceUni t;

3.7. IMS resources

Beans that send JM'S messages must interact with at least two different objects defined by the IMS API:

A JMSresource is abean that represents a reference to a IMS queue or topic in the Java EE component environment.

to send a message to a queue, the bean must interact with a QueueSessi on and the QueueSender , or

to send a message to atopic, the bean must interact with a Topi cSessi on and the Topi cPubl i sher .

For a queue, the Queue, QueueConnect i on, QueueSessi on, QueueRecei ver and/or QueueSender may be injected.

For atopic, the Topi ¢, Topi cConnecti on, Topi cSessi on, Topi cSubscri ber and/or Topi cPubl i sher may be injected.

The lifecycles of the injected objects are managed by the container, and therefore the application need not explicitly
cl ose() any injected IMS object. If the application callscl ose() on an instance of a IMS resource, an Unsuppor t edQper -
ati onExcept i on isthrown by the container.

For example:

@aynment Processor QueueSender paynent Sender ;
@raynent Processor QueueSessi on paynent Sessi on;

public void sendMessage() {
MapMessage nsg = paynent Sessi on. cr eat eMapMessage() ;

bé&/rrent Sender . send(nsgQ) ;

@°rices Topi cPublisher pricePublisher;
@rices Topi cSession priceSession;

public void sendMessage(String price) {

JSR-299 Revised Public Review Draft

31

Bean implementation

pricePubl i sher.send(priceSession.createText Message(price));

}

A IMS resource aways has scope @ependent .

A IMS resource may nhot declare a bean EL name.

3.7.1. Bean types of a JMS resource

The bean types of a JM S resource depend upon whether it represents a queue or topic.

« |If the IMS resource represents a queue, the bean types are Queue, QueueConnect i on, QueueSessi on and QueueSender .

e |f the IMS resource represents a topic, the bean types are Topi ¢, Topi cConnect i on, Topi cSessi on and Topi cPubl i sh-
er.

3.7.2. Declaring a JMS resource

A JMS resource may be declared by specifying a @resour ce annotation as part of a producer field declaration of type Top-
i c Or Queue.

@Resour ce(nane="j ava: gl obal / env/ j ms/ Paynment Queue")
@°r oduces @aynent Processor Queue paynent Queue;

@Resour ce(nane="j ava: gl obal / env/j ms/ Pri ces")
@°r oduces @rices Topic pricesTopic;

The bindings and deployment type of the resource are determined by the producer field declaration.

3.8. Injected fields

Aninjected field is a non-static, non-final field of abean class, or of any Java EE component class supporting injection.

As defined in Section 5.4, “Dependency injection”, injected fields are initialized by the container before initializer meth-
ods are called, and before the @ost Const ruct callback occurs.

Open issue: are injected fields allowed to be declared transient? If so, should they be reinjected after deserialization
(activation)?

If afield isaproducer field or a decorator delegate attribute, it is not an injected field.

3.8.1. Declaring an injected field
An injected field may be declared by annotating the field with any binding type.

@Conver sat i onScoped
public class Oder {

@5el ect ed Product product;
@urrent User custoner;

3.9. Initializer methods

Aninitializer method is a non-static method of abean class, or of any Java EE component class supporting injection.
If the bean is a session bean, theinitializer method is not required to be a business method of the session bean.

A bean class may declare multiple (or zero) initializer methods.

As defined in Section 5.4, “Dependency injection”, initializer methods are called by the container after injected fields are

JSR-299 Revised Public Review Draft 32

Bean implementation

initialized, and before the @ost Const ruct callback occurs.
Method interceptors are never called when the container calls an initializer method.

The application may call initializer methods directly, but then no parameters will be passed to the method by the container.

3.9.1. Declaring an initializer method
An initiaizer method may be declared by annotating the method @ avax. i nj ect. I nitiali zer.

@onver sat i onScoped
public class Order {

private Product product;
private User custoner;

@nitializer
voi d set Product (@el ect ed Product product)

this. product = product;
}

@nitializer
public void setCustoner(User custoner)

{
}

this.custoner = custoner;

If an initializer method is annotated @r oduces, has a parameter annotated @i sposes, or has a parameter annotated
@hbser ves, the container automatically detects the problem and treats it as a definition error, as defined in Section 11.3,
“Problems detected automatically by the container”.

3.9.2. Initializer method parameters

An initializer method may have any number of parameters. All initializer method parameters are injection points.

3.10. The default binding at injection points

If an injection point declares no binding, the default binding @ur r ent is assumed.
The following are equivalent:

@Conver sat i onScoped
public class Oder {

private Product product;
private User custoner;

@nitializer
public void init(@bel ected Product product, User customer)
{

this. product = product;

this.custoner = custoner;

@Conver sat i onScoped
public class Oder {

private Product product;
private User custoner;

@nitializer
public void init(@bel ected Product product, @urrent User custoner)

t hi s. product = product;
this.custoner = custoner;

JSR-299 Revised Public Review Draft 33

Bean implementation

The following definitions are equivalent:

public class Paynment {
publ i c Paynent (Bi gDeci nal armount) { ... }

@nitializer Paynment (Order order) {
t hi s(order. get Amount () ;
}

public class Paynent {
public Paynment (Bi gDeci mal amobunt) { ... }

@nitializer Payment (@urrent Order order) {
t hi s(order. get Anount () ;

JSR-299 Revised Public Review Draft

Chapter 4. Inheritance and specialization

The implementation of a bean may by extended by the implementation of a second bean. There are two possible scenarios
in which this situation occurs:

* The second bean specializes the first bean in a particular deployment scenario. In that deployment, the second bean
completely replaces the first, fulfilling the same role in the system.

e The second bean is simply reusing the Java implementation, and otherwise bears no relation to the first bean. The first
bean may not even have been designed for use as a contextual object.

The two cases are quite dissimilar.

By default, Java implementation reuse is assumed. In this case, the producer, disposal and observer methods of the first
bean are not inherited by the second bean.

The bean developer may explicitly specify that the second bean specializes the first through use of an annotation. In the
case of specialization, the specialized bean receives all invocations, including producer, disposal and observer method in-
vocations that would have been received by the first bean. In a particular deployment, there may be only one bean that ful-
fills the specific role. The specialized bean inherits, and may not override, the bindings and name of the first bean.

However, in both cases, the inheritance of type-level metadata is controlled via use of the Java @ nherited meta-an-
notation.

4.1. Inheritance of type-level metadata

Suppose aclass X is extended directly or indirectly by the bean class of asimple or sessionbean Y.

e |If X is annotated with a binding type, stereotype or interceptor binding type Z then Y inherits the annotation if and
only if Z declares the @ nheri t ed meta-annotation and neither Y nor any intermediate class that is a subclass of X and
asuperclass of Y declares an annotation of type Z.

(This behavior is the same as that defined in the Java L anguage Specification.)

* If X is annotated with a scope type Z then Y inherits the annotation if and only if Z declares the @ nheri t ed meta-
annotation and neither Y nor any intermediate class that is a subclass of X and a superclass of Y declares a scope type.

(Thisbehavior is different to that defined in the Java Language Specification.)

e If X is annotated with a deployment type Z then Y inherits the annotation if and only if Z declares the @ nherited
meta-annotation and neither Y nor any intermediate class that is a subclass of X and a superclass of Y declares a de-
ployment type.

(This behavior is different to that defined in the Java Language Specification.)

Scope types and deployment types explicitly declared by and inherited from the class X take precedence over default
scopes and deployment types declared by stereotypes.

For annotations defined by the application or third-party extensions, it is recommended that:

» scope types should be declared @ nheri t ed,

« hinding types should not be declared @ nheri t ed,

e deployment types should not be declared @ nheri t ed,

* interceptor binding types should be declared @ nheri t ed, and

» stereotypes may be declared @ nheri t ed, depending upon the semantics of the stereotype.

All scope types, binding types, deployment types and interceptor binding types defined by this specification adhere to
these recommendations.

JSR-299 Revised Public Review Draft 35

Inheritance and specialization

However, in special circumstances, these recommendations may be ignored.

Note that the @aned annotation is not declared @ nheri t ed and bean EL names are not inherited unless speciaization is
used.

4.2. Inheritance of member-level metadata

Suppose aclass X is extended directly or indirectly by the bean class of asimple or sessionbean Y.

e If X declaresan injected field x then Y inherits x.

¢ |If X declares an initializer method, @ost Const ruct method or @r ebest roy method x() then Y inherits x() if and
only if neither Y nor any intermediate class that is a subclass of X and a superclass of Y overrides the method x() .

e |If X declares a non-static method x() annotated with an interceptor binding type Z then Y inherits the binding if and
only if neither Y nor any intermediate class that is a subclass of X and a superclass of Y overrides the method x() .

e |If X declares a non-static producer, disposal, or observer method x() then Y does not inherit this method unless Y is
explicitly declared to specialize X.

e |If X declares a non-static producer field x then Y does not inherit this field unless Y is explicitly declared to specialize
X.

e |If Y isadecorator and X declares a delegate attribute x then Y inherits x if and only if neither Y nor any intermediate
classthat isasubclass of X and a superclass of Y defines a delegate attribute.

4.3. Specialization

If two beans both support a certain bean type, and share at |east one binding, then they are both eligible for injection to any
injection point with that declared type and binding. The container will choose the bean with the highest priority enabled
deployment type.

Consider the following beans:

@Current @Asynchr onous
public class AsynchronousService inplenments Service{

}

@bck @Current

public class MockAsynchronousServi ce extends AsynchronousService {

}

Suppose that the deployment type @wbck is enabled:

<Beans>
<Depl oy>
<Pr oducti on/ >
<nyf wk: Mock/ >
</ Depl oy>
</ Beans>

Then the following attribute will receive an instance of MockAsynchr onousSer vi ce:

@Current Service service;

However, if the bean with the lower priority deployment type declares a hinding that is not declared by the bean with the
higher priority deployment type, then the bean with the higher priority deployment type will not be eligible for injection to
an injection point with that binding.

Therefore, the following attribute will receive an instance of AsynchronousServi ce even though the deployment type
@bck isenabled:

JSR-299 Revised Public Review Draft 36

Inheritance and specialization

@urrent @A\synchronous Service service;

Thisisauseful feature in many circumstances, however, it is not always what isintended by the devel oper.

The only way one bean can completely override alower-priority bean at all injection pointsisif it implements all the bean
types and declares all the bindings of the lower-priority bean. However, if the lower-priority bean declares a producer
method, then even thisis not enough to ensure that the lower-priority bean is never called!

To help prevent developer error, the first bean may:

« directly extend the bean class of the lower-priority bean, or
« directly override the lower-priority producer method, in the case of a producer method bean, and then

explicitly declare that it specializes the lower-priority bean.

4.3.1. Using specialization
A bean may declare that it specializes alower-priority bean using the @peci al i zes annotation.

Then the first bean will inherit the bindings and name of the lower-priority bean:

e Thebindings of a bean X that specializes a lower-priority bean Y include all bindings of Y, together with al bindings
declared explicitly by X.

e If abean X specializes alower-priority bean Y with a name, the name of X is the same as the name of Y. If X declares
a name explicitly, the container automatically detects the problem and treats it as a definition error, as defined in Sec-
tion 11.3, “Problems detected automatically by the container”.

For example, the following bean would have the inherited bindings @ur r ent and @synchr onous:

@bck @pecializes
public class MockAsynchronousServi ce extends AsynchronousService {

}
If AsynchronousSer vi ce declared aname:

@current @\synchronous @Naned("asyncService")
public class AsynchronousService inplements Service{

}
Then the name would also automatically be inherited by MockAsynchr onousSer vi ce.

When an enabled bean specializes alower-priority bean, we can be certain that the lower-priority bean is never instantiated
or called by the container. Even if the lower-priority bean defines a producer method, the method will be called upon an
instance of the first bean.

Specialization applies only to managed beans, as defined in Section 3.2.6, “ Specializing a managed bean”, session beans,

as defined in Section 3.3.5, “ Specializing a session bean” and producer methods, as defined in Section 3.4.4, “ Specializing
aproducer method”.

4.3.2. Direct and indirect specialization
The @ avax. i nj ect . Speci al i zes annotation is used to indicate that one bean directly specializes another bean.
Formally, abean X is said to specialize another bean Y if either:

o X directly specidizesY, or

* abean Z exists, such that X directly specializes Z and Z specializes Y.

JSR-299 Revised Public Review Draft 37

Inheritance and specialization

If X specializesY but does not directly specialize Y, we say that X indirectly specializesY .

If, in a particular deployment, a bean with a certain bean type and set of bindings is not specialized by any other enabled
bean, we call it the most specialized bean for that combination of type and bindings in that deployment.

Any non-static producer methods (see Section 3.4, “Producer methods'), producer fields (see Section 3.5, “Producer
fields"), disposal methods (see Section 3.4.5, “ Disposal methods”) or observer methods (see Section 9.6, “Observer meth-
ods’) of any bean are invoked upon an instance of the most specialized enabled bean that specializes the bean, as defined
by Section 7.4, “Lifecycle of producer methods’, Section 7.5, “Lifecycle of producer fields’ and Section 9.4, “Observer
notification”.

4.3.3. Inconsistent specialization

If, in aparticular deployment, either

e some enabled bean X specializes another enabled bean Y and X does not have a higher precedencethan Y, or
« morethan one enabled bean directly specializes the same bean

we say that inconsistent specialization exists. The container automatically detects inconsistent specialization and treats it
as adeployment problem, as defined in Section 11.3, “ Problems detected automatically by the container”.

JSR-299 Revised Public Review Draft 38

Chapter 5. Lookup, dependency injection and EL resolution

The container injects contextual references to the following kinds of injection point:

* Any injected field of abean class

* Any parameter of abean constructor, initializer method, producer method or disposal method
* Any parameter of an observer method, except for the event parameter

Contextual references may aso be obtained by programmatic lookup.

In general, a bean type or bean EL name does not uniquely identify a bean. When resolving a bean at an injection point,
the container considers bean type, bindings and deployment type precedence. When resolving a bean namein EL, the con-
tainer considers name and deployment type precedence. This allows bean developers to decouple type from implementa-
tion.

The container is required to support circularities in the bean dependency graph.

5.1. Typesafe resolution algorithm

The process of matching abean to an injection point is called typesafe resolution. The container considers bean type, bind-
ings, and deployment precedence when resolving a bean to be injected to an injection point. The type and bindings of the
injection point are called the required type and required bindings.

Typesafe resolution usually occurs at container deployment time, allowing the container to warn the user if any enabled
beans have unsatisfied or ambiguous dependencies.

The following agorithm must be used by the container when resolving a bean by type:

« Firg, the container identifies the set of matching enabled beans which have the required bean type. For this purpose,
primitive types are considered to be identical to their corresponding wrapper typesin j ava. | ang, array types are con-
sidered identical only if their element types are identical and parameterized types are considered identical only if both
the type and all type parameters are identical. Finally, any parameterized bean type such that all type parameters are
java. | ang. Obj ect isconsidered assignable to the corresponding raw type.

* Next, the container considers the required bindings. If no bindings were explicitly specified, the container assumes the
binding @ur r ent . The container narrows the set of matching beans to just those where for each required binding, the
bean declares a matching binding with (a) the same type and (b) the same annotation member value for each member
which is not annotated @onBi ndi ng (see Section 5.1.3, “Binding annotations with members”).

< Next, the container examines the deployment types of the matching beans, as defined in Section 2.5.6, “ Deployment
type precedence’, and returns the set of beans with the highest precedence deployment type that occurs in the set. If
there are no matching beans, an empty set is returned.

5.1.1. Unsatisfied and ambiguous dependencies

An unsatisfied dependency exists at an injection point when no enabled bean has the bean type and bindings declared by
the injection point.

An ambiguous dependency exists at an injection point when in the set of enabled beans with the bean type and bindings
declared by the injection point there exists no unique bean with a higher precedence than all other beansin the set.

The container must validate all injection points of all enabled beans at deployment time to ensure that there are no unsatis-
fied or ambiguous dependencies. If an unsatisfied or ambiguous dependency exists, the container automatically detects the
problem and treats it as a deployment problem, as defined in Section 11.3, “Problems detected automatically by the con-
tainer”.

The method Bean. get | nj ecti onPoi nts() may be used to determine the dependencies of a bean.

5.1.2. Primitive types and null values

JSR-299 Revised Public Review Draft 39

L ookup, dependency injection and EL resolution

For the purposes of typesafe resolution and dependency injection, primitive types and their corresponding wrapper typesin
the package j ava. | ang are considered identical and assignable. If necessary, the container performs boxing or unboxing
when it injects avalue to afield or parameter of primitive or wrapper type.

However, if an injection point of primitive type resolves to a bean that may be null, such as a producer method with a non-
primitive return type or a producer field with a non-primitive type, the container automatically detects the problem and
treats it as a deployment problem, as defined in Section 11.3, “Problems detected automatically by the container”.

The method Bean. i sNul | abl e() may be used to detect if abean has null values.

5.1.3. Binding annotations with members
According to the algorithm above, binding types with members are supported:

@ay By (CHEQUE)

cl ass ChequePaynent Processor inpl ements Paynent Processor { ... }

@rayBy(CREDI T_CARD)
cl ass CreditCardPaynment Processor inplenments Paynent Processor { ... }

Then only chequePaynent Processor isacandidate for injection to the following attribute:

@PayBy(CHEQUE) Paynent Processor paynent Processor;

On the other hand, only cr edi t Car dPaynent Processor isacandidate for injection to this attribute:
@PayBy(CREDI T_CARD) Paynent Processor paynent Processor;

The container callsthe equal s() method of the annotation member value to compare val ues.

An annotation member may be excluded from consideration using the @onBi ndi ng annotation.

@i ndi ngType
@Ret ent i on(RUNTI ME)
@ar get ({ METHOD, Fl ELD, PARAMETER, TYPE})
public @nterface PayBy {
Paynent Met hod val ue();
@NonBi ndi ng String comrent ();
}

Array-valued or annotation-valued members of a binding type must be annotated @onBi ndi ng. If an array-valued or an-

notation-valued member of a binding type is not annotated @onBi ndi ng, the container automatically detects the problem
and treats it as a definition error, as defined in Section 11.3, “Problems detected automatically by the container”.

5.1.4. Multiple bindings
According to the algorithm above, a bean class or producer method or field may declare multiple bindings:

@ynchronous @PayBy(CHEQUE)
cl ass ChequePaynent Processor inpl enents Paynent Processor { ... }

Then chequePaynent Processor would be considered a candidate for injection into any of the following attributes:

@ayBy(CHEQUE) Paynent Processor paynent Processor;
@ynchronous Paynent Processor paynent Processor;
@ynchronous @PayBy(CHEQUE) Paynent Processor paynent Processor;

A bean must declare all of the bindings that are specified at the injection point to be considered a candidate for injection.

5.2. Name resolution algorithm

JSR-299 Revised Public Review Draft 40

L ookup, dependency injection and EL resolution

The process of matching a bean to aname used in EL is called name resolution. Since there is no typing information avail-
ablein EL, the container may consider only bean EL names.

The following algorithm must be used by the container when resolving a bean by name:

« The container identifies the set of matching enabled beans which have the given name.

* Next, the container examines the deployment types of the matching beans, as defined in Section 2.5.6, “ Deployment
type precedence”’, and returns the set of beans with the highest precedence deployment type that occurs in the set. If
there are no matching beans, an empty set is returned.

The name resolution algorithm usually occurs at runtime.

5.3. Client proxies

An injected reference, or reference obtained by programmatic lookup, is usually a contextual reference as defined by Sec-
tion 6.5.3, “ Contextual reference for abean”.

A contextual reference to a bean with a normal scope, as defined in Section 6.3, “Normal scopes and pseudo-scopes’, is
not a direct reference to a contextual instance of the bean (the object returned by Cont ext ual . creat e()). Instead, the con-
textual reference is aclient proxy object. A client proxy implements/extends some or al of the all bean types of the bean
and delegates all method calls to the current instance (as defined in Section 6.3, “Normal scopes and pseudo-scopes’) of
the bean.

There are anumber of reasons for this indirection:

e The container must guarantee that when any valid injected reference to a bean of normal scope is invoked, the invoca-
tion is always processed by the current instance of the injected bean. In certain scenarios, for example if a request
scoped bean is injected into a session scoped bean, or into a servlet, this rule requires an indirect reference. (Note that
the @ependent pseudo-scope is not a normal scope.)

e The container may use a client proxy when creating beans with circular dependencies. Thisis only necessary when the
circular dependencies are initialized via a managed bean constructor or producer method parameter. (Beans with scope
@ependent hever have circular dependencies.)

« Finadly, client proxies are serializable, even when the bean itself is not. Therefore the container must use a client proxy
whenever a bean with normal scope is injected into a bean with a passivating scope, as defined in Section 6.6,
“Passivating scopes and serialization”. (On the other hand, beans with scope @ependent must be serialized along with
their client.)

Client proxies are never required for a bean whose scope is a pseudo-scope such as @ependent .
All client proxies must be seriaizable.

Client proxies may be shared between multiple injection points. For example, a particular container might instantiate ex-
actly one client proxy object per bean. (However, this strategy is not required by this specification.)

5.3.1. Unproxyable bean types

Certain legal bean types cannot be proxied by the container:

» classes without a non-private constructor with no parameters,
» classeswhich are declared final or have fina methods,

e primitive types,

e and array types.

If an injection point whose declared type cannot be proxied by the container resolves to a bean with a normal scope, the
container automatically detects the problem and treats it as a deployment problem, as defined in Section 11.3, “Problems
detected automatically by the container”.

JSR-299 Revised Public Review Draft 41

L ookup, dependency injection and EL resolution

5.3.2. Client proxy invocation

Every time a method of the bean isinvoked upon a client proxy, the client proxy must:

* obtain acontextual instance of the bean, as defined in Section 6.5.2, “ Contextual instance of abean”, and

< invoke the method upon this instance.

The behavior of all methods declared by j ava. | ang. Obj ect , except for t oSt ri ng() , is undefined for a client proxy. Port-
able applications should not invoke any method declared by j ava. I ang. Qbj ect, except for t oSt ri ng() , on aclient proxy.
5.4. Dependency injection

From time to time the container instantiates beans and other Java EE component classes supporting injection. The resulting
instance may or may not be a contextual instance as defined by Section 6.5.2, “ Contextual instance of a bean”.

The container is required to perform dependency injection whenever it creates one of the following contextual objects:

» contextual instances of session beans, and
» contextua instances of managed beans.

The container is aso required to perform dependency injection whenever it instantiates any of the following non-
contextual objects:

¢ non-contextual instances of session beans (for example, session beans obtained by the application from JNDI or injec-
ted using @JB),

* non-contextual instances of managed beans, and
» instances of any other Java EE component class supporting injection.
In aJava EE 5 environment, the container is not required to support injection for non-contextual objects.

The container interacts with instances of beans and other Java EE component classes supporting injection by calling meth-
ods and getting and setting the field values.

5.4.1. Injectable references

To obtain an injectable reference for an injection point, the container must:

Identify a bean according to the rules defined in Section 5.1, “ Typesafe resolution algorithm”.
« If typesafe resolution resulted in an empty set, throw an Unsat i sfi edResol uti onExcepti on.
e Otherwise, if typesafe resolution resulted in more than one bean, throw an Ambi guousResol ut i onExcept i on.

e Otherwise, obtain a contextual reference for this bean for the type of the injection point according to Section 6.5.3,
“Contextual reference for abean”.

Normally, typesafe resolution results in exactly one bean, since the container validated dependencies at deployment time.

For certain combinations of scopes, the container is permitted to optimize the algorithm above:

e The container is permitted to directly inject a contextua instance of the bean, as defined in Section 6.5.2, “ Contextual
instance of abean”.

« If anincompletely initialized instance of the bean is registered with the current Cr eat i onal Cont ext , as defined in Sec-
tion 6.1, “The Contextual interface”, the container is permitted to directly inject this instance.

However, in performing these optimizations, the container must respect the rule of injected reference validity.

JSR-299 Revised Public Review Draft 42

L ookup, dependency injection and EL resolution

5.4.2. Injected reference validity

Injected references to a bean are valid until the object into which they were injected is destroyed. The application should
not invoke a method of an invalid reference. If the application invokes a method of an injected reference after the object
into which it was injected has been destroyed, the behavior is undefined.

5.4.3. Injection using the bean constructor

When the container instantiates a managed bean with a constructor annotated @ ni ti al i zer, the container calls this con-
structor, passing an injectable reference to each parameter. If there is no constructor annotated @ ni ti al i zer, the contain-
er calls the constructor with no parameters.

5.4.4. Injection of fields and initializer methods

When the container creates a new instance of a managed bean, session bean, or of any other Java EE component class sup-
porting injection, the container must perform the following steps after injection of Java EE component environment re-
sources has been performed and before the @ost Const ruct callback occurs and before the servlet i nit () method is
called:

« Firg, the container initializes the values of all injected fields. The container sets the value of each injected field to an
injectable reference.

« Next, the container calls al initializer methods, passing an injectable reference to each parameter.

< Findly, if the component supports interception, the container builds the interceptor and decorator stacks for the in-
stance as defined in Section A.8, “Interceptor stack creation” and Section 8.5, “Decorator stack creation” and binds
them to the instance.

5.4.5. Destruction of dependent objects
When the container destroys an instance of a bean or of any Java EE component class supporting injection, the container

destroys all dependent objects, as defined in Section 6.4.3, “ Dependent object destruction”, after the @r eDest r oy callback
completes and after the servlet dest r oy() method is called.

5.4.6. Invocation of producer or disposal methods

When the container calls a producer or disposal method, the behavior depends upon whether the method is static or non-
static:

* |f the method is static, the container must invoke the method.

* Otherwisg, if the method is non-static, the container must:

» Determine the most specialized bean that specializes the bean which declares the method.

» Obtain a contextual instance of the most specialized bean, as defined by Section 6.5.2, “Contextual instance of a
bean”.

» Invoke the method upon thisinstance.

The container passes an injectable reference to each injected method parameter. The container is also responsible for des-
troying dependent objects created during this invocation, as defined in Section 6.4.3, “ Dependent object destruction”.

5.4.7. Access to producer field values

When the container accesses the value of a producer field, the value depends upon whether the field is static or non-static:

e |If the producer field is static, the container must access the field value.

e Otherwise, if the producer field is non-static, the container must:

JSR-299 Revised Public Review Draft 43

L ookup, dependency injection and EL resolution

« Determine the most specialized bean that specializes the bean which declares the producer field.

» Obtain an contextual instance of the most specialized bean, as defined by Section 6.5.2, “Contextual instance of a
bean”.

» Accessthefield value of thisinstance.

5.4.8. Invocation of observer methods

When the container calls an observer method (defined in Section 9.6, “Observer methods’), the behavior depends upon
whether the method is static or non-static:

* |f the observer method is static, the container must invoke the method.

* Otherwise, if the observer method is non-static, the container must:

» Determine the most specialized bean that specializes the bean which declares the observer method.

» Obtain a contextual instance of the bean according to Section 6.5.2, “ Contextual instance of a bean”. If this observ-
er method is a conditional observer method, obtain the contextual instance that already exists, without creating a
new contextual instance.

* Invoke the observer method on the resulting instance, if any.

The container must pass the event object to the event parameter and an injectable instance to each injected method para-
meter. The container is also responsible for destroying dependent objects created during this invocation, as defined in Sec-
tion 6.4.3, “ Dependent object destruction”.

5.4.9. Injection point metadata

The interface j avax. i nj ect . spi . I nj ecti onPoi nt provides access to metadata about an injection point. An instance of
I nj ecti onPoi nt May represent an injected field or a parameter of a bean constructor, initializer method, producer method,
disposal method or observer method.

public interface |njectionPoint {
public Type get Type();
public Set <Annotati on> get Bi ndi ngs();
publ i ¢ Bean<?> get Bean();
publi c Menber get Menber ();
publ i c Annot at ed get Annot at ed() ;

e The get Bean() method returns the Bean object representing the bean that defines the injection point. If the injection
point does not belong to a bean, get Bean() returnsanull value.

* Theget Type() and get Bi ndi ngs() methods return the declared type and bindings of the injection point.

e Theget Mermber () method returns the Fi el d object in the case of field injection, the Met hod object in the case of meth-
od parameter injection or the Const r uct or object in the case of constructor parameter injection.

e The getAnnotated() method returns an instance of javax.inject.spi.AnnotatedField Of
j avax. i nj ect. spi . Annot at edPar anet er , depending upon whether the injection point is an injected field or a con-
structor/method parameter.

Occasionally, a component with scope @ependent needs to access metadata relating to the object into which it is injected.
For example, the following producer method creates injectable Logger s. The log category of a Logger depends upon the
class of the object into which it isinjected:

@°r oduces Logger createlLogger (I njectionPoint injectionPoint) {
return Logger. getLogger(injectionPoint.getMenber().getDeclaringd ass().getNane());
}

The container must provide a bean with deployment type @t andar d, scope @ependent , bean type | nj ect i onPoi nt and

JSR-299 Revised Public Review Draft 44

L ookup, dependency injection and EL resolution

binding @urrent, alowing dependent objects, as defined in Section 6.4.2, “Dependent objects’, to obtain information
about the injection point to which they belong. The built-in implementation must be serializable.

If a bean that declares any scope other than @ependent has an injection point of type I njectionPoi nt and binding
@ur rent, the container automatically detects the problem and treats it as a definition error, as defined in Section 11.3,
“Problems detected automatically by the container”.

If an object that is not a bean has an injection point of type 1 nj ecti onPoi nt and binding @ur r ent , the container automat-
ically detects the problem and treats it as a definition error, as defined in Section 11.3, “Problems detected automatically
by the container”.

5.5. Programmatic lookup

In certain situations, injection is not the most convenient way to obtain a contextual reference. For example, it may not be
used when:

« the bean type or bindings vary dynamically at runtime, or

* depending upon the deployment, there may be no bean which satisfies the type and bindings, or
« wewould like to iterate over all beans of a certain type.

In these situations, an instance of thej avax. i nj ect . I nst ance interface may be injected:

@current | nstance<Paynent Processor > paynent Processor;

The method get () returns a contextual reference:

Payment Processor pp = paynent Processor. get();

Any combination of bindings may be specified at the injection point:

@PayBy(CHEQUE) | nst ance<Paynent Processor > chequePaynent Processor ;

Or, the @ny binding may be used, allowing the application to specify bindings dynamically:

@\ny | nst ance<Paynent Processor > anyPaynent Processor ;
Aﬁﬁot ation binding = synchronously ? new SynchronousBi ndi ng() : new AsynchronousBi ndi ng();
Payment Processor pp = anyPaynent Processor. sel ect (bi ndi ng) . get (). process(paynment);

In this example, the returned bean has binding @ynchr onous or @synchr onous depending upon the value of synchron-
ously.

It's even possible to iterate over a set of beans:

@\ny | nst ance<Paynent Processor > anyPaynent Processor ;

for (Paynent Processor pp: anyPaynent Processor) pp.test();

5.5.1. The I nst ance interface

The I nst ance interface provides a method for obtaining instances of beans of a specific type, and inherits the ability to it-
erate beans of a specific typefromj ava. | ang. I terabl e:
public interface Instance<T> extends Iterabl e<T> {
public T get();
public I nstance<T> sel ect (Annotation... bindings);

public <U extends T> | nstance<U> sel ect (Cl ass<U> subtype, Annotation... bindings);
public <U extends T> I nstance<U> sel ect (TypelLiteral <U> subtype, Annotation... bindings);

JSR-299 Revised Public Review Draft 45

L ookup, dependency injection and EL resolution

Thesel ect () method of the provided implementation of | nst ance returns a child I nst ance for a subtype of the bean type
and additional bindings. If no subtype is given, the bean type is the same as the parent.

If a parameterized type with a type parameter or wildcard is passed to sel ect (), an |11 egal Argunment Exception IS
thrown.

If two instances of the same binding type are passed to sel ect (), @Dupl i cat eBi ndi ngTypeExcept i on iSthrown.
If an instance of an annotation that is not a binding typeis passed to sel ect (), anl 11 egal Argument Except i on iSthrown.

Theget () method of the provided implementation of | nst ance must:

e ldentify the bean by calling BeanManager . get Beans() , passing the type and bindings specified at the injection point. A
child I nst ance passes the bean subtype and the additional bindings, along with the bindings of its parent.

e If get Beans() did not return abean, throw an Unsat i sfi edResol uti onExcepti on.
¢ Otherwisg, if get Beans() returned more than one bean, throw an Anbi guousResol ut i onExcept i on.

e Otherwise, obtain a contextua reference for the bean by calling BeanManager . get Ref er ence() , passing the Bean ob-
ject representing the bean and the bean type or subtype, and return it.

Thei terator () method of the provided implementation of | nst ance must:

e ldentify the set of beans by calling BeanManager . get Beans() , passing the type and bindings specified at the injection
point. A child | nst ance passes the subtype, the bindings specified at the injection point and the additional bindings.

e Return an Iterator, that iterates over the set of contextual references for the resulting beans by calling Beanman-
ager . get Ref er ence() , passing the Bean object representing the current bean and the bean type or subtype.

5.5.2. The built-in I nst ance

The container must provide a built-in bean with:

e Instance<x> for every legal bean type X in its set of bean types,
* every binding typein its set of binding types,

e deployment type @t andard,

* SCOpE @ependent ,

e no bean EL name, and

e animplementation provided automatically by the container.

The built-in implementation must be serializable.

5.5.3. Using Annot ati onLi teral

When the application calls select(), it may pass instances of binding annotation types. The helper class
j avax.inj ect. Annot ati onLi t eral makesit easier to implement annotation types:

public class SynchronousBi ndi ng
ext ends Annot ati onLiteral <Synchronous>
i mpl ements Synchronous {}

public abstract class PayByBi ndi ng
ext ends Annot ati onLi t er al <PayBy>
i mpl ements PayBy {}

Then the application may easily instantiate instances of the binding type:

Paynment Processor pp = paynent Processor. get(new SynchronousBi ndi ng(),

JSR-299 Revised Public Review Draft 46

L ookup, dependency injection and EL resolution

new PayByBi ndi ng() { public Paynent Met hod value() { return CHEQUE;, } });

5.6. Integration with Unified EL

The container must provide a Unified EL ELResol ver to the serviet engine and JSF implementation that resolves bean EL
names.

When thisresolver is called with a null base object, it must:

e |dentify the bean using the name resolution algorithm defined in Section 5.2, “Name resolution algorithm”.
e |f name resolution resulted in an empty set, return anull value.
¢ Otherwisg, if resolution resulted in more than one bean, throw an Anbi guousResol ut i onExcepti on.

e Otherwise, if exactly one bean results, obtain a contextual instance of the bean, as defined in Section 6.5.2,
“Contextual instance of abean”, and return it.

For each distinct name that appearsin the EL expression, the resolver must be called at most once. Even if a name appears
more than once in the same expression, the container may not call the resolver multiple times with that name. This restric-
tion ensures that there is a unique instance of each bean with scope @ependent inany EL evauation.

Open issue: qualified names are supported. The ELResol ver implements support for qualified namesin Unified EL. How
exactly does this work?

JSR-299 Revised Public Review Draft 47

Chapter 6. Scopes and contexts

Associated with every scope type is a context object. The context object determines the lifecycle and visibility of instances
of al beans with that scope. In particular, the context object defines:

* When anew instance of any bean with that scopeis created
« When an existing instance of any bean with that scope is destroyed
* Which injected references refer to any instance of a bean with that scope

The context implementation collaborates with the container via the Cont ext and Cont ext ual interfaces to create and des-
troy contextual instances.

6.1. The cont ext ual interface

Thej avax. cont ext . Cont ext ual interface defines operations to create and destroy contextual instances of a certain type:

public interface Contextual <T> {
public T create(Creational Context<T> creational Context);
public void destroy(T instance);

}

Any implementation of Cont ext ual is called a contextual type.

In particular, the Bean interface defined in Section 10.1, “ The Bean interface” extends Cont ext ual , S0 al beans are contex-
tual types.

The container and third party frameworks may define implementations of the Cont ext ual interface that do not extend
Bean, but it is not recommended that applications directly implement Cont ext ual .

6.1.1. Instance creation

The Cont ext ual . creat e() method isresponsible for creating new contextual instances of the type.

If any exception occurs while creating an instance, the exception is rethrown by the cr eat e() method. If the exceptionisa
checked exception, it iswrapped and rethrown as an (unchecked) Cr eat i onExcept i on.

The interface j avax. cont ext . Cr eat i onal Cont ext provides an operation that allows the creat e() method to register an
incompletely initialized contextual instance with the container. A contextual instance is considered incompletely initialized
until thecr eat e() method returns the instance.

public interface Creational Context<T> {
public void push(T inconpl etel nstance);
If create() calscreational Context. push(), it must aso return the instance passed to push() .
The implementation of Cont ext ual isnot required to call Creat i onal Cont ext . push() . However, for certain bean scopes,

invocation of push() by the Bean between instantiation and injection helps the container minimize the use of client proxy
objects (which would otherwise be required to allow circular dependencies).

6.1.2. Instance destruction

The Cont ext ual . destroy() method is responsible for destroying instances of the type. In particular, it is responsible for
destroying all dependent objects of an instance, as defined in Section 6.4.3, “ Dependent object destruction”.

If any exception occurs while destroying an instance, the exception is caught by the dest r oy() method.

If the application invokes a contextual instance after it has been destroyed, the behavior is undefined.

JSR-299 Revised Public Review Draft 48

Scopes and contexts

6.2. The cont ext interface

Thej avax. cont ext . Cont ext interface provides an operation for obtaining contextual instances with a particular scope of
any contextual type. Any instance of Cont ext is called a context object.

The context object is responsible for creating and destroying contextual instances by calling operations of the Cont ext ual
interface.

The cont ext interface is called by the container and may be called by third party frameworks. It should not be called dir-
ectly by the application.
public interface Context {
public C ass<? extends Annotation> get ScopeType();

public <T> T get (Contextual <T> bean);
public <T> T get (Contextual <T> bean, Creational Context<T> creational Context);

bool ean isActive();

}

At a particular point in the execution of the program a context object may be active with respect to the current thread.
When a context object is active thei sActi ve() method returnst rue. Otherwise, we say that the context object is inactive
and thei sActi ve() method returnsf al se.

The get () method obtains contextual instances of the contextual type represented by the given instance of Cont ext ual .
Theget () method may either:

« return an existing instance of the given contextual type, or
e if noCreational Context isgiven, return anull value, or

« if aCreational Context isgiven, create a new instance of the given contextual type by calling Cont ext ual . creat e()
and return the new instance.

If the context object isinactive, the get () method must throw a Cont ext Not Act i veExcept i on.

The get () method may not return a null value unless no Cr eat i onal Cont ext IS given, or Cont ext ual . creat e() returns a
null value.

The get () method may not create a new instance of the given contextual type unlessacr eat i onal Cont ext iSgiven.

The context object is responsible for destroying any contextual instance it creates by passing the instance to the dest r oy ()
method of the Cont ext ual object representing the contextual type. A destroyed instance must not subsequently be returned
by the get () method.

6.3. Normal scopes and pseudo-scopes

Most scopes are normal scopes. The context object for a normal scope type is a mapping from each enabled contextual
type with that scope to an instance of that contextual type. There may be no more than one mapped instance per contextual
type per thread. The set of all mapped instances of contextual types with a certain scope for a certain thread is called the
context for that scope associated with that thread.

A context may be associated with one or more threads. A context with a certain scope is said to propagate from one point
in the execution of the program to another when the set of mapped instances of contextual types with that scope is pre-
served.

The context associated with the current thread is called the current context for the scope. The mapped instance of a contex-
tual type associated with a current context is called the current instance of the contextual type.

The get () operation of the context object for an active normal scope returns the current instance of the given contextual
type.

At certain points in the execution of the program a context may be destroyed. When a context is destroyed, all mapped in-

JSR-299 Revised Public Review Draft 49

Scopes and contexts

stances belonging to that context are destroyed by passing them to the Cont ext ual . dest roy() method.
Contexts with normal scopes must obey the following rule:

Suppose beans A, B and z all have normal scopes. Suppose A has an injection point x, and B has an injection point y. Sup-
pose further that both x and y resolve to bean z according to the typesafe resolution algorithm. If a is the current instance
of A, and b is the current instance of B, then both a. x and b. y refer to the same instance of z. This instance is the current
instance of z.

Any scope that is not a normal scope is called a pseudo-scope. The concept of a current instance is not well-defined in the
case of a pseudo-scope.

All pseudo-scopes must be explicitly declared @copeType(nor mal =f al se), to indicate to the container that no client
proxy is required.

All scopes defined by this specification, except for the @ependent pseudo-scope, are normal scopes.

6.4. Dependent pseudo-scope

The @ avax. cont ext . Dependent Scope type is a pseudo-scope. Beans declared with scope type @ependent behave differ-
ently to beans with other built-in scope types.

When abean is declared to have @ependent scope:

* Noinjected instance of the bean is ever shared between multiple injection points.
< Any injected instance of the bean is bound to the lifecycle of the instance into which it isinjected.
¢ Any instance of the bean that is used to evaluate a Unified EL expression exists to service that evaluation only.

* Any instance of the bean that receives a producer method, producer field, disposal method or observer method invoca-
tion exists to service that invocation only.

Every invocation of the get () operation of the Cont ext object for the @ependent scope with a Cr eat i onal Cont ext re-
turns a new instance of the given bean.

Every invocation of the get () operation of the Cont ext object for the @ependent scope with no Cr eat i onal Cont ext re-
turnsanull value.

6.4.1. Dependent scope lifecycle

The @ependent scope isinactive except:

< when an instance of a bean with scope @ependent is created by the container to receive a producer method, producer
field, disposal method or observer method invocation, or

* whileaUnified EL expression is evaluated, or
» while an observer method is invoked, or

« when the container is creating or destroying a contextual instance of a bean, injecting its dependencies, invoking its ob-
server methods, or invoking its @ost Const ruct Or @r eDest r oy callback, or

* when the container is injecting dependencies or invoking the @ost Const ruct or @r eDest roy callback of a Java EE
component class supporting injection, or

e when I nstance. get (), I nstance.iterator() Of BeanManager . get Ref erence() isinvoked upon an instance of | n-
stance Or BeanManager injected by the container into a bean or other Java EE component class supporting injection.

The @ependent scopeis not active when | nst ance. get (), I nstance. i terator() Of BeanManager . get Ref er ence() iSin-
voked upon an instance of | nst ance Or BeanManager that was not injected by the container.

6.4.2. Dependent objects

JSR-299 Revised Public Review Draft 50

Scopes and contexts

Many instances of beans with scope @ependent belong to some other bean or Java EE component class instance and are
called dependent objects.

Instances of interceptors or decorators with scope @ependent are dependent objects of the bean instance they intercept
or decorate.

An instance of a bean with scope @ependent injected into a field, bean constructor, initializer method or observer
method is a dependent object of the bean or Java EE component class instance into which it was injected.

An instance of abean with scope @ependent injected into a producer method or disposal method is a dependent object
of the producer method bean instance that is being produced or disposed.

An instance of a bean with scope @ependent obtained by direct invocation of BeanManager or | nst ance during invoc-
ation of a bean constructor, initializer method, observer method, @ost Construct or @reDestroy calback is a de-
pendent object of the bean or Java EE component class instance upon which the method is being invoked.

An instance of a bean with scope @ependent obtained by direct invocation of BeanManager Of | nst ance during invoc-
ation of a producer method or disposal method is a dependent object of the producer method bean instance that is being
produced or disposed.

Otherwise, an instance of a bean with scope @ependent obtained by direct invocation of an instance of | nst ance or
BeanManager that was injected by the container into a bean or Java EE component class instance is a dependent object
of the bean or Java EE component class instance.

6.4.3. Dependent object destruction

The container is responsible for destroying @ependent scoped contextual instances by passing them to the Cont ext u-
al . destroy() method.

The container must:

destroy all dependent objects of a contextual bean instance when the instance is destroyed,

destroy all dependent objects of a non-contextual instance of a bean or instance of other Java EE component class
when the instance is destroyed,

destroy all @ependent scoped contextual instances created during an EL expression evaluation when the evaluation
completes, and

destroy any @ependent scoped contextual instance created to receive a producer method, producer field, disposal
method or observer method invocation when the invocation compl etes.

Finally, the container is permitted to destroy any @ependent scoped contextual instance at any time if the instance is no
longer referenced by the application (excluding weak, soft and phantom references).

6.5. Contextual instances and contextual references

The cont ext object is the ultimate source of the contextual instances that underly contextual references.

6.5.1. The active context object for a scope

From time to time, the container must obtain an active context object for a certain scope type.

The container must search for an active instance of Cont ext associated with the scope type.

If no active context object exists for the scope type, the container throws a Cont ext Not Act i veExcept i on.

If more than one active context object exists for the given scope type, the container must throw an 1 1 | egal St at eEx-
cepti on.

JSR-299 Revised Public Review Draft 51

Scopes and contexts

6.5.2. Contextual instance of a bean

From time to time, the container must obtain a contextual instance of a bean.

The container must:

* obtain the active context object for the bean scope, then

e obtain an instance of the bean by calling Cont ext . get (), passing the Bean instance representing the bean and an in-
stance of Cr eat i onal Cont ext .

From time to time, the container attempts to obtain a contextual instance of a bean that already exists, without creating a
new contextual instance.

The container must:

» obtain the active context object for the bean scope, then

e obtain an instance of the bean by calling Cont ext. get (), passing the Bean instance representing the bean without
passing any instance of Cr eat i onal Cont ext .

6.5.3. Contextual reference for a bean

From time to time, the container must obtain a contextual reference for a bean and a given set of bean types of the bean. A
contextual reference does not, in general, implement all bean types of the bean.

« |If the bean has a normal scope and any of the given bean types cannot be proxied by the container, as defined in Sec-
tion 5.3.1, “Unproxyable bean types’, the container throws an Unpr oxyabl eResol ut i onExcept i on.

« |f the bean has a normal scope, the contextual reference of the bean is a client proxy created by the container, that im-
plements the given bean types.

e Otherwiseg, if the bean has a pseudo-scope, the container must obtain a contextua instance of the bean.

The container must ensure that every injection point of type I nj ecti onPoi nt and binding @ur r ent of any dependent ob-
ject instantiated during this process receives:

e aninstance of I nj ecti onPoi nt representing the injection point into which the dependent object will be injected, or

e anull valueif it isnot being injected into any injection point.

6.5.4. Contextual reference validity

Contextual reference of a bean are valid only for a certain period of time. The application should not invoke a method of
aninvalid reference.

The validity of a contextual reference depends upon whether the scope of the injected bean is a normal scope or a pseudo-
scope.

« Any reference to a bean with a normal scope is valid as long as the application maintains a hard reference to it.
However, it may only be invoked when the context associated with the normal scope is active. If it isinvoked when the
context isinactive, a Cont ext Not Act i veExcept i on isthrown by the container.

« Any reference to a bean with a pseudo-scope (such as @ependent) is valid until the bean instance to which it refersis

destroyed. It may be invoked even if the context associated with the pseudo-scope is not active. If the application in-
vokes amethod of areference to an instance that has already been destroyed, the behavior is undefined.

6.6. Passivating scopes and serialization

A passivating scope requires that instances of beans with that scope be serializable, so that their state may be stored to disk

JSR-299 Revised Public Review Draft 52

Scopes and contexts

when the scope becomes inactive. The process of storing the state of contextual instances belonging to a scope that is
about to become inactive to disk is caled context passivation. Passivating scopes must be explicitly declared
@scopeType(passi vati ng=true).

For example, the built-in session and conversation scopes defined in Section 6.7, “Context management for built-in
Scopes’ are passivating Scopes.

The container must validate that every bean declared with a passivating scope truly is serializable:

« EJB local objects are seridizable. Therefore, a session bean may declare any passivating scope.

* Managed beans are not required to be serializable. If a managed bean declares a passivating scope, and the bean class
is not serializable, the container automatically detects the problem and treats it as a definition error, as defined in Sec-
tion 11.3, “ Problems detected automatically by the container”.

e |f aproducer method or field declares a passivating scope and returns a non-serializable object at runtime, an 111 egal -
Pr oduct Except i on isthrown by the container.

The built-in session and conversation scopes are passivating. No other built-in scope is passivating.

A contextual instance of a bean may be serialized under one of two circumstances:

« the bean declares a passivating scope, and context passivation occurs, or
e thebeanisan EJB stateful session bean, and it is passivated by the EJB container.

In either case, any non-transient field that holds a reference to another bean must be serialized along with the bean that is
being seridlized. Therefore, the reference must be to a serializable type.

Client proxies are seriadizable. Therefore, any reference to a bean which declares a normal scope is serializable. On the
other hand, dependent objects (including interceptors and decorators with scope @ependent) of a stateful session bean or
of abean with a passivating scope must be serialized and deserialized along with their owner:

« EJB local objects are seridizable. Therefore, any reference to a session bean of scope @ependent is serializable.

¢ A managed bean of scope @ependent may or may not be serializable. If a managed bean of scope @ependent and a
non-serializable bean classisinjected into a stateful session bean, into a non-transient field, bean constructor parameter
or initializer method parameter of a bean which declares a passivating scope, or into a parameter of a producer method
which declares a passivating scope, the container automatically detects the problem and treats it as a deployment prob-
lem, as defined in Section 11.3, “Problems detected automatically by the container”.

e |f aproducer method or field of scope @ependent returns a non-serializable object for injection into a stateful session
bean, into a non-transient field, bean constructor parameter or initializer method parameter of a bean which declares a
passivating scope, or into a parameter of a producer method which declares a passivating scope, an 111 egal Produc-
t Except i on isthrown by the container.

« The container must guarantee that JM S resource proxy objects are seriaizable.

The method Bean. i sSeri al i zabl e() may be used to detect if abean is serializable.

6.7. Context management for built-in scopes

The container provides an implementation of the cont ext interface for each of the built-in scopes.
For each of the built-in normal scopes, contexts propagate across any Java method call, including invocation of EJB local

business methods. The built-in contexts do not propagate across remote method invocations or to asynchronous processes
such as JIMS message listeners or EJB timer service timeouts.

6.7.1. Request context lifecycle

The request context is provided by a built-in context object for the built-in scope type @ avax. cont ext . Request Scoped.

JSR-299 Revised Public Review Draft 53

Scopes and contexts

* The reguest scope is active during the servi ce() method of any servlet in the web application and during the doFi I -
ter () method of any servlet filter. The request context is destroyed at the end of the servlet request, after the ser -
vi ce() method and all doFi I t er () methods return.

« Therequest scope is active during any Java EE web service invocation. The request context is destroyed after the web
service invocation compl etes.

e The request scope is active during any asynchronous observer method notification. The request context is destroyed
after the notification completes.

* Therequest scope is active during any remote method invocation of any EJB, during any asynchronous method invoc-
ation of any EJB, during any call to an EJB timeout method and during message delivery to any EJB message-driven
bean. The request context is destroyed after the remote method invocation, asynchronous method invocation, timeout
or message delivery compl etes.

6.7.2. Session context lifecycle

The session context is provided by a built-in context object for the built-in passivating scope type
@ avax. cont ext . Sessi onScoped.

The session scope is active during the servi ce() method of any servlet in the web application and during the doFi I ter ()
method of any servlet filter.

The session context is shared between all servlet requests that occur in the same HTTP servlet session. The session context
is destroyed when the HTTPSessi on isinvalidated or times out.

6.7.3. Application context lifecycle

The application context is provided by a built-in context object for the built-in scope type
@ avax. cont ext . Appl i cati onScoped.

e The application scope is active during the servi ce() method of any servlet in the web application and during the
doFi | ter () method of any servlet filter.

» Theapplication scope is active during any Java EE web service invocation.
< The application scope is active during any asynchronous observer method notification.

« The application scope is also active during any remote method invocation of any EJB, during any asynchronous meth-
od invocation of any EJB, during any call to an EJB timeout method and during message delivery to any EJB message-
driven bean.

The application context is shared between all servlet requests, asynchronous observer method notifications, web servicein-
vocations, EJB remote method invocations, EJB asynchronous method invocations, EJB timeouts and message deliveries
to message driven beans that execute within the same application. The application context is destroyed when the applica-
tion is undeployed.

6.7.4. Conversation context lifecycle

The conversation context is provided by a built-in context object for the built-in passivating scope type
@ avax. cont ext . Conver sat i onScoped.

« For aJSF faces request, the context is active from the beginning of the apply request values phase, until the responseis
complete.

» For aJSF non-faces request, the context is active during the render response phase.

The conversation context provides access to state associated with a particular conversation. Every JSF request has an asso-
ciated conversation. This association is managed automatically by the container according to the following rules:

* Any JSF request has exactly one associated conversation

JSR-299 Revised Public Review Draft 54

Scopes and contexts

* The conversation associated with a JSF request is determined at the end of the restore view phase and does not change
during the request

Any conversation isin one of two states: transient or long-running.

* By default, aconversation is transient
« A transient conversation may be marked long-running by calling Conver sat i on. begi n()
« A long-running conversation may be marked transient by calling Conver sat i on. end()

All long-running conversations have a string-valued unique identifier, which may be set by the application when the con-
versation is marked long-running, or generated by the container.

The container provides a built-in bean with bean type j avax. cont ext . Conver sat i on, SCOpe @equest Scoped, deployment
type @t andar d and binding @ur r ent , named j avax. cont ext . conver sat i on.

public interface Conversation {
public void begin();
public void begin(String id);
public void end();
publ i c bool ean isLongRunning();
public String getld();
public | ong getTineout();
public void setTineout(long mlliseconds);

}

If the conversation associated with the current JSF request is in the transient state at the end of a JSF request, it is des-
troyed, and the conversation context is also destroyed.

If the conversation associated with the current JSF request is in the long-running state at the end of a JSF request, it is not
destroyed. Instead, it may be propagated to other requests according to the following rules:

« Thelong-running conversation context associated with a request that renders a JSF view is automatically propagated to
any faces request (JSF form submission) that originates from that rendered page.

e Thelong-running conversation context associated with a request that results in a JSF redirect (via a navigation rule) is
automatically propagated to the resulting non-faces request, and to any other subsequent request to the same URL. This
isaccomplished via use of a GET request parameter named ci d containing the unique identifier of the conversation.

« Thelong-running conversation associated with a request may be propagated to any non-faces request via use of a GET
request parameter named ci d containing the unique identifier of the conversation. In this case, the application must
manage this request parameter.

When no conversation is propagated to a JSF request, the request is associated with a new transient conversation.
All long-running conversations are scoped to a particular HTTP servlet session and may not cross session boundaries.

In the following cases, a propagated long-running conversation cannot be restored and reassociated with the request:

e When the HTTP servlet session is invalidated, all long-running conversation contexts created during the current ses-
sion are destroyed.

e The container is permitted to arbitrarily destroy any long-running conversation that is associated with no current JSF
request, in order to conserve resources.

If the propagated conversation cannot be restored, the request is associated with a new transient conversation.

The method Conver sat i on. set Ti meout () iS a hint to the container that a conversation should not be destroyed if it has
been active within the last given interval in milliseconds.

Open issue: allow the request to be blocked if the conversation cannot be restored.

The container ensures that a long-running conversation may be associated with at most one request at a time, by blocking
or rejecting concurrent requests.

JSR-299 Revised Public Review Draft 55

Scopes and contexts

Open issue: define a mechanismfor "blocking” requests. For example, allow the request to be redirected.

JSR-299 Revised Public Review Draft

56

Chapter 7. Bean lifecycle

The lifecycle of a contextual instance of a bean is managed by the context object for the bean's scope, as defined in
Chapter 6, Scopes and contexts.

Every bean in the system is represented by an instance of the Bean interface defined in Section 10.1, “The Bean interface”.
This interface is a subtype of Cont extual . To create and destroy contextual instances, the context object calls the cr e-
ate() anddestroy() operations defined by the interface Cont ext ual .

Therefore, the actual mechanics of bean creation and destruction varies according to what kind of bean is being created or
destroyed. For example:

« To create acontextual instance of a session bean, the container creates an EJB local object reference

» To create acontextual instance of a producer method bean, the container calls the producer method

e To create acontextual instance of a producer field bean, the container retrieves the current value of the field
« To create acontextual instance of a managed bean, the container calls the bean constructor

* Todestroy acontextua instance of a stateful session bean, the container removes the EJB instance

* Todestroy acontextua instance of a producer method bean, the container calls the disposal method, if any

7.1. Lifecycle of managed beans

Note: this lifecycle will be defined by the Managed Beans specification.

When the cr eat e() method of the Bean object that represents a managed bean is called:

« Fird, the container calls the bean constructor to obtain an instance of the bean, as defined in Section 5.4.3, “Injection
using the bean constructor”. The container is permitted to return an instance of a container-generated subclass of the
bean class, alowing interceptor and decorator bindings.

< Next, the container performs Java EE component environment injection, as required by the managed bean specifica
tion.

« Next, the container performs dependency injection, as defined in Section 5.4.4, “Injection of fields and initializer meth-
ods’.

* Finaly, the container callsthe @ost Const ruct method, if any.

When the dest roy() method is called:

e The container callsthe @r eDest r oy method, if any.

« Finaly, the container destroys dependent objects, as defined in Section 5.4.5, “ Destruction of dependent objects’.

7.2. Lifecycle of stateful session beans

When the creat e() method of a Bean object that represents a stateful session bean that is called, the container creates and
returns a local reference to the session bean. This local reference behaves exactly like an ordinary EJB local object refer-
ence, except that it implements all local interfaces of the EJB. When the EJB isinvoked viathis|ocal reference, the return
value of Sessi onCont ext . get | nvokedBusi nessl nt er f ace() IS specific to the container implementation.

When the dest roy() method is called, and if the underlying EJB was not already removed by direct invocation of a re-
move method by the application, the container removes the stateful session bean. The @r eDest roy callback must be in-
voked by the container.

Note that the container performs additional work when the underlying EJB is created and removed, as defined in Sec-
tion 5.4, “ Dependency injection”

JSR-299 Revised Public Review Draft 57

Bean lifecycle

7.3. Lifecycle of stateless session and singleton beans

When the creat e() method of a Bean object that represents a stateless session or singleton session bean is called, the con-
tainer creates and returns a local reference to the session bean. This local reference behaves exactly like an ordinary EJB
local object reference, except that it implements all local interfaces of the EJB. When the EJB isinvoked viathislocal ref-
erence, the return value of Sessi onCont ext . get | nvokedBusi nessl nterface() is specific to the container implementa
tion.

When the dest roy() method is called, the container simply discards thislocal reference.

Note that the container performs additional work when the underlying EJB is created and removed, as defined in Sec-
tion 5.4, “ Dependency injection”

7.4. Lifecycle of producer methods

Any Java object may be returned by a producer method. It is not required that the returned object be an instance of another
bean. However, if the returned object is not an instance of another bean, the container will provide none of the following
capabilities:

e injection of other beans

» lifecycle callbacks

* method and lifecycle interception

In the following example, the producer method returns instances of other beans:

@sessi onScoped
public class Paynent StrategyProducer {

private Paynment StrategyType paynent Strat egyType;

public void setPaynment Strat egyType(Paynment Strat egyType type) {
paynment Strat egyType = type;

@r oduces Paynent Strat egy get Paynent Strat egy(@reditCard Paynment Strategy creditCard,
@heque Paynent Strategy cheque,
@nl i ne Paynent Strategy online) {
switch (payment StrategyType) {

case CREDIT_CARD: return creditCard;

case CHEQUE: return cheque;

case ONLINE: return online;

default: throw new ||| egal StateException();

In this case, the object returned by the producer method has already had its dependencies injected, receives lifecycle call-
backs and has interception enabled.

But in this example, the returned objects are not contextual instances:

@essi onScoped
public class Paynent StrategyProducer {

private Paynent StrategyType paynent Strat egyType;

public void setPaynment StrategyType(Paynment StrategyType type) {
paynment St rat egyType = type;

@°r oduces Paynent Strategy get Paynent Strategy() {
switch (paynent StrategyType) {
case CREDI T_CARD: return new CreditCardPaynent Strategy();
case CHEQUE: return new ChequePaynent Strategy();
case ONLINE: return new OnlinePaynent Strategy();
default: throw new ||| egal StateException();

JSR-299 Revised Public Review Draft 58

Bean lifecycle

In this case, the object returned by the producer method will not have any dependencies injected by the container, receives
no lifecycle callbacks and does not have interception enabled.

When the creat e() method of a Bean object that represents a producer method is called, the container must invoke the
producer method as defined by Section 5.4.6, “ Invocation of producer or disposal methods’. The return value of the produ-
cer method, after method interception completes, is the new contextual instance to be returned by Bean. create() .

If the producer method returns a null value and the producer method bean has the scope @ependent , thecreat e() method
returns anull value.

Otherwise, if the producer method returns a null value, and the scope of the producer method is not @ependent , thecr e-
at e() method throwsan 111 egal Product Excepti on.

When the dest roy() method is called, and if there is a disposal method for this producer method, the container must in-
voke the disposal method as defined by Section 5.4.6, “Invocation of producer or disposal methods’, passing the instance
giventodestroy() tothe disposed parameter.

Finally, the container destroys dependent objects.

7.5. Lifecycle of producer fields

Any Java object may be the value of a producer field. It is not required that the returned object be an instance of another
bean. However, if the abject is not an instance of another bean, the container will provide none of the following capabilit-
ies.

* injection of other beans

e lifecycle callbacks

* method and lifecycle interception

In the following example, the producer field contains an instance of another bean:

@essi onScoped
public class Paynent StrategyProducer {

@°r oduces Paynent Strat egy paynent Strat egy;

@Cr edit Card Paynent Strategy creditCard,
@heque Paynent Strategy cheque;
@nl i ne Paynent Strategy online;

public void setPaynment Strat egyType(Paynent Strat egyType type) {
switch (paynent StrategyType) {
case CREDI T_CARD: paynent Strategy = creditCard;
case CHEQUE: paynent Strategy = cheque;
case ONLI NE: paynent Strategy = online;
default: throw new Il1 egal Argnent Exception();

In this case, the object contained by the producer field has aready had its dependencies injected, received lifecycle call-
backs and has interception enabled.

But in this example, the returned objects are not contextual instances:

@bessi onScoped
public class Paynent StrategyProducer {

@°r oduces Paynent Strat egy paynent Strat egy;

public void setPaynent Strat egyType(Paynent Strat egyType type) {
switch (payment StrategyType) {
case CREDI T_CARD: paynent Strategy = new Credit CardPayment Strategy();
case CHEQUE: paynent Strategy = new ChequePaynent Strategy();
case ONLI NE: paynent Strategy = new Onli nePaynent Strategy();

JSR-299 Revised Public Review Draft 59

Bean lifecycle

default: throw new |11 egal Argnent Excepti on();

}

In this case, the object contained by the producer field does not have any dependencies injected by the container, receives
no lifecycle callbacks and does not have interception enabled.

When the cr eat e() method of aBean object that represents a producer field is called, the container must access the produ-
cer field as defined by Section 5.4.7, “ Access to producer field values’ to obtain the current value of the field. The value of
the producer field is the new contextual instance to be returned by Bean. creat e() .

If the producer field contains a null value and the producer field bean has the scope @ependent , the creat e() method re-
turnsanull value.

Otherwise, if the producer field contains a null value, and the scope of the producer field is not @ependent , the creat e()
method throwsan | | | egal Pr oduct Except i on.

7.6. Lifecycle of resources

An instance of aresource is a proxy object, provided by the container, that implements the declared bean type, delegating
the actual implementation of the methods directly to the underlying Java EE component environment resource, entity man-
ager, entity manager factory, EJB remote object or web service reference.

A resource proxy object is a dependent object of the object it isinjected into.
Resource proxy objects are serializable.

The actual lifecycle of the underlying resource, entity manager, entity manager factory, remote EJB or web service is the
same as for Java EE component environment injection, as defined by the Java EE platform specification.

When the creat e() method of a Bean object that represents a IMS resource is called, the container creates and returns a
proxy object that implements the bean type of the resource.

The methods of this proxy object delegate to the underlying implementation, which is obtained using the metadata
provided in the resource declaration.

« A JavaEE resourceis obtained using the INDI name or mapped name specified by @esour ce.

e A persistence context is obtained using the persistence unit name specified by @er si st enceCont ext .
« A persistence unit is obtained using the persistence unit name specified by @er si st enceuni t .

« A remote EJB is obtained using the INDI name, mapped name or EJB link specified by @JB.

« A web serviceis obtained using the INDI name or mapped name specified by @nebSer vi ceRef .

When the dest roy() method is called, the container discards the proxy object.

7.7. Lifecycle of IMS resources

An instance of a JMS resource is a proxy object, provided by the container, that implements al the bean types defined in
Section 3.7, “JMS resources’, delegating the actual implementation of these methods directly to the underlying IMS ob-
jects.

A IMS resource proxy object is a dependent object of the object it is injected into.
JM S resource proxy objects are seriaizable.

When the creat e() method of a Bean object that represents a IMS resource is called, the container creates and returns a
proxy object that implements all the bean types of the IM S resource.

JSR-299 Revised Public Review Draft 60

Bean lifecycle

The methods of this proxy object delegate to IMS objects obtained as needed using the metadata provided by the IMS re-
source declaration and using standard JMS APIs.

e ThenDestination isobtained using the INDI name or mapped name specified by @esour ce.
e Theappropriate Connect i onFact ory for the topic or queue is obtained automatically.

e The Connection is obtained by calling QueueConnecti onFact ory. cr eat eQueueConnect i on() Of Topi cConnect i on-
Fact ory. cr eat eTopi cConnecti on() . The container is permitted to share a connection between multiple proxy objects.

e The session object is obtained by caling QueueConnection.createQueueSession() OF TopicConnec-
tion. createTopi cSession().

e The MessageProducer oObject is obtained by caling QueueSession.createSender() OF TopicSes-
si on. creat ePubl i sher().

e The MessageConsumer oObject is obtained by caling QueueSession.createReceiver() OF TopicSes-
si on. creat eSubscri ber ().

Open issue: or should the Connect i onFact ory be specified using a different annotation?

When the dest roy() method is called, the container must ensure that all IMS objects created by the proxy object are des-
troyed by calling cl ose() if necessary.

e The connecti on is destroyed by calling Connecti on. cl ose() if necessary. If the connection is being shared between
multiple proxy objects, the container is not required to close the connection when the proxy is destroyed.

e ThesSessi on object is destroyed by calling Sessi on. cl ose() .
e TheMessageProducer object isdestroyed by calling MessagePr oducer . cl ose() .
e TheMessageConsuner object isdestroyed by calling MessageConsurrer . cl ose() .

Thecl ose() method of a IMS resource proxy object always throws an Unsuppor t edQper at i onExcept i on.

JSR-299 Revised Public Review Draft 61

Chapter 8. Decorators

A decorator implements one or more bean types and intercepts business method invocations of beans which implement
those bean types. These bean types are called decorated types.

Decorators may be bound to any managed bean that is not itself an interceptor or decorator or to any EJB session or mes-
sage-driven bean.

8.1. Decorator implementation

A decorator is a managed bean. The set of decorated types of a decorator includes all interfaces implemented directly or
indirectly by the bean class, except for j ava. i o. Seri al i zabl e. The decorator bean class and its superclasses are not dec-
orated types of the decorator. The decorator class may be abstract.

Alternative definition: the set of decorated types includes all interfaces implemented directly and indirectly by both the
decorator bean class and the declared type of the delegate attribute.

A decorator with scope @ependent must be serializable. If a decorator has scope @ependent and is not serializable, the
container automatically detects the problem and treats it as a definition error, as defined in Section 11.3, “Problems detec-
ted automatically by the container”.

8.1.1. Declaring a decorator
A decorator is declared by annotating the bean class with the @ecor at or stereotype.

@ecor at or
cl ass Ti mestanpLogger inplenments Logger { ... }

8.1.2. Decorator delegate attributes

All decorators have a delegate attribute.
A delegate attribute is a non-static, non-final field of a decorator bean class.

The declared type of the delegate attribute must be a Java interface type that is alegal bean type. If the declared type of a
delegate attribute is not a Java interface type, or is not a legal bean type, the container automatically detects the problem
and treats it as a definition error, as defined in Section 11.3, “Problems detected automatically by the container”.

The delegate attribute may be declared by annotating the field with the @ecor at es annotation:

@ecor at or
cl ass Ti mest anpLogger inplenents Logger {
@ecor ates @\ny Logger | ogger;

}

The delegate attribute may declare any combination of bindings:

@pecor at or
cl ass Ti mest anpLogger inplenments Logger {
@ecor at es @ebug Logger | ogger;

}

If no binding is explicitly specified, the default binding @ur r ent is assumed.

The decorator applies to any bean that is eligible for injection to the decorator attribute, according to the rules defined in
Section 5.1, “Typesafe resolution algorithm”.

A decorator must have exactly one delegate attribute. If a decorator has more than one delegate attribute, or does not have
a delegate attribute, the container automatically detects the problem and treats it as a definition error, as defined in Sec-
tion 11.3, “Problems detected automatically by the container”.

JSR-299 Revised Public Review Draft 62

Decorators

If adecorator applies to a managed bean, and the bean class is declared final, the container automatically detects the prob-
lem and treats it as a definition error, as defined in Section 11.3, “Problems detected automatically by the container”.

If a decorator applies to a managed bean with a non-static, non-private, final method, and the decorator also implements
that method, the container automatically detects the problem and treats it as a definition error, as defined in Section 11.3,
“Problems detected automatically by the container”.

8.1.3. Decorated types of a decorator

A decorator is not required to implement al of the bean types of its delegate attribute. If a decorator does not implement a
bean type of the delegate attribute, that API will not be intercepted by the decorator.

A decorator may be an abstract Java class, and is not required to implement all methods of its bean types. If a decorator
does not implement a method of one of its bean types, that method will not be intercepted by the decorator.

The declared type of the decorator delegate attribute must implement or extend all of the decorated types of the decorator.
If a decorator delegate attribute does not implement or extend a decorated type of the decorator, the container automatic-
ally detects the problem and treats it as a definition error, as defined in Section 11.3, “Problems detected automatically by
the container”.

8.2. Decorator enablement and ordering

By default, decorators are not enabled. A decorator must be explicitly enabled by listing its bean class under the
<Decor at or s> element in beans. xm .

<Decor at or s>
<myf wk: Ti nest anpLogger/ >
<nyfwk: | dentitylLogger/>
</ Decor at or s>

The order of the decorator declarations determines the decorator ordering. Decorators which occur earlier in the list are
caled first.

If aclass listed under the <Decor at or s> element is not the bean class of at least one decorator, the container automatically
detects the problem and treats it as a deployment problem, as defined in Section 11.3, “ Problems detected automatically by
the container”.

If the bean class of a decorator with a disabled deployment type is listed under the <Decor at or s> element, the container
automatically detects the problem and treats it as a deployment problem, as defined in Section 11.3, “Problems detected
automatically by the container”.

If the <Decor at or s> element is specified in more than one beans. xm document, the container automatically detects the
problem and treats it as a deployment problem, as defined in Section 11.3, “Problems detected automatically by the con-
tainer”.

Decorators are called after interceptors.

Open issue: Isthisthe right thing? Would it be better to unify interceptors and decorators into a single stack, so that they
can be interleaved?

8.3. The Decorat or Object for a decorator

The Bean object for adecorator must implement the interface Decor at or .

public interface Decorator<T> extends Bean<T> {
public Type get Del egat eType();
publ i c Set <Annot ati on> get Del egat eBi ndi ngs() ;

public void setDel egate(T instance, Object del egate);

JSR-299 Revised Public Review Draft 63

Decorators

8.4. Decorator resolution

The following algorithm must be used by the container when resolving decorators for a certain bean:

« Firg, the container identifies the set of matching enabled decorators that are eligible for injection to the delegate attrib-
ute according to the rules defined in Section 5.1, “ Typesafe resolution algorithm”.

* Next, the container orders the matching decorators according to the decorator ordering specified in Section 8.2,
“Decorator enablement and ordering”.

8.5. Decorator stack creation

When a bean with decorators is created, the container must:

< ldentify the decorators for the bean according to Section 8.4, “ Decorator resolution”.

» For each decorator, obtain a contextual reference, as defined in Section 6.5.3, “ Contextual reference for abean”, for the
decorated types.

» For each returned decorator instance, call Decor at or . set Del egat e() to inject an object that implements the declared
type of the delegate attribute to the del egate attribute of the decorator instance.

* Build an ordered list of the decorator instances.

The resulting ordered list of decorator instances is called the decorator stack.

8.6. Decorator invocation

Whenever a business method is invoked on an instance of a bean with decorators, the container intercepts the business
method invocation and, after processing the interceptor stack, as defined in Section A.9, “Interceptor invocation”, invokes
decorators of the bean.

The container searches for the first decorator in the decorator stack for the instance that implements the method that is be-
ing invoked as a business method. If no such decorator exists, the container invokes the business method of the intercepted
instance. Otherwise, the container calls the method of the decorator.

When any decorator isinvoked by the container, it may in turn invoke a method of the delegate attribute. The container in-
tercepts the delegate invocation and searches for the first decorator in the decorator stack for the instance such that:

« the decorator implements the method that is being invoked upon the delegate, and
» thedecorator has not previously been invoked during this business method invocation.

If no such decorator exists, the container invokes the business method of the intercepted instance. Otherwise, the container
calls the method of the decorator.

Eventually, by recursion, the decorator stack is exhausted of uninvoked decorators.

JSR-299 Revised Public Review Draft 64

Chapter 9. Events

Beans may produce and consume events. This facility allows beans to interact in a completely decoupled fashion, with no
compile-time dependency between the two beans.

An event comprises:

« A Javaobject—the event object
* A (possibly empty) set of instances of binding types—the event bindings

The event object acts as a payload, to propagate state from producer to consumer. The event bindings act as topic selectors,
allowing the consumer to narrow to set of eventsit observes.

An event consumer observes events of a specific type, the observed event type, with a specific set of instances of event
binding types, the observed event bindings.

9.1. Event types and binding types

An event object is an instance of a concrete Java class with no type variables. The event types of the event include all su-
perclasses and interfaces of the class of the event object.

An event binding typeisjust an ordinary binding type as specified in Section 2.3.2, “Defining new binding types’ with the
exception that it may be declared @rar get ({FI ELD, PARAMETER}) .

More formaly, an event binding type is a Java annotation defined as @rarget ({FIELD, PARAMETER}) Of
@arget ({METHOD, FIELD, PARAMETER, TYPE}) and @retention(RUNTI ME). All event binding types must specify the
@ avax. i nj ect . Bi ndi ngType meta-annotation.

An event consumer will be notified of an event if the observed event type it specifiesis one of the event types of the event,
and if all the observed event bindings it specifies are event bindings of the event.

Every event has the binding @ avax. i nj ect . Any, even if it does not explicitly declare this binding.

9.2. Observer resolution algorithm

The process of matching an event to its observers is called observer resolution. The container considers event type and
bindings when resolving observers.

Observer resolution usually occurs at runtime.

When searching for observers for an event, the container searches for observers which satisfy the following rules:

« theevent object must be assignable to the observed event type, taking type parameters into consideration, and

» for each observed event binding, the event bindings must contain a matching binding with () the same type and (b) the
same annotation member value for each member which is not annotated @onBi ndi ng.

9.2.1. Event binding types with members

Asusual, the binding type may have annotation members:

@Event Bi ndi ngType

@rar get (PARAVETER)

@Ret ent i on(RUNTI MVE)

public @nterface Role {
String val ue();

}

Consider the following event:

public void login() {

JSR-299 Revised Public Review Draft 65

Events

final User user = ...;
manager . fi reEvent (new Loggedl nEvent (user),
new Rol eBi nding() { public String value() { return user.getRole(); });
}

Where Rol eBi ndi ng is an implementation of the binding type Rol e:

public abstract class Rol eBi ndi ng
extends Annot ati onLiteral <Rol e>
i npl enents Role {}

Then the following observer method will always be notified of the event:
public void afterLogi n(@bserves Loggedl nEvent event) { ... }

Whereas this observer method may or may not be notified, depending upon the value of user . get Rol e() :

public void afterAdm nLogi n(@bserves @Rol e("adm n") Loggedl nEvent event) { ... }

Asusual, the container uses equal s() to compare event binding type member values.

9.2.2. Multiple event bindings

An event parameter may have multiple bindings:
public void afterDocunent Updat edByAdm n(@bserves @Jpdated @yAdm n Docunent doc) { ... }

Then this observer method will only be notified if al the observed event bindings are specified when the event isfired:
manager . fireEvent (docunment, new Updat edBi nding() {}, new ByAdmi nBinding() {});

Other, less specific, observers will also be notified of this event:

public void afterDocunment Updat ed(@bserves @Jpdated Docunent doc) { ... }

public void afterDocunment Event (@bserves Document doc) { ... }

9.3. The wserver interface
An observer consumes events and allows the application to react to events that occur.
Observers of eventsimplement thej avax. event . Coser ver interface.

public interface Observer<T> {

public void notify(T event);

9.4. Observer notification

When an event is fired by the application, the container must:

» determine the observers for that event according to the observer resolution agorithm, then,
» for each observer, call thenot i fy() method of the abser ver interface, passing the event object.

The order in which observers are called in not defined, and so portable applications should not rely upon the order in
which observers are called.

Observers may throw exceptions. If an observer throws an exception, the exception aborts processing of the event. No oth-
er observers of that event will be called. Thefi reEvent () method rethrows the exception.

JSR-299 Revised Public Review Draft 66

Events

Any observer called before completion of a transaction may call set Rol | backOnl y() to force a transaction rollback. An
observer may not directly initiate, commit or rollback JTA transactions.

9.5. Firing events

Beansfire events via an instance of thej avax. event . Event interface, which may be injected:

@\ny Event <Logged! nEvent > | oggedl nEvent ;

Themethod fire() acceptsan event object:

public void login() {

i 6§gedl nEvent.fire(new Loggedl nEvent (user));

Any combination of bindings may be specified at the injection point:

@\dm n Event <Loggedl nEvent > admi nLogged| nEvent ;

Or, the application may specify bindings dynamically:

@\ny Event <Logged! nEvent > | ogged| nEvent ;
LHggedl nEvent event = new Loggedl nEvent (user);
if (user.isAdmin()) {
| oggedl nEvent . sel ect (new Adm nBi nding()).fire(event);

el se {
| oggedl nEvent . fire(event);
In this example, the event sometimes has the binding @dni n, depending upon the value of user . i sAdnmin() .
The obser ve() method registers an observer:

| oggedl nEvent . observe(new Observer <Loggedl nEvent >() { public void notify(Loggedl nEvent user) { ... } });

9.5.1. The Event interface

The Event interface provides a method for firing events of a specific type, and a method for registering observers for
events of the sametype:
public interface Event<T> {

public void fire(T event);
public void observe(Qbserver<T> observer);

public Event<T> sel ect (Annotation... bindings);
public <U extends T> Event <U> sel ect (O ass<U> subtype, Annotation... bindings);
public <U extends T> Event <U> sel ect (TypeLiteral <U> subtype, Annotation... bindings);

The sel ect () method of the provided implementation of Event returns a child Event for a subtype of the event type and
additional event bindings. If no subtype is given, the event type is the same as the parent.

If two instances of the same binding type are passed to sel ect (), aDupl i cat eBi ndi ngTypeExcept i on isthrown.
If an instance of an annotation that is not a binding typeis passed tosel ect (), an111 egal Argument Except i on iSthrown.

Theftire() method of the provided implementation of Event must call BeanManager . fi reEvent (), passing the event type
and bindings specified at the injection point. A child Event passes the event subtype and additional bindings, along with
the bindings of its parent.

The observe() method of the provided implementation of Event must call BeanManager . addObser ver (), passing the giv-

JSR-299 Revised Public Review Draft 67

Events

en observer object along with the event type and bindings specified at the injection point. A child Event passes the event
subtype and additional bindings, along with the bindings of its parent.

9.5.2. The built-in Event

The container must provide a built-in bean with:

e Event <X> for every legal observed event type X in its set of bean types,
* every event binding typeinits set of binding types,

e deployment type @t andard,

* SCOpE @ependent ,

e no bean EL name, and

e animplementation provided automatically by the container.

The built-in implementation must be serializable.

9.6. Observer methods

An observer method is an observer defined via annotations, instead of by explicitly implementing the oser ver interface.
Unlike regular observers, observer methods are automatically discovered and registered by the container.

An observer method must be a method of a managed bean class or session bean class. An observer method may be either
static or non-static. If the bean is a session bean, the observer method must be a business method of the EJB or a static
method of the bean class.

There may be arbitrarily many observer methods with the same event parameter type and bindings.

A bean may declare multiple observer methods.

9.6.1. Event parameter of an observer method

Each observer method must have exactly one event parameter, of the same type as the event type it observes. When
searching for observer methods for an event, the container considers the type and bindings of the event parameter.

If the event parameter does not explicitly declare any binding, the observer method observes events with no binding.

If the type of the event parameter contains type variables or wildcards, the container automatically detects the problem and
treatsit as a definition error, as defined in Section 11.3, “Problems detected automatically by the container”.

9.6.2. Declaring an observer method

A observer method may be declared by annotating a parameter @ avax. event . Gbser ves. That parameter isthe event para-
meter.

public void afterLogi n(@hbserves Loggedl nEvent event) { ... }

If a method has more than one parameter annotated @bser ves, the container automatically detects the problem and treats
it asadefinition error, as defined in Section 11.3, “ Problems detected automatically by the container”.

If an observer method is annotated @r oduces, or @nitializer or has a parameter annotated @i sposes, the container
automatically detects the problem and treats it as a definition error, as defined in Section 11.3, “Problems detected auto-
matically by the container”.

If anon-static method of a session bean class has a parameter annotated @bser ves, and the method is not a business meth-
od of the EJB, the container automatically detects the problem and treats it as a definition error, as defined in Section 11.3,
“Problems detected automatically by the container”.

JSR-299 Revised Public Review Draft 68

Events

The event parameter may declare bindings:

public void afterLogi n(@bserves @dn n Loggedl nEvent event) { ... }

9.6.3. Observer method parameters

In addition to the event parameter, observer methods may declare additional parameters, which may declare bindings.
These additional parameters are injection points.

public void afterLogi n(@bserves Loggedl nEvent event, @manager User user, @ogger Log log) { ... }

public void after Adm nLogi n(@bserves @\dm n Loggedl nEvent event, @ogger Log log) { ... }

9.6.4. Conditional observer methods

Conditional observer methods are observer methods which are notified of an event only if an instance of the bean that
defines the observer method already exists in the current context.

A conditional observer methods may be declared by annotating the event parameter with the @ avax. event . | f Exi sts an-
notation.

public void refreshOnDocunent Update(@ f Exi sts @bserves @Jpdated Docunent doc) { ... }

9.6.5. Transactional observer methods

Transactional observer methods are observer methods which receive event notifications during the before or after comple-
tion phase of the transaction in which the event was fired. If no transaction is in progress when the event is fired, they are
notified at the same time as other observers.

« A before completion observer method is called during the before completion phase of the transaction.
e An after completion observer method is called during the after completion phase of the transaction.

< An after success observer method is called during the after completion phase of the transaction, only when the transac-
tion completes successfully.

« An after failure observer method is called during the after completion phase of the transaction, only when the transac-
tion fails.

A transactional observer method may be declared by annotating the event parameter of the observer method.
voi d onDocunent Updat e(@Dbserves @After Transacti onSuccess @Jpdat ed Docunent doc) { ... }
e The @avax. event. Bef oreTransacti onConpl eti on annotation or <Bef or eTransacti onConpl eti on> element spe-
cifiesthat the observer method is a before completion observer method.

e The @avax. event. After Transact i onConpl eti on annotation or <Aft er Transact i onConpl et i on> element specifies
that the observer method is an after completion observer method.

e The @avax. event. After Transact i onSuccess annotation or <Aft er Transact i onSuccess> element specifies that the
observer method is an after success observer method.

e The @avax. event. After Transact i onFai | ure annotation or <Af t er Transact i onFai | ur e> element specifies that the
observer method is an after failure observer method.

A transactional observer method may not specify more than one of the four types. If atransactional observer method spe-

cifies more than one of the four types, the container automatically detects the problem and treats it as a definition error, as
defined in Section 11.3, “Problems detected automatically by the container”.

9.6.6. Asynchronous observer methods

JSR-299 Revised Public Review Draft 69

Events

Asynchronous observer methods are observer methods which receive event notifications asynchronously.

An asynchronous observer method may be declared by annotating the event parameter of the observer method
@ avax. event . Asynchronously.

voi d onDocunent Updat e(@bserves @\synchronously @Jpdated Docunent doc) { ... }

An asynchronous observer method may also be a transactiona observer method. However, it may not be a before comple-
tion observer method or a conditional observer method. If an asynchronous observer method is specified as a before com-
pletion or conditional observer method, the container automatically detects the problem and treats it as a definition error,
as defined in Section 11.3, “ Problems detected automatically by the container”.

9.6.7. Observer object for an observer method

For every observer method of an enabled bean, the container is responsible for providing and registering an appropriate
implementation of the avser ver interface, that delegates event notifications to the observer method, by calling the observ-
er method as defined in Section 5.4.8, “Invocation of observer methods’.

Thenoti fy() method of the tbser ver implementation for an observer method either invokes the observer method imme-
diately, or asynchronoudly, or registers the observer method for later invocation during the transaction completion phase,
using aJTA Synchr oni zat i on.

» If the observer method is an asynchronous transactional observer method and there is currently a JTA transaction in
progress, the observer object calls the observer method asynchronously during the after transaction completion phase.

e Otherwise, if the observer method is a transactional observer method and there is currently a JTA transaction in pro-
gress, the observer object calls the observer method during the appropriate transaction completion phase.

* Otherwise, if the observer method is an asynchronous observer method, the container calls the observer method asyn-
chronously.

e Otherwise, the container calls the observer immediately.
The container is not required to guarantee delivery of asynchronous events in the case of a server shutdown or failure.

Observer methods may throw exceptions:

« |If the observer is atransactional or asynchronous observer method, any exception is caught and logged by the contain-
er.

« Otherwise, the exception is rethrown by the not i f y() method of the observer object. If the exception is a checked ex-
ception, it iswrapped and rethrown as an (unchecked) Goser ver Except i on.

9.6.8. Observer invocation context

The transaction context, client security context and lifecycle contexts active when an observer method is invoked depend
upon what kind of observer method it is.

« |If the observer method is an asynchronous observer method, it is called with no active transaction, no client security
context and with a new request context that is destroyed when the observer method returns. The application context is
also active.

* Otherwise, if the observer method is a @ef or eTransacti onConpl eti on transactional observer method, it is called
within the context of the transaction that is about to complete and with the same client security context and lifecycle
contexts.

e Otherwise, if the observer method is any other kind of transactional observer method, it is called in an unspecified
transaction context, but with the same client security context and lifecycle contexts as the transaction that just com-
pleted.

« Otherwise, the observer method is called in the same transaction context, client security context and lifecycle contexts
astheinvocation of Event . fire().

JSR-299 Revised Public Review Draft 70

Events

Of course, the transaction and security contexts for a business method of a session bean also depend upon the transaction
attribute and @unas descriptor, if any.

9.7. JMS event mappings

An event type may be mapped to IM S topic.
An event mapping is a special kind of observer method that is declared by an interface, for example:
i nterface Event Mappi ngs {
voi d mapLoggedl nEvent (@»serves Loggedl nEvent event, @tvents Topi c event Topic);
}
Where the parameter of type Topi ¢ resolvesto the following JM S resource:

@Resour ce(nane="j ava: gl obal / env/j nms/ Event s")
@°r oduces @Events Topi c event Topi c;

The event parameter specifies the mapped event type and bindings. Every JM S resource representing a topic that any injec-
ted parameter resolvesto is a mapped topic.

An event mapping may be specified as amember of any interface.

All observers of mapped event types must be asynchronous observer methods. If an observer for a mapped event type is
not an asynchronous observer method, the container automatically detects the problem and treats it as a deployment prob-
lem, as defined in Section 11.3, “ Problems detected automatically by the container”.

For every event mapping, the container must:

« send a message containing the serialized event and its event bindings to every mapped topic whenever an event with
the mapped event type and bindingsisfired, and

* monitor every mapped topic for messages containing events of that mapped event type and bindings and notify all loc-
al observers whenever a message containing an event is received.

Thus, events with the mapped event type and bindings are distributed to other processes which have the same event map-
ping.

JSR-299 Revised Public Review Draft 71

Chapter 10. Framework integration and the bean manager

A third-party framework way integrate with the container by:

« Providing its own beans, interceptors and decorators to the container

« Injecting dependenciesinto its own objects using the dependency injection service

* Providing a context implementation for a custom scope

Bean definitions provided by a third-party framework may be associated with a certain activity.

Third-party framework integration is enabled via the important SPI interfaces Bean and BeanManager .

10.1. The Bean interface

Theinterfacej avax. i nj ect . spi . Bean defines everything the container needs to manage instances of a certain bean.

public interface Bean<T>
ext ends Cont extual <T> {

public Set<Type> get Types();

publ i ¢ Set <Annot ati on> get Bi ndi ngs() ;

public C ass<? extends Annotation> get ScopeType();
public C ass<? extends Annotation> get Depl oynment Type();
public String getNanme();

public bool ean isSerializable();
public bool ean isNullable();

public Set<lnjectionPoint> getlnjectionPoints();

}

Note that implementations of Bean must implement the operations defined by the Cont ext ual interface defined in Sec-
tion 6.1, “The Contextual interface”.

An instance of Bean exists for every enabled bean in a deployment.

An application or third party framework may add support for new kinds of beans beyond those defined by the this specific-
ation (managed beans, session beans, producer methods and fields, resources and JMS resources) by implementing Bean
and registering beans with the container, using the mechanism defined in Section 10.2.6, “Bean registration”.

10.2. The Beanmanager Object

Third-party frameworks sometimes interact directly with the container via programmatic APl cal. The interface
javax.inject.spi. BeanManager provides operations for obtaining contextual references for beans, along with many other
operations of use to third-party frameworks.

The container provides a built-in bean with bean type BeanManager , sScope @ependent , deployment type @t andar d and
binding @cur r ent . The built-in implementation must be serializable.

Thus, any bean may obtain an instance of BeanManager by injecting it:

@Current BeanManager nmanager;

Alternatively, a framework may obtain the Beanmanager object from JNDI. The container must register an instance of
BeanManager With namej ava: app/ BeanManager in JNDI at deployment time.

Open issue: should it go injava:app or java:comp or both?

Any operation of BeanManager may be called at any time during the execution of the application.

10.2.1. Obtaining a contextual reference for a bean

JSR-299 Revised Public Review Draft 72

Framework integration and the bean manager

The method BeanManager . get Ref er ence() returns a contextual reference for a given bean and combination of bean types,
as defined in Section 6.5.3, “Contextual reference for abean”.

public interface BeanManager {

public nject getReference(Bean<?> bean, Type... beanTypes);
public <T> T get Ref erence(Bean<? extends T> bean, C ass<? extends T>... beanTypes);
public <T> T get Ref erence(Bean<? extends T> bean, TypeLiteral <? extends T>... beanTypes);

The first parameter is the Bean object representing the bean. The remaining parameters represent bean types that must be
implemented by any client proxy that is returned.

10.2.2. Obtaining an injectable reference

The method BeanManager . get | nj ect abl eRef erence() returns an injectable reference for a given injection point, as
defined in Section 5.4.1, “Injectable references’.

public interface BeanManager {

public <T> T getlnjectabl eRef erence(lnjectionPoint ij, Creational Context<?> ctx);

Implementations of Bean usually maintain a reference to an instance of Beanmanager . When the Bean implementation per-
forms dependency injection, it must obtain the contextua instances to inject by caling BeanMan-
ager . get | nj ect abl eRef erence(), passing an instance of | nj ecti onPoi nt that represents the injection point and the in-
stance of Cr eat i onal Cont ext that was passed to Bean. creat e() .

10.2.3. Obtaining a Bean by type

The get Beans() method of the BeanManager interface returns the result of the typesafe resolution algorithm defined in
Section 5.1, “Typesafe resolution algorithm”.

public interface BeanManager ({

public <T> Set <Bean<T>> get Beans(C ass<T> beanType, Annotation... bindings);
public <T> Set <Bean<T>> get Beans(TypeLiteral <T> beanType, Annotation... bindings);
publ i c Set <Bean<?>> get Beans(Type beanType, Annotation... bindings);

Thefirst parameter is arequired bean type. The remaining parameters are required bindings.
If no bindings are passed to get Beans() , the default binding @tur r ent is assumed.

If a parameterized type with a type parameter or wildcard is passed to get Beans(), an Il 1 egal Ar gument Excepti on iS
thrown.

If two instances of the same binding type are passed to get Beans(), aDupl i cat eBi ndi ngTypeExcept i on isthrown.

If an instance of an annotation that is not a binding type is passed to get Beans(), an 111 egal Argunent Excepti on iS
thrown.

10.2.4. Obtaining a Bean by name

The get Beans() method of the BeanManager interface returns the result of the name resolution algorithm defined in Sec-
tion 5.2, “Name resolution algorithm”.

public interface BeanManager {

JSR-299 Revised Public Review Draft 73

Framework integration and the bean manager

publ i ¢ Set <Bean<?>> get Beans(String nane);

The parameter is abean EL name.

10.2.5. Obtaining the most specialized bean

The method BeanManager . get Most Speci al i zedBean() returns the Bean object representing the most specialized enabled
bean registered with the container that specializes the given bean, as defined in Section 4.3.2, “Direct and indirect special-
ization”.

public interface BeanManager ({

publi ¢ <X> Bean<X> get Mbst Speci al i zedBean(Bean<X>) ;

10.2.6. Bean registration

The BeanManager . addBean() method registers a new bean with the container, thereby making it available for injection in-
to other beans.

public interface BeanManager ({

public void addBean(Bean<?> bean);

The Bean parameter may represent an interceptor or decorator.

10.2.7. Observer registration

An observer instance may be registered with the container by calling Beanvanager . addGbser ver () :

public interface BeanManager {

public <T> voi d addObserver (Cbserver<T> observer, C ass<T> event Type,
Annot ation. .. bindings);
public <T> void addObserver (Observer <T> observer, Typeliteral <T> event Type,
Annot ation. .. bindings);
public void addObserver (Cbserver <?> observer, Type event Type,
Annot ation. .. bindings);

The first parameter is the observer object. The second parameter is the observed event type. The remaining parameters are
optional observed event bindings. The observer is notified when an event object that is assignable to the observed event
typeis raised with the observed event bindings.

An observer instance may be deregistered by calling BeanManager . r enoveCbser ver () :

public interface BeanManager ({

public <T> void renmoveCbserver (Observer <T> observer, O ass<T> event Type,
Annot ation... bindings);
public <T> void renpbveCbserver (Cbserver <T> observer, Typeliteral <T> event Type,
Annot ation. .. bindings);
public void renmoveObserver (observer<?> observer, Type event Type,
Annot ati on. .. bindings);

JSR-299 Revised Public Review Draft 74

Framework integration and the bean manager

If the observed event type passed to addQvser ver () Of removebser ver () contains type variables or wildcards, an 111 eg-
al Ar gument Except i on isthrown.

If two instances of the same binding type are passed to addCbserver () Or renmpveCbserver (), a Dupl i cat eBi ndi ng-
TypeExcept i on iSthrown.

If an instance of an annotation that is not abinding type is passed to addObser ver () Orf renoveCbserver (), anlllegal Ar-
gunent Except i on isthrown.

10.2.8. Firing an event

The method BeanManager . fi reEvent () fires an event and notifies observers, according to Section 9.4, “ Observer notifica-
tion”.

public interface BeanManager {

public void fireEvent (Cbject event, Annotation... bindings);

Thefirst argument is the event object. The remaining parameters are event bindings.

If the type of the event object passed to fi reEvent () contains type variables or wildcards, an 111 egal Ar gunent Except i on
is thrown.

If two instances of the same binding type are passed to f i r eEvent (), @Dupl i cat eBi ndi ngTypeExcept i on isthrown.

If an instance of an annotation that is not a binding type is passed to fireEvent (), an Il egal Ar gunent Excepti on IS
thrown.

10.2.9. Observer resolution

The method BeanManager . resol vebser vers() resolves observers for an event according to the observer resolution al-
gorithm defined in Section 9.2, “Observer resolution algorithm”.

public interface BeanManager ({

public <T> Set <Cbserver<T>> resol veCbservers(T event, Annotation... bindings);

Thefirst parameter of resol veObservers() isthe event object. The remaining parameters are event bindings.

If the type of the event object passed to resol veObservers() contains type variables or wildcards, an 111 egal Ar gu-
ment Except i on iSthrown.

If two instances of the same binding type are passed to resol veObservers(), a Dupl i cat eBi ndi ngTypeException IS
thrown.

If an instance of an annotation that is not abinding type is passed to r esol veCbservers(), an i1 egal Argument Excepti on
isthrown.

10.2.10. Decorator resolution

The method BeanManager . r esol veDecor at or s() returns the ordered list of enabled decorators for a set of bean types and
aset of bindings, as defined in Section 8.4, “ Decorator resolution”.

public interface BeanManager {

Li st <Decor at or > resol veDecor at or s(Set <Type> types, Annotation... bindings);

JSR-299 Revised Public Review Draft 75

Framework integration and the bean manager

}

The first argument is the set of bean types of the decorated bean. The annotations are bindings declared by the decorated
bean.

If two instances of the same binding type are passed to resol veDecorat ors(), a Dupl i cat eBi ndi ngTypeException iS
thrown.

If an instance of an annotation that is not a binding type is passed to r esol veDecorat ors(), an |11 egal Ar gument Excep-
ti on isthrown.

If the set of bean typesisempty, an111 egal Ar gunent Except i on isthrown.

10.2.11. Dependency validation
The BeanManager . val i dat e() operation validates a dependency:

public interface BeanManager ({

public void validate(lnjectionPoint injectionPoint);

}

The method val i dat e() validates the dependency and throws an 1 1| egal St at eExcept i on if there is a deployment prob-
lem (for example, an unsatisfied or ambiguous dependency) associated with the injection point.

10.2.12. Enabled deployment types

The method BeanManager . get Enabl edDepl oyrent Types() exposesthe list of enabled deployment types, in order of lower
to higher precedence, as defined by Section 2.5.5, “Enabled deployment types’.

public interface BeanManager {

public List<C ass<?>> get Enabl edDepl oynent Types();

}

Third-party frameworks may use this method to inspect meta-annotations that appear on the deployment types and thereby
discover information about the deployment.

10.2.13. Registering a Cont ext
A custom implementation of cont ext may be associated with a scope type by calling BeanManager . addCont ext () .

public interface BeanManager {

public void addCont ext (Cont ext context);

10.2.14. Obtaining the active cont ext for a scope

The method BeanManager . get Cont ext () retrieves an active context object associated with the a given scope, as defined in
Section 6.5.1, “The active context object for a scope’.

public interface BeanManager {

publ i c Cont ext get Context(Cl ass<? extends Annotation> scopeType);

JSR-299 Revised Public Review Draft 76

Framework integration and the bean manager

10.3. Alternative metadata sources

A third-party framework may provide an alternative metadata source, such as configuration by XML.

The interfaces Annot at edType, Annot at edFi el d, Annot at edMet hod, Annot at edConst r uct or and Annot at edPar anet er in
the packagej avax. i nj ect . spi alow athird-party framework to specify metadata that overrides the annotations that exist
on a bean class. The third-party framework is responsible for implementing the interfaces, thereby exposing the metadata
to the container.
public interface AnnotatedType<X> extends Annotated {
public O ass<X> getJavad ass();
publ i ¢ Set <Annot at edConst r uct or <X>> get Constructors();

publ i ¢ Set <Annot at edMet hod<X>> get Met hods() ;
publ i ¢ Set <Annot at edFi el d<X>> get Fi el ds();

public interface AnnotatedFi el d<X> extends Annotated {
public Field getJavaMenber();

publ i c Annot at edType<X> get Decl ari ngType();

public interface AnnotatedCall abl e<X> extends Annotated {
publ i c Menber getJavaMenber();

publ i c Annot at edType<X> get Decl ari ngType();
publ i c Li st <Annot at edPar anmet er <X>> get Par anet ers() ;

public interface AnnotatedMet hod<X> extends Annotat edCal | abl e<X> {

public Method getJavaMenber ();

public interface AnnotatedConstructor<X> extends Annot atedCal | abl e<X> {

publ i c Constructor<X> getJavaMenber ();

public interface Annotat edPar anet er <X> extends Annotated {

public int getPosition();
publ i c Annot at edCal | abl e<X> get Decl ari ngCal | abl e();

Theinterface Annot at ed exposes the overriding annotations and type declarations.

public interface Annotated {

Type getType();

public <T extends Annotation> T getAnnotati on(C ass<T> annot ati onType);
publ i ¢ Set <Annot ati on> get Annot ati ons();
publ i c bool ean i sAnnot ati onPresent (O ass<? extends Annotati on> annotationType);

JSR-299 Revised Public Review Draft 77

Framework integration and the bean manager

10.4. Helper objects for Bean implementations

Third-party frameworks sometimes provide custom implementations of Bean or inject dependencies directly into objects
which are not contextual bean instances. To simplify the implementation of these frameworks, the BeanManager provides
access to helper objects which parse and validate the standard metadata defined by this specification and perform injection
upon an object according to the standard injection lifecycle defined in Section 5.4.3, “Injection using the bean
constructor”.

public interface BeanManager {

public <T> InjectionTarget<T> createlnjectionTarget (C ass<T> type);
public <T> InjectionTarget<T> createlnjectionTarget (Annot atedType<T> type);

publi ¢ <T> ManagedBean<T> creat eManagedBean(Cl ass<T> type);
public <T> ManagedBean<T> creat eManagedBean(Annot at edType<T> type);

}

The method cr eat el nj ecti onTar get () returns an instance of 1 nj ecti onTar get representing the given type, or throws an
I'l I egal Ar gunent Except i on if thereisadefinition error associated with any injection point of the type.

The method cr eat eManagedBean() returns an instance of ManagedBean representing the given managed bean type, or
throwsan I | | egal Ar gunrent Except i on if thereisany kind of definition error associated with the type.

When an Annot at edType iS passed to creat el nj ecti onTar get () O cr eat eManagedBean() the container ignores the an-
notations and types declared by the elements of the actual Java class and uses the metadata provided via the Annot at ed in-
terface instead.

Thel nj ecti onTar get interface provides operations for performing dependency injection upon instances of atype.

public interface InjectionTarget<X> {

public X instantiate();

public void inject(X instance);

public void postConstruct (X instance);
public void preDestroy(X instance);
public void destroy(X instance);

public Set<lnjectionPoint> getlnjectionPoints();

}

The method i nstanti at e() callsthe constructor annotated @ ni ti al i zer if it exists, or the constructor with no paramet-
ers otherwise, as defined in Section 5.4.3, “Injection using the bean constructor”.

The method i nj ect () performs dependency injection upon the given object, first setting the value all injected fields, and
then calling all the initializer methods, as defined in Section 5.4.4, “Injection of fields and initializer methods’.

The methods post Construct () and preDestroy() call the @ost Construct and @r eDestroy callbacks respectively, if
they exist, according to the semantics required by the Java EE platform specification.

The method destroy() destroys dependent objects of the given object, as defined in Section 5.4.5, “Destruction of de-
pendent objects”.

The method get | nj ecti onPoi nts() returns the set of I nj ecti onPoi nt objects representing all injected fields, bean con-
structor parameters and initializer method parameters.

The ManagedBean interface exposes bean-level metadata for a managed bean, operations for performing dependency injec-
tion upon instances of the bean, and operations for discovering producer methods and observer methods of the bean.

public interface ManagedBean<X>
ext ends Bean<X>, |njectionTarget<X> {

publ i c Set <Producer Bean<X, ?>> get ProducerBeans();
publ i c Set <Cbserver Met hod<X, ?>> get Cbserver Met hods();

JSR-299 Revised Public Review Draft 78

Framework integration and the bean manager

The method get Producer Beans() returns a set of Producer Bean objects representing the producer methods and fields of
the bean.

The method get Gbser ver Met hods() returns a set of observer Met hod objects representing the observer methods of the
bean.

The Producer Bean interface exposes bean-level metadata for a producer method or field and operations for producing and
disposing instances of the bean.

public interface ProducerBean<X, T>
ext ends Bean<T> {

public T produce(X bean);
public void dispose(T instance);
public void destroy(T instance);

}

The method pr oduce() callsthe producer method upon the given bean instance, as defined in Section 5.4.6, “Invocation of
producer or disposal methods’.

The method produce() callsthe disposal method upon the given bean instance, as defined in Section 5.4.6, “Invocation of
producer or disposal methods’.

The method destroy() destroys dependent objects of the given object, as defined in Section 5.4.5, “Destruction of de-
pendent objects”.

The tbser ver Met hod interface exposes the observed event type and observed event binding types for an observer method,
an operation for calling the method, and an instance of tbser ver for the method.

public interface Observer Met hod<X, T> {
void call (X instance, T event);
public Qobserver<T> get Cbserver();

public Type get CbservedEvent Type();
publ i ¢ Set <Annot ati on> get Qbser vedEvent Bi ndi ngs() ;

public Set<lnjectionPoint> getlnjectedParaneters();

}

The method cal | () callsthe observer method, upon the given bean instance as defined in Section 5.4.8, “Invocation of ob-
server methods”.

The method get Gbser ver () returns the observer object for the observer method defined in Section 9.6.7, “ Observer object
for an observer method”.

The methods get Gbser vedEvent Type() and get Obser vedEvent Bi ndi ngs() return the observed event type and bindings of
the observer method.

The method get | nj ect edPar amet ers() returns the set of 1 nj ecti onPoi nt objects representing all injected method para-
meters.

Open issue: should we provide BeanManager . addCbser ver Met hod() to return an instance of Gbser ver Met hod for a given
method?

10.5. Activities

Bean definitions may be scoped to an activity. This specification only provides a programmatic API for defining activities,
since this feature isintended for use with third-party orchestration frameworks that integrate with the container.

Activities are represented by instances of BeanManager . The method creat eActi vi ty() creates a new child activity of an
activity:

public interface BeanManager {

publ i c BeanManager createActivity();

JSR-299 Revised Public Review Draft 79

Framework integration and the bean manager

}

A child activity inherits al beans, interceptors, decorators, observers, and contexts defined by its direct and indirect parent
activities:

e every bean belonging to a parent activity also belongs to the child activity, is eligible for injection into other beans be-

longing to the child activity and may be obtained by dynamic lookup viathe child activity,

* every interceptor and decorator belonging to a parent activity also belongs to the child activity and may be applied to
any bean belonging to the child activity,

e every observer belonging to a parent activity also belongs to the child activity and receives events fired via the child
activity, and

e every context object belonging to the parent activity also belongs to the child activity.

Beans and observers may be registered with an activity by calling addBean() or addObserver () on the BeanManager ob-
ject that represents the activity.

Beans and observers registered with an activity are visible only to that activity and its children—they are never visible to
direct or indirect parent activities, or to other children of the parent activity:

* abean registered with the child activity is not available for injection into any bean registered with a parent activity,
* abean registered with a child activity is not available for injection into a non-contextual instance,

< abean registered with a child activity may not be obtained by dynamic lookup viathe parent activity, and

* an observer registered with the child activity does not receive events fired via a parent activity.

If abean registered with a child activity has the bean type and all bindings of some injection point of some bean registered
with adirect or indirect parent activity, the container automatically detects the problem and treats it as a deployment prob-
lem, as defined in Section 11.3, “Problems detected automatically by the container”.

Interceptors and decorators may not be registered with a child activity. The add! nt er cept or () and addDecor at or () meth-
ods throw Unsuppor t edQper at i onExcept i on when called on aBeanvanager object that represents a child activity.

10.5.1. Current activity

An activity may be associated with the current context for a normal scope by calling set current (), passing the normal
scope type:

public interface BeanManager ({

publ i ¢ BeanManager set Current (C ass<? extends Annotati on> scopeType);

}

If the given scope is inactive when set Current () is called, a Cont ext Not Act i veExcept i on is thrown. If the given scope
typeisnot anormal scope, an i | egal Ar gunent Except i on iSthrown.

All EL evaluations (as defined Section 5.6, “Integration with Unified EL”), al calls to any injected Beanvanager object or
BeanManager oObject obtained via INDI lookup (as defined by Section 10.2, “The BeanManager object”), all callsto any in-
jected Event object (as defined in Section 9.5.1, “The Event interface”) and all calls to any injected I nst ance object (as
defined by Section 5.5.1, “ The Instance interface™) are processed by the current activity:

< |If the root activity has no active normal scope such that the current context for that scope has an associated activity, the
root activity isthe current activity.

« If the root activity has exactly one active normal scope such that the current context for that scope has an associated

JSR-299 Revised Public Review Draft 80

Framework integration and the bean manager

activity, that activity isthe current activity.

« Otherwise, there is no well-defined current activity, and the behavior is undefined. Portable frameworks and applica-
tions should not depend upon the behavior of the container when two different current contexts have an associated
activity.

A bean registered with an activity is only available to Unified EL expressions that are evaluated when that activity or one
of its children isthe current activity.

JSR-299 Revised Public Review Draft 81

Chapter 11. Packaging and deployment

When an application is deployed, the container must perform bean discovery, detect definition errors and deployment
problems and raise events that allow third-party frameworks to integrate with the deployment lifecycle.

Bean discovery isthe process of determining:

< What beans, interceptors and decorators exist in the deployment archive
« Which beans, interceptors and decorators are enabled for this deployment
» The precedence of the enabled beans, and the ordering of enabled interceptors and decorators

Bean classes must be deployed in an EAR, JAR, WAR, EJB-JAR or RAR archive or directory in the application classpath
that has a file named beans. xni in the metadata directory (META- | NF, or VEB- | NF in the case of a WAR). If abean is de-
ployed to alocation that is not in the application classpath, or does not contain afile named beans. xm in the metadata dir-
ectory, it will not be discovered by the container.

Additional beans may be registered programatically with the container by the application or third-party framework after
the automatic bean discovery completes. Third-party frameworks may even provide the ability to register certain bean
definitions with a activity, thereby limiting their visibility to certain contexts.

11.1. Deployment lifecycle

When an application is deployed, the container performs the following steps:

» Fird, the container searches for static observer methods of type BeanDef i ni ti on and fires an event of that type.

« Next, the container performs bean discovery and registers Bean and bser ver objects for the discovered beans. The
container detects definition errors by validating the bean classes and metadata and aborts deployment of the application
if any definition errors exist, as defined in Section 11.3, “ Problems detected automatically by the container”.

* Next, the container fires an event of type Af t er BeanDi scovery, alowing the application or third-party frameworks to
register additional Bean and Cbser ver objects.

« Next, the container detects deployment problems by validating bean dependencies and specialization and aborts de-
ployment of the application if any deployment problems exist, as defined in Section 11.3, “ Problems detected automat-
ically by the container”.

< Next, the container fires an event of type Af t er Depl oynent Val i dat i on.

» Finaly, the container begins directing requests to the application.

11.2. Bean discovery

When bean discovery occurs, the container considers:

e any beans. xni filein any metadata directory of the application classpath,
e anyejb-jar.xm fileinany metadata directory of the application classpath that also contains abeans. xm file, and
e any Javaclassin any archive or directory in the classpath that has abeans. xm filein the metadata directory.

The container automatically discovers managed beans (according to the rules of Section 3.2.1, “Which Java classes are
managed beans?’) and session beans deployed and/or declared in these locations and searches the bean classes for produ-
cer methods, producer fields, disposal methods and observer methods.

Next, the container determines which beans, interceptors and decorators are enabled, according to the rules defined in Sec-
tion 2.5.5, “Enabled deployment types’, Section A.5, “Interceptor enablement and ordering” and Section 8.2, “ Decorator
enablement and ordering”, taking into account any <Depl oy>, <I nterceptors> and <Decor at or s> declarations in the
beans. xn files.

JSR-299 Revised Public Review Draft 82

Packaging and deployment

Next, the container creates and registers Bean objects (that implement the rules of Chapter 7, Bean lifecycle) and toser ver
objects.

« For each enabled bean that is not an interceptor or decorator, the container creates and registers an instance of Bean.
« For each enabled interceptor, the container creates and registers an instance of | nt er cept or.
» For each enabled decorator, the container creates and registers an instance of Decor at or .

e For each observer method of an enabled bean, the container creates and registers an instance of tbserver that imple-
ments the rules of Section 9.6.7, “ Observer object for an observer method”.

11.3. Problems detected automatically by the container

When the application violates a rule defined by this specification, the container automatically detects the problem. There
are three kinds of problem:

» Definition errors—occur when a single bean definition violates the rules of this specification

« Deployment problems—occur when there are problems resolving dependencies, or inconsistent specialization, in a par-
ticular deployment

* Execution errors—occur at runtime

Definition errors are developer errors. They may be detected by tooling at development time, and are also detected by the
container at deployment time. If adefinition error exists in a deployment, the deployment will be aborted by the container.

Deployment problems are detected by the container at deployment time. If a deployment problem exists in a deployment,
the deployment will be aborted by the container.

Execution errors may not be detected until they actually occur at runtime.
Execution errors are represented by instances of j avax. i nj ect . I nj ect i onExcept i on and its subclasses.

public class Executi onException extends RuntinmeException {
publ i c ExecutionException(String nessage) { ... }

}

This specification defines the following subclasses:

* CreationException

e |llegal Product Exception

* (Observer Exception

* DuplicateBi ndi ngTypeExcepti on
* Cont ext Not Acti veException

* Anbi guousResol uti onExcepti on

® Unsati sfiedResol uti onException

11.4. Initialization events

The container fires events, allowing third-party frameworks to integrate with the container initialization process.

11.4.1. Bef or eBeanDi scovery event

JSR-299 Revised Public Review Draft 83

Packaging and deployment

The container must fire an event before it begins the bean discovery process. The event abject must be of type Bef or e-
BeanDi scovery:

public interface BeforeBeanDi scovery {
voi d addBi ndi ngType(d ass<? extends Annotati on> bi ndi ngType);
voi d addScopeType(C ass<? ext ends Annotation> scopeType);
voi d addSt er eot ype(C ass<? extends Annotati on> stereotype);
voi d addl nt er cept or Bi ndi ngType(C ass<? ext ends Annot ati on> bi ndi ngType) ;

The operations of the Bef or eBeanDi scovery instance allow a third-party framework to declare that any annotation as a
binding type, scope type, stereotype or interceptor binding type.

Since this event occurs before bean discovery takes place, observers of this event must be static methods.

static void beforeBeanDi scovery(@bserves BeforeBeanDi scovery event) { ... }

If any observer method of the Bef or eBeanDi scovery event throws an exception, the exception is treated as a definition er-
ror by the container.

11.4.2. Aft er BeanDi scovery event

The container must fire a second event when it has fully completed the bean discovery process, validated that there are no
definition errors relating to the discovered beans, and registered Bean and bser ver objects for the discovered beans, but
before detecting deployment problems.

The event object must be of type Af t er Beanbi scovery:

public interface AfterBeanD scovery {
voi d addDefinitionError(Throwable t);
bool ean hasDefinitionError();

The method addDef i ni ti onError () registers a definition error with the container, causing the container to abort deploy-
ment after all observers have been notified.

Any bean may observe this event.

voi d afterBeanDi scovery(@bserves AfterBeanDi scovery event, BeanManager nmanager) { ... }

A third party framework might take advantage of this event to register beans and interceptors with the container.

If any observer method of the Af t er BeanDi scovery event throws an exception, the exception is treated as a definition er-
ror by the container.

11.4.3. Aft er Depl oynent Val i dat i on event

The container must fire athird event after it has validated that there are no deployment problems and before the deploy-
ment begins processing requests.

The event object must be of type Af t er Depl oynent Val i dat i on:

public interface AfterDepl oynmentValidation {
voi d addDepl oynent Pr obl em(Throwabl e t);
bool ean hasDepl oynent Probl em() ;

The method addDepl oynent Probl en{) registers a deployment problem with the container, causing the container to abort
deployment after all observers have been notified.
Any bean may observe this event.

voi d afterDepl oynent Val i dati on(@bserves AfterDepl oynent Val i dati on event, BeanManager manager) { ... }

If any observer method of the Af t er Depl oynent Val i dat i on event throws an exception, the exception is treated as a de-

JSR-299 Revised Public Review Draft 84

Packaging and deployment

ployment problem by the container.
The container must not allow any request to be processed by the deployment until all observers of this event return.

The request and application contexts are active when these events are fired.

JSR-299 Revised Public Review Draft

85

Appendix A. Interceptors

The following functionality is to be integrated with the existing interceptor functionality defined by the EJB specification
and removed from this specification.

Managed beans and EJB session and message-driven beans support interception as defined by the package
javax.interceptor. Interceptors may be bound to a bean using the j avax. i nterceptor. I nt er cept or s annotation, or by
using an interceptor binding.

Interceptors are usually used to implement cross-cutting concerns, functionality that is orthogonal to the type system.

Interceptors may be bound to any managed bean that is not itself an interceptor or decorator or to any EJB session or mes-
sage-driven bean.

A.l. Interceptor example

Interceptors allow common, cross-cutting concerns to be applied to beans via custom annotations. Interceptor types may
be individually enabled or disabled at deployment time.

The Aut hori zati onl nt er cept or class defines a custom authorization check:

@secure @ nterceptor
public class Authorizationlnterceptor {

@oggedl n User user;

@\r oundl nvoke public void authorize(lnvocationContext ic) {
try {
if (luser.isBanned()) {
System out. println("Authorized");
i c.proceed();

}

el se {
System out. println("Not authorized");
t hrow new Not Aut hori zedExcepti on();

}

}

catch (Not Aut henti cat edExcepti on nae) {
System out. println("Not authenticated");
t hr ow nae;

The @ nt er cept or annotation identifies the Aut hori zat i onl nt er cept or class as an interceptor. The @ecur e annotation
is acustom interceptor binding type.

@ nherited

@ nt er cept or Bi ndi ngType
@rar get ({ TYPE, METHOD})
@Ret ent i on(RUNTI MVE)

public @nterface Secure {}

The @ecur e annotation is used to apply the interceptor to a bean:

@bdel

public class Docunent Editor {

@current Docunent docunent;
@oggedl n User user;
@Per si st enceCont ext EntityManager em

@ecure

public void save() {
docunent . set Cr eat edBy(current User) ;
em per si st (docunent) ;

JSR-299 Revised Public Review Draft 86

Interceptors

When the save() method is invoked, the aut hori ze() method of the interceptor will be called. The invocation will pro-
ceed to the Docunent Edi t or class only if the authorization check is successful.

A.2. Interceptor bindings

As an extension to the functionality defined by thej avax. i nt er cept or package, this specification provides an alternative
method of binding interceptors to managed beans and EJB session and message-driven beans.

Even when interceptors are bound using this mechanism, the interception semantics are defined by the EIJB specification.

An interceptor binding type is a Java annotation defined as @rarget ({TYPE, METHOD}) Or @arget(TYPE) and
@Ret ent i on(RUNTI MVE) .

An interceptor binding type may be declared by specifying the @ nt er cept or Bi ndi ngType meta-annotation.

@ nherited

@ nt er cept or Bi ndi ngType
@rar get ({ TYPE, METHOD})

@Ret ent i on(RUNTI MVE)

public @nterface Transactional {}

Multiple interceptors may be bound to the same interceptor binding type or types.

A.2.1. Interceptor binding types with additional interceptor bindings
An interceptor binding type may declare other interceptor bindings.

@ nherited

@ nt er cept or Bi ndi ngType
@arget ({ TYPE, METHOD})

@Ret ent i on(RUNTI MVE)

@r ansacti onal

public @nterface DataAccess {}

<nyf wk: Dat aAccess>
<I nt er cept or Bi ndi ngType/ >
<nyfwk: Transacti onal / >

</ nyf wk: Dat aAccess>

Interceptor bindings are transitive—an interceptor binding declared by an interceptor binding type is inherited by al beans
and other interceptor binding types that declare that interceptor binding type.

Interceptor binding types declared @rarget (TYPE) may not be applied to interceptor binding types declared
@arget ({TYPE, METHOD}).

A.2.2. Interceptor bindings for stereotypes
Interceptor bindings may be applied to a stereotype by annotating the stereotype annotation:

@ransacti onal
@secur e

@Pr oducti on
@Request Scoped

@5t er eot ype

@rar get (TYPE)

@Ret ent i on(RUNTI IVE)

public @nterface Action {}

An interceptor binding declared by a stereotype are inherited by any bean that declares that stereotype.

If a stereotype declares interceptor bindings, it must be defined as @rar get (TYPE) .

A.3. Interceptor implementation

An interceptor isamanaged bean with abean class that is also an interceptor class as defined by the EJB specification.

JSR-299 Revised Public Review Draft 87

Interceptors

An interceptor with scope @ependent must be serializable. If an interceptor has scope @ependent and is not serializable,
the container automatically detects the problem and treats it as a definition error, as defined in Section 11.3, “Problems de-
tected automatically by the container”.

An interceptor may be either a business method interceptor, alifecycle callback interceptor or both.

A.3.1. Business method interceptors

An interceptor method for business method invocations is a method of an interceptor with return type oj ect and asingle
parameter of typej avax. i nter cept or. | nvocat i onCont ext , annotated @v oundl nvoke.

Interceptor methods for business method invocations are called by the container when a business method is invoked.

If an interceptor has an interceptor method for business method invocations, we describe it as a business method inter cept-
or.

A.3.2. Lifecycle callback interceptors

An interceptor method for alifecycle callback is a method of an interceptor bean class with return type voi d and a single
parameter of typej avax. i nterceptor. | nvocat i onCont ext , annotated @ost Const ruct , @r eDest r oy, @r ePassi vat e Of
@ost Act i vat e.

Interceptor methods for a lifecycle callbacks are called by the container when the corresponding @ost Construct,
@r eDest r oy, @r ePassi vat e O @ost Act i vat e events occur.

If an interceptor has an interceptor method for alifecycle callback, we describe it as alifecycle callback interceptor.

A.3.3. Declaring an interceptor

An interceptor may be declared by annotating the interceptor bean class with the @ nt er cept or Stereotype.

A.3.4. Declaring the interceptor bindings of an interceptor

Interceptor bindings for interceptors declared using @ nt er cept or are specified by annotation the interceptor bean class.
@ransacti onal @ nterceptor
public class Transactionlnterceptor {

@\r oundl nvoke
public Onject manageTransaction(lnvocati onContext ctx) { ... }

}

All interceptors declared using @ nt er cept or must specify at least one interceptor binding.

If an interceptor declared using @ nt er cept or does not declare any interceptor binding, the container automatically detects
the problem and treats it as a definition error, as defined in Section 11.3, “Problems detected automatically by the contain-

er.

Lifecycle callback interceptors may only declare interceptor binding types that are defined as @rar get (TYPE) . If alifecycle
callback interceptor declares an interceptor binding type that is defined @rar get ({ TYPE, METHOD}) , the container automat-
ically detects the problem and treats it as a definition error, as defined in Section 11.3, “Problems detected automatically
by the container”.

A.4. Binding an interceptor to a bean

A lifecycle callback interceptor may be bound to a bean by declaring, at the class level, the same interceptor bindings that
were declared by the interceptor.

A business method interceptor may be bound to all non-static, non-private, non-final methods of a bean by declaring the
same interceptor bindings, at the class level, that were declared by the interceptor.

JSR-299 Revised Public Review Draft 88

Interceptors

A business method interceptor may be bound to a non-static, non-private, non-final method of a bean by declaring the
same interceptor bindings, at the method level, that were declared by the interceptor.

If a managed bean class that is not an interceptor or decorator is declared final, or has any non-static, non-private, fina
methods, and also declares an interceptor binding or a stereotype with interceptor bindings, the container automatically de-
tects the problem and treats it as a definition error, as defined in Section 11.3, “Problems detected automatically by the
container”.

If a non-static, non-private method of a managed bean class is declared final and also declares an interceptor binding, the
container automatically detects the problem and treats it as a definition error, as defined in Section 11.3, “Problems detec-
ted automatically by the container”.

A.4.1. Binding an interceptor
Interceptor bindings may be declared by annotating the bean class with an interceptor binding type.

In the following example, the Tr ansact i onl nt er cept or Will be applied at the class level, and therefore appliesto al busi-
ness methods of the class:

@r ansacti onal
public class ShoppingCart { ... }

In this example, the Transact i onl nt er cept or Will be applied at the method level:

public class ShoppingCart {

@ ansact i onal
public void placeOder() { ... }

}

Interceptors may be enabled or disabled at deployment time. Disabled interceptors are never caled at runtime.

A.4.2. Support for @nterceptors

Alternatively, any bean class may declare interceptors using @ nt er cept or s. The semantics are completely defined by the
EJB specification.

A.5. Interceptor enablement and ordering

By default, interceptors bound via interceptor bindings are not enabled. An interceptor must be explicitly enabled by list-
ing its bean class under the <I nt er cept or s> element in beans. xni .

<l nt ercept ors>
<nyfwk: Transacti onl nt erceptor/ >
<nyf wk: Loggi ngl nt erceptor/>

</ I nterceptors>

The order of the interceptor declarations determines the interceptor ordering. Interceptors which occur earlier in thelist are
caled first.

If aclasslisted under the <I nt er cept or s> element is not the bean class of at least one interceptor, the container automatic-
aly detects the problem and treats it as a deployment problem, as defined in Section 11.3, “Problems detected automatic-
aly by the container”.

If the bean class of an interceptor with a disabled deployment type is listed under the <I nt er cept or s> element, the con-
tainer automatically detects the problem and treats it as a deployment problem, as defined in Section 11.3, “Problems de-
tected automatically by the container”.

If the <I nt er cept or s> element is specified in more than one beans. xm document, the container automatically detects the
problem and treats it as a deployment problem, as defined in Section 11.3, “Problems detected automatically by the con-
tainer”.

Interceptors declared using @nterceptors Or inejb-jar.xm are caled before interceptors declared using interceptor

JSR-299 Revised Public Review Draft 89

Interceptors

bindings.

Interceptors are called before decorators.

A.6. The Intercept or object for an interceptor

The Bean object for an interceptor must implement I nt er cept or.

public interface |nterceptor<T> extends Bean<T> {
publ i ¢ Set <Annot ati on> get | nterceptor Bi ndi ngTypes();
public Met hod get Met hod(I ntercepti onType type);
}
AninterceptionType identifiesthe kind of lifecycle callback or business method.
public enum I nterceptionType {

ARCUND_I NVOKE, POST_CONSTRUCT, PRE_DESTROY, PRE_PASSI VATE, POST_ACTI VATE
}

The get Met hod() method returns the interceptor method for the specified kind of lifecycle callback or business method.
The get Met hod() method must return a null value if the interceptor does not intercepts callbacks or business methods of
the given type.

A.7. Interceptor resolution

The following method returns the ordered list of enabled interceptors for a set of interceptor bindings.

public interface BeanManager {

Li st<I nterceptor> resol vel nterceptors(lnterceptionType type,
Annot ation... interceptorBindings);

}

If two instances of the same interceptor binding type are passed to r esol vel nt er cept ors(), @Dupl i cat eBi ndi ngTypeEx-
cepti on isthrown.

If no interceptor binding type instance is passed to resol vel nterceptors(), anll | egal Argunent Except i on isthrown.

If an instance of an annotation that is not an interceptor binding typeis passed to resol vel nterceptors(), anlllegal Ar-
gunent Except i on isthrown.

The following a gorithm must be used by the container when resolving interceptors:

e Fird, the container identifies the set of matching enabled interceptors where for each declared interceptor binding,
there exists an interceptor binding in the set of given bindings or, recursively, meta-annotations of those binding types,
with (a) the same type and (b) the same annotation member value for each member which is not annotated
@WonBi ndi ng (see Section A.7.2, “Interceptor binding types with members”).

* Next, the container narrows the set of matching interceptors according to whether the interceptor intercepts the given
kind of lifecycle callback or business method.

* Next, the container orders the matching interceptors according to the interceptor ordering specified in Section A.5,
“Interceptor enablement and ordering” and returns the resulting list of interceptors. If no matching interceptors exist in
the set, an empty list is returned.

A.7.1. Interceptors with multiple bindings

An interceptor class may specify multiple interceptor bindings, in which case the interceptor will be applied only to beans
that declare all the bindings at the class level, and to methods of beans for which every binding appears at either the meth-

JSR-299 Revised Public Review Draft 90

Interceptors

od or class level.
Consider the following interceptor:

@ransacti onal @ecure @ nterceptor
public class Transactional Securitylnterceptor {

@\r oundl nvoke
public void aroundl nvoke() { ... }

This interceptor will be bound to all methods of this bean:

@ransacti onal @decure
public class ShoppingCart { ... }

The interceptor will also be bound to the pl aceOr der () method of this bean:

@r ansacti onal
public class ShoppingCart {

@becure
public void placeOder() { ... }

However, it will not be bound to the pl acear der () method of this bean, since the @ecur e interceptor binding does not
appear:

@r ansacti onal
public class ShoppingCart {

public void placeOder() { ... }

A.7.2. Interceptor binding types with members
According to the interceptor resolution algorithm defined above, interceptor binding types may have annotation members.
This interceptor binding type declares a member:

@ nherited
@ nt er cept or Bi ndi ngType
@rar get ({ TYPE, METHOD})
@Ret ent i on(RUNTI ME)
public @nterface Transacti onal
bool ean requi resNew() default false;

Any interceptor with that interceptor binding type must select a member value:

@ransactional (requiresNew=true) @ nterceptor
public class RequiresNewTlransactionl nterceptor {

@\r oundl nvoke
public Onject manageTransaction(l nvocati onContext ctx) { ... }

The Requi r esNewTr ansact i onl nt er cept or appliesto this bean:

@ransacti onal (requiresNew=true)
public class ShoppingCart { ... }

But not to this bean:

@r ansacti onal
public class ShoppingCart { ... }

JSR-299 Revised Public Review Draft 91

Interceptors

Annotation member values are compared using equal s() .
An annotation member may be excluded from consideration using the @onBi ndi ng annotation.

@ nherited
@ nt er cept or Bi ndi ngType
@rar get ({ TYPE, METHOD})
@Ret ent i on(RUNTI MVE)
public @nterface Transactional {
@onBi ndi ng bool ean requiresNew() default false;
}

Array-valued or annotation-valued members of an interceptor binding type must be annotated @wonBi ndi ng. If an array-
valued or annotation-valued member of an interceptor binding type is not annotated @onBi ndi ng, the container automatic-
ally detects the problem and treats it as a definition error, as defined in Section 11.3, “Problems detected automatically by
the container”.

A.8. Interceptor stack creation

When a bean with interceptors is created, the container must:

e ldentify the interceptors for each lifecycle calback and business method by caling Beanman-
ager. resol vel ntercept ors() passing the interceptor bindings for the callback or business method, including all in-
terceptor bindings defined at the class level, method level and by stereotypes.

« ldentify the interceptors defined using the @ nt er cept or s annotation for each lifecycle callback and business method.

e For each unique interceptor, call BeanManager . get Ref er ence() , passing the | nt er cept or object, to obtain an instance
of the interceptor. For a given interceptor and a given intercepted instance, the container must call Beanhan-
ager . get Ref erence() exactly once.

» For each lifecycle callback and business method build an ordered list of returned interceptor instances.

The resulting ordered lists of interceptor instances are called interceptor stacks.

A.9. Interceptor invocation

Whenever a business method or lifecycle callback is invoked on an instance of a bean with interceptors, the container in-
tercepts the method invocation and invokes interceptors of the callback or business method.

The container identifies the first interceptor in the interceptor stack for the method. If no such interceptor exists, the con-
tainer starts processing the decorator stack, as defined in Section 8.6, “Decorator invocation”. Otherwise, the container
builds an instance of j avax. i nterceptor. I nvocationCont ext and calls the appropriate interceptor method of the inter-
ceptor.

When any interceptor is invoked by the container, it may in turn call | nvocat i onCont ext . proceed() . The container then
identifies the first interceptor in the interceptor stack for the method such that the interceptor has not previously been in-
voked during this business method or lifecycle callback invocation. If no such interceptor exists, the container starts pro-
cessing the decorator stack. Otherwise, the container calls the appropriate interceptor method.

Eventually, by recursion, the interceptor stack is exhausted of uninvoked interceptors.

JSR-299 Revised Public Review Draft 92

Appendix B. Helper literals

The Java language does not currently support a literal syntax for parameterized types or for inline instantiation of annota-
tion values. Therefore, this specification defines helper classes to simplify these tasks.

B.1. Generic type literals

The following helper class allows inline instantiation of an object that represents a parameterized type.

public abstract class TypelLiteral <T> {
private Type actual Type;

protected TypeLiteral () {
Cl ass<?> typeliteral Subcl ass = get TypelLiteral Subcl ass(this.getd ass());
if (typeLiteral Subclass == null) {
t hrow new Runti neException(getCl ass() + " is not a subclass of TypeLiteral");

act ual Type = get TypePar anet er (t ypeLi t eral Subcl ass);
if (actual Type == null) {

throw new Runti meException(getC ass() + " is mssing type paraneter in TypeLiteral");
}

}

public final Type get Type() {
return actual Type;
}

@uppr essWar ni ngs("unchecked")
public final Cass<T> get RawType() {
Type type = get Type();
if (type instanceof C ass) {
return (C ass<T>) type;

else if (type instanceof ParaneterizedType) {
return (O ass<T>) ((ParaneterizedType) type).get RawType();

}

else if (type instanceof GenericArrayType) {
return (Class<T>) Object[].class;

}

el se {
t hrow new Runti neException("Illegal type");
}

vate static C ass<?> get TypelLiteral Subcl ass(C ass<?> cl azz) {
Cl ass<?> supercl ass = cl azz. get Supercl ass();
i f (superclass. equal s(TypeLiteral.class)) {

return cl azz;

pr

else if (superclass. equal s(Object.class)) {
return null;
}

el se {
return (get Typeliteral Subcl ass(supercl ass));
}

vate static Type get TypeParanet er (G ass<?> supercl ass) {

Type type = supercl ass. get Generi cSupercl ass();

if (type instanceof ParaneterizedType) {
Par anet eri zedType paraneteri zedType = (ParaneterizedType) type;
i f (paraneterizedType. get Actual TypeArgunents().length == 1) {

return paraneterizedType. get Act ual TypeArgunments()[0];

}

}

return null;

pr

An object that represents any parameterized type may be obtained by subclassing TypelLi teral .

TypeLiteral type = new TypeLiteral <List<String>>() {};

This object may be passed to APIsthat perform typesafe resolution.

JSR-299 Revised Public Review Draft 93

Helper literals

B.2. Annotation instance literals

The following helper class allows inline instantiation of annotation type instances.

public abstract class AnnotationLiteral <T extends Annotation>
i npl enents Annotation {

private Cl ass<T> annotationType;
private Method[] nenbers;

protected AnnotationLiteral () {

Cl ass<?> annot ati onLi t eral Subcl ass = get Annot ati onLi t eral Subcl ass(this.getd ass());

i f (annotationLiteral Subclass == null) {

t hrow new Runti neException(getCl ass() + "is not a subclass of AnnotationLiteral ");

annot ati onType = get TypePar anet er (annot ati onLi t er al Subcl ass) ;
if (annotationType == null) {

t hrow new Runti neException(getCl ass() + " is missing type paraneter
}

this. menmbers = annot ati onType. get Decl ar edMet hods() ;
}

private static O ass<?> get Annotati onLiteral Subcl ass(C ass<?> cl azz) {
Cl ass<?> superclass = cl azz. get Supercl ass();
i f (superclass. equal s(AnnotationLiteral.class)) {
return clazz;

el se if (superclass. equal s(oject.class)) {

return null;
}
el se {

return get Annot ati onLit eral Subcl ass(supercl ass);
}

}
@uppr essWar ni ngs(" unchecked")

in AnnotationLiteral");

private static <T> Cl ass<T> get TypePar anet er (Cl ass<?> annot ati onLi t eral Supercl ass) {

Type type = annotationLiteral Supercl ass. get Generi cSupercl ass();
if (type instanceof ParaneterizedType) {
Par anet eri zedType paraneteri zedType = (ParaneterizedType) type;
if (parameterizedType. get Actual TypeArgunents().length == 1)
return (Cl ass<T>) paraneterizedType
. get Act ual TypeAr gunents()[0];
}

return null;

}

public O ass<? extends Annotation> annotationType() {
return annot ati onType;
}

@verride
public String toString() {
String string = "@ + annotationType().getName() + "(";

for (int i =0; i < nenbers.length; i++)
{
string += menbers[i].getNanme() + "=";
string += i nvoke(nmenbers[i], this);
if (i < nenbers.length - 1)
{
string += ","
}
} :
return string + ")";
}
@verride

publ i ¢ bool ean equal s(Cbj ect other) {
i f (other instanceof Annotation) {
Annot ati on that = (Annotation) other;
if (this.annotationType().equal s(that.annotationType())) {
for (Method nmenber : nenbers) {
Obj ect thisValue = invoke(nmenber, this);
Obj ect thatVal ue = invoke(nenber, that);
i f (!thisVal ue.equal s(thatValue)) {
return fal se;
}
}

return true;

}

return fal se;

JSR-299 Revised Public Review Draft

94

Helper literals

}

@verride
public int hashCode() {
int hashCode = 0;
for (Method nmenber : nenbers) {
int nenber NameHashCode = 127 * menber. get Nane(). hashCode();
i nt nenber Val ueHashCode = i nvoke(nenber, this).hashCode();
hashCode += nenber NaneHashCode ”~ nenber Val ueHashCode;

}
return hashCode;
}
private static Object invoke(Method nmethod, Object instance) {
try {
nmet hod. set Accessi bl e(true);
return nmet hod. i nvoke(i nstance);
}
catch (111 egal Argunment Exception e) {
t hrow new Executi onException("Error checking val ue of nember nethod " +
nmet hod. get Nane() + " on " + nethod. get Decl ari ngCl ass(), e);
catch (Il egal AccessException e) {
t hrow new Executi onException("Error checking val ue of nenber nethod " +
nmet hod. get Nane() + " on " + nethod. get Decl ari ngCl ass(), e);
catch (lnvocationTar get Exception e) {
t hrow new Executi onException("Error checking val ue of nenber nethod " +
net hod. get Nane() + " on " + nethod. get Decl ari ngC ass(), e);
}
}

An instance of an annotation type may be obtained by subclassing Annot ati onLi teral .

public abstract class PayByBi ndi ng
ext ends Annot ati onLit er al <PayBy>
i mpl ements PayBy {}

PayBy payby = new PayByBi nding() { public value() { return CHEQUE;, } };

Annotation values are often passed to APIs that perform typesafe resolution.

JSR-299 Revised Public Review Draft

95

Appendix C. Packages

The annotations and interfaces defined by this specification are divided into several packagesin thej avax namespace.

C.1. javax.annotation

The following annotations are defined in the package j avax. annot at i on:
® (@\onBinding

e @aned

* (@tereotype

C.2. javax.interceptor
The following annotations are defined in the packagej avax. i nter cept or :

* @nterceptor

* @nterceptorBindi ngType

C.3. javax.decorator
The package j avax. decor at or contains annotations relating to decorators.

* (@ecorator

* (@ecorates

C.4. javax.context

The package | avax. cont ext contains annotations and interfaces relating to contexts.

* @copeType

* @pplicationScoped
* @Rrequest Scoped

* (@pessi onScoped

* (@onversati onScoped

* (@ependent

e Context
* Cont extual

* Conversation

* Cont ext Not Acti veException

C.5. javax.inject

JSR-299 Revised Public Review Draft

Packages

The packagej avax. i nj ect contains annotations and interfaces relating to bindings, deployment types and injection.

* @i ndingType

* @epl oynent Type
e (@roduces

* (@i sposes

* (@pecializes

* (@Realizes

* @nitializer

* @ew
. @\ny
* @uurrent

* @roduction

e @t andard

* |nstance
e Typeliteral

* AnnotationLiteral

* |njectionException

® Unsati sfiedResol uti onException
* Anbi guousResol uti onExcepti on

* Unproxyabl eResol uti onExcepti on
* Dupli cateBi ndi ngTypeExcepti on
* Creati onException

e |l egal Product Exception

C.6. javax.inject.spi

The packagej avax. i nj ect . spi contains the integration SPI.

* BeforeBeanDi scovery

* AfterBeanDi scovery

e AfterDepl oynent Val i dation
* BeanManager

* Bean

® Interceptor

e Decorator

JSR-299 Revised Public Review Draft

97

Packages

* InjectionPoint

* InterceptionType

C.7. javax.event

The package j avax. event contains annotations and interfaces relating to events.

* (@hserves

e @fExists

e @\synchronously

* (@\fterTransacti onConpletion
e @\fterTransactionFailure

* (@\fterTransactionSuccess

e @eforeTransacti onConpl eti on

* Event

* (bserver

* (bserver Exception

JSR-299 Revised Public Review Draft

98

	JSR-299: Contexts and Dependency Injection for Java EE
	Table of Contents
	Chapter 1. Architecture
	1.1. Contracts
	1.2. Supported environments
	1.3. Relationship to other specifications
	1.3.1. Relationship to the Java EE platform specification
	1.3.2. Relationship to EJB
	1.3.3. Relationship to managed beans
	1.3.4. Relationship to JSF

	1.4. Introductory examples
	1.4.1. JSF example
	1.4.2. EJB example
	1.4.3. Java EE component environment example
	1.4.4. Event example
	1.4.5. Decorator example

	Chapter 2. Bean definition
	2.1. Functionality provided by the container to the bean
	2.2. Bean types
	2.2.1. Legal bean types
	2.2.2. Typecasting between bean types

	2.3. Bindings
	2.3.1. Built-in binding types
	2.3.2. Defining new binding types
	2.3.3. Declaring the bindings of a bean
	2.3.4. Specifying bindings of an injected field
	2.3.5. Specifying bindings of a method or constructor parameter

	2.4. Scopes
	2.4.1. Built-in scope types
	2.4.2. Defining new scope types
	2.4.3. Declaring the bean scope
	2.4.4. Default scope

	2.5. Deployment types
	2.5.1. Built-in deployment types
	2.5.2. Defining new deployment types
	2.5.3. Declaring the deployment type of a bean
	2.5.4. Default deployment type
	2.5.5. Enabled deployment types
	2.5.6. Deployment type precedence

	2.6. Bean EL names
	2.6.1. Declaring the bean EL name
	2.6.2. Default bean EL names
	2.6.3. Beans with no name

	2.7. Stereotypes
	2.7.1. Defining new stereotypes
	2.7.1.1. Declaring the default scope and deployment type for a stereotype
	2.7.1.2. Specifying interceptor bindings for a stereotype
	2.7.1.3. Specifying name defaulting for a stereotype
	2.7.1.4. Restricting bean scopes and types using a stereotype
	2.7.1.5. Stereotypes with additional stereotypes

	2.7.2. Declaring the stereotypes for a bean
	2.7.3. Stereotype restrictions
	2.7.4. Built-in stereotypes

	Chapter 3. Bean implementation
	3.1. Restriction upon bean instantiation
	3.2. Managed beans
	3.2.1. Which Java classes are managed beans?
	3.2.2. Bean types of a managed bean
	3.2.3. Declaring a managed bean
	3.2.4. Managed beans with the @New binding
	3.2.5. Bean constructors
	3.2.5.1. Declaring a bean constructor
	3.2.5.2. Bean constructor parameters

	3.2.6. Specializing a managed bean
	3.2.7. Default name for a managed bean

	3.3. Session beans
	3.3.1. EJB remove methods of session beans
	3.3.2. Bean types of a session bean
	3.3.3. Declaring a session bean
	3.3.4. Session beans with the @New binding
	3.3.5. Specializing a session bean

	3.4. Producer methods
	3.4.1. Bean types of a producer method
	3.4.2. Declaring a producer method
	3.4.3. Producer method parameters
	3.4.4. Specializing a producer method
	3.4.5. Disposal methods
	3.4.6. Disposed parameter of a disposal method
	3.4.7. Declaring a disposal method
	3.4.8. Disposal method parameters
	3.4.9. Disposal method resolution
	3.4.10. Default name for a producer method

	3.5. Producer fields
	3.5.1. Bean types of a producer field
	3.5.2. Declaring a producer field
	3.5.3. Default name for a producer field

	3.6. Resources
	3.6.1. Declaring a resource

	3.7. JMS resources
	3.7.1. Bean types of a JMS resource
	3.7.2. Declaring a JMS resource

	3.8. Injected fields
	3.8.1. Declaring an injected field

	3.9. Initializer methods
	3.9.1. Declaring an initializer method
	3.9.2. Initializer method parameters

	3.10. The default binding at injection points

	Chapter 4. Inheritance and specialization
	4.1. Inheritance of type-level metadata
	4.2. Inheritance of member-level metadata
	4.3. Specialization
	4.3.1. Using specialization
	4.3.2. Direct and indirect specialization
	4.3.3. Inconsistent specialization

	Chapter 5. Lookup, dependency injection and EL resolution
	5.1. Typesafe resolution algorithm
	5.1.1. Unsatisfied and ambiguous dependencies
	5.1.2. Primitive types and null values
	5.1.3. Binding annotations with members
	5.1.4. Multiple bindings

	5.2. Name resolution algorithm
	5.3. Client proxies
	5.3.1. Unproxyable bean types
	5.3.2. Client proxy invocation

	5.4. Dependency injection
	5.4.1. Injectable references
	5.4.2. Injected reference validity
	5.4.3. Injection using the bean constructor
	5.4.4. Injection of fields and initializer methods
	5.4.5. Destruction of dependent objects
	5.4.6. Invocation of producer or disposal methods
	5.4.7. Access to producer field values
	5.4.8. Invocation of observer methods
	5.4.9. Injection point metadata

	5.5. Programmatic lookup
	5.5.1. The Instance interface
	5.5.2. The built-in Instance
	5.5.3. Using AnnotationLiteral

	5.6. Integration with Unified EL

	Chapter 6. Scopes and contexts
	6.1. The Contextual interface
	6.1.1. Instance creation
	6.1.2. Instance destruction

	6.2. The Context interface
	6.3. Normal scopes and pseudo-scopes
	6.4. Dependent pseudo-scope
	6.4.1. Dependent scope lifecycle
	6.4.2. Dependent objects
	6.4.3. Dependent object destruction

	6.5. Contextual instances and contextual references
	6.5.1. The active context object for a scope
	6.5.2. Contextual instance of a bean
	6.5.3. Contextual reference for a bean
	6.5.4. Contextual reference validity

	6.6. Passivating scopes and serialization
	6.7. Context management for built-in scopes
	6.7.1. Request context lifecycle
	6.7.2. Session context lifecycle
	6.7.3. Application context lifecycle
	6.7.4. Conversation context lifecycle

	Chapter 7. Bean lifecycle
	7.1. Lifecycle of managed beans
	7.2. Lifecycle of stateful session beans
	7.3. Lifecycle of stateless session and singleton beans
	7.4. Lifecycle of producer methods
	7.5. Lifecycle of producer fields
	7.6. Lifecycle of resources
	7.7. Lifecycle of JMS resources

	Chapter 8. Decorators
	8.1. Decorator implementation
	8.1.1. Declaring a decorator
	8.1.2. Decorator delegate attributes
	8.1.3. Decorated types of a decorator

	8.2. Decorator enablement and ordering
	8.3. The Decorator object for a decorator
	8.4. Decorator resolution
	8.5. Decorator stack creation
	8.6. Decorator invocation

	Chapter 9. Events
	9.1. Event types and binding types
	9.2. Observer resolution algorithm
	9.2.1. Event binding types with members
	9.2.2. Multiple event bindings

	9.3. The Observer interface
	9.4. Observer notification
	9.5. Firing events
	9.5.1. The Event interface
	9.5.2. The built-in Event

	9.6. Observer methods
	9.6.1. Event parameter of an observer method
	9.6.2. Declaring an observer method
	9.6.3. Observer method parameters
	9.6.4. Conditional observer methods
	9.6.5. Transactional observer methods
	9.6.6. Asynchronous observer methods
	9.6.7. Observer object for an observer method
	9.6.8. Observer invocation context

	9.7. JMS event mappings

	Chapter 10. Framework integration and the bean manager
	10.1. The Bean interface
	10.2. The BeanManager object
	10.2.1. Obtaining a contextual reference for a bean
	10.2.2. Obtaining an injectable reference
	10.2.3. Obtaining a Bean by type
	10.2.4. Obtaining a Bean by name
	10.2.5. Obtaining the most specialized bean
	10.2.6. Bean registration
	10.2.7. Observer registration
	10.2.8. Firing an event
	10.2.9. Observer resolution
	10.2.10. Decorator resolution
	10.2.11. Dependency validation
	10.2.12. Enabled deployment types
	10.2.13. Registering a Context
	10.2.14. Obtaining the active Context for a scope

	10.3. Alternative metadata sources
	10.4. Helper objects for Bean implementations
	10.5. Activities
	10.5.1. Current activity

	Chapter 11. Packaging and deployment
	11.1. Deployment lifecycle
	11.2. Bean discovery
	11.3. Problems detected automatically by the container
	11.4. Initialization events
	11.4.1. BeforeBeanDiscovery event
	11.4.2. AfterBeanDiscovery event
	11.4.3. AfterDeploymentValidation event

	Appendix A. Interceptors
	A.1. Interceptor example
	A.2. Interceptor bindings
	A.2.1. Interceptor binding types with additional interceptor bindings
	A.2.2. Interceptor bindings for stereotypes

	A.3. Interceptor implementation
	A.3.1. Business method interceptors
	A.3.2. Lifecycle callback interceptors
	A.3.3. Declaring an interceptor
	A.3.4. Declaring the interceptor bindings of an interceptor

	A.4. Binding an interceptor to a bean
	A.4.1. Binding an interceptor
	A.4.2. Support for @Interceptors

	A.5. Interceptor enablement and ordering
	A.6. The Interceptor object for an interceptor
	A.7. Interceptor resolution
	A.7.1. Interceptors with multiple bindings
	A.7.2. Interceptor binding types with members

	A.8. Interceptor stack creation
	A.9. Interceptor invocation

	Appendix B. Helper literals
	B.1. Generic type literals
	B.2. Annotation instance literals

	Appendix C. Packages
	C.1. javax.annotation
	C.2. javax.interceptor
	C.3. javax.decorator
	C.4. javax.context
	C.5. javax.inject
	C.6. javax.inject.spi
	C.7. javax.event

