
Weld - JSR-299 Reference Implementation

JSR-299: The new Java

standard for dependency

injection and contextual

lifecycle management

Gavin King

JSR-299 specification lead

Red Hat, Inc.

Pete Muir

Weld (JSR-299 Reference Implementation) lead

Red Hat, Inc.

Dan Allen

Senior Software Engineer

Red Hat, Inc.

David Allen

Italian Translation: Nicola Benaglia, Francesco Milesi

Spanish Translation: Gladys Guerrero

Weld - JSR-299 Reference Impl...

Red Hat, Inc.

Korean Translation: Eun-Ju Ki,

Red Hat, Inc.

Traditional Chinese Translation: Terry Chuang

Red Hat, Inc.

Simplified Chinese Translation: Sean Wu

Kava Community

iii

A note about naming and nomenclature .. vii

I. Loosely-coupled, contextual components with strong typing .. 1

1. Getting started with JSR-299 (CDI) .. 3

1.1. What is a bean? ... 3

1.2. Your first bean (or is it?) ... 4

1.3. The anatomy of a bean ... 6

1.3.1. Bean types, qualifiers and dependency injection 8

1.3.2. Scope .. 10

1.3.3. EL name .. 11

1.3.4. Alternatives .. 12

1.3.5. Interceptor binding types ... 12

1.4. What kinds of classes can be beans? .. 13

1.4.1. Managed beans ... 13

1.4.2. Session beans ... 14

1.4.3. Producer methods .. 15

1.4.4. Producer fields ... 17

1.4.5. Java EE resources ... 18

1.4.6. Built-in beans ... 18

2. JSF web application example .. 21

3. Getting started Weld, the JSR-299 reference implementation 25

3.1. Prerequisites ... 25

3.2. Deploying to JBoss AS ... 26

3.3. Deploying to GlassFish ... 28

3.4. Deploying to Apache Tomcat ... 29

3.4.1. Deploying with Ant ... 30

3.4.2. Deploying with Maven .. 31

3.5. Deploying to Jetty ... 32

3.6. The numberguess example in depth .. 33

3.6.1. The numberguess example in Apache Tomcat or Jetty 39

3.6.2. The numberguess example for Apache Wicket 40

3.6.3. The numberguess example for Java SE with Swing 47

3.7. The translator example in depth ... 52

4. Dependency injection and programmatic lookup ... 59

4.1. Where you can @Inject ... 59

4.2. What gets injected .. 61

4.3. Qualifier annotations ... 62

4.3.1. Qualifiers with members ... 64

4.3.2. Combining qualifiers ... 64

4.3.3. Qualifiers on producer methods ... 65

4.3.4. The default qualifier .. 65

4.4. Fixing unsatisfied dependencies ... 65

4.5. Client proxies .. 66

4.6. Obtaining a contextual instance by programmatic lookup 67

4.7. Bean names and EL lookup .. 68

Weld - JSR-299 Reference Impl...

iv

4.8. Lifecycle callbacks and resource injections ... 69

5. Scopes and contexts ... 71

5.1. Scope types ... 71

5.2. Built-in scopes .. 72

5.3. The conversation scope .. 73

5.3.1. Conversation demarcation .. 73

5.3.2. Conversation propagation ... 74

5.3.3. Conversation timeout .. 75

5.4. The dependent pseudo-scope .. 75

5.4.1. The @New annotation ... 75

6. Producer methods ... 77

6.1. Scope of a producer method ... 78

6.2. Injection into producer methods ... 78

6.3. Use of @New with producer methods ... 79

II. Developing loosely-coupled code .. 81

7. Interceptors .. 83

7.1. Interceptor bindings ... 83

7.2. Implementing interceptors .. 84

7.3. Enabling interceptors ... 84

7.4. Interceptor bindings with members ... 85

7.5. Multiple interceptor binding annotations .. 86

7.6. Interceptor binding type inheritance .. 87

7.7. Use of @Interceptors .. 88

8. Decorators ... 89

8.1. Delegate object ... 91

8.2. Enabling decorators .. 91

9. Events .. 93

9.1. Event payload ... 93

9.2. Event observers .. 94

9.3. Event producers (Firing events) ... 94

9.4. Conditional observer methods .. 96

9.5. Event qualifiers with members ... 96

9.6. Multiple event bindings .. 97

9.7. Transactional observers .. 98

III. Making the most of strong typing ... 101

10. Stereotypes .. 103

10.1. Default scope for a stereotype ... 103

10.2. Interceptor bindings for stereotypes .. 104

10.3. Name defaulting with stereotypes ... 104

10.4. Alternatives as stereotypes .. 105

10.5. Stereotype stacking ... 105

10.6. Built-in stereotypes .. 106

11. Specialization, inheritance and alternatives ... 107

11.1. Bean alternatives .. 107

v

11.2. Using specialization ... 110

11.3. Inheritance .. 110

IV. CDI and the Java EE ecosystem ... 111

12. Java EE integration .. 113

12.1. Injecting Java EE resources into a bean ... 113

12.2. Calling a bean from a Servlet ... 113

12.3. Calling a bean from a Message-Driven Bean .. 114

12.4. JMS endpoints .. 115

12.5. Packaging and deployment .. 116

13. Extending CDI through portable extensions .. 117

13.1. The BeanManager object .. 117

13.2. The Bean class ... 118

13.3. The Context interface ... 119

14. Next steps .. 121

V. Weld reference .. 123

15. Application servers and environments supported by Weld 125

15.1. Using Weld with JBoss AS .. 125

15.2. GlassFish .. 125

15.3. Servlet containers (such as Tomcat or Jetty) ... 126

15.3.1. Tomcat .. 126

15.3.2. Jetty ... 127

15.4. Java SE .. 128

15.4.1. CDI SE Module .. 128

16. CDI extensions available as part of Weld ... 131

16.1. Weld Logger ... 131

17. Alternative view layers ... 133

17.1. Wicket CDI integration ... 133

17.1.1. The WebApplication class ... 133

17.1.2. Conversations with Wicket .. 133

A. Integrating Weld into other environments .. 135

A.1. The Weld SPI ... 135

A.1.1. Deployment structure ... 135

A.1.2. EJB descriptors .. 137

A.1.3. EE resource injection and resolution services 137

A.1.4. EJB services .. 138

A.1.5. JPA services .. 138

A.1.6. Transaction Services .. 138

A.1.7. Resource Services ... 139

A.1.8. Injection Services ... 139

A.1.9. Security Services ... 139

A.1.10. Bean Validation Services .. 139

A.1.11. Identifying the BDA being addressed ... 139

A.1.12. The bean store .. 140

A.1.13. The application context ... 140

Weld - JSR-299 Reference Impl...

vi

A.1.14. Initialization and shutdown .. 140

A.1.15. Resource loading ... 141

A.2. The contract with the container .. 141

vii

A note about naming and nomenclature

Shortly before the final draft of JSR-299 was submitted, the specification changed its name

from "Web Beans" to "Java Contexts and Dependency Injection for the Java EE platform",

abbreviated CDI. For a brief period after the renaming, the reference implementation adopted

the name "Web Beans". However, this ended up causing more confusion than it solved and Red

Hat decided to change the name of the reference implementation to "Weld". You may still find

other documentation, blogs, forum posts, etc. that use the old nomenclature. Please update any

references you can. The naming game is over.

You'll also find that some of the functionality that once existed in the specification is now missing,

such as defining beans in XML. These features will be available as portable extensions for CDI

in the Weld project, and perhaps other implementations.

Note that this reference guide was started while changes were still being made to the specification.

We've done our best to update it for accuracy. However, if there is a conflict between what is

written in this guide and the specification, the specification is the authority--assume it is correct. If

you believe you have found an error in the specification, then report it to the JSR-299 EG.

viii

Part I. Loosely-coupled, contextual

components with strong typing
The JSR-299 specification (CDI) defines a set of services for the Java EE environment that make

applications much easier to develop. CDI layers an enhanced lifecycle and interaction model

over existing Java component types, including Managed Beans (JavaBeans) and Enterprise

JavaBeans (EJB session beans). As a complement to the traditional Java EE programming model,

the CDI services provide:

• an improved lifecycle for stateful components, bound to well-defined contexts,

• a typesafe approach to dependency injection,

• component interaction via an event notification facility,

• a better approach to binding interceptors to components, along with a new kind of interceptor,

called a decorator, that is more appropriate for use in solving business problems, and

• an SPI for developing portable extensions for the Java EE platform.

A component that receives CDI services is referred to, generally, as a bean. The CDI services

are a core aspect of the Java EE platform and apply to the following types of components that

exist in the platform:

• all Managed Beans (JavaBeans), including JSF managed beans,

• all Enterprise JavaBeans (EJBs), and

• all Servlets.

CDI is especially useful in the context of web applications, but is applicable to a wide variety of

applications. It may even be used in the Java SE context, in conjunction with an embeddable EJB

Lite container, as defined in the EJB 3.1 specification, or through an extension (see Section 15.4.1,

“CDI SE Module”).

The concerns handled by CDI save the user who is unfamiliar with an API from having to answer

the following questions:

• What is the lifecycle of this object?

• How many simultaneous clients can it have?

• Is it multithreaded?

• How do I retrieve it?

Part I. Loosely-coupled, cont...

• Do I need to explicitly destroy it?

• Where should I keep the reference to it when I'm not currently using it?

• How can I define alternatives, so that the implementation of this object can vary at deployment

time?

• How should I go about sharing this object between other objects?

The main theme of CDI, which is instrumental in removing these complexities, is loose-couping

with strong typing. Let's study what that phrase means.

A bean specifies only the type and semantics of other beans it depends upon. It need not be aware

of the actual lifecycle, concrete implementation, threading model or other clients of any bean it

depends upon. Even better, the concrete implementation, lifecycle and threading model of a bean

it depends upon may vary according to the deployment scenario, without affecting any client. This

loose-coupling is what makes this architecture so simple, yet powerful.

Events, interceptors and decorators enhance the loose-coupling inherent in this model:

• event notifications decouple event producers from event consumers,

• interceptors decouple technical concerns from business logic, and

• decorators allow business concerns to be compartmentalized.

What's even more powerful (and comforting) is that CDI provides all these facilities in a typesafe

way. CDI never relies on string-based identifiers to determine how collaborating objects fit

together. (XML is rarely used, reserved only to activate alternatives and define ordering at

deployment time). Instead, CDI uses the typing information that is already available in the Java

object model, then extends it with a new typing pattern, called qualifier annotations, to wire

together beans, their dependencies, their interceptors and decorators and their event consumers.

CDI even provides the necessary integration points, through a comprehensive SPI, so that other

kinds of components defined by future Java EE specifications or by non-standard frameworks

may be cleanly integrated with CDI, take advantage of the CDI services, and interact with any

other kind of platform component.

CDI was influenced by a number of existing Java frameworks, including Seam, Guice and Spring.

However, CDI has its own, very distinct, character: more typesafe than Seam, more stateful and

less XML-centric than Spring, more web and enterprise-application capable than Guice. But it

couldn't have been any of these without inspiration from the frameworks mentioned and lots of

collaboration and hard work by the JSR-299 Expert Group (EG).

Finally, JSR-299 is a Java Community Process (JCP) standard that integrates cleanly with the

Java EE platform, and with any Java SE environment where embeddable EJB Lite is available. In

fact, Java EE 6 requires that all compliant application servers provide support for JSR-299 (even

in the web profile).

Chapter 1.

3

Getting started with JSR-299 (CDI)
So you're keen to get started writing your first bean? Or perhaps you're skeptical, wondering what

kinds of hoops the CDI specification will make you jump through! The good news is that you've

probably already written and used hundreds, perhaps thousands of beans. CDI just helps you

make use them in your web or enterprise application.

1.1. What is a bean?

In this section, you'll learn that a bean is exactly what you think it is. Only now, it has a true identity

in Java EE.

Prior to Java EE 6, there existed no clear definition of a bean in the platform. Of course, we've

been calling Java classes used in web and enterprise applications beans for years. Third-party

frameworks, such as Spring, even have facilities for defining and creating beans; and there are

a couple of bean variants in the platform itself, including EJB session beans and JSF managed

beans. What was missing was a common definition.

Java EE 6 finally lays down the definition of a bean in the Managed Bean specification. Managed

Beans are defined as container-managed objects with minimal requirements, otherwise known

by their acronym, POJOs (Plain Old Java Objects). They support a small set of basic services,

such as resource injection, lifecycle callbacks and interceptors. Companion specifications, such

as EJB and CDI, build on this basic model. But, at last, there is a universally accepted concept of

a bean and a lightweight component model that's aligned across the Java EE platform.

With certain, unique exceptions, every Java class that has a constructor with no parameters (or

an alternate constructor designated with the annotation @Inject) is a candidate for becoming a

bean. Any EJB session bean is also a candidate. They become beans, specifically CDI beans, if

they reside in a Java EE module that contains a special marker file (META-INF/beans.xml) and

if instances of those classes are managed by the Java EE container. Just know that, for simple

JavaBean classes, there's no special metadata you need to add to make them beans. They just

are.

The JavaBeans and EJBs you've been writing every day, up until now, have not been able to

take advantage of the new services defined by the CDI specification. But you'll be able to use

every one of them with CDI -- allowing the container to create and destroy instances of your beans

and associate them with a designed context (or scope), injecting them into other beans, using

them in EL expressions, specializing them with qualifier annotations, even adding interceptors

and decorators to them -- from this point forward without modifying your code. At most, you'll have

to add some annotations.

Let's see how to create your first bean.

Chapter 1. Getting started wi...

4

1.2. Your first bean (or is it?)

Suppose that we have two existing Java classes, that we've been using for years in various

applications. The first class parses a string into a list of sentences:

public class SentenceParser {

 public List<String> parse(String text) { ... }

}

The second existing class is a stateless session bean front-end for an external system that is able

to translate sentences from one language to another:

@Stateless

public class SentenceTranslator implements Translator {

 public String translate(String sentence) { ... }

}

Where Translator is the EJB local interface:

@Local

public interface Translator {

 public String translate(String sentence);

}

Unfortunately, we don't have a class that translates whole text documents. So let's write a bean

for this job:

public class TextTranslator {

 private SentenceParser sentenceParser;

 private Translator sentenceTranslator;

 @Inject

 TextTranslator(SentenceParser sentenceParser, Translator sentenceTranslator) {

 this.sentenceParser = sentenceParser;

 this.sentenceTranslator = sentenceTranslator;

 }

 public String translate(String text) {

 StringBuilder sb = new StringBuilder();

 for (String sentence: sentenceParser.parse(text)) {

Your first bean (or is it?)

5

 sb.append(sentenceTranslator.translate(sentence));

 }

 return sb.toString();

 }

}

But wait! TextTranslator does not have a constructor with no parameters! Is it still a bean? If

you remember, a class that does not have a constructor with no parameters can still be a bean

if it has a constructor annotated @Inject.

As you've guessed, the @Inject annotation has something to do with dependency injection!

@Inject may be applied to a constructor or method of a bean, and tells the container to call that

constructor or method when instantiating the bean. The container will inject other beans it finds

into the parameters of the constructor or method.

We may obtain an instance of TextTranslator by injecting it into a constructor, bean "setter"

method, producer method, observer method or field of a JavaBean or EJB session, or a field of a

Servlet. The injection is based on the type of the injection point, not the name of the field, method

or argument.

Let's create a UI controller bean that uses field injection to obtain an instance of the

TextTranslator, translating the text entered by a user:

@Named @RequestScoped

public class TranslateController {

 private @Inject TextTranslator textTranslator;

 private String inputText;

 private String translation;

 // JSF action method, perhaps

 public void translate() {

 translation = textTranslator.translate(inputText);

 }

 public String getInputText() {

 return inputText;

 }

 public void setInputText(String text) {

 this.inputText = text;

 }

 public String getTranslation() {

Chapter 1. Getting started wi...

6

 return translation;

 }

}

Alternatively, we may obtain an instance programatically from Instance interface paramaterized

to the bean type:

private @Inject Instance<TextTranslator> textTranslatorSource;

...

public void translate() {

 textTranslatorSource.get().translate(inputText);

}

Notice that it isn't necessary to create a getter or setter method to inject one bean into another.

CDI can access the field directly (even if it's private!), which should help eliminate some wasteful

code. The name of the field is arbitrary. It's the field's type that determines what is injected.

At system initialization time, the container must validate that exactly one bean exists which

satisfies each injection point. In our example, if no implementation of Translator is available

-- if the SentenceTranslator EJB was not deployed -- the container would throw an

UnsatisfiedDependencyException. If more than one implementation of Translator were

available, the container would throw an AmbiguousDependencyException. The same for the

TextTranslator injection point.

Now we are starting to venture off into the details, so let's pause and examine a bean's anatomy.

What aspects of the bean are significant, and what gives it its identity?

1.3. The anatomy of a bean

A bean is an application class that contains business logic. It may be called directly from

Java code, or it may be invoked via Unified EL. A bean may access transactional resources.

Dependencies between beans are managed automatically by the container. Most beans are

stateful and contextual. The lifecycle of a bean is always managed by the container.

Let's back up a second. What does it really mean to be contextual? Since beans may be stateful, it

matters which bean instance I have. Unlike a stateless component model (for example, stateless

session beans) or a singleton component model (such as servlets, or singleton beans), different

clients of a bean see the bean in different states. The client-visible state depends upon which

instance of the bean the client has a reference to.

However, like a stateless or singleton model, but unlike stateful session beans, the client does

not control the lifecycle of the instance by explicitly creating and destroying it. Instead, the scope

of the bean determines:

• the lifecycle of each instance of the bean and

The anatomy of a bean

7

• which clients share a reference to a particular instance of the bean.

For a given thread in a CDI application, there may be an active context associated with the scope

of the bean. This context may be unique to the thread (for example, if the bean is request scoped),

or it may be shared with certain other threads (for example, if the bean is session scoped) or even

all other threads (if it is application scoped).

Clients (for example, other beans) executing in the same context will see the same instance of the

bean. But clients in a different context may see a different instance (depending on the relationship

between the contexts).

One great advantage of the contextual model is that it allows stateful beans to be treated like

services! The client need not concern itself with managing the lifecycle of the bean it's using, nor

does it even need to know what that lifecyle is. Beans interact by passing messages, and the bean

implementations define the lifecycle of their own state. The beans are loosely coupled because:

• they interact via well-defined public APIs

• their lifecycles are completely decoupled

We can replace one bean with another different bean that implements the same interface and has

a different lifecycle (a different scope) without affecting the other bean implementation. In fact,

CDI defines a simple facility for overriding bean implementations at deployment time, as we will

see in ??? (FIXREF).

Note that not all clients of a bean are beans themselves. Other objects such as Servlets or

Message-Driven Beans -- which are by nature not injectable, contextual objects -- may also obtain

references to beans by injection.

Enough hand-waving. More formally, the anatomy of a bean, according to the spec:

A bean comprises of the following attributes:

• A (nonempty) set of bean types

• A (nonempty) set of qualifiers

• A scope

• A deployment type

• Optionally, a bean EL name

• A set of interceptor bindings

• A bean implementation

Chapter 1. Getting started wi...

8

Let's see what some of these terms mean, to the CDI developer.

1.3.1. Bean types, qualifiers and dependency injection

Beans usually acquire references to other beans via dependency injection. Any injected attribute

specifies a "contract" that must be satisfied by the bean to be injected. The contract is:

• a bean type, together with

• a set of qualifiers.

A bean type is a user-defined class or interface; types that are client-visible. If the bean is an EJB

session bean, the bean type is the @Local interface or bean-class local view. A bean may have

multiple bean types. For example, the following bean has four bean types:

public class BookShop extends Business implements Shop<Book> {

 ...

}

The bean types are BookShop, Business and Shop<Book>, as well as the implicit type

java.lang.Object. (Notice that a parameterized type is a legal bean type). Meanwhile, this

session bean has only the local interfaces BookShop, Auditable and java.lang.Object as bean

types, since the bean class, BookShopBean is not a client-visible type.

@Stateful

public class BookShopBean extends Business implements BookShop, Auditable {

 ...

}

Note

Most bean types you can probably figure out. One gotcha is primitive types. All

primitive types are assumed to be identical to their corresponding wrapper types

in java.lang.

Bean types may be restricted to an explicit set by annotating the bean with the @Typed annotation

and listing the bean types in the value of the annotation. For instance, this bean has been restricted

to a single bean type, Shop:

@Typed(Shop.class)

public class BookShop extends Business implements Shop<Book> {

Bean types, qualifiers and dependency injection

9

 ...

}

The bean types alone often do not provide enough information for the container to know which

bean to inject. For instance, say you have two implementations of the PaymentProcessor

interface: CreditCardPaymentProcessor and DebitPaymentProcessor. Injecting into a field of

type PaymentProcessor introduces an ambigious condition. In these cases, the container must

rely on some client-visible semantic that is satisified by one implementation of the bean type, but

not by others. That semantic is called a qualifier.

Qualifiers are represented by user-defined annotations that are themselves annotated with

@Qualifer. These annotations extend the type system in Java to let you further qualify the type

without having to fall back to string-based names as many dependency injection frameworks use.

Here's an example of a qualifier annotation:

@Qualifier

@Target({ TYPE, METHOD, PARAMETER, FIELD })

@Retention(RUNTIME)

public @interface CreditCard {}

You may not be used to seeing the definition of an annotation. In fact, this might be the first time

you have encountered one. With CDI, they will become very familiar artifact as you will be creating

them often. Pay attention to the names of the built-in annotations in CDI and EJB.

Tip

You'll notice that they are all adjectives. You are encouraged to follow this

convention when creating your custom annotations, since they serve to describe

the behaviors and roles of the class.

Now that we have defined a qualifier annotation, we can use it. The following injection point has

the bean type PaymentProcessor and qualifier @CreditCard:

@Inject @CreditCard PaymentProcessor paymentProcessor

Note

If no qualifier is specified at an injection point, the default qualifier, @Default, is

assumed.

Chapter 1. Getting started wi...

10

For each injection point, the container searches for a bean which satisfies the contract, meaning

it matches the bean time and all the qualifiers. It then injects that instance.

We've seen how to indicate that you want to inject qualified bean. But how do you actually qualify

the bean? By using the annotation, of course! The following bean has the qualifier @CreditCard

and implements the bean type PaymentProcessor. Therefore, it satisfies our qualified injection

point:

@CreditCard

public class CreditCardPaymentProcessor

 implements PaymentProcessor { ... }

Note

If a bean does not explicitly specify a qualifier, it has exactly one qualifier, the

default qualifier, @Default.

CDI defines a sophisticated, yet intuitive resolution algorithm that helps the container decide what

to do if there is more than one bean that satisfies a particular contract. We'll get into the details in

Chapter 4, Dependency injection and programmatic lookup.

1.3.2. Scope

The scope of a bean defines the lifecycle and visibility of instances created from it. The CDI

context model is extensible, accommodating arbitrary scopes. However, certain important scopes

are built-in to the specification, and provided by the container. Each scope is represented by an

annotation type.

For example, any web application may have session scoped bean:

@SessionScoped

public class ShoppingCart { ... }

An instance of a session-scoped bean is bound to a user session and is shared by all requests

that execute in the context of that session.

Note

Keep in mind that once a bean is bound to a context, it remains in that context

until the context is destroyed. There is no way to explicitly remove a bean from

EL name

11

a context. If you don't the bean to live in the session indefinitely, consider using

another scope such as the request or conversation scope instead.

If a scope is not explicitly specified, then the bean belongs to a special scope called the dependent

pseudo-scope. Beans with this scope live to serve the bean into which they are injected, which

means their lifecycle is bound to the lifecycle of that object.

We'll talk more about scopes in Chapter 5, Scopes and contexts.

1.3.3. EL name

If you want to reference a bean outside of Java, such as in JSF view, you must assign the bean

a name. The name is used as the EL name of the bean, allowing the bean to be used in a Unified

EL expression.

The name is specified using the @Named annotation, as shown here:

@SessionScoped @Named("cart")

public class ShoppingCart { ... }

Now we can easily use the bean in any JSF or JSP page:

<h:dataTable value="#{cart.lineItems}" var="item">

 ...

</h:dataTable>

Note

The @Named annotation is not what makes the class a bean. Most classes in a

bean archive are already recognized as beans. The @Named annotation just makes

it possible to reference the bean from the EL, most commonly from a JSF view.

If you want, you can let CDI select a name for you by leaving off the value of the @Named annotation:

@SessionScoped @Named

public class ShoppingCart { ... }

The name defaults to the unqualified class name, decapitalized; in this case, shoppingCart.

Chapter 1. Getting started wi...

12

1.3.4. Alternatives

There are cases when you want to replace one bean implementation with another at deployment

time. For instance, you may want to use a mock implementation in a testing environment. An

alternative may be declared by annotating the bean class or producer method or field with the

@Alternative annotation.

@Alternative

public class MockPaymentProcessor extends PaymentProcessorImpl { ... }

An alternative can also be declared by annotating a bean, producer method or producer fields with

a stereotype that has the @Alternative annotation. Stereotypes are explained in Chapter 10,

Stereotypes.

You then enable the alternative using the CDI deployment descriptor, META-INF/beans.xml, in

the classpath entry in which you intent to use it. An alternative must be explicitly selected in every

bean deployment archive in which the alternative should be available for injection, lookup and

EL resolution.

Details on how to enable alternative beans, and how you can use them to specialize

(override) beans and producer methods is covered in Chapter 11, Specialization, inheritance and

alternatives. CDI is very flexible when it comes alternatives that are selected at deployment time.

1.3.5. Interceptor binding types

Since the introduction of the Managed Bean specification in Java EE 6, interceptors are available

on JavaBeans in additionn to EJB session beans. That's right, you no longer have to create an

EJB just to intercept method calls. Holler. So what does CDI have to offer? Well, a lot actually.

Let's cover some background.

The way that interceptors are defined in Java EE 5 is counter-intuitive. You are required to specify

the implementation of the interceptor directly on the implementation of the EJB, either in the

@Interceptors annotation or in the XML descriptor. You might as well just put the interceptor

code in the implementation. Second, the order in which the interceptors are applied is taken from

the order in which they are declared in the annotation or the XML descriptor. Perhaps this isn't

so bad if you're applying the interceptors to a single bean. But, if you are applying them repeatly,

then there is a chance that you'll inadvertly define a different order for different beans. Now that

is a problem.

CDI provides a new approach to binding interceptors to beans that introduces a level of abstraction

(and thus control). You define a special kind of annotation called an interceptor binding type whose

name describes the role of the interceptor, in this case to add transaction support:

@InterceptorBinding

What kinds of classes can be beans?

13

@Inherited

@Target({ TYPE, METHOD })

@Retention(RUNTIME)

public @interface Transactional {}

Then you apply the annotation to the class whose methods you wish to have intercepted.

@SessionScoped @Transactional

public class ShoppingCart { ... }

Where is the interceptor? You match the interceptor(s) to apply to the bean by also annotating

the interceptor class. Never do the two implementations (bean and interceptor) come in direct

contact. Activating and ordering of the interceptors is then controlled by the XML descriptor, one

of the few times XML is warranted.

We'll discuss bean interceptors, and their cousins, decorators, in Chapter 7, Interceptors and

Chapter 8, Decorators.

1.4. What kinds of classes can be beans?

We've already seen that JavaBeans and EJBs can be (CDI) beans. Is that the whole story? Let's

start from what we know, and go from there.

1.4.1. Managed beans

A managed bean is a bean that is implemented by almost any Java class. This class is called

the bean class of the managed bean. The basic lifecycle and semantics of a managed bean is

defined by the Managed Beans specification. If the class is not picked up as a managed bean by

the container, then CDI will allow it to be a bean if:

• It is not a non-static inner class.

• It is a concrete class, or is annotated @Decorator.

• It is not annotated with an EJB component-defining annotation or declared as an EJB bean

class in ejb-jar.xml.

• It has an appropriate constructor -- either:

• the class has a constructor with no parameters, or

• the class declares a constructor annotated @Inject.

Unlike the managed bean definition, no special declaration is required to define a managed

bean. CDI takes advantage of the fact that the Managed Bean specification allows companion

specifications to relax the requirement of having to add the @ManagedBean annotation.

Chapter 1. Getting started wi...

14

Some managed beans are much more. Those are the session beans. While still technically

managed beans, they have enough additional, enterprise features, that we consider them to be

their own kind.

1.4.2. Session beans

EJB 3 session beans belong to the EJB specification. That is, the basic lifecycle and semantics.

Beyond that, they get to participate in CDI just like any other bean. There are some restrictions

about which scopes can be assigned to a session bean, but other than that, they are

interchangable with regular managed beans. That means you can inject one session bean into

another, a managed bean into a session bean, a session bean into a managed bean, have a

managed bean observe an event raised by a session bean, and so on.

Note

Message-driven and entity beans are by nature non-contextual objects and may

not be injected into other objects. Message-driven beans can take advantage of

some CDI functionality, such as dependency injection and interceptors. In fact, CDI

will perform injection into any message-driven or session bean, even those which

are not contextual instances.

The unrestricted set of bean types for a session bean contains all local interfaces of the bean and

their superinterfaces. If the session bean has a bean class local view, the unrestricted set of bean

types contains the bean class and all superclasses. In addition, java.lang.Object is a bean type

of every session bean. But, remote interfaces are not included in the set of bean types.

Stateful session beans can define a no arguments remove method, annotated @Remove, that

is used by the application to indicate the instance should be destroyed. However, in a CDI

environment, this method can only be executed by the application if the bean is dependent-scoped.

Otherwise, it's illegal for the application to invoke this method.

So, when should we use a session instead of a basic managed bean? Whenever we need the

advanced enterprise services offered by EJB, such as:

• method-level transaction management and security,

• concurrency management,

• instance-level passivation for stateful session beans and instance-pooling for stateless session

beans,

• remote and web service invocation, and

• timers and asynchronous methods,

When we don't need any of these things, a basic managed bean will serve just fine.

Producer methods

15

Many beans (including any session or application scoped bean) are available for concurrent

access. Therefore, the concurrency management provided by EJB 3.1 is especially useful. Most

session and application scoped beans should be EJBs.

Beans which hold references to heavy-weight resources, or hold a lot of internal state benefit

from the advanced container-managed lifecycle defined by the EJB @Stateless/@Stateful/

@Singleton model, with its support for passivation and instance pooling.

Finally, it's usually obvious when method-level transaction management, method-level security,

timers, remote methods or asynchronous methods are needed.

The point is, you use a session bean when you need the services it provides, not just because

you want to use dependency injection, lifecycle management, or interceptors. The Java EE

programming model makes a whole lot more sense now; you won't need to go off and invent your

own bean container to make programming in Java EE palatable.

In fact, it's easy to start with simple managed bean, and later turn it into an EJB just by adding

one of the following annotations: @Stateless, @Stateful or @Singleton.

1.4.3. Producer methods

Surely not everything you want to inject can be a bean class. What if you need to inject the

implementation of an API that varies at runtime? And how would you inject objects that are created

by another mechanism, such as a JPA result? Fortunately, the CDI specification recognized these

and other cases and introduced the concept of a producer method.

A producer method is a method on a bean that is used as a bean source, meaning the method

itself describes the bean and the container invokes the method to obtain an instance of the bean

when no instance exists in its specified context. A producer method lets the application take full

control of the instantiation process, specifically when:

• the objects to be injected are not required to be instances of beans, or

• the concrete type of the objects to be injected may vary at runtime, or

• the objects require some custom initialization that is not performed by the bean constructor.

For example:

@ApplicationScoped

public class RandomNumberGenerator {

 private Random random = new Random(System.currentTimeMillis());

 @Produces @Named @Random int getRandomNumber() {

 return random.nextInt(100);

Chapter 1. Getting started wi...

16

 }

}

Obviously, you cannot define a bean that is itself a random number. A producer method allows you

do define its result as a bean, in this case an Integer with qualifier @Random, scope @Dependent

(implied) and name randomNumber (derived from bean property convention; otherwise it would be

the same as the method name). It can be injected just like any other bean:

@Inject @Random int randomNumber;

or used in a Unified EL expression:

Your raffle number is #{randomNumber}.

A producer method must be a non-abstract method of a managed bean class or session bean

class. A producer method may be either static or non-static. If the bean is a session bean, the

producer method must be either a business method of the EJB or a static method of the bean class.

The bean types of a producer method depend upon the method return type:

• If the return type is an interface, the unrestricted set of bean types contains the return type, all

interfaces it extends directly or indirectly and java.lang.Object.

• If a return type is primitive or is a Java array type, the unrestricted set of bean types contains

exactly two types: the method return type and java.lang.Object.

• If the return type is a class, the unrestricted set of bean types contains the return type, every

superclass and all interfaces it implements directly or indirectly.

Some producer methods return objects that require explicit destruction:

@Produces @RequestScoped Connection connect(User user) {

 return createConnection(user.getId(), user.getPassword());

}

If the producer method has method arguments, as in this example, the container will look for

matching beans and pass them into the method automatically -- another form of dependency

injection.

Producer methods may also define matching disposal methods:

Producer fields

17

void close(@Disposes Connection connection) {

 connection.close();

}

The disposal method is called automatically when the context ends (in this case, the end of the

request). The disposal method requires at least one parameter, the bean produced by the producer

method. Any additional parameters will be satisfied by the container.

We'll talk much more about producer and disposal methods in Chapter 6, Producer methods.

1.4.4. Producer fields

A producer field is a simpler alternative to a producer method and can also marry dependency

injection with bean definition. A producer field may be declared by annotating a field of a managed

bean class or session bean class with the @Produces annotation previously used on producer

methods.

public class Shop {

 @Produces PaymentProcessor paymentProcessor =;

 @Produces List<Product> products =;

}

A producer field may also specify scope, name, stereotypes and/or qualifiers. It's a good way to

expose state from a bean as a top-level bean.

public class Shop {

 @Produces @Wishlist @Named("wishlist") List<Product> products =;

}

The result can be injected or used in a Unified EL expression.

@Inject @Wishlist List<Product> wishlist;

<h:dataTable var="_product" value="#{wishlist}">...</h:dataTable>

The rules for determining the bean types of a producer field parallel the rules for producer method.

Aside from convenience, producer fields serve a specific purpose as an adapter for Java EE

resources injections.

Chapter 1. Getting started wi...

18

1.4.5. Java EE resources

Java EE 5 already introduced some support for dependency injection, in the form of resource

injections. A resources is either a component defined in JNDI such as a data source or a container-

provided component such as a persistence unit, persistence context, EJB or web service.

Naturally, there remained some mismatch with the new style of dependency injection in CDI. Most

notably, resource injections rely on string-based names to qualify ambigious types, and there is

no real consistency as to how a resource obtains its name (sometimes JNDI, other times from an

XML descriptor or even a default name). Producer fields turned out to be an elegant adapter to

rein them in and get them to participate in the CDI system just like any other injectable bean.

Producer fields have a duality in that they can both accept a standard Java EE resource injection

and produce a bean that can be injected into another bean in a typesafe way. Here are some

examples of these injection points. Notice that a qualifier annotation can be assigned at the

injection point to adapt the string-based name required by the injection point into a typesafe

qualifier for injection elsewhere.

@Produces @WebServiceRef(lookup="java:app/service/PaymentService")

PaymentService paymentService;

@Produces @PersistenceContext(unitName="CustomerDatabase")

@CustomerDatabase EntityManager customerDatabasePersistenceContext;

These resources can then be injected in the usual way.

@Inject PaymentService paymentService;

@Inject @CustomerDatabase EntityManager customerDatabaseEntityManager;

The bean type and qualifiers of the resource are determined by the producer field declaration.

While you may have to introduce a couple extra managed beans to serve as typesafe adapters,

it's well worth the effort so that you can minimize the number of places in your code you have to

repeat the old-style dependency injection and string-based qualifiers.

1.4.6. Built-in beans

Java EE gives you some other goodies in the form of built-in beans. A Java EE (or embeddable

EJB) container provide the following built-in beans, all of which have qualifier @Default:

Built-in beans

19

• a bean with bean type javax.transaction.UserTransaction, allowing injection of a reference

to the JTA UserTransaction,

• a bean with bean type javax.security.Principal, allowing injection of a Principal

representing the current caller identity.

• a bean with bean type javax.validation.ValidationFactory, allowing injection of the

default Bean Validation ValidationFactory, and

• a bean with bean type javax.validation.Validator, allowing injection of a Validator for the

default Bean Validation ValidationFactory.

Aren't you excited to start using this stuff? Wait no longer. In the next two chapters, we'll look at

some examples.

20

Chapter 2.

21

JSF web application example
Let's illustrate these ideas with a full example. We're going to implement a user login/logout for

an application that uses JSF. First, we'll define a request-scoped bean to hold the username and

password entered during login:

@Named @RequestScoped

public class Credentials {

 private String username;

 private String password;

 public String getUsername() { return username; }

 public void setUsername(String username) { this.username = username; }

 public String getPassword() { return password; }

 public void setPassword(String password) { this.password = password; }

}

This bean is bound to the login prompt in the following JSF form:

<h:form>

 <h:panelGrid columns="2" rendered="#{!login.loggedIn}">

 <h:outputLabel for="username">Username:</h:outputLabel>

 <h:inputText id="username" value="#{credentials.username}"/>

 <h:outputLabel for="password">Password:</h:outputLabel>

 <h:inputText id="password" value="#{credentials.password}"/>

 </h:panelGrid>

 <h:commandButton value="Login" action="#{login.login}" rendered="#{!login.loggedIn}"/>

 <h:commandButton value="Logout" action="#{login.logout}" rendered="#{login.loggedIn}"/>

</h:form>

The actual work is done by a session-scoped bean that maintains information about the currently

logged-in user and exposes the User entity to other beans:

@SessionScoped @Named

public class Login {

 @Inject Credentials credentials;

 @Inject @UserDatabase EntityManager userDatabase;

Chapter 2. JSF web applicatio...

22

 private User user;

 public void login() {

 List<User> results = userDatabase.createQuery(

 "select u from User u where u.username = :username and u.password = :password")

 .setParameter("username", credentials.getUsername())

 .setParameter("password", credentials.getPassword())

 .getResultList();

 if (!results.isEmpty()) {

 user = results.get(0);

 }

 else {

 // perhaps add code here to report a failed login

 }

 }

 public void logout() {

 user = null;

 }

 public boolean isLoggedIn() {

 return user != null;

 }

 @Produces @LoggedIn User getCurrentUser() {

 return user;

 }

}

@LoggedIn and @UserDatabase are custom qualifier annotations:

@Qualifier

@Retention(RUNTIME)

@Target({TYPE, METHOD, PARAMETER, FIELD})

public @interface LoggedIn {}

@Qualifier

@Retention(RUNTIME)

@Target({METHOD, PARAMETER, FIELD})

23

public @interface UserDatabase {}

We need an adapter bean to expose our typesafe EntityManager:

public class UserDatabaseProducer {

 @Produces @UserDatabase @PersistenceContext EntityManager userDatabase;

}

Now, any other bean can easily inject the current user, as well as other beans:

public class DocumentEditor {

 @Inject Document document;

 @Inject @LoggedIn User currentUser;

 @Inject @DocumentDatabase EntityManager docDatabase;

 public void save() {

 document.setCreatedBy(currentUser);

 docDatabase.persist(document);

 }

}

Or we can reference the current user in a JSF view:

<h:panelGroup rendered="#{login.loggedIn}">

 signed in as #{currentUser.username}

</h:panelGroup>

Hopefully, this example gives a flavor of the CDI services. In the next chapter, we'll explore

examples from the CDI reference implementation, Weld, in greater depth.

24

Chapter 3.

25

Getting started Weld, the JSR-299

reference implementation
Weld, the JSR-299 RI (Reference Implementation), is being developed as part of the Seam project

[http://seamframework.org/Weld]. You can download the latest community release of Weld from

the download page [http://seamframework.org/Download]. Information about the Weld source

code repository and instructions about how to obtain and build the source can be found on the

same page.

Weld comes with two starter example applications, in addition to more specialized examples. The

first, weld-numberguess, is a web (WAR) example containing only non-transactional managed

beans. This example can be run on a wide range of servers, including JBoss AS, GlassFish,

Apache Tomcat, Jetty, Google App Engine, and any compliant Java EE 6 container. The second

example, weld-translator, is an enterprise (EAR) example that contains session beans. This

example must be run on JBoss AS 5.2 or any compliant Java EE 6 container.

Both examples use JSF 2.0 as the web framework and, as such, can be found in the examples/jsf

directory of the Weld distribution.

3.1. Prerequisites

To run the examples with the provided build scripts, you'll need the following:

• the latest release of Weld, which contains the examples

• Ant 1.7.0, to build and deploy the examples

• a supported runtime environment (minimum versions shown)

• JBoss AS 5.2.0 (currenly only nightly builds of JBoss AS 5.2.0.Beta1 are available), or

• GlassFish 3.0, or

• Apache Tomcat 6.0.x (WAR example only), or

• Jetty 6.1.x (WAR example only)

• (optionally) Maven 2.x, to run the examples in an embedded servlet container

Note

You'll need a full install of Ant 1.7.0. Some linux distributions only supply a partial

installation of Ant which cause the build to fail. If you encounter problems, verify

that ant-nodeps.jar is on the classpath.

http://seamframework.org/Weld
http://seamframework.org/Weld
http://seamframework.org/Download
http://seamframework.org/Download

Chapter 3. Getting started We...

26

In the next few sections, you'll be using the Ant command (ant) to invoke the Ant build script in

each of the two examples to compile, assemble and deploy the example to JBoss AS and, for the

WAR example, Apache Tomcat. You can also deploy the generated artifact (WAR or EAR) to any

other container that supports Java EE 6, such as GlassFish V3.

If you have Maven installed, you can also use the Maven command (mvn) to compile and assemble

the standalone artifact (WAR or EAR) and, for the WAR example, run it in an embedded container.

The sections below cover the steps for deploying with both Ant and Maven in detail. Let's start

with JBoss AS.

3.2. Deploying to JBoss AS

To deploy the examples to JBoss AS, you'll need JBoss AS 5.2.0.Beta1 or above. If a release of

the JBoss AS 5.2 line isn't yet available, you can download a nightly snapshot. The reason JBoss

AS 5.2.0.Beta1 or above is required is because it's the first release that has both CDI and Bean

Validation support built-in, making it close enough to Java EE 6 to run the examples. The good

news is that there are no additional modifications you have to make to the server. It's ready to go!

After you have downloaded JBoss AS, extract it. (We recommended renaming the folder to include

the as qualifier so it's clear that it's the application server). You can move the extracted folder

anywhere you like. Whereever it lays to rest, that's what we'll call the JBoss AS installation

directory, or JBOSS_HOME.

$> unzip jboss-5.2.*.zip

$> mv jboss-5.2.*/ jboss-as-5.2

In order for the build scripts to know where to deploy the example, you have to tell them where to

find your JBoss AS installation (i.e., JBOSS_HOME). Create a new file named local.build.properties

in the examples directory of the Weld distribution and assign the path of your JBoss AS installation

to the property key jboss.home, as follows:

jboss.home=/path/to/jboss-as-5.2

You're now ready to deploy your first example!

Switch to the examples/jsf/numberguess directory and execute the Ant deploy target:

$> cd examples/jsf/numberguess

$> ant deploy

If you haven't already, start JBoss AS. You can either start JBoss AS from a Linux shell:

Deploying to JBoss AS

27

$> cd /path/to/jboss-as-5.2

$> ./bin/run.sh

a Windows command window:

$> cd c:\path\to\jboss-as-5.2\bin

$> run

or you can start the server using an IDE, like Eclipse.

Note

If you are using Eclipse, you should seriously consider installing the JBoss

Tools add-ons, which include a wide variety of tooling for JSR-299 and Java EE

development, as well as an enhanced JBoss AS server view.

Wait a few seconds for the application to deploy (or the application server to start) and see if

you can determine the most efficient approach to pinpoint the random number at the local URL

http://localhost:8080/weld-numberguess.

Tip

The Ant build script includes additional targets for JBoss AS to deploy and undeploy

the archive in either exploded or packaged format and to tidy things up.

• ant restart - deploy the example in exploded format to JBoss AS

• ant explode - update an exploded example, without restarting the deployment

• ant deploy - deploy the example in compressed jar format to JBoss AS

• ant undeploy - remove the example from JBoss AS

• ant clean - clean the example

The second starter example, weld-translator, will translate your text into Latin. (Well, not really,

but the stub is there for you to implement, at least. Good luck!) To try it out, switch to the translator

example directory and execute the deploy target:

$> cd examples/jsf/translator

Chapter 3. Getting started We...

28

$> ant deploy

Note

The translator uses session beans, which are packaged in an EJB module within

an EAR. Java EE 6 will allow session beans to be deployed in WAR modules, but

that's a topic for future chapter.

Again, wait a few seconds for the application to deploy (if you are bored, read the log messages),

and visit http://localhost:8080/weld-translator to begin pseudo-translating.

TODO Insert note about upgrading the Weld deployer that directs reader to section on the JBoss

AS environment

3.3. Deploying to GlassFish

Deploying to GlassFish should be easy, right? After all, it's the Java EE 6 reference

implementation. Since it's the Java EE 6 reference implementation, that means it also bundles

the JSR-299 reference implementation, Weld! So yes, it's very easy.

To deploy the examples to GlassFish, you'll need the final GlassFish V3 release (the preview

release won't do). If the final release isn't yet available, you can download a promoted build in the

meantime. Select the b69 preview release or above that ends in either -unix.sh or -windows.exe

depending on your platform. After the download is complete, execute the installer. On Linux/Unix,

you'll need to first make the script executable.

$> chmod 755 glassfish-v3-b69-unix.sh

$> ./glassfish-v3-b69-unix.sh

On Windows you can just click on the executable. Follow the instructions in the installer. It will

create a single domain named domain1. You'll use that domain to deploy the example. We

recommend that you choose 7070 as the main HTTP port to avoid conflicts with a running instance

of JBoss AS (or Apache Tomcat).

If you've deployed either of the starter examples, weld-numberguess or weld-translator, to

JBoss AS, then you already have the deployable artifact you need. If not, switch to either of the

two directories and build it.

$> cd examples/jsf/numberguess (or examples/jsf/translator)

$> ant package

Deploying to Apache Tomcat

29

The deployable archive for the weld-numberguess, named weld-numberguess.war, ends up in

the example's target directory. The archive for the weld-translator example, named weld-

translator.ear, ends up in the example's ear/target directory. All you need to do now is deploy

them to GlassFish.

You deploy applications to GlassFish using the GlassFish Admin Console. To get the Admin

Console running, you need to start a GlassFish domain, in our case domain1. Switch to the bin

folder in the directory where you installed GlassFish and execute the following command:

$> asadmin start-domain domain1

After a few seconds you can visit the Admin Console in the browser at the URL http://

localhost:4848. In the tree on the left-hand side of the page, click on "Applications", then click

on the "Deploy..." button under the heading "Applications" and select the deployable artifact for

either of the two examples. The deployer should recognize that you have selected a Java EE

artifact and allow you to start it. You can see the examples running at either http://localhost:7070/

weld-numberguess or http://localhost:7070/weld-translator, depending on which example you

deployed.

The reason the same artifact can be deployed to both JBoss AS and GlassFish, without any

modifications, is because all of the features being used are part of the standard platform. And

what a capable platform it has become!

3.4. Deploying to Apache Tomcat

Technically, CDI doesn't support servlet containers. That's because the contexts and dependency

injection services are provided by the Java EE container, not the Servlet API. However, CDI

implementations can choose to support servlet containers through an extension. Weld does this.

Weld ships with a Servlet listener which bootstraps the CDI environment, registers the

BeanManager in JNDI and provides injection into servlets. Basically, it emulates the work done

by the Java EE container. The only limitation is that you cannot use enterprise features such as

session beans and container-managed transactions.

Let's give the Weld servlet extension a spin on Apache Tomcat. First, you'll need to download

Tomcat 6.0.18 or later from tomcat.apache.org and extract it.

$> unzip apache-tomcat-6.0.18.zip

You have two choices for how you can deploy the application to Tomcat. You can deploy it by

pushing the artifact to the hot deploy directory using Ant or you can deploy to the server across

HTTP using a Maven plugin. The Ant approach doesn't require that you have Maven installed, so

we'll start there. If you want to use Maven, you can just skip ahead.

Chapter 3. Getting started We...

30

3.4.1. Deploying with Ant

In order for Ant to push the artifact to the Tomcat hot deploy directory, it needs to know where the

Tomcat installation is located. Again, we need to setup a propery in the local.build.properties file

in the examples directory of the Weld distribution. If you haven't yet created this file, do so now.

Then assign the path of your Tomcat installation to the property key tomcat.home.

tomcat.home=/path/to/apache-tomcat-6

Now you're ready to deploy the numberguess example to Tomcat!

Change to the examples/jsf/numberguess directory again and run the Ant deploy target for

Tomcat:

$> cd examples/jsf/numberguess

$> ant tomcat.deploy

Tip

The Ant build script includes additional targets for Tomcat to deploy and undeploy

the archive in either exploded or packaged format. They are the same target names

used for JBoss AS, prefixed with "tomcat.".

• ant tomcat.restart - deploy the example in exploded format to Tomcat

• ant tomcat.explode - update an exploded example, without restarting the

deployment

• ant tomcat.deploy - deploy the example in compressed jar format to Tomcat

• ant tomcat.undeploy - remove the example from Tomcat

If you haven't already, start Tomcat. You can either start Tomcat from a Linux shell:

$> cd /path/to/apache-tomcat-6

$> ./bin/start.sh

a Windows command window:

$> cd c:\path\to\apache-tomcat-6\bin

Deploying with Maven

31

$> start

or you can start the server using an IDE, like Eclipse.

Wait a few seconds for the application to deploy (or the application server to start) and see if

you can figure out the most efficient approach to pinpoint the random number at the local URL

http://localhost:8080/weld-numberguess!

3.4.2. Deploying with Maven

You can also deploy the application to Tomcat using Maven. This section is a bit more advanced,

so skip it unless you are itching to use Maven natively. Of course, you'll first need to make sure

that you have Maven installed on your path, similar to how you setup Ant.

The Maven plugin communicates with Tomcat over HTTP, so it doesn't care where you have

installed Tomcat. However, the plugin configuration assumes you are running Tomcat in its default

configuration, with a hostname of localhost and port 8080. The readme.txt file in the example

directory has information about how to modify the Maven settings to accomodate a different setup.

To allow Maven to communicate with Tomcat over HTTP, edit the conf/tomcat-users.xml file in

your Tomcat installation and add the following line:

<user username="admin" password="" roles="manager"/>

Restart Tomcat. You can now deploy the application to Tomcat with Maven using this command:

$> mvn compile war:exploded tomcat:exploded -Ptomcat

Once the application is deployed, you can redeploy it using this command:

$> mvn tomcat:redeploy -Ptomcat

The -Ptomcat argument activates the tomcat profile defined in the Maven POM (pom.xml). Among

other things, this profile activates the Tomcat plugin.

Rather than shipping the container off to a standalone Tomcat installation, you can also execute

the application in an embedded Tomcat 6 container:

$> mvn war:inplace tomcat:run -Ptomcat

Chapter 3. Getting started We...

32

The advantage of using the embedded server is that changes to assets in src/main/webapp

take affect immediately. If a change to a webapp configuration file is made, the application

may automatically redeploy (depending on the plugin configuration). If you make a change to a

classpath resource, you need to execute a build:

$> mvn compile war:inplace -Ptomcat

There are several other Maven goals that you can use if you are hacking on the example, which

are documented in the example's readme.txt file.

3.5. Deploying to Jetty

Support for Jetty in the examples is a more recent addition. Since Jetty is traditionally used with

Maven, there are no Ant targets. You must invoke the Maven build directly to deploy the examples

to Jetty out of the box. Also, only the weld-numberguess example is configured for Jetty support

at the time of this writing.

If you've read through the entire Tomcat section, then you're all ready to go. The Maven build

parallels the embedded Tomcat deployment. If not, don't worry. We'll still go over everything in

this section that you need to know.

The Maven POM (pom.xml) includes a profile named jetty that activates the Maven Jetty plugin,

which you can use to start Jetty in embedded mode and deploy the application in place. You don't

need anything else installed except to have the Maven command (mvn) on your path. The rest

will be downloaded from the internet when the build is run.

To run the weld-numberguess example on Jetty, switch to the example directory and execute the

inplace goal of the Maven WAR plugin followed by the run goal of the Maven Jetty plugin with

the jetty profile enabled, as follows:

$> cd examples/jsf/numberguess

$> mvn war:inplace jetty:run -Pjetty

The log output of Jetty will be shown in the console. Once Jetty reports that the application has

deployed, you can access it at the following local URL: http://localhost:9090/weld-numberguess.

The port is defined in the Maven Jetty plugin configuration within the jetty profile.

Any changes to assets in src/main/webapp take affect immediately. If a change to a webapp

configuration file is made, the application may automatically redeploy. The redeploy behavior can

be fined tuned in the plugin configuration. If you make a change to a classpath resource, you

need to execute a build and the inplace goal of the Maven WAR plugin, again with the jetty profile

enabled.

The numberguess example in depth

33

$> mvn compile war:inplace -Pjetty

The war:inplace goal copies the compiled classes and JARs inside src/main/webapp, under WEB-

INF/classes and WEB-INF/lib, respectively, mixing source and compiled files. However, the build

does work around these temporary files by excluding them from the packaged WAR and cleaning

them during the Maven clean phase.

You have two options if you want to run the example on Jetty from the IDE. You can either install

the m2eclispe[link] plugin and run the goals as described above. Your other option is to start the

Jetty container from a Java application.

First, initialize the Eclipse project:

$> mvn clean eclipse:clean eclipse:eclipse -Pjetty-ide

Next, assemble all the necessary resources under src/main/webapp:

$> mvn war:inplace -Pjetty-ide

Now, you are ready to run the server in Eclipse. Import the project into your Eclipse workspace

using "Import Existing Project into Workspace. Then, find the start class in src/jetty/java and run its

main method as a Java Application. Jetty will launch. You can view the application at the following

local URL: http://localhost:8080. Pay particular attention to the port in the URL and the lack of a

trailing context path.

Now that you have gotten the starter applications deployed on the server of your choice, you

probably want to know a little bit about how they actually work. It's time to pull the covers back

and dive into the internals of these two examples. Let's start with the simpler of the two examples,

weld-numberguess.

3.6. The numberguess example in depth

In the numberguess application you get given 10 attempts to guess a number between 1 and 100.

After each attempt, you will be told whether you are too high or too low.

The numberguess example is comprised of a number of beans, configuration files and Facelets

(JSF) views, packaged as a WAR module. Let's start by examining the configuration files.

All the configuration files for this example are located in WEB-INF/, which can be found in the src/

main/webapp directory of the example. First, we have the JSF 2.0 version of faces-config.xml.

A standardized version of Facelets is the default view handler in JSF 2.0, so there's really nothing

that we have to configure. Thus, the configuration consists of only the root element.

Chapter 3. Getting started We...

34

<faces-config version="2.0"

 xmlns="http://java.sun.com/xml/ns/javaee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="

 http://java.sun.com/xml/ns/javaee

 http://java.sun.com/xml/ns/javaee/web-facesconfig_2_0.xsd">

</faces-config>

There's also an empty beans.xml file, which tells the container to look for beans in this application

and to activate the CDI services.

Finally, there's the familiar web.xml:

<web-app version="2.5"

 xmlns="http://java.sun.com/xml/ns/javaee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="

 http://java.sun.com/xml/ns/javaee

 http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd">

 <display-name>weld-jsf-numberguess-war</display-name>

 <description>Weld JSF numberguess example (WAR)</description>

 <servlet>

 <servlet-name>Faces Servlet</servlet-name>

 <servlet-class>javax.faces.webapp.FacesServlet</servlet-class>

 <load-on-startup>1</load-on-startup>

 </servlet>

 <servlet-mapping>

 <servlet-name>Faces Servlet</servlet-name>

 <url-pattern>*.jsf</url-pattern>

 </servlet-mapping>

 <context-param>

 <param-name>javax.faces.DEFAULT_SUFFIX</param-name>

 <param-value>.xhtml</param-value>

 </context-param>

 <session-config>

The numberguess example in depth

35

 <session-timeout>10</session-timeout>

 </session-config>

</web-app>

Enable and initialize the JSF servlet

Configure requests for URLs ending in .jsf to be handled by JSF

Tell JSF that we will be giving our JSF views (Facelets templates) an extension of .xhtml

Configure a session timeout of 10 minutes

Note

This demo uses JSF 2 as the view framework, but you can use Weld with any

Servlet-based web framework, such as JSF 1.2 or Wicket.

Let's take a look at the main JSF view, src/main/webapp/home.xhtml.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"

 xmlns:ui="http://java.sun.com/jsf/facelets"

 xmlns:h="http://java.sun.com/jsf/html"

 xmlns:f="http://java.sun.com/jsf/core">

 <ui:composition template="/template.xhtml">

 <ui:define name="content">

 <h1>Guess a number...</h1>

 <h:form id="numberGuess">

 <div style="color: red">

 <h:messages id="messages" globalOnly="false"/>

 <h:outputText id="Higher" value="Higher!"

 rendered="#{game.number gt game.guess and game.guess ne 0}"/>

 <h:outputText id="Lower" value="Lower!"

 rendered="#{game.number lt game.guess and game.guess ne 0}"/>

 </div>

 <div>

 I'm thinking of a number between #{game.smallest} and #{game.biggest}.

 You have #{game.remainingGuesses} guesses remaining.

 </div>

Chapter 3. Getting started We...

36

 <div>

 Your guess:

 <h:inputText id="inputGuess" value="#{game.guess}"

 size="3" required="true" disabled="#{game.number eq game.guess}"

 validator="#{game.validateNumberRange}"/>

 <h:commandButton id="guessButton" value="Guess"

 action="#{game.check}" disabled="#{game.number eq game.guess}"/>

 </div>

 <div>

 <h:commandButton id="restartButton" value="Reset" action="#{game.reset}"

 immediate="true"/>

 </div>

 </h:form>

 </ui:define>

 </ui:composition>

</html>

Facelets is the built-in templating language for JSF. Here we are wrapping our page in a

template which defines the layout.

There are a number of messages which can be sent to the user, "Higher!", "Lower!" and

"Correct!"

As the user guesses, the range of numbers they can guess gets smaller - this sentance

changes to make sure they know the number range of a valid guess.

This input field is bound to a bean property using a value expression.

A validator binding is used to make sure the user doesn't accidentally input a number outside

of the range in which they can guess - if the validator wasn't here, the user might use up a

guess on an out of bounds number.

And, of course, there must be a way for the user to send their guess to the server. Here we

bind to an action method on the bean.

The example exists of 4 classes, the first two of which are qualifiers. First, there is the @Random

qualifier, used for injecting a random number:

@Qualifier

@Target({ TYPE, METHOD, PARAMETER, FIELD })

@Retention(RUNTIME)

public @interface Random {}

There is also the @MaxNumber qualifier, used for injecting the maximum number that can be

injected:

The numberguess example in depth

37

@Qualifier

@Target({ TYPE, METHOD, PARAMETER, FIELD })

@Retention(RUNTIME)

public @interface MaxNumber {}

The application-scoped Generator class is responsible for creating the random number, via a

producer method. It also exposes the maximum possible number via a producer method:

@ApplicationScoped

public class Generator implements Serializable {

 private java.util.Random random = new java.util.Random(System.currentTimeMillis());

 private int maxNumber = 100;

 java.util.Random getRandom() {

 return random;

 }

 @Produces @Random int next() {

 return getRandom().nextInt(maxNumber);

 }

 @Produces @MaxNumber int getMaxNumber() {

 return maxNumber;

 }

}

The Generator is application scoped, so we don't get a different random each time.

Note

The package declaration and imports have been excluded from these listings. The

complete listing is available in the example source code.

The final bean in the application is the session-scoped Game class. This is the primary entry point

of the application. It's responsible for setting up or resetting the game, capturing and validating the

user's guess and providing feedback to the user with a FacesMessage. We've used constructor

injection to initialize the game with a random number.

Chapter 3. Getting started We...

38

You'll notice that we've also added the @Named annotation to this class. This annotation is only

required when you want to make the bean accessible to a JSF view via EL (i.e., #{game}).

@Named

@SessionScoped

public class Game implements Serializable {

 private int number;

 private int guess;

 private int smallest;

 private int biggest;

 private int remainingGuesses;

 @Inject @MaxNumber private int maxNumber;

 @Inject @Random Instance<Integer> randomNumber;

 public Game() {}

 public void check() {

 if (guess > number) {

 biggest = guess - 1;

 }

 else if (guess < number) {

 smallest = guess + 1;

 }

 else if (guess == number) {

 FacesContext.getCurrentInstance().addMessage(null, new FacesMessage("Correct!"));

 }

 remainingGuesses--;

 }

 @PostConstruct

 public void reset() {

 this.smallest = 0;

 this.guess = 0;

 this.remainingGuesses = 10;

 this.biggest = maxNumber;

 this.number = randomNumber.get();

 }

 public void validateNumberRange(FacesContext context, UIComponent toValidate, Object

 value) {

 if (remainingGuesses <= 0) {

 FacesMessage message = new FacesMessage("No guesses left!");

The numberguess example in Apache Tomcat

or Jetty

39

 context.addMessage(toValidate.getClientId(context), message);

 ((UIInput) toValidate).setValid(false);

 return;

 }

 int input = (Integer) value;

 if (input < smallest || input > biggest) {

 ((UIInput) toValidate).setValid(false);

 FacesMessage message = new FacesMessage("Invalid guess");

 context.addMessage(toValidate.getClientId(context), message);

 }

 }

 public int getNumber() {

 return number;

 }

 public int getGuess() {

 return guess;

 }

 public void setGuess(int guess) {

 this.guess = guess;

 }

 public int getSmallest() {

 return smallest;

 }

 public int getBiggest() {

 return biggest;

 }

 public int getRemainingGuesses() {

 return remainingGuesses;

 }

}

3.6.1. The numberguess example in Apache Tomcat or Jetty

A couple of modifications must be made to the numberguess artifact in order to deploy it to Tomcat

or Jetty. First, Weld must be deployed as a Web Application library under WEB-INF/lib since the

Chapter 3. Getting started We...

40

servlet container does not provide the CDI services. For your convenience we provide a single

JAR suitable for running Weld in any servlet container (including Jetty), weld-servlet.jar.

Tip

You must also include the JARs for JSF, EL, and the common annotations

(jsr250-api.jar), all of which are provided by the Java EE platorm (a Java EE

application server). Are you starting to appreciate why a Java EE platform is worth

using?

Second, we need to explicitly specify the servlet listener in web.xml, again because the container

isn't doing this stuff for you. The servlet listener boots Weld and controls it's interaction with

requests.

<listener>

 <listener-class>org.jboss.weld.environment.servlet.Listener</listener-class>

</listener>

When Weld boots, it places the javax.enterprise.inject.spi.BeanManager, the portable SPI

for obtaining bean instances, in the ServletContext under a variable name equal to the fully-

qualified interface name. You generally don't need to access this interface, but Weld makes use

of it.

3.6.2. The numberguess example for Apache Wicket

Weld includes a number of portable extensions for JSR-299, including an extension for Wicket,

which allows you to inject beans into Wicket components and leverage the conversation context.

In this section, we'll walk you through the Wicket version of the numberguess example.

Tip

You may want to review the Wicket documentation at http://wicket.apache.org/

before reading this section, if you aren't already familiar with the framework.

Wicket is another environment that relies on the Weld servlet extension. The use of Jetty [http://

jetty.mortbay.org] is common in the Wicket community, and is thus chosen here as the runtime

container. You've seen already that Jetty is perfectly capable of running CDI applications with

Weld add-ons, and this environment is no different.

http://wicket.apache.org/
http://jetty.mortbay.org
http://jetty.mortbay.org
http://jetty.mortbay.org

The numberguess example for Apache Wicket

41

Note

We'll also be using the Eclipse IDE in these examples. Instructions are provided

later for running the example from the commandline, but since you'll likely need

to do more than just deploy examples, we'll get setup in this full development

environment.

3.6.2.1. Creating the Eclipse project

To use the Wicket example in Eclipse, you have one of two choices. You can either use a Maven

plugin to generate a regular Eclipse Web project, or you can open the example natively using the

m2eclipse plugin. Since the Weld source code relies so heavily on Maven, we encourage you

to bite the bullet and adopt the m2eclipse plugin. Both approaches are described here for your

convenience..

If you have m2eclipse installed, you can open any Maven project directly. From within Eclipse,

select File -> Import... -> Maven Projects. Then, browse to the location of the Wicket numberguess

example. You should see that Eclipse recognizes the existance of a Maven project.

Chapter 3. Getting started We...

42

This will create a project in your workspace called weld-wicket-numberguess.

You'll notice after importing, the project has a build error. That's because we need to enable a

Maven profile. Right-click on the project and select Properties, then select the Maven tab in the

window that appears. In the form field labeled "Active Maven Profiles (comma separated):", type

jetty. That will enable some extra dependencies that allow the project to compile. You're now

ready to develop!

The numberguess example for Apache Wicket

43

If you are not using the m2eclipse plugin, you have to follow different steps to import the project.

First, switch into the Wicket numberguess example, then execute the Maven Eclipse plugin with

the jetty profile activated, as follows:

$> cd examples/wicket/numberguess

mvn -Pjetty eclipse:eclipse

Then, from Eclipse, choose File -> Import... -> General -> Existing Projects into Workspace, select

the root directory of the numberguess example, and click Finish. This will create a project in your

workspace called weld-wicket-numberguess.

It's time to get the example running!

3.6.2.2. Running the example from Eclipse

This project follows the wicket-quickstart approach of creating an instance of Jetty in the Start

class. So running the example is as simple as right-clicking on that Start class in src/test/java

in the Package Explorer and choosing Run as Java Application. You should see console output

related to Jetty starting up; then visit able http://localhost:8080 to view the app. To debug

choose Debug as Java Application instead.

Chapter 3. Getting started We...

44

3.6.2.3. Running the example from the command line in JBoss AS or

Tomcat

This example can also be deployed from the command line in a (similar to the other examples).

Assuming you have set up the local.build.properties file in the examples directory to specify

the location of JBoss AS or Tomcat, as previously described, you can run:

$> ant deploy

to deploy the example to JBoss AS, and:

$> ant tomcat.deploy

to deploy the example to Tomcat. You can then access application at http://localhost:8080/

weld-numberguess-wicket.

Alternatively, you can run the application in place on an embedded Jetty container using the

following Maven command:

$> mvn jetty:run -Pjetty

Enough toying with deployment, let's dive into the code.

3.6.2.4. Understanding the code

The code in the wicket numberguess example is very similar to the JSF-based numberguess

example. The business layer is identical! Where things differ is in view binding. JSF uses Unified

EL expressions to bind XML-based view layer components in JSF views to beans. In contrast,

Wicket defines its components in Java. These Java-based view components have a one-to-one

mapping with HTML elements in an adjacent (pure) HTML file. All view logic, including binding of

components to models and controlling the response of view actions, is handled in Java.

The integration of Weld with Wicket takes advantage of the same qualifier annotations used in

your business layer to provide injection into your WebPage subclass (or into other custom Wicket

component subclasses).

Here's where things differ from the JSF numberguess example:

• Each wicket application must have a WeldApplication subclass. In our case, our application

class is NumberGuessApplication:

public class NumberGuessApplication extends WeldApplication {

The numberguess example for Apache Wicket

45

 @Override public Class getHomePage() {

 return HomePage.class;

 }

}

This class specifies which page Wicket should treat as our home page, in our case,

HomePage.class

• In HomePage, we see typical Wicket code to set up page elements. The bit that is interesting is

the injection of the Game bean:

@Inject Game game;

The Game bean is can then be used, for example, by the code for submitting a guess:

final Component guessButton = new AjaxButton("GuessButton") {

 protected void onSubmit(AjaxRequestTarget target, Form form) {

 if (game.check()) {

 info("Correct!");

 setVisible(false);

 prompt.setVisible(false);

 guessLabel.setVisible(false);

 inputGuess.setVisible(false);

 }

 else if (game.getRemainingGuesses() == 0) {

 info("Sorry, the answer was " + game.getNumber());

 setVisible(false);

 guessLabel.setVisible(false);

 inputGuess.setVisible(false);

 }

 else if (game.getNumber() > game.getGuess()) {

 info("Higher!");

 }

 else if (game.getNumber() < game.getGuess()) {

 info("Lower");

 }

 target.addComponent(form);

 }

};

Chapter 3. Getting started We...

46

Note

All injections may be serialized; actual storage of the bean is managed by JSR-

299. Note that Wicket components, like the HomePage and it subcomponents,

are not JSR-299 beans.

Wicket components allow injection, but they cannot use interceptors, decorators

and lifecycle callbacks such as @PostConstruct or @Initializer methods.

The components would need to delegate to actual beans to leverage these

features.

• The example uses AJAX for processing of button events, and dynamically hides buttons that

are no longer relevant, for example when the user has won the game.

• In order to activate Wicket for this webapp, the Wicket filter is added to web.xml, and our

application class is specified in web.xml:

<filter>

 <filter-name>Wicket Filter</filter-name>

 <filter-class>org.apache.wicket.protocol.http.WicketFilter</filter-class>

 <init-param>

 <param-name>applicationClassName</param-name>

 <param-value>org.jboss.weld.examples.wicket.NumberGuessApplication</param-value>

 </init-param>

</filter>

<filter-mapping>

 <filter-name>Wicket Filter</filter-name>

 <url-pattern>/*</url-pattern>

</filter-mapping>

The servlet listener is still required, as in the Tomcat example, to bootstrap CDI when Jetty

starts and to hook CDI into the Jetty servlet request and session lifecycles. However, rather

than putting it into the web.xml, it is placed into an override file, src/main/webapp/WEB-INF/

jetty-additions-to-web.xml, that is passed to Jetty as extra descriptor to be appended to the

web.xml configuration.

<web-app version="2.4" ...>

 <listener>

 <listener-class>org.jboss.weld.environment.servlet.Listener</listener-class>

 </listener>

The numberguess example for Java SE with

Swing

47

</web-app>

3.6.3. The numberguess example for Java SE with Swing

This example can be found in the examples/se/numberguess folder of the Weld distribution.

To run this example:

• Open a command line/terminal window in the examples/se/numberguess directory

• Ensure that Maven 2 is installed and in your PATH

• Ensure that the JAVA_HOME environment variable is pointing to your JDK installation

• execute the following command

$> mvn -Drun

There is an empty beans.xml file in the root package (src/main/resources/beans.xml), which

marks this application as a CDI application.

The game's main logic is located in Game.java. Here is the code for that class, highlighting the

changes made from the web application version:

@ApplicationScoped

public class Game implements Serializable {

 private int number;

 private int guess;

 private int smallest;

 private int biggest;

 private int remainingGuesses;

 private boolean validNumberRange = true;

 @Inject @MaxNumber private int maxNumber;

 @Inject Generator rndGenerator;

 ...

 public boolean isValidNumberRange() {

 return validNumberRange;

 }

Chapter 3. Getting started We...

48

 public boolean isGameWon() {

 return guess == number;

 }

 public boolean isGameLost() {

 return guess != number && remainingGuesses <= 0;

 }

 public boolean check() {

 boolean result = false;

 if (checkNewNumberRangeIsValid()) {

 if (guess > number) {

 biggest = guess - 1;

 }

 if (guess < number) {

 smallest = guess + 1;

 }

 if (guess == number) {

 result = true;

 }

 remainingGuesses--;

 }

 return result;

 }

 private boolean checkNewNumberRangeIsValid() {

 return validNumberRange = ((guess >= smallest) && (guess <= biggest));

 }

 @PostConstruct

 public void reset() {

 this.smallest = 0;

 ...

 this.number = rndGenerator.next();

 }

}

The numberguess example for Java SE with

Swing

49

The bean is application scoped instead of session scoped, since an instance of the

application represents a single 'session'.

The bean is not named, since it doesn't need to be accessed via EL

There is no JSF FacesContext to add messages to. Instead the Game class provides

additional information about the state of the current game including:

• If the game has been won or lost

• If the most recent guess was invalid

This allows the Swing UI to query the state of the game, which it does indirectly via a class

called MessageGenerator, in order to determine the appropriate messages to display to the

user during the game.

Validation of user input is performed during the check() method, since there is no dedicated

validation phase

The reset() method makes a call to the injected rndGenerator in order

to get the random number at the start of each game. It cannot use

manager.getInstanceByType(Integer.class, new AnnotationLiteral<Random>(){})

as the JSF example does because there will not be any active contexts like there is during

a JSF request.

The MessageGenerator class depends on the current instance of Game, and queries its state in

order to determine the appropriate messages to provide as the prompt for the user's next guess

and the response to the previous guess. The code for MessageGenerator is as follows:

public class MessageGenerator {

 @Inject Game game;

 public String getChallengeMessage() {

 StringBuilder challengeMsg = new StringBuilder("I'm thinking of a numb er between ");

 challengeMsg.append(game.getSmallest());

 challengeMsg.append(" and ");

 challengeMsg.append(game.getBiggest());

 challengeMsg.append(". Can you guess what it is?");

 return challengeMsg.toString();

 }

 public String getResultMessage() {

 if (game.isGameWon()) {

 return "You guess it! The number was " + game.getNumber();

 }

Chapter 3. Getting started We...

50

 else if (game.isGameLost()) {

 return "You are fail! The number was " + game.getNumber();

 }

 else if (! game.isValidNumberRange()) {

 return "Invalid number range!";

 }

 else if (game.getRemainingGuesses() == Game.MAX_NUM_GUESSES) {

 return "What is your first guess?";

 }

 else {

 String direction = null;

 if (game.getGuess() < game.getNumber()) {

 direction = "Higher";

 }

 else {

 direction = "Lower";

 }

 return direction + "! You have " + game.getRemainingGuesses() + " guesses left.";

 }

 }

}

The instance of Game for the application is injected here.

The Game's state is interrogated to determine the appropriate challenge message.

And again to determine whether to congratulate, console or encourage the user to continue.

Finally we come to the NumberGuessFrame class which provides the Swing front end to our

guessing game.

public class NumberGuessFrame extends javax.swing.JFrame {

 private @Inject Game game;

 private @Inject MessageGenerator msgGenerator;

 public void start(@Observes @Deployed Manager manager) {

 java.awt.EventQueue.invokeLater(new Runnable()

 {

 public void run()

The numberguess example for Java SE with

Swing

51

 {

 initComponents();

 setVisible(true);

 }

 });

 }

 private void initComponents() {

 buttonPanel = new javax.swing.JPanel();

 mainMsgPanel = new javax.swing.JPanel();

 mainLabel = new javax.swing.JLabel();

 messageLabel = new javax.swing.JLabel();

 guessText = new javax.swing.JTextField();

 ...

 mainLabel.setText(msgGenerator.getChallengeMessage());

 mainMsgPanel.add(mainLabel);

 messageLabel.setText(msgGenerator.getResultMessage());

 mainMsgPanel.add(messageLabel);

 ...

 }

 private void guessButtonActionPerformed(java.awt.event.ActionEvent evt) {

 int guess = Integer.parseInt(guessText.getText());

 game.setGuess(guess);

 game.check();

 refreshUI();

 }

 private void replayBtnActionPerformed(java.awt.event.ActionEvent evt) {

 game.reset();

 refreshUI();

 }

 private void refreshUI() {

 mainLabel.setText(msgGenerator.getChallengeMessage());

 messageLabel.setText(msgGenerator.getResultMessage());

 guessText.setText("");

 guessesLeftBar.setValue(game.getRemainingGuesses());

Chapter 3. Getting started We...

52

 guessText.requestFocus();

 }

 // swing components

 private javax.swing.JPanel borderPanel;

 ...

 private javax.swing.JButton replayBtn;

}

The injected instance of the game (logic and state).

The injected message generator for UI messages.

This application is started in the usual CDI SE way, by observing the @Deployed Manager

event.

This method initialises all of the Swing components. Note the use of the msgGenerator.

guessButtonActionPerformed is called when the 'Guess' button is clicked, and it does the

following:

• Gets the guess entered by the user and sets it as the current guess in the Game

• Calls game.check() to validate and perform one 'turn' of the game

• Calls refreshUI. If there were validation errors with the input, this will have been

captured during game.check() and as such will be reflected in the messeges returned

by MessageGenerator and subsequently presented to the user. If there are no validation

errors then the user will be told to guess again (higher or lower) or that the game has ended

either in a win (correct guess) or a loss (ran out of guesses).

replayBtnActionPerformed simply calls game.reset() to start a new game and refreshes

the messages in the UI.

refreshUI uses the MessageGenerator to update the messages to the user based on the

current state of the Game.

3.7. The translator example in depth

The translator example will take any sentences you enter, and translate them to Latin. (Well, not

really, but the stub is there for you to implement, at least. Good luck!)

The translator example is built as an EAR and contains EJBs. As a result, it's structure is more

complex than the numberguess example.

The translator example in depth

53

Note

Jave EE 6, which bundles EJB 3.1, allows you to package EJBs in a WAR, which

will make this structure much simpler! Still, there are other advantages of using

an EAR.

First, let's take a look at the EAR aggregator, which is located in the example's ear directory.

Maven automatically generates the application.xml for us from this plugin configuration:

<plugin>

 <groupId>org.apache.maven.plugins</groupId>

 <artifactId>maven-ear-plugin</artifactId>

 <configuration>

 <modules>

 <webModule>

 <groupId>org.jboss.weld.examples.jsf.translator</groupId>

 <artifactId>weld-jsf-translator-war</artifactId>

 <contextRoot>/weld-translator</contextRoot>

 </webModule>

 </modules>

 </configuration>

</plugin>

This configuration overrides the web context path, resulting in this application URL: http://

localhost:8080/weld-translator.

Tip

If you weren't using Maven to generate these files, you would need META-INF/

application.xml:

<application version="5"

 xmlns="http://java.sun.com/xml/ns/javaee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="

 http://java.sun.com/xml/ns/javaee

 http://java.sun.com/xml/ns/javaee/application_5.xsd">

 <display-name>weld-jsf-translator-ear</display-name>

 <description>The Weld JSF translator example (EAR)</description>

http://localhost:8080/weld-translator
http://localhost:8080/weld-translator

Chapter 3. Getting started We...

54

 <module>

 <web>

 <web-uri>weld-translator.war</web-uri>

 <context-root>/weld-translator</context-root>

 </web>

 </module>

 <module>

 <ejb>weld-translator.jar</ejb>

 </module>

</application>

Next, lets look at the WAR, which is located in the example's war directory. Just as in the

numberguess example, we have a faces-config.xml for JSF 2.0 and a web.xml (to activate

JSF) under WEB-INF, both sourced from src/main/webapp/WEB-INF.

More intersting is the JSF view used to translate text. Just as in the numberguess example we

have a template, which surrounds the form (ommitted here for brevity):

<h:form id="translator">

 <table>

 <tr align="center" style="font-weight: bold">

 <td>

 Your text

 </td>

 <td>

 Translation

 </td>

 </tr>

 <tr>

 <td>

 <h:inputTextarea id="text" value="#{translator.text}" required="true" rows="5" cols="80"/>

 </td>

 <td>

 <h:outputText value="#{translator.translatedText}"/>

 </td>

 </tr>

 </table>

 <div>

 <h:commandButton id="button" value="Translate" action="#{translator.translate}"/>

 </div>

The translator example in depth

55

</h:form>

The user can enter some text in the left-hand textarea, and hit the translate button to see the

result to the right.

Finally, let's look at the EJB module, which is located in the example's ejb directory. In src/main/

resources/META-INF there is just an empty beans.xml, used to mark the archive as containing

beans.

We've saved the most interesting bit to last, the code! The project has two simple beans,

SentenceParser and TextTranslator and two session beans, TranslatorControllerBean and

SentenceTranslator. You should be getting quite familiar with what a bean looks like by now,

so we'll just highlight the most interesting bits here.

Both SentenceParser and TextTranslator are dependent beans, and TextTranslator uses

constructor injection:

public class TextTranslator implements Serializable {

 private SentenceParser sentenceParser;

 @EJB private Translator translator;

 @Inject public TextTranslator(SentenceParser sentenceParser) {

 this.sentenceParser = sentenceParser;

 }

 public String translate(String text) {

 StringBuilder sb = new StringBuilder();

 for (String sentence: sentenceParser.parse(text)) {

 sb.append(translator.translate(sentence)).append(". ");

 }

 return sb.toString().trim();

 }

}

TextTranslator uses the simple bean (really just a plain Java class!) SentenceParser to parse

the sentence and then calls on the stateless bean with the local business interface Translator

to perform the translation. That's where the magic happens. Of course, we couldn't develop a full

translator, but it's convincing enough to anyone who doesn't understand Latin!

@Stateless

Chapter 3. Getting started We...

56

public class SentenceTranslator implements Translator {

 public String translate(String sentence) {

 return "Lorem ipsum dolor sit amet";

 }

}

Finally, there is UI orientated controller. This is a request scoped, named, stateful session bean,

which injects the translator. It collects the text from the user and dispatches it to the translator.

The bean also has getters and setters for all the fields on the page.

@Stateful

@RequestScoped

@Named("translator")

public class TranslatorControllerBean implements TranslatorController {

 @Inject private TextTranslator translator;

 private String inputText;

 private String translatedText;

 public void translate() {

 translatedText = translator.translate(inputText);

 }

 public String getText() {

 return inputText;

 }

 public void setText(String text) {

 this.inputText = text;

 }

 public String getTranslatedText() {

 return translatedText;

 }

 @Remove public void remove() {}

}

The translator example in depth

57

[CHECK is this still accurate?] Since this is a stateful session bean, we have to have a remove

method. The bean manager will call the remove method for you when the bean is destroyed; in

this case at the end of the request.

You'll notice in this example the smooth integration between the existing @EJB resource injection

annotation and the new @Inject annotation for injecting any managed or session bean. The tight

integration with Java EE is a key value proposition of CDI (not to mention a requirement).

That concludes our short tour of the Weld starter examples. For more information on Weld, or to

help out with development, please visit http://www.seamframework.org/Weld/Development.

We need help in all areas - bug fixing, writing new features, writing examples and translating this

reference guide.

http://www.seamframework.org/Weld/Development

58

Chapter 4.

59

Dependency injection and

programmatic lookup
One of the most significant features of CDI, certainly the most recognized, is dependency injection.

But not just dependency injection; type-safe dependency injection. In this chapter, you'll learn how

CDI is able to leverage the Java type system and annotations to build a dependency injection

strategy that is both strongly typed and keeps the implementation hidden from the client.

4.1. Where you can @Inject

Injections are declared using the JSR-330 annotation, @Inject, along with an optional set of

qualifiers annotations. CDI supports three primary mechanisms for dependency injection during

bean construction:

Bean constructor parameter injection:

public class Checkout {

 private final ShoppingCart cart;

 @Inject

 public Checkout(ShoppingCart cart) {

 this.cart = cart;

 }

}

Note

A bean can only have one injectable constructor.

Initializer method parameter injection:

public class Checkout {

 private ShoppingCart cart;

 @Inject

 void setShoppingCart(ShoppingCart cart) {

Chapter 4. Dependency injecti...

60

 this.cart = cart;

 }

}

Note

A bean can have multiple initializer methods. If the bean is a session bean, the

initializer method is not required to be a business method of the session bean.

And direct field injection:

public class Checkout {

 private @Inject ShoppingCart cart;

}

Note

Getter and setter methods are not required for field injection to work (unlike with

JSF managed beans).

Dependency injection always occurs when the bean instance is first instantiated by the container.

• First, the container calls the bean constructor (the default constructor or the one annotated

@Inject), to obtain an instance of the bean.

• Next, the container initializes the values of all injected fields of the bean.

• Next, the container calls all initializer methods of bean (the call order is not portable, don't rely

on it).

• Finally, the @PostConstruct method of the bean is called, if defined.

Tip

One major advantage of using constructor injection is that the bean can be made

immutable.

What gets injected

61

Bean constructors, initializer methods and injected fields must be annotated @Inject. The

parameters of bean constructors and initializers are injection points, which means the container

will search out beans matching the bean type and qualifier and pass them in as arguments.

If a parameter of bean constructors and initializer methods is not explicitly annotated with a

qualifier, the default qualifier, @Default, is applied. The same is goes for an injected field.

CDI also supports parameter injection on methods that are invoked by the container. For instance,

parameter injection is supported for producer methods:

@Produces Checkout createCheckout(ShoppingCart cart) {

 return new Checkout(cart);

}

This is one of the cases where the @Inject annotation is not required at an injection point. Other

cases include observer methods (which we'll meet in Chapter 9, Events), disposal methods and

destructor methods, which all support parameter injection.

4.2. What gets injected

The CDI specification defines a procedure, called the typesafe resolution algorithm, that the

container follows when identifying the bean to inject to an injection point. This algorithm

looks complex at first, but once you understand it, it's really quite intuitive. Typesafe

resolution is performed at system initialization time, which means that the container will

inform the developer immediately if a bean's dependencies cannot be satisfied, by throwing a

UnsatisfiedDependencyException or AmbiguousDependencyException.

The purpose of this algorithm is to allow multiple beans to implement the same bean type and

either:

• allow the client to select which implementation it requires using qualifier or

• allow the application deployer to select which implementation is appropriate for a particular

deployment, without changes to the client, by enabling or disabling an alternative, or

Obviously, if you have exactly one bean of a given type, and an injection point with that same

type, then bean A is going to go into slot A. That's the simplest possible scenario. When you first

start your application, you'll likely have lots of those.

But then, things start to get complicated. Let's explore how the container determines which bean

to inject in those not-so-obvious cases by taking a look at qualifiers and how they help your beans

fit into the right picture.

Chapter 4. Dependency injecti...

62

4.3. Qualifier annotations

If we have more than one bean that implements a particular bean type, the injection point can

specify exactly which bean should be injected using a qualifier annotation. For example, there

might be two implementations of PaymentProcessor:

@Synchronous

public class SynchronousPaymentProcessor implements PaymentProcessor {

 public void process(Payment payment) { ... }

}

@Asynchronous

public class AsynchronousPaymentProcessor implements PaymentProcessor {

 public void process(Payment payment) { ... }

}

Where @Synchronous and @Asynchronous are qualifier annotations:

@Qualifier

@Retention(RUNTIME)

@Target({TYPE, METHOD, FIELD, PARAMETER})

public @interface Synchronous {}

@Qualifier

@Retention(RUNTIME)

@Target({TYPE, METHOD, FIELD, PARAMETER})

public @interface Asynchronous {}

A client bean developer uses the qualifier annotation to specify exactly which bean should be

injected.

Using field injection:

@Inject @Synchronous PaymentProcessor syncPaymentProcessor;

@Inject @Asynchronous PaymentProcessor asyncPaymentProcessor;

Using initializer method injection:

Qualifier annotations

63

@Inject

public void setPaymentProcessors(@Synchronous PaymentProcessor syncPaymentProcessor,

 @Asynchronous PaymentProcessor asyncPaymentProcessor) {

 this.syncPaymentProcessor = syncPaymentProcessor;

 this.asyncPaymentProcessor = asyncPaymentProcessor;

}

Using using constructor injection:

@Inject

public Checkout(@Synchronous PaymentProcessor syncPaymentProcessor,

 @Asynchronous PaymentProcessor asyncPaymentProcessor) {

 this.syncPaymentProcessor = syncPaymentProcessor;

 this.asyncPaymentProcessor = asyncPaymentProcessor;

}

Qualifier annotations can also qualify method arguments of producer, disposer and observer

methods. Combining qualified arguments with producer methods is a good way to have an

implementation of a bean type at runtime selected at runtime based on the state of the system:

@Produces

PaymentProcessor getPaymentProcessor(@Synchronous PaymentProcessor

 syncPaymentProcessor,

 @Asynchronous PaymentProcessor asyncPaymentProcessor) {

 return isSynchronous() ? syncPaymentProcessor : asyncPaymentProcessor;

}

Now, you may be thinking, "What's the different between using a qualifier and just specifying

the exact implementation class you want?" It's important to understand that a qualifier is like an

extension of the interface. You could potentially implement the asynchronous payment processor

differently over the age of the application. However, if you use qualifier annotations to hook

injection points with the bean implementing that functionality, the server implementation can vary

without affecting the client code. Plus, you get all the benefits of using the bean's interface because

you don't have a hard dependency on the implementation.

Qualifiers will likely replace use of the factory pattern as well. The container becomes your factory

and the switch between implementations is dictated by the qualifier.

Chapter 4. Dependency injecti...

64

4.3.1. Qualifiers with members

Annotations can have members (i.e., fields) just like regular classes. You can use these fields to

furthur discriminate the qualifier. This simply prevents an explosion of annotations that you have to

introduce. For instance, if you wanted to create several qualifiers representing different payment

methods, you could aggregate them under a single annotation using a member:

@Qualifier

@Retention(RUNTIME)

@Target({METHOD, FIELD, PARAMETER, TYPE})

public @interface PayBy {

 PaymentMethod value();

}

Then you select one of the possible values when you use the qualifier:

private @Inject @PayBy(CHECK) CheckPayment checkPayment;

You can tell the container to ignore a member of a qualifier type by annotating the member

@NonBinding.

@Qualifier

@Retention(RUNTIME)

@Target({METHOD, FIELD, PARAMETER, TYPE})

public @interface PayBy {

 PaymentMethod value();

 @NonBinding String comment;

}

4.3.2. Combining qualifiers

Both a bean and an injection point may specify multiple qualifiers:

@Synchronous @Reliable

public class SynchronousReliablePaymentProcessor implements PaymentProcessor {

 public void process(Payment payment) { ... }

}

Qualifiers on producer methods

65

@Inject @Synchronous @Reliable PaymentProcessor syncPaymentProcessor;

In this case, only a bean which has both qualifier annotations would be eligible for injection.

4.3.3. Qualifiers on producer methods

Even producer methods may specify qualifier annotations:

@Produces @Asynchronous PaymentProcessor getPaymentProcessor() { ... }

This producer might create an asynchronous implementation powered by third party library such

as Quartz (though definitely check out the new scheduler support in EJB 3.1!).

4.3.4. The default qualifier

CDI defines the qualifier annotation @Default that is the default qualifier type for any injection

point or bean that does not explicitly specify a qualifier.

The most common circumstance when it's necessary to explicitly specify @Default is on a bean

which as another qualifier in addition to the default one.

4.4. Fixing unsatisfied dependencies

The typesafe resolution algorithm fails when, after considering the qualifier annotations on

all beans that implement the bean type of an injection point and filtering out disabled beans

(@Alternative beans which are not explicitly enabled), the container is unable to identify exactly

one bean to inject. The container will either throw an UnsatisfiedDependencyException or

AmbiguousDependencyException, depending on the circumstance.

During the course of your development, your going to encounter these errors. Let's learn how to

resolve them. It's usually pretty easy, and a decent IDE can really help out here.

To fix an UnsatisfiedDependencyException, simply provide a bean which implements the bean

type and has all the qualifier types of the injection point # or explicitly enable an @Alternative

bean that implements the bean type and has the appropriate qualifier types.

To fix an AmbiguousDependencyException, introduce a qualifier to distinguish between the two

implementations of the bean type, or disable one of two @Alternative beans that are trying

to occupy the same space. An AmbiguousDependencyException can only occur if two enabled

beans share the same qualifier types (and one bean does not specialize the other, which we'll get

into specialization in Chapter 11, Specialization, inheritance and alternatives).

Chapter 4. Dependency injecti...

66

Tip

Just remember: "There can be only one."

There's one more issue you need to be aware of when using dependency injection in beans: client

proxies.

4.5. Client proxies

Clients of an injected bean do not usually hold a direct reference to a bean instance, unless the

bean is dependent-scoped--in that case, the instance belongs to the bean.

Imagine that a bean bound to the application scope held a direct reference to a bean bound

to the request scope. The application-scoped bean is shared between many different requests.

However, each request should see a different instance of the request scoped bean--the current

one!

Now imagine that a bean bound to the session scope holds a direct reference to a bean bound to

the application scope. From time to time, the session context is serialized to disk in order to use

memory more efficiently. However, the application scoped bean instance should not be serialized

along with the session scoped bean! It can get that reference any time. No need to hoard it!

Therefore, unless a bean has the default scope @Dependent, the container must indirect all

injected references to the bean through a proxy object. This client proxy is responsible for ensuring

that the bean instance that receives a method invocation is the instance that is associated with

the current context. The client proxy also allows beans bound to contexts such as the session

context to be serialized to disk without recursively serializing other injected beans.

Note

If you recall, Seam also boasted the ability to reference the current instance of a

component. However, Seam went about it differently. In Seam, the references are

established prior to the method call and cleared afterword using an interceptor--a

process known as bijection. This model was not very friendly to multiple threads

sharing instances and thefore the client proxy approach was adopted in CDI

instead.

Unfortunately, due to limitations of the Java language, some Java types cannot be proxied by the

container. If one of these types declares any scope other than @Dependent, the container throws

an UnproxyableDependencyException when processing its use as an injection point.

The following Java types cannot be proxied by the container:

• classes which don't have a non-private constructor with no parameters, and

• classes which are declared final or have a final method,

Obtaining a contextual instance by

programmatic lookup

67

• arrays and primitive types.

It's usually very easy to fix an UnproxyableDependencyException. Simply add a constructor with

no parameters to the injected class, introduce an interface, or, if all else fails, change the scope

of the injected bean to @Dependent.

4.6. Obtaining a contextual instance by programmatic

lookup

In certain situations, injection is not the most convenient way to obtain a contextual reference. For

example, it may not be used when:

• the bean type or qualifiers vary dynamically at runtime, or

• depending upon the deployment, there may be no bean which satisfies the type and qualifiers, or

• we would like to iterate over all beans of a certain type.

In these situations, the application may obtain an instance of the interface Instance

parameterized for the bean type by injection:

@Inject Instance<PaymentProcessor> paymentProcessorSource;

The get() method on Instance can be used to produce a contextual instance of the bean

programmatically.

PaymentProcessor p = paymentProcessorSource.get()

Of course, qualifiers can be specified at the injection point, as with a bean injection:

@Inject @Asynchronous Instance<PaymentProcessor> paymentProcessorSource;

You can also select a bean dynamically from the Instance based on the bean's qualifier. First,

you need to add the @Any annotation at the injection point:

@Inject @Any Instance<PaymentProcessor> paymentProcessorSource;

Then you specify which bean you want, based on its qualifier, using the select() method

on Instance. You represent a qualifier annotation in code by subclassing the helper class

AnnotationLiteral, since it's otherwise difficult to instantiate an annotation type in Java.

Chapter 4. Dependency injecti...

68

PaymentProcessor p = paymentProcessorSource

 .select(new AnnotationLiteral<Asynchronous>() {});

You can choose to create a concreate type for all of your annotation literals, such as:

abstract class AsynchronousQualifier

extends AnnotationLiteral<Asynchronous> implements Asynchronous {}

Note

The concrete is required if your qualifier has members, since an anonymous

subclass cannot define members.

Again, like with annotation definitions, the AnnotationLiteral definition may seem a bit foreign

at first, but it will soon become second nature as you will see it often in CDI applications.

Here's how you might make use the dynamic selection:

Annotation qualifier = synchronously ?

new SynchronousQualifier() : new AsynchronousQualifier();

PaymentProcessor p = anyPaymentProcessor.select(qualifier).get().process(payment);

4.7. Bean names and EL lookup

You won't always be able to take advantage of the type safety that CDI provides. One of those

places is the JSF view. To accomodate that environment, CDI must learn to speak the binding

language that view templates understand. That language is the Unified EL.

In order to participate in the Unified EL, a bean must have a name. The old way of assigning a

name to a managed bean was in the faces-config.xml descriptor. This use of XML completely

contradicts the approach to metadata that's in CDI. Given that one of the primary goals of JSR-299

is to get JSF talking with session beans (and, in turn, the rest of the Java EE platform), CDI needed

to find a compromise. It did in the form of the @Named.

The @Named annotation, when added to a bean class, producer method or producer field, gives an

alternate way for that bean to be referenced--by a string-based name.

public @Named("cart") @SessionScoped class ShoppingCart {

 ...

Lifecycle callbacks and resource injections

69

}

public @Produces @Named("items") List<Item> getItems() { ... }

private @Produces @Named("currentUser") User user;

Of course, you don't want to use this string-based name in your Java code, but you can use it

your JSF views to invoke or read state from a bean. Since a bean could be an session bean, now

you can hook your JSF view directly to your business component without any middle man and still

keep the layers loosely coupled. Loosely coupled? Yes, because names can be associated with

the deployment time and runtime polymorphism that CDI provides.

Although JSF 2 still includes a managed bean facility, it's expected that you are now going to

prefer CDI and EJB as your bean container, since they provides all that JSF managed beans have

and much, much more. Plus, your business tier isn't tied to JSF in any way.

4.8. Lifecycle callbacks and resource injections

As part of the managed bean contract, all CDI beans support the lifecycle callback methods,

@PostConstruct and @PreDestroy which are called after the bean is initialized (and after

injections take place) and before it is destroyed (when the context to which it is bound ends),

respectively.

Of course, session beans also support callback methods introduced by the EJB specification,

such as @PrePassivate and @PostActivate.

Managed beans also support Java EE 5-style resource injections, declared using the @Resource

annotation on a field. CDI beans can also inject session beans with the @EJB annotation.

However, as you learned in a previous section, these injections are not fully type-safe, nor do

they have the semantics that CDI provides. Therefore, it's the use of @Inject for injection is

preferred. Relegate the resource injections to a bean that uses producer fields to mold these

container-managed objects into injectable beans.

70

Chapter 5.

71

Scopes and contexts
So far, we've seen a few examples of scope type annotations. The scope of a bean determines

the lifecycle of instances of the bean. The scope also determines which clients refer to which

instances of the bean. According to the CDI specification, a scope determines:

• When a new instance of any bean with that scope is created

• When an existing instance of any bean with that scope is destroyed

• Which injected references refer to any instance of a bean with that scope

For example, if we have a session-scoped bean, CurrentUser, all beans that are called in the

context of the same HttpSession will see the same instance of CurrentUser. This instance will

be automatically created the first time a CurrentUser is needed in that session, and automatically

destroyed when the session ends.

Note

There's actually no way to remove a bean from a context explicitly. It turns out that's

a good thing because there is no confusion as to which instance you are getting.

5.1. Scope types

CDI features an extensible context model. It's possible to define new scopes by creating a new

scope type annotation:

@ScopeType

@Retention(RUNTIME)

@Target({TYPE, METHOD})

public @interface ClusterScoped {}

Of course, that's the easy part of the job. For this scope type to be useful, we will also need to

define a Context object that implements the scope! Implementing a Context is usually a very

technical task, intended for framework development only. You can expect an implemention of the

business scope, for instance, in a future version of Seam.

We can apply a scope type annotation to a bean implementation class to specify the scope of

the bean:

@ClusterScoped

Chapter 5. Scopes and contexts

72

public class SecondLevelCache { ... }

Usually, you'll use one of CDI's built-in scopes.

5.2. Built-in scopes

CDI defines four built-in scopes:

• @RequestScoped

• @SessionScoped

• @ApplicationScoped

• @ConversationScoped

For a web application that uses CDI:

• any servlet request has access to active request, session and application scopes, and,

additionally

• any JSF request has access to an active conversation scope.

Note

A CDI extension can support the conversation for other frameworks as well.

The request and application scopes are also active:

• during invocations of EJB remote methods,

• during EJB timeouts,

• during message delivery to a message-driven bean, and

• during web service invocations.

If the application tries to invoke a bean with a scope that does not have an active context, a

ContextNotActiveException is thrown by the container at runtime.

Three of the four built-in scopes should be extremely familiar to every Java EE developer, so let's

not waste time discussing them here. One of the scopes, however, is new.

The conversation scope

73

5.3. The conversation scope

The conversation scope is a bit like the traditional session scope in that it holds state associated

with a user of the system, and spans multiple requests to the server. However, unlike the session

scope, the conversation scope:

• is demarcated explicitly by the application, and

• holds state associated with a particular web browser tab in a JSF application (browsers tend

to share domain cookies, and hence the session cookie, between tabs, which is the root of the

issue).

A conversation represents a task--a unit of work from the point of view of the user. The

conversation context holds state associated with what the user is currently working on. If the user

is doing multiple things at the same time, there are multiple conversations.

The conversation context is active during any JSF request. Most conversations are destroyed at

the end of the request. If a conversation should hold state across multiple requests, it must be

explicitly promoted to a long-running conversation.

5.3.1. Conversation demarcation

CDI provides a built-in bean for controlling the lifecyle of conversations in a JSF application. This

bean may be obtained by injection:

@Inject Conversation conversation;

To promote the conversation associated with the current request to a long-running conversation,

call the begin() method from application code. To schedule the current long-running conversation

context for destruction at the end of the current request, call end().

In the following example, a conversation-scoped bean controls the conversation with which it is

associated:

@ConversationScoped @Stateful

public class OrderBuilder {

 private Order order;

 private @Inject Conversation conversation;

 private @PersistenceContext(type = EXTENDED) EntityManager em;

 @Produces public Order getOrder() {

 return order;

 }

Chapter 5. Scopes and contexts

74

 public Order createOrder() {

 order = new Order();

 conversation.begin();

 return order;

 }

 public void addLineItem(Product product, int quantity) {

 order.add(new LineItem(product, quantity));

 }

 public void saveOrder(Order order) {

 em.persist(order);

 conversation.end();

 }

 @Remove

 public void destroy() {}

}

This bean is able to control its own lifecycle through use of the Conversation API. But some other

beans have a lifecycle which depends completely upon another object.

5.3.2. Conversation propagation

The conversation context automatically propagates with any JSF faces request (JSF form

submission). It does not automatically propagate with non-faces requests, for example, navigation

via a link.

We can force the conversation to propagate with a non-faces request by including the unique

identifier of the conversation as a request parameter. The CDI specification reserves the request

parameter named cid for this use. The unique identifier of the conversation may be obtained from

the Conversation object, which has the EL bean name conversation.

Therefore, the following link propagates the conversation:

Add Product

Though it's probably better to use one of the link components in JSF 2:

<h:link outcome="/addProduct.xhtml value="Add Product">

 <f:param name="cid" value="#{conversation.id}"/>

</h:link>

Conversation timeout

75

The container is also required to propagate conversations across any redirect, even if the

conversation is not marked long-running. This makes it very easy to implement the common

POST-then-redirect pattern, without resort to fragile constructs such as a "flash" object. In this

case, the container automatically adds a request parameter to the redirect URL.

5.3.3. Conversation timeout

The container is permitted to destroy a conversation and all state held in its context at any time

in order to preserve resources. A CDI implementation will normally do this on the basis of some

kind of timeout # though this is not required by the CDI specification. The timeout is the period of

inactivity before the conversation is destroyed (as opposed to the amount of time the conversation

is active).

The Conversation object provides a method to set the timeout. This is a hint to the container,

which is free to ignore the setting.

conversation.setTimeout(timeoutInMillis);

5.4. The dependent pseudo-scope

In addition to the four built-in scopes, CDI features the so-called dependent pseudo-scope. This

is the default scope for a bean which does not explicitly declare a scope type.

For example, this bean has the scope type @Dependent:

public class Calculator { ... }

When an injection point of a bean resolves to a dependent bean, a new instance of the dependent

bean is created when the bean into which it's being injected is instantiated. Instances of dependent

beans are never shared between different beans or different injection points. They are strictly

dependent objects of some other bean instance.

Dependent bean instances are destroyed when the instance they depend upon is destroyed.

CDI makes it easy to obtain a dependent instance of a bean, even if the bean is already declared

as a bean with some other scope type.

5.4.1. The @New annotation

The built-in @New qualifier annotation allows implicit definition of a dependent bean at an injection

point. Suppose we declare the following injected field:

@Inject @New Calculator calculator;

Chapter 5. Scopes and contexts

76

Then a bean with scope @Dependent, qualifier type @New, API type Calculator, implementation

class Calculator and deployment type @Standard is implicitly defined.

This is true even if Calculator is already declared with a different scope type, for example:

@ConversationScoped

public class Calculator { ... }

So the following injected attributes each get a different instance of Calculator:

public class PaymentCalc {

 @Inject Calculator calculator;

 @Inject @New Calculator newCalculator;

}

The calculator field has a conversation-scoped instance of Calculator injected. The

newCalculator field has a new instance of Calculator injected, with a lifecycle that is bound

to the owning PaymentCalc.

This feature is particularly useful with producer methods, as we'll see in the next chapter.

Chapter 6.

77

Producer methods
Producer methods let us overcome certain limitations that arise when a container, instead of

the application, is responsible for instantiating objects. They're also the easiest way to integrate

objects which are not beans into the CDI environment.

According to the spec:

A producer method acts as a source of objects to be injected, where:

• the objects to be injected are not required to be instances of beans,

• the concrete type of the objects to be injected may vary at runtime or

• the objects require some custom initialization that is not performed by the bean

constructor

For example, producer methods let us:

• expose a JPA entity as a bean,

• expose any JDK class as a bean,

• define multiple beans, with different scopes or initialization, for the same implementation class,

or

• vary the implementation of a bean type at runtime.

In particular, producer methods let us use runtime polymorphism with CDI. As we've seen,

alternative beans are one solution to the problem of deployment-time polymorphism. But once the

system is deployed, the CDI implementation is fixed. A producer method has no such limitation:

@SessionScoped

public class Preferences {

 private PaymentStrategyType paymentStrategy;

 ...

 @Produces @Preferred

 public PaymentStrategy getPaymentStrategy() {

 switch (paymentStrategy) {

 case CREDIT_CARD: return new CreditCardPaymentStrategy();

 case CHECK: return new CheckPaymentStrategy();

 case PAYPAL: return new PayPalPaymentStrategy();

 default: return null;

 }

 }

Chapter 6. Producer methods

78

}

Consider an injection point:

@Inject @Preferred PaymentStrategy paymentStrategy;

This injection point has the same type and qualifier annotations as the producer method, so it

resolves to the producer method using the usual CDI injection rules. The producer method will be

called by the container to obtain an instance to service this injection point.

6.1. Scope of a producer method

The scope of the producer method defaults to @Dependent, and so it will be called every time the

container injects this field or any other field that resolves to the same producer method. Thus,

there could be multiple instances of the PaymentStrategy object for each user session.

To change this behavior, we can add a @SessionScoped annotation to the method.

@Produces @Preferred @SessionScoped

public PaymentStrategy getPaymentStrategy() {

 ...

}

Now, when the producer method is called, the returned PaymentStrategy will be bound to the

session context. The producer method won't be called again in the same session.

6.2. Injection into producer methods

There's one potential problem with the code above. The implementations of

CreditCardPaymentStrategy are instantiated using the Java new operator. Objects instantiated

directly by the application can't take advantage of dependency injection and don't have

interceptors.

If this isn't what we want we can use dependency injection into the producer method to obtain

bean instances:

@Produces @Preferred @SessionScoped

public PaymentStrategy getPaymentStrategy(CreditCardPaymentStrategy ccps,

 CheckPaymentStrategy cps,

 PayPalPaymentStrategy ppps) {

 switch (paymentStrategy) {

 case CREDIT_CARD: return ccps;

Use of @New with producer methods

79

 case CHEQUE: return cps;

 case PAYPAL: return ppps;

 default: return null;

 }

}

Wait, what if CreditCardPaymentStrategy is a request-scoped bean? Then the producer method

has the effect of "promoting" the current request scoped instance into session scope. This is

almost certainly a bug! The request scoped object will be destroyed by the container before the

session ends, but the reference to the object will be left "hanging" in the session scope. This error

will not be detected by the container, so please take extra care when returning bean instances

from producer methods!

There's at least three ways we could go about fixing this bug. We could change the scope

of the CreditCardPaymentStrategy implementation, but this would affect other clients of that

bean. A better option would be to change the scope of the producer method to @Dependent or

@RequestScoped.

But a more common solution is to use the special @New qualifier annotation.

6.3. Use of @New with producer methods

Consider the following producer method:

@Produces @Preferred @SessionScoped

public PaymentStrategy getPaymentStrategy(@New CreditCardPaymentStrategy ccps,

 @New CheckPaymentStrategy cps,

 @New PayPalPaymentStrategy ppps) {

 switch (paymentStrategy) {

 case CREDIT_CARD: return ccps;

 case CHEQUE: return cps;

 case PAYPAL: return ppps;

 default: return null;

 }

}

Then a new dependent instance of CreditCardPaymentStrategy will be created, passed to the

producer method, returned by the producer method and finally bound to the session context. The

dependent object won't be destroyed until the Preferences object is destroyed, at the end of the

session.

80

Part II. Developing

loosely-coupled code
The first major theme of CDI is loose coupling. We've already seen three means of achieving

loose coupling:

• alternatives enable deployment time polymorphism,

• producer methods enable runtime polymorphism, and

• contextual lifecycle management decouples bean lifecycles.

These techniques serve to enable loose coupling of client and server. The client is no longer tightly

bound to an implementation of an API, nor is it required to manage the lifecycle of the server

object. This approach lets stateful objects interact as if they were services.

Loose coupling makes a system more dynamic. The system can respond to change in a well-

defined manner. In the past, frameworks that attempted to provide the facilities listed above

invariably did it by sacrificing type safety (most notably by using XML descriptors). CDI is the first

technology, and certainly the first specification in the Java EE platform, that achieves this level

of loose coupling in a typesafe way.

CDI provides three extra important facilities that further the goal of loose coupling:

• interceptors decouple technical concerns from business logic,

• decorators may be used to decouple some business concerns, and

• event notifications decouple event producers from event consumers.

Let's explore interceptors first.

Chapter 7.

83

Interceptors
Thanks to the managed bean specification, intereceptors are now part of the core functionality of

a bean. That means that you no longer need to make your class an EJB just to use interceptors!

But that doesn't mean there aren't other improvements that can be made. CDI builds on

the interceptor architecture of managed beans by introducing a more sophisticated, semantic,

annotation-based approach to binding interceptors to beans.

Interceptor functionality is defined in the interceptor specification, which the managed bean, CDI,

and EJB specifications all support. The interceptor specification defines two kinds of interception

points:

• business method interception, and

• lifecycle callback interception.

A business method interceptor applies to invocations of methods of the bean by clients of the bean:

public class TransactionInterceptor {

 @AroundInvoke public Object manageTransaction(InvocationContext ctx) { ... }

}

A lifecycle callback interceptor applies to invocations of lifecycle callbacks by the container:

public class DependencyInjectionInterceptor {

 @PostConstruct public void injectDependencies(InvocationContext ctx) { ... }

}

An interceptor class may intercept both lifecycle callbacks and business methods.

7.1. Interceptor bindings

Suppose we want to declare that some of our beans are transactional. The first thing we need is

an interceptor binding annotation to specify exactly which beans we're interested in:

@InterceptorBinding

@Target({METHOD, TYPE})

@Retention(RUNTIME)

public @interface Transactional {}

Now we can easily specify that our ShoppingCart is a transactional object:

Chapter 7. Interceptors

84

@Transactional

public class ShoppingCart { ... }

Or, if we prefer, we can specify that just one method is transactional:

public class ShoppingCart {

 @Transactional public void checkout() { ... }

}

7.2. Implementing interceptors

That's great, but somewhere along the line we're going to have to actually implement the

interceptor that provides this transaction management aspect. All we need to do is create a

standard interceptor, and annotate it @Interceptor and @Transactional.

@Transactional @Interceptor

public class TransactionInterceptor {

 @AroundInvoke public Object manageTransaction(InvocationContext ctx) { ... }

}

All bean interceptors are beans, and can take advantage of dependency injection and contextual

lifecycle management.

@ApplicationScoped @Transactional @Interceptor

public class TransactionInterceptor {

 @Resource Transaction transaction;

 @AroundInvoke public Object manageTransaction(InvocationContext ctx) { ... }

}

Multiple interceptors may use the same interceptor binding type.

7.3. Enabling interceptors

By default, all interceptors are disabled. We need to enable our interceptor in the beans.xml

descriptor of a bean deployment archive. This activation only applies to beans in the same archive.

Interceptor bindings with members

85

<beans

 xmlns="http://java.sun.com/xml/ns/javaee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="

 http://java.sun.com/xml/ns/javaee

 http://java.sun.com/xml/ns/javaee/beans_1_0.xsd">

 <interceptors>

 <class>org.mycompany.myapp.TransactionInterceptor</class>

 </interceptors>

</beans>

Whoah! Why the angle bracket stew?

Well, have the XML declaration is actually a good thing. It solves two problems:

• it enables us to specify a total ordering for all the interceptors in our system, ensuring

deterministic behavior, and

• it lets us enable or disable interceptor classes at deployment time.

For example, we could specify that our security interceptor runs before our transaction interceptor.

<beans

 xmlns="http://java.sun.com/xml/ns/javaee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="

 http://java.sun.com/xml/ns/javaee

 http://java.sun.com/xml/ns/javaee/beans_1_0.xsd">

 <interceptors>

 <class>org.mycompany.myapp.SecurityInterceptor</class>

 <class>org.mycompany.myapp.TransactionInterceptor</class>

 </interceptors>

</beans>

Or we could turn them both off in our test environment by simply taking no action! Ah, so simple.

7.4. Interceptor bindings with members

Suppose we want to add some extra information to our @Transactional annotation:

@InterceptorBinding

Chapter 7. Interceptors

86

@Target({METHOD, TYPE})

@Retention(RUNTIME)

public @interface Transactional {

 boolean requiresNew() default false;

}

CDI will use the value of requiresNew to choose between two different interceptors,

TransactionInterceptor and RequiresNewTransactionInterceptor.

@Transactional(requiresNew = true) @Interceptor

public class RequiresNewTransactionInterceptor {

 @AroundInvoke public Object manageTransaction(InvocationContext ctx) { ... }

}

Now we can use RequiresNewTransactionInterceptor like this:

@Transactional(requiresNew = true)

public class ShoppingCart { ... }

But what if we only have one interceptor and we want the container to ignore the value of

requiresNew when binding interceptors? Perhaps this information is only useful for the interceptor

implementation. We can use the @NonBinding annotation:

@InterceptorBinding

@Target({METHOD, TYPE})

@Retention(RUNTIME)

public @interface Secure {

 @NonBinding String[] rolesAllowed() default {};

}

7.5. Multiple interceptor binding annotations

Usually we use combinations of interceptor bindings types to bind multiple interceptors to a bean.

For example, the following declaration would be used to bind TransactionInterceptor and

SecurityInterceptor to the same bean:

@Secure(rolesAllowed="admin") @Transactional

public class ShoppingCart { ... }

Interceptor binding type inheritance

87

However, in very complex cases, an interceptor itself may specify some combination of interceptor

binding types:

@Transactional @Secure @Interceptor

public class TransactionalSecureInterceptor { ... }

Then this interceptor could be bound to the checkout() method using any one of the following

combinations:

public class ShoppingCart {

 @Transactional @Secure public void checkout() { ... }

}

@Secure

public class ShoppingCart {

 @Transactional public void checkout() { ... }

}

@Transactionl

public class ShoppingCart {

 @Secure public void checkout() { ... }

}

@Transactional @Secure

public class ShoppingCart {

 public void checkout() { ... }

}

7.6. Interceptor binding type inheritance

One limitation of the Java language support for annotations is the lack of annotation inheritance.

Really, annotations should have reuse built in, to allow this kind of thing to work:

public @interface Action extends Transactional, Secure { ... }

Chapter 7. Interceptors

88

Well, fortunately, CDI works around this missing feature of Java. We may annotate one interceptor

binding type with other interceptor binding types (termed a meta-annotation). The interceptor

bindings are transitive # any bean with the first interceptor binding inherits the interceptor bindings

declared as meta-annotations.

@Transactional @Secure

@InterceptorBinding

@Target(TYPE)

@Retention(RUNTIME)

public @interface Action { ... }

Now, any bean annotated @Action will be bound to both TransactionInterceptor and

SecurityInterceptor. (And even TransactionalSecureInterceptor, if it exists.)

7.7. Use of @Interceptors

The @Interceptors annotation defined by the interceptor specification (and used by the managed

bean and EJB specifications) is still supported in CDI.

@Interceptors({TransactionInterceptor.class, SecurityInterceptor.class})

public class ShoppingCart {

 public void checkout() { ... }

}

However, this approach suffers the following drawbacks:

• the interceptor implementation is hardcoded in business code,

• interceptors may not be easily disabled at deployment time, and

• the interceptor ordering is non-global # it is determined by the order in which interceptors are

listed at the class level.

Therefore, we recommend the use of CDI-style interceptor bindings.

Chapter 8.

89

Decorators
Interceptors are a powerful way to capture and separate concerns which are orthogonal to the

application (and type system). Any interceptor is able to intercept invocations of any Java type.

This makes them perfect for solving technical concerns such as transaction management, security

and call logging. However, by nature, interceptors are unaware of the actual semantics of the

events they intercept. Thus, interceptors aren't an appropriate tool for separating business-related

concerns.

The reverse is true of decorators. A decorator intercepts invocations only for a certain Java

interface, and is therefore aware of all the semantics attached to that interface. Since decorators

directly implement operations with business semantics, it makes them the perfect tool for modeling

some kinds of business concerns. It also means that a decorator doesn't have the generality of

an interceptor. Decorators aren't able to solve technical concerns that cut across many disparate

types. The two complement one another. Let's look at some cases where decorators fit the bill.

Suppose we have an interface that represents accounts:

public interface Account {

 public BigDecimal getBalance();

 public User getOwner();

 public void withdraw(BigDecimal amount);

 public void deposit(BigDecimal amount);

}

Several different beans in our system implement the Account interface. However, we have a

common legal requirement that; for any kind of account, large transactions must be recorded by

the system in a special log. This is a perfect job for a decorator.

A decorator is a bean (possibly even an abstract class) that implements the type it decorates and

is annotated @Decorator.

@Decorator

public abstract class LargeTransactionDecorator

 implements Account {

 ...

}

So what goes in the decorator? Well, decorators have to inject the instance of the bean they are

decorating, termed the delegate injection point. The injection point has the same type as the bean

to decorate and the annotation @Delegate. There can be at most one injection point, which can

be a constructor, initializer method or field injection.

Chapter 8. Decorators

90

@Decorator

public abstract class LargeTransactionDecorator

 implements Account {

 @Inject @Delegate @Any Account account;

 ...

}

You'll see in a moment that the beans which are decorated can be further restricted by specifying

qualifiers at the injection point, a familiar pattern in CDI.

The decorator then implements any methods of the bean type it wants to decorate. The decorator

can in turn invoke the method on the decorated instance. Note that the method on the decorate is

being called by the container instead of the method on the bean instance. It's up to the decorator

to invoke the method on the bean instance. In fact, the decorator can invoke any method on the

bean instance.

@Decorator

public abstract class LargeTransactionDecorator

 implements Account {

 @Inject @Delegate @Any Account account;

 @PersistenceContext EntityManager em;

 public void withdraw(BigDecimal amount) {

 account.withdraw(amount);

 if (amount.compareTo(LARGE_AMOUNT)>0) {

 em.persist(new LoggedWithdrawl(amount));

 }

 }

 public void deposit(BigDecimal amount);

 account.deposit(amount);

 if (amount.compareTo(LARGE_AMOUNT)>0) {

 em.persist(new LoggedDeposit(amount));

 }

 }

}

Interceptors for a method are called before decorators that apply to that method.

Delegate object

91

Unlike other beans, a decorator may be an abstract class. Therefore, if there's nothing special

the decorator needs to do for a particular method of the decorated interface, you don't need to

implement that method.

8.1. Delegate object

All decorators must have a delegate injection point that injects the delegate object, as shown

above. The type and qualifier types of the delegate injection point determine which beans

the decorator is bound to. The delegate object type must implement or extend all interfaces

implemented by the decorator.

This delegate injection point specifies that the decorator is bound to all beans that implement

Account:

@Inject @Delegate @Any Account account;

A delegate injection point may specify any number of qualifier annotations. Then the decorator

will only be bound to beans with the same qualifiers.

@Inject @Delegate @Foreign Account account;

A decorator is bound to any bean which:

• has the type of the delegate object as a bean type, and

• has all qualifiers that are declared at the delegate injection point.

The decorator may invoke the delegate object, which has much the same effect as calling

InvocationContext.proceed() from an interceptor. The main difference is that the decorator

can invoke any business method on the delegate object.

8.2. Enabling decorators

By default, all decorators are disabled. We need to enable our decorator in the beans.xml

descriptor of a bean deployment archive. This activation only applies to beans in the same archive.

<beans

 xmlns="http://java.sun.com/xml/ns/javaee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="

 http://java.sun.com/xml/ns/javaee

 http://java.sun.com/xml/ns/javaee/beans_1_0.xsd">

Chapter 8. Decorators

92

 <decorators>

 <class>org.mycompany.myapp.LargeTransactionDecorator</class>

 </decorators>

</beans>

This declaration serves the same purpose for decorators that the <Interceptors> declaration

serves for interceptors:

• it enables us to specify a total ordering for all decorators in our system, ensuring deterministic

behavior, and

• it lets us enable or disable decorator classes at deployment time.

Chapter 9.

93

Events
Dependency injection enables loose-coupling by allowing the implementation of the injected

bean type to vary, either a deployment time or runtime. Events provide a whole other level

of decoupling in which there is no compile time dependency between the interacting beans at

all. Event producers raise (or fire) events that are delivered to event observers, an exchange

orchestrated by the container.

CDI provides an event notification facility like the one just described. It does so using the same

type safe approach that you've become accustomed to with CDI's dependency injection service.

In fact, it consists of all the same ingredients:

• bean types,

• qualifier annotations and

• type-safe resolution.

It also supports a couple of convenient features that extend beyond the basic observer/observable

pattern:

• events are qualified using annotations on the event producer object,

• observers are completely decoupled from producers,

• observers can specify a combination of "selectors" to narrow the set of event notifications

(described by qualifiers) they will receive, and

• observers can be notified immediately, or can specify that delivery of the event should be

delayed until the end of the current transaction (a very useful feature for enterprise web

applications).

Before getting into how events are produced, let's first consider what's used as the event payload

and how those events are observed. We'll then hook everything together by looking at how an

event is fired.

9.1. Event payload

The event payload carries state from producer to consumer. The event is nothing more than a

plain Java object--an instance of any Java type. (The only restriction is that an event type may not

contain type variables). No special interfaces or wrappers. In addition, that object can be assigned

qualifiers, which helps observers distinguish it from other events of the same type. In a way, the

qualifiers are like topic selectors, since they allow the observers to narrow the set of events it

observes.

So what's an event qualifier? An event qualifier is just a normal qualifier, the same ones you

assigned to beans and injection points. Here's an example.

Chapter 9. Events

94

@Qualifier

@Target({FIELD, PARAMETER})

@Retention(RUNTIME)

public @interface Updated {}

These qualifiers may or may not come into play when selecting an observer. As before, a qualifier

type can have members. Those members are considered as well when selecting an observer.

However, only if the member is not annotated @NonBinding, which causes it to be ignored by the

selection process.

9.2. Event observers

An observer method is a method of a bean with a parameter annotated @Observes.

public void onAnyDocumentEvent(@Observes Document document) { ... }

The annotated parameter is called the event parameter. The type of the event parameter is the

observed event type, in this case Document, a class in the application. Observer methods may

also specify "selectors", which are just qualifiers, as just described. When a qualifier is used as

an event selector, it's called an event qualifier type.

We specify the event qualifiers of the observer method by annotating the event parameter:

public void afterDocumentUpdate(@Observes @Updated Document document) { ... }

An observer method need not specify any event qualifiers # in this case it is interested in all events

of a particular type. If it does specify event bindings, it's only interested in events which also have

those qualifiers.

The observer method may have additional parameters, which are injected according to the usual

bean method parameter injection semantics:

public void afterDocumentUpdate(@Observes @Updated Document document, User user) { ... }

9.3. Event producers (Firing events)

Producers (i.e., beans) fire events using an instance of the parameterized Event interface.

Instances of this interface are obtained through injection:

Event producers (Firing events)

95

@Inject @Any Event<Document> documentEvent;

A producer raises events by calling the fire() method of the Event interface, passing an event

object:

documentEvent.fire(document);

This particular event will be delivered to every observer method that:

• has an event parameter to which the event object is assignable (i.e., Document), and

• specifies no qualifier bindings.

The container simply calls all the observer methods, passing the event object as the value of the

event parameter. If any observer method throws an exception, the container stops calling observer

methods, and the exception is rethrown by the fire() method.

Qualifiers can be applied to an event type in one of two ways:

• Add qualifier annotations to the field where Event is injected or

• pass qualifier annotation literals to the select() of Event.

The first option is the simplest:

@Inject @Updated Event<Document> documentUpdatedEvent;

Then, every event fired via this instance of Event has the event qualifier @Updated. The event will

be delivered to every observer method that:

• has an event parameter to which the event object is assignable, and

• does not have any event qualifier except for the event qualifiers that match those on the producer

(in this case at the Event inject point).

The downside of annotating the injection point is that you can not specify the qualifiers dynamically.

Fortunately, CDI provides an alternative way of generating derived Event instances from an Event

instance using the select() method and passing in qualifier annotation literals. Events can then

be fired from that narrower source:

documentEvent.select(new AnnotationLiteral<Updated>(){}).fire(document);

Chapter 9. Events

96

There is no difference between the firing of this event and the previous one, were the qualifiers

were specified at the injection point. Both events carry the @Updated qualifier.

As mentioned earlier, the helper class AnnotationLiteral makes it possible to instantiate

qualifiers inline, since this is otherwise difficult to do in Java.

Event types can have multiple event qualifier types as well, assembled using any combination of

annotations at the injection point and annotations passed to the select() method.

9.4. Conditional observer methods

Normally, observer beans will be "woken up", so to speak, when an event is fired so that they can

respond to the event. This behavior isn't always what you want. You may be interested in delivering

an event only to instances of the observers that exist in one of the currently active contexts.

A conditional observer is specified by adding receive = IF_EXISTS to the @Observes annotation.

The default is to always receive, which means creating an instance of the bean.

public void refreshOnDocumentUpdate(@Observes(receive = IF_EXISTS) @Updated

 Document d) { ... }

A dependent-scoped bean cannot be a conditional observer, essentially because it's not a

contextual bean.

9.5. Event qualifiers with members

An event qualifier type may have annotation members:

@Qualifier

@Target({PARAMETER, FIELD})

@Retention(RUNTIME)

public @interface Role {

 RoleType value();

}

The member value is used to narrow the messages delivered to the observer:

public void adminLoggedIn(@Observes @Role(ADMIN) LoggedIn event) { ... }

Event qualifier type members may be specified statically by the event producer, via annotations

at the event notifier injection point:

Multiple event bindings

97

@Inject @Role(ADMIN) Event<LoggedIn> loggedInEvent;

Alternatively, the value of the event qualifier type member may be determined dynamically by the

event producer. We start by writing an abstract subclass of AnnotationLiteral:

abstract class RoleBinding

 extends AnnotationLiteral<Role>

 implements Role {}

The event producer passes an instance of this class to select():

documentEvent.select(new RoleBinding() {

 public void value() { return user.getRole(); }

}).fire(document);

9.6. Multiple event bindings

Event qualifier types may be combined, for example:

@Inject @Blog Event<Document> blogEvent;

...

if (document.isBlog()) blogEvent.select(new AnnotationLiteral<Updated>(){}).fire(document);

When this event occurs, all of the following observer methods will be notified:

public void afterBlogUpdate(@Observes @Updated @Blog Document document) { ... }

public void afterDocumentUpdate(@Observes @Updated Document document) { ... }

public void onAnyBlogEvent(@Observes @Blog Document document) { ... }

public void onAnyDocumentEvent(@Observes Document document) { ... }}}

Chapter 9. Events

98

9.7. Transactional observers

Transactional observers receive their event notifications during the before or after completion

phase of the transaction in which the event was raised. For example, the following observer

method needs to refresh a query result set that is cached in the application context, but only when

transactions that update the Category tree succeed:

public void refreshCategoryTree(@Observes(during = AFTER_SUCCESS)

 CategoryUpdateEvent event) { ... }

There are five kinds of transactional observers:

• IN_PROGESS observers are called immediately (default)

AFTER_SUCCESS observers are called during the after completion phase of the transaction, but

only if the transaction completes successfully

• AFTER_FAILURE observers are called during the after completion phase of the transaction, but

only if the transaction fails to complete successfully

• AFTER_COMPLETION observers are called during the after completion phase of the transaction

• BEFORE_COMPLETION observers are called during the before completion phase of the transaction

Transactional observers are very important in a stateful object model because state is often held

for longer than a single atomic transaction.

Imagine that we have cached a JPA query result set in the application scope:

@ApplicationScoped @Singleton

public class Catalog {

 @PersistenceContext EntityManager em;

 List<Product> products;

 @Produces @Catalog

 List<Product> getCatalog() {

 if (products==null) {

 products = em.createQuery("select p from Product p where p.deleted = false")

 .getResultList();

 }

 return products;

 }

Transactional observers

99

}

From time to time, a Product is created or deleted. When this occurs, we need to refresh the

Product catalog. But we should wait until after the transaction completes successfully before

performing this refresh!

The bean that creates and deletes Products could raise events, for example:

@Stateless

public class ProductManager {

 @PersistenceContext EntityManager em;

 @Inject @Any Event<Product> productEvent;

 public void delete(Product product) {

 em.delete(product);

 productEvent.select(new AnnotationLiteral<Deleted>(){}).fire(product);

 }

 public void persist(Product product) {

 em.persist(product);

 productEvent.select(new AnnotationLiteral<Created>(){}).fire(product);

 }

 ...

}

And now Catalog can observe the events after successful completion of the transaction:

@ApplicationScoped @Singleton

public class Catalog {

 ...

 void addProduct(@Observes(during = AFTER_SUCCESS) @Created Product product) {

 products.add(product);

 }

 void addProduct(@Observes(during = AFTER_SUCCESS) @Deleted Product product) {

 products.remove(product);

 }

}

100

Part III. Making the

most of strong typing
The second major theme of Weld is strong typing. The information about the dependencies,

interceptors and decorators of a bean, and the information about event consumers for an event

producer, is contained in typesafe Java constructs that may be validated by the compiler.

You don't see string-based identifiers in CDI code, not because the framework is hiding them from

you using clever defaulting rules # so-called "configuration by convention" # but because there

are simply no strings there to begin with!

The obvious benefit of this approach is that any IDE can provide autocompletion, validation and

refactoring without the need for special tooling. But there is a second, less-immediately-obvious,

benefit. It turns out that when you start thinking of identifying objects, events or interceptors via

annotations instead of names, you have an opportunity to lift the semantic level of your code.

CDI encourages you develop annotations that model concepts, for example,

• @Asynchronous,

• @Mock,

• @Secure or

• @Updated,

instead of using compound names like

• asyncPaymentProcessor,

• mockPaymentProcessor,

• SecurityInterceptor or

• DocumentUpdatedEvent.

The annotations are reusable. They help describe common qualities of disparate parts of the

system. They help us categorize and understand our code. They help us deal with common

concerns in a common way. They make our code more literate and more understandable.

CDI stereotypes take this idea a step further. A stereotype models a common role in your

application architecture. It encapsulates various properties of the role, including scope, interceptor

bindings, qualifiers, etc, into a single reusable package. (Of course, there is also the benefit of

tucking some of those annotations away).

We're now ready to meet some more advanced features of CDI. Bear in mind that these features

exist to make our code both easier to validate and more understandable. Most of the time you

Part III. Making the most of ...

don't ever really need to use these features, but if you use them wisely, you'll come to appreciate

their power.

Chapter 10.

103

Stereotypes
The CDI specification defines a stereotype as follows:

In many systems, use of architectural patterns produces a set of recurring bean

roles. A stereotype allows a framework de- veloper to identify such a role and

declare some common metadata for beans with that role in a central place.

A stereotype encapsulates any combination of:

• a default scope, and

• a set of interceptor bindings.

A stereotype may also specify that:

• all beans with the stereotype have defaulted bean EL names, or that

• all beans with the stereotype are alternatives.

A bean may declare zero, one or multiple stereotypes. Stereotype annotations

may be applied to a bean class or producer method or field.

In layman's terms, a stereotype is a meta-annotation (an annotation used on another annotation)

annotated with @Stereotype that bundles other Java annotations to give them a particular

semantic. For instance, the following stereotype identifies action classes in some MVC framework:

@Stereotype

@Retention(RUNTIME)

@Target(TYPE)

public @interface Action {}

We use the stereotype by applying the annotation to a bean.

@Action

public class LoginAction { ... }

Of course, we need to associate our stereotype annotation with some other annotations or else

it isn't doing much for us. Let's see how to add them.

10.1. Default scope for a stereotype

A stereotype may specify a default scope for beans annotated with the stereotype. For example,

if the we might specify the following defaults for action classes in a web application:

Chapter 10. Stereotypes

104

@RequestScoped

@Stereotype

@Retention(RUNTIME)

@Target(TYPE)

public @interface Action {}

Of course, a particular action may still override this default if necessary:

@Dependent @Action

public class DependentScopedLoginAction { ... }

Naturally, overriding a single default isn't much use. But remember, stereotypes can define more

than just the default scope.

10.2. Interceptor bindings for stereotypes

A stereotype may specify a set of interceptor bindings to be inherited by all beans with that

stereotype.

@RequestScoped

@Transactional(requiresNew=true)

@Secure

@Stereotype

@Retention(RUNTIME)

@Target(TYPE)

public @interface Action {}

This helps us get technical concerns, like transactions and security, even further away from the

business code!

10.3. Name defaulting with stereotypes

We can specify that all beans with a certain stereotype have a defaulted EL name when a name is

not explicitly defined on that bean. Actions are often referenced in JSF views, so they're a perfect

use case for this feature. All we need to do is add an empty @Named annotation:

@RequestScoped

@Transactional(requiresNew=true)

@Secure

@Named

Alternatives as stereotypes

105

@Stereotype

@Retention(RUNTIME)

@Target(TYPE)

public @interface Action {}

Now, LoginAction bean from above will have the name loginAction.

10.4. Alternatives as stereotypes

A stereotype can inicate that all beans to which it is applied are @Alternative beans. If you can

remember back to the early days of the specification, this is the closest match to a deployment

type. Whole sets of beans can be enabled or left disabled by activating a single stereotype.

@Alternative

@Stereotype

@Retention(RUNTIME)

@Target(TYPE)

public @interface Mock {}

Now you apply this stereotype to beans that should be active in mock environments.

@Mock

public class MockLoginAction extends LoginAction { ... }

10.5. Stereotype stacking

This may blow your mind a bit, but stereotypes may declare other stereotypes, which we'll call

stereotype stacking. You may want to do this if you have two distinct stereotypes which are

meaningful on their own, but in other situation may be meaningful when combined.

Here's an example that combines the @Action and @Auditable stereotypes:

@Auditable

@Action

@Stereotype

@Target(TYPE)

@Retention(RUNTIME)

public @interface AuditableAction {}

Chapter 10. Stereotypes

106

10.6. Built-in stereotypes

We've already met two standard stereotypes defined by the CDI specification: @Interceptor and

@Decorator.

CDI defines one further standard stereotype, @Model, which is expected to be used frequently in

web applications:

@Named

@RequestScoped

@Stereotype

@Target({TYPE, METHOD})

@Retention(RUNTIME)

public @interface Model {}

Instead of using JSF managed beans, just annotate a Web Bean @Model, and use it directly in

your JSF view!

Chapter 11.

107

Specialization, inheritance and

alternatives
When you first start developing with CDI, you'll likely be dealing only with a single bean

implementation for each bean type. In this case, it's easy to understand how beans get selected

for injection. As the complexity of your application grows, multiple occurances of the same bean

type start appearing, either because you have multiple implementations or two beans share a

common (Java) inheritance. That's when you have to begin studying the specialization, inheritance

and alternative rules to work through unsatisified or ambiguous dependencies or to avoid certain

beans from being called.

The CDI specification recognizes two distinct scenarios in which one bean extends another:

• The second bean specializes the first bean in certain deployment scenarios. In these

deployments, the second bean completely replaces the first, fulfilling the same role in the

system.

The second bean is simply reusing the Java implementation, and otherwise bears no relation to

the first bean. The first bean may not even have been designed for use as a contextual object.

The second case is the default assumed by CDI. It's possible to have two beans in the system

with the same part bean type (interface or parent class). As you've learned, you select between

the two implementations using qualifiers.

The first case is the exception, and also requires more care. In any given deployment, only one

bean can fulfill a given role at a time. That means one bean needs to be enabled and the other

disabled. There are a two modifiers involved: @Alternative and @Specializes. We'll start by

looking at bean alternatives and then show the guarantees that specialization adds.

11.1. Bean alternatives

CDI let's you override the implementation of a bean type at deployment time using

a bean alternative. For example, the following bean provides an implementation of the

PaymentProcessor bean type in the default environment:

@CreditCard

public class CreditCardPaymentProcessor

 implements PaymentProcessor {

 ...

}

But in our staging environment, we override that implementation of PaymentProcessor with a

different bean:

Chapter 11. Specialization, i...

108

@CreditCard @Alternative

public class StagingCreditCardPaymentProcessor

 implements PaymentProcessor {

 ...

}

or

@CreditCard @Alternative

public class StagingCreditCardPaymentProcessor

 extends CreditCardPaymentProcessor {

 ...

}

By default, @Alternative beans are disabled. We need to enable the alternative--effectively

replacing the bean implementation without the @Alternative annotation--in the beans.xml

descriptor of a bean deployment archive by specifying the bean class (or the class that contains

the alternative producer method or field). This activation only applies to beans in the same archive.

<beans

 xmlns="http://java.sun.com/xml/ns/javaee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="

 http://java.sun.com/xml/ns/javaee

 http://java.sun.com/xml/ns/javaee/beans_1_0.xsd">

 <alternatives>

 <class>org.mycompany.myapp.StagingCreditCardProcessor</class>

 </alternatives>

</beans>

Of course, if the goal is to enable all the alternatives for the staging environment, it would make

much more sense to make @Staging an @Alternative stereotype and annotate the staging

beans with this stereotype instead. You'll see how this level of indirection pays off. First, we create

the stereotype:

@Stereotype

@Alternative

@Retention(RUNTIME)

@Target(TYPE)

Bean alternatives

109

public @interface Staging {}

Then we replace the @Alternative annotation on our bean with @Staging:

@CreditCard @Staging

public class StagingCreditCardPaymentProcessor

 extends CreditCardPaymentProcessor {

 ...

}

Finally, we activate the @Staging stereotype in the beans.xml descriptor:

<beans

 xmlns="http://java.sun.com/xml/ns/javaee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="

 http://java.sun.com/xml/ns/javaee

 http://java.sun.com/xml/ns/javaee/beans_1_0.xsd">

 <alternatives>

 <stereotype>org.mycompany.myapp.Staging</stereotype>

 </alternatives>

</beans>

Now, no matter how many staging beans we have, they will all be enabled at once. Does that

mean the default implementation is disabled? Well, not exactly. If the default implementation has

a qualifier, for instance @LargeTransaction, and the alternative does not, you could still inject

the default implementation.

@LargeTransaction @CreditCard PaymentProcessor paymentProcessor;

So we haven't completely replaced the default implementation in a particular deployment of the

system. The only way one bean can completely override a second bean at all injection points is

if it implements all the bean types and declares all the qualifiers of the second bean. However, if

the second bean declares a producer method or observer method, then even this is not enough

to ensure that the second bean is never called! We need something extra.

CDI provides a special feature, called specialization, that helps the developer avoid these traps.

Specialization is a way of informing the system of your intent to completely replace and disable

an implementation of a bean.

Chapter 11. Specialization, i...

110

11.2. Using specialization

When the goal is to replace one bean implementation with a second, to help prevent developer

error, the first bean may:

• directly extend the bean class of the second bean, or

• directly override the producer method, in the case that the second bean is a producer method,

and then

explicitly declare that it specializes the second bean:

@Alternative @Specializes

public class MockCreditCardPaymentProcessor

 extends CreditCardPaymentProcessor {

 ...

}

When an enabled bean specializes another bean, the other bean is never instantiated or called

by the container. Even if the other bean defines a producer or observer method, the method will

never be called.

11.3. Inheritance

So why does specialization work, and what does it have to do with inheritance?

Since you are informing the container that your alternative bean is meant to stand in as a

replacement for the default implementation, the container automatically adds any qualifiers that

are on the default implementation to the alternative implementation. Thus, in our example,

MockCreditCardPaymentProcessor has the qualifiers @Default and @CreditCard. Therefore,

there are no circumstances when the default implementation is going to get used because it is

completely shadowed.

Additionally, if the default implementation declares a bean EL name using @Named, the name is

inherited by the specialized alternative bean.

Part IV. CDI and the

Java EE ecosystem
The third theme of CDI is integration. We've already seen how CDI helps integrate EJB and JSF,

allowing EJBs to be bound directly to JSF pages. That's just the beginning. The CDI services are

integrated into the very core of the Java EE platform. Even EJB session beans can take advantage

of the dependency injection, event bus, and contextual lifecycle management that CDI provides.

CDI is also designed to work in concert with technologies outside of the platform by providing

integration points into the Java EE platform via an SPI. This SPI positions CDI as the foundation

for a new ecosystem of portable extensions and integration with existing frameworks and

technologies. The CDI services will be able to reach a diverse collection of technologies, such as

business process management (BPM) engines, existing web frameworks and defacto standard

component models. Of course, The Java EE platform will never be able to standardize all the

interesting technologies that are used in the world of Java application development, but CDI makes

it easier to use the technologies which are not yet part of the platform seamlessly within the Java

EE environment.

We're about to see how to take full advantage of the Java EE platform in an application that uses

CDI. We'll also briefly meet a set of SPIs that are provided to support portable extensions to CDI.

You might not ever need to use these SPIs directly, but don't take them for granted. You will likely

be using them indirectly, every time you use a third-party extension, such as Seam.

Chapter 12.

113

Java EE integration
CDI is fully integrated into the Java EE environment. Beans have access to Java EE resources and

JPA persistence contexts. They may be used in Unified EL expressions in JSF and JSP pages.

They may even be injected into other platform components, such as Servlets and Message-Driven

Beans, which are not beans themselves.

12.1. Injecting Java EE resources into a bean

All managed beans may take advantage of Java EE dependency injection using @Resource, @EJB

and @PersistenceContext. We've already seen a couple of examples of this, though we didn't

pay much attention at the time:

@Transactional @Interceptor

public class TransactionInterceptor {

 @Resource Transaction transaction;

 @AroundInvoke public Object manageTransaction(InvocationContext ctx) { ... }

}

@SessionScoped

public class Login {

 @Inject Credentials credentials;

 @PersistenceContext EntityManager userDatabase;

 ...

}

The Java EE @PostConstruct and @PreDestroy callbacks are also supported for all managed

beans. The @PostConstruct method is called after all injection has been performed.

There is one restriction to be aware of here: @PersistenceContext(type=EXTENDED) is not

supported for non-session beans (that's strictly a feature of stateful session beans).

12.2. Calling a bean from a Servlet

It's easy to use a bean from a Servlet in Java EE 6. Simply inject the bean using field or initializer

method injection.

public class Login extends HttpServlet {

 @Inject Credentials credentials;

Chapter 12. Java EE integration

114

 @Inject Login login;

 @Override

 public void service(HttpServletRequest request, HttpServletResponse response)

 throws ServletException, IOException {

 credentials.setUsername(request.getParameter("username")):

 credentials.setPassword(request.getParameter("password")):

 login.login();

 if (login.isLoggedIn()) {

 response.sendRedirect("/home.jsp");

 }

 else {

 response.sendRedirect("/loginError.jsp");

 }

 }

}

Since instances of Servlets are shared across all incoming threads, the bean client proxy takes

care of routing method invocations from the Servlet to the correct instances of Credentials and

Login for the current request and HTTP session.

12.3. Calling a bean from a Message-Driven Bean

CDI injection applies to all EJBs, even when they aren't managed beans. In particular, you can

use CDI injection in Message-Driven Beans, which are not considered beans because you can't

inject them and their instances are not contextual (not even dependent).

You can even use CDI interceptor bindings for Message-Driven Beans.

@Transactional @MessageDriven

public class ProcessOrder implements MessageListener {

 @Inject Inventory inventory;

 @PersistenceContext EntityManager em;

 public void onMessage(Message message) {

 ...

 }

}

Thus, receiving messages is super-easy in an environment with CDI (e.g., Java EE 6). But beware

that there is no session or conversation context available when a message is delivered to a

Message-Driven Bean. Only @RequestScoped and @ApplicationScoped beans are available.

JMS endpoints

115

It's also easy to send messages using beans, if you require the full event bus of JMS rather than

the architecturally simpler CDI event notification facility.

12.4. JMS endpoints

Sending messages using JMS can be quite complex, because of the number of different objects

you need to deal with. For queues we have Queue, QueueConnectionFactory, QueueConnection,

QueueSession and QueueSender. For topics we have Topic, TopicConnectionFactory,

TopicConnection, TopicSession and TopicPublisher. Each of these objects has its own

lifecycle and threading model that we need to worry about.

You can use producer fields and methods to prepare all of these resources for injection into a bean:

public class OrderResources {

 @Resource(name="jms/ConnectionFactory")

 private ConnectionFactory connectionFactory;

 @Resource(name="jms/OrderQueue")

 private Queue orderQueue;

 @Produces @OrderConnection

 public Connection createOrderConnection() throws JMSException {

 return connectionFactory.createConnection();

 }

 public void closeOrderConnection(@Disposes @OrderConnection Connection connection)

 throws JMSException {

 connection.close();

 }

 @Produces @OrderSession

 public Session createOrderSession(@OrderConnection Connection connection)

 throws JMSException {

 return connection.createSession(true, Session.AUTO_ACKNOWLEDGE);

 }

 public void closeOrderSession(@Disposes @OrderSession Session session)

 throws JMSException {

 session.close();

 }

 @Produces @OrderMessageProducer

 public MessageProducer createOrderMessageProducer(@OrderSession Session session)

 throws JMSException {

Chapter 12. Java EE integration

116

 return session.createProducer(orderQueue);

 }

 public void closeOrderMessageProducer(@Disposes @OrderMessageProducer

 MessageProducer producer)

 throws JMSException {

 producer.close();

 }

}

In this example, we can just inject the prepared MessageProducer, Connection or QueueSession:

@Inject Order order;

@Inject @OrderMessageProducer MessageProducer producer;

@Inject @OrderSession QueueSession orderSession;

public void sendMessage() {

 MapMessage msg = orderSession.createMapMessage();

 msg.setLong("orderId", order.getId());

 ...

 producer.send(msg);

}

The lifecycle of the injected JMS objects is completely controlled by the container.

12.5. Packaging and deployment

CDI doesn't define any special deployment archive. You can package beans in JARs, EJB-JARs

or WARs # any deployment location in the application classpath. However, the archive must

be a "bean archive". That means each archive that contains beans must include a file named

beans.xml in the META-INF directory of the classpath or WEB-INF directory of the web root (for

WAR archives). The file may be empty. Beans deployed in archives that do not have a beans.xml

file (i.e., not in a bean archive) will not be available for use in the application.

For Java SE execution, beans may be deployed in any location in which EJBs may be deployed for

execution by the embeddable EJB Lite container. Again, each location must contain a beans.xml

file. (That doesn't rule out the possibility of having an extention which provides support for normal

Java SE execution, like the Weld Java SE module).

Chapter 13.

117

Extending CDI through portable

extensions
CDI is intended to be a foundation for frameworks, extensions and integration with other

technologies. Therefore, CDI exposes a set of SPIs for the use of developers of portable

extensions to CDI. For example, the following kinds of extensions were envisaged by the designers

of CDI:

• integration with Business Process Management engines,

• integration with third-party frameworks such as Spring, Seam, GWT or Wicket, and

• new technology based upon the CDI programming model.

More formally, according to the spec:

A portable extension may integrate with the container by:

• Providing its own beans, interceptors and decorators to the container

Injecting dependencies into its own objects using the dependency injection

service

Providing a context implementation for a custom scope

Augmenting or overriding the annotation-based metadata with metadata from

some other source

The nerve center for extending CDI is the BeanManager object.

13.1. The BeanManager object

The BeanManager interface lets us register and obtain beans, interceptors, decorators, observers

and contexts programatically.

public interface Manager {

 public Object getReference(Bean<?> bean, Type beanType, CreationalContext<?> ctx);

 public Object getInjectableReference(InjectionPoint ij, CreationalContext<?> ctx);

 public <T> CreationalContext<T> createCreationalContext(Contextual<T> contextual);

 public Set<Bean<?>> getBeans(Type beanType, Annotation... bindings);

 public Set<Bean<?>> getBeans(String name);

 public <X> Bean<? extends X> getMostSpecializedBean(Bean<X> bean);

 public Bean<?> getPassivationCapableBean(String id);

 public <X> Bean<? extends X> resolve(Set<Bean<? extends X>> beans);

Chapter 13. Extending CDI thr...

118

 public void validate(InjectionPoint injectionPoint);

 public void fireEvent(Object event, Annotation... bindings);

 public <T> Set<ObserverMethod<?, T>> resolveObserverMethods(T event, Annotation...

 bindings);

 public List<Decorator<?>> resolveDecorators(Set<Type> types, Annotation... bindings);

 public List<Interceptor<?>> resolveInterceptors(InterceptionType type, Annotation...

 interceptorBindings);

 public boolean isScope(Class<? extends Annotation> annotationType);

 public boolean isNormalScope(Class<? extends Annotation> annotationType);

 public boolean isPassivatingScope(Class<? extends Annotation> annotationType);

 public boolean isQualifier(Class<? extends Annotation> annotationType);

 public boolean isInterceptorBindingType(Class<? extends Annotation> annotationType);

 public boolean isStereotype(Class<? extends Annotation> annotationType);

 public Set<Annotation> getInterceptorBindingTypeDefinition(Class<? extends Annotation>

 bindingType);

 public Set<Annotation> getStereotypeDefinition(Class<? extends Annotation> stereotype);

 public Context getContext(Class<? extends Annotation> scopeType);

 public ELResolver getELResolver();

 public ExpressionFactory wrapExpressionFactory(ExpressionFactory expressionFactory);

 public <T> AnnotatedType<T> createAnnotatedType(Class<T> type);

 public <T> InjectionTarget<T> createInjectionTarget(AnnotatedType<T> type);

}

We can obtain an instance of BeanManager via injection:

@Inject BeanManager beanManager

Java EE components may obtain an instance of BeanManager from JNDI by looking up the name

java:comp/BeanManager. Any operation of BeanManager may be called at any time during the

execution of the application.

Let's study some of the interfaces exposed by the BeanManager.

13.2. The Bean class

Instances of the interface Bean represent beans. There is an instance of Bean registered with the

BeanManager object for every bean in the application.

public interface class Bean<T> extends Contextual<T> {

 public Set<Type> getTypes();

 public Set<Annotation> getQualifiers();

 public Class<? extends Annotation> getScope();

The Context interface

119

 public String getName();

 public Set<Class<? extends Annotation>> getStereotypes();

 public Class<?> getBeanClass();

 public boolean isAlternative();

 public boolean isNullable();

 public Set<InjectionPoint> getInjectionPoints();

}

It's possible to implement the Bean interface and register instances by calling

AfterBeanDiscovery.addBean() (AfterBeanDiscovery is a built-in event type that an extension

can observe) to provide support for new kinds of beans, beyond those defined by the CDI

specification. For example, we could use the Bean interface to allow objects managed by another

framework to be injected into beans.

There are two subinterfaces of Bean defined by the CDI specification: Interceptor and

Decorator.

13.3. The Context interface

The Context interface supports addition of new scopes to CDI, or extension of the built-in scopes

to new environments.

public interface Context {

 public Class<? extends Annotation> getScope();

 public <T> T get(Contextual<T> contextual, CreationalContext<T> creationalContext);

 public <T> T get(Contextual<T> contextual);

 boolean isActive();

}

For example, we might implement Context to add a business process scope to CDI, or to add

support for the conversation scope to an application that uses Wicket.

120

Chapter 14.

121

Next steps
Because CDI is so new, there's not yet a lot of information available online. That will change over

time. Regardless, the CDI specification remains the authority for information on CDI. The spec is

kept at around 100 pages intentionally easy to read (don't worry, it's not like your Blue-ray player

manual). You may be especially interested in reading it since it covers many details that we've

skipped over. The spec is available on the JSR-299 page at the JCP website. Updates to the spec

are also frequently mailed to the weld-dev mailing list.

The CDI reference implementation, Weld, is being developed at the Seam project. The RI

development team and the CDI spec lead blog at in.relation.to. This guide was originally based on

a series of blog entries published there while the specification was being developed. It's probably

the best source of information about the future of CDI, Weld and Seam.

We encourage you to follow the weld-dev mailing list and to get involved in development. If you

are reading this guide, you likely have something to offer.

122

Part V. Weld reference
Weld is the reference implementation of JSR-299, and is used by JBoss AS and Glassfish to

provide CDI services for Java Enterprise Edition (Java EE) applications. Weld also goes beyond

the environments and APIs defined by the JSR-299 specification by providing support for a number

of other environments (such as a servlet container such as Tomcat, or Java SE) and additional

APIs and modules (such as logging and bean utilities).

Some of the extensions in Weld are portable across JSR-299 implementations (like the logging

and bean utilities) and some are specific to Weld (such as the servlet container support). Weld

also provides an SPI on which to build extensions, so there are several layers involved.

If you want to get started quickly using Weld (and, in turn, CDI) with JBoss AS, GlassFish or

Tomcat and experiment with one of the examples, take a look at Chapter 3, Getting started Weld,

the JSR-299 reference implementation. Otherwise read on for a exhaustive discussion of using

Weld in all the environments and application servers it supports and the Weld extensions.

Chapter 15.

125

Application servers and

environments supported by Weld

15.1. Using Weld with JBoss AS

No special configuration is required, beyond making your application a bean archive by adding

META-INF/beans.xml to the classpath or WEB-INF/beans.xml to the web root.

If you are using JBoss AS < 5.2, then you'll need to install Weld as an add-on. Fortunately, the

distribution has a build that can handle this for you in a single command. First, we need to tell

Weld where JBoss AS is located. Create a new file named local.build.properties in the examples

directory of the Weld distribution and assign the path of your JBoss AS installation to the property

key jboss.home, as follows:

jboss.home=/path/to/jboss-as-5.x

Now we can install the Weld deployer from the jboss-as directory of the Weld distribution:

$> cd jboss-as

$> ant update

Note

A new deployer, weld.deployer is added to JBoss AS. This adds supports for

JSR-299 deployments to JBoss AS, and allows Weld to query the EJB 3 container

and discover which EJBs are installed in your application. It also performs a

necessary upgrade of the Javassist library.

Weld is built into all releases of JBoss AS from 5.2 onwards. Regardless, you can use this script

to update the version of Weld deployed to JBoss AS at any time.

15.2. GlassFish

Weld is also built into GlassFish from V3 onwards. Since GlassFish V3 is the Java EE 6 reference

implementation, you can be confident that it will support all features of CDI. What better way for

it to support these features than to use the JSR-299 reference implementation? Just package up

your CDI application and deploy away!

Chapter 15. Application serve...

126

15.3. Servlet containers (such as Tomcat or Jetty)

While JSR-299 does not require support for Servlet environments, Weld can be used in any Servlet

container, such as Tomcat 6.0 or Jetty 6.1.

Note

There is a major limitation to using a Servlet container. Weld doesn't support

deploying session beans, injection using @EJB or @PersistenceContext, or using

transactional events in Servlet containers. For enterprise features such as these,

you should really be looking at a Java EE application server.

Weld should be used as a web application library in a servlet container. You should place weld-

servlet.jar in WEB-INF/lib in the web root. weld-servlet.jar is an "uber-jar", meaning it

bundles all the bits of Weld and CDI required for running in a Servlet container, provided for your

convenience: Alternatively, you could use its component jars:

• jsr299-api.jar

• weld-api.jar

• weld-spi.jar

• weld-core.jar

• weld-logging.jar

• weld-servlet-int.jar

• javassist.jar

• dom4j.jar

• google-collections.jar

You also need to explicitly specify the servlet listener (used to boot Weld, and control its interaction

with requests) in WEB-INF/web.xml in the web root:

<listener>

 <listener-class>org.jboss.weld.environment.servlet.Listener</listener-class>

</listener>

15.3.1. Tomcat

Tomcat has a read-only JNDI, so Weld can't automatically bind the BeanManager extension SPI.

To bind the BeanManager into JNDI, you should populate META-INF/context.xml in the web

root with the following contents:

Jetty

127

<Context>

 <Resource name="BeanManager"

 auth="Container"

 type="javax.enterprise.inject.spi.BeanManager"

 factory="org.jboss.weld.resources.ManagerObjectFactory"/>

</Context>

and make it available to your deployment by adding this to the bottom of web.xml:

<resource-env-ref>

 <resource-env-ref-name>BeanManager</resource-env-ref-name>

 <resource-env-ref-type>

 javax.enterprise.inject.spi.BeanManager

 </resource-env-ref-type>

</resource-env-ref>

Tomcat only allows you to bind entries to java:comp/env, so the BeanManager will be available

at java:comp/env/BeanManager

Weld also supports Servlet injection in Tomcat. To enable this, place the weld-tomcat-

support.jar in $TOMCAT_HOME/lib, and add the following to META-INF/context.xml:

<Listener className="org.jboss.weld.environment.tomcat.WeldLifecycleListener"/>

15.3.2. Jetty

Like Tomcat, Jetty has a read-only JNDI, so Weld can't automatically bind the Manager. To bind

the Manager to JNDI, you should populate WEB-INF/jetty-env.xml with the following contents:

<!DOCTYPE Configure PUBLIC "-//Mort Bay Consulting//DTD Configure//EN"

 "http://jetty.mortbay.org/configure.dtd">

<Configure id="webAppCtx" class="org.mortbay.jetty.webapp.WebAppContext">

 <New id="BeanManager" class="org.mortbay.jetty.plus.naming.Resource">

 <Arg><Ref id="webAppCtx"/></Arg>

 <Arg>BeanManager</Arg>

 <Arg>

 <New class="javax.naming.Reference">

 <Arg>javax.enterprise.inject.spi.BeanManager</Arg>

 <Arg>org.jboss.weld.resources.ManagerObjectFactory</Arg>

 <Arg/>

Chapter 15. Application serve...

128

 </New>

 </Arg>

 </New>

</Configure>

Notice that Jetty doesn't not have built-in support for an javax.naming.spi.ObjectFactory like

Tomcat, so it's necessary to manually create the javax.naming.Reference to wrap around it.

Jetty only allows you to bind entries to java:comp/env, so the BeanManager will be available at

java:comp/env/BeanManager

Weld does not currently support Servlet injection in Jetty.

15.4. Java SE

Apart from improved integration of the Enterprise Java stack, Weld also provides a state of the art

typesafe, stateful dependency injection framework. This is useful in a wide range of application

types, enterprise or otherwise. To facilitate this, Weld provides a simple means for executing in

the Java Standard Edition environment independently of any Enterprise Edition features.

When executing in the SE environment the following features of Weld are available:

• POJOs (no EJBs)

• Typesafe Dependency Injection

• Application and Dependent Contexts

• Qualifiers

• Stereotypes

• Typesafe Event Model

15.4.1. CDI SE Module

To make life easy for developers, Weld provides a special module with a main method which

will boot the CDI bean manager, automatically registering all JavaBeans found on the classpath.

This eliminates the need for application developers to write any bootstrapping code. The entry

point for a CDI SE applications is a bean which observes the special ContainerInitialized

event provided by the SE module. The command line paramters can be injected using either of

the following:

@Parameters List<String> params;

@Parameters String[] paramsArray; // useful for compatability with existing classes

CDI SE Module

129

Here's an example of a simple CDI SE application:

@ApplicationScoped

public class HelloWorld {

 @Parameters List<String> parameters;

 public void printHello(@Observes ContainerInitialized event) {

 System.out.println("Hello " + parameters.get(0));

 }

}

CDI SE applications are started by running the following main method.

java org.jboss.weld.environments.se.StartMain <args>

If you need to do any custom initialization of the CDI bean manager, for example registering

custom contexts or initializing resources for your beans you can do so in response to the

AfterBeanDiscovery or AfterDeploymentValidation events. The following example registers

a custom context:

public class PerformSetup {

 public void setup(@Observes AfterBeanDiscovery event) {

 event.addContext(ThreadContext.INSTANCE);

 }

}

Note

The command line parameters do not become available for injection until the

ContainerInitialized event is fired. If you need access to the parameters during

initialization you can do so via the public static String[] getParameters()

method in StartMain.

130

Chapter 16.

131

CDI extensions available as part of

Weld

Important

These modules are usable on any JSR-299 implementation, not just Weld!

16.1. Weld Logger

Adding logging to your application is now even easier with simple injection of a logger object

into any CDI bean. Simply annotate a org.jboss.weld.log.Log type member with the @Logger

qualifier annotation and an appropriate logger object will be injected into any instance of the bean.

import org.jboss.weld.annotation.Logger;

import org.jboss.weld.log.Log;

public class Checkout {

 private @Inject @Logger Log log;

 public void invoiceItems() {

 ShoppingCart cart;

 ...

 log.debug("Items invoiced for {0}", cart);

 }

}

The example shows how objects can be interpolated into a message. This interpolation is

done using java.text.MessageFormat, so see the JavaDoc for that class for more details. In

this case, the ShoppingCart should have implemented the toString() method to produce a

human readable value that is meaningful in messages. Normally, this call would have involved

evaluating cart.toString() with String concatenation to produce a single String argument. Thus it

was necessary to surround the call with an if-statement using the condition log.isDebugEnabled()

to avoid the expensive String concatenation if the message was not actually going to be used.

However, when using @Logger-injected logging, the conditional test can be left out since the object

arguments are not evaluated unless the message is going to be logged.

Chapter 16. CDI extensions av...

132

Note

You can add the Weld Logger to your project by including weld-logger.jar, sl4j-

api.jar and sl4j-jdk14.jar to your project. Alternatively, express a dependency on

the org.jboss.weld:weld-logger Maven artifact.

If you are using Weld as your JSR-299 implementation, there's no need to include

sl4j as it's already included (and used internally).

Chapter 17.

133

Alternative view layers

17.1. Wicket CDI integration

Weld provides integration between the Apache Wicket web framework and CDI. This functionality

is provided by the weld-wicket extension module, which naturally must be on the classpath of

the Wicket application.

This section describes some of the utilities provided by the Wicket extension module to support

the CDI integration.

17.1.1. The WebApplication class

Each wicket application must have a WebApplication subclass; Weld provides, for your

utility, a subclass of this which sets up the Wicket CDI integration. You should subclass

org.jboss.weld.wicket.WeldApplication.

Note

If you would prefer not to subclass WeldApplication, you can manually add a

(small!) number of overrides and listeners to your own WebApplication subclass.

The JavaDocs of WeldApplicationdetail this.

For example:

public class SampleApplication extends WeldApplication {

 @Override

 public Class getHomePage() {

 return HomePage.class;

 }

}

17.1.2. Conversations with Wicket

Wicket can also take advantage of the conversation scope from CDI, provided by the Wicket

extension module. This module takes care of:

• Setting up the conversation context at the beginning of a Wicket request, and tearing it down

afterwards

• Storing the id of any long-running conversation in Wicket's metadata when the page response

is complete

Chapter 17. Alternative view ...

134

• Activating the correct long-running conversation based upon which page is being accessed

• Propagating the conversation context for any long-running conversation to new pages

17.1.2.1. Starting and stopping conversations in Wicket

As in JSF applications, a conversation always exists for any request to Wicket, but its lifetime

is only that of the current request unless it is marked as long-running. The boundaries of a long-

running conversation are controlled in the same way as in JSF applications, by injecting the

Conversation instance and invoking either the begin() or end() methods:

private @Inject Conversation conversation;

...

// begin a conversation

conversation.begin();

...

// end a conversation

conversation.end();

17.1.2.2. Long running conversation propagation in Wicket

When a conversation is marked as long-running, the id of that conversation will be stored in

Wicket's metadata for the current page. If a new page is created and set as the response

target through setResponsePage(), this new page will also participate in this conversation.

This occurs for both directly instantiated pages (setResponsePage(new OtherPage())), as

well as for bookmarkable pages created with setResponsePage(OtherPage.class) where

OtherPage.class is mounted as bookmarkable from your WebApplication subclass (or through

annotations). In the latter case, because the new page instance is not created until after a redirect,

the conversation id will be propagated through a request parameter, and then stored in page

metadata after the redirect.

135

Appendix A. Integrating Weld into

other environments
If you want to use Weld in another environment, you will need to provide certain information to

Weld via the integration SPI. In this Appendix we will briefly discuss the steps needed.

Enterprise Services

If you just want to use managed beans, and not take advantage of enterprise

services (EE resource injection, CDI injection into EE component classes,

transactional events, support for CDI services in EJBs) and non-flat deployments,

then the generic servlet support provided by the "Weld: Servlets" extension will be

sufficient, and will work in any container supporting the Servlet API.

All SPIs and APIs described have extensive JavaDoc, which spell out the detailed contract

between the container and Weld.

A.1. The Weld SPI

The Weld SPI is located in the weld-spi module, and packaged as weld-spi.jar. Some SPIs

are optional, and should only be implemented if you need to override the default behavior; others

are required.

All interfaces in the SPI support the decorator pattern and provide a Forwarding class

located in the helpers sub package. Additional, commonly used, utility classes, and standard

implementations are also located in the helpers sub package.

Weld supports multiple environments. An environment is defined by an implementation of

the Environment interface. A number of standard environments are built in, and described

by the Environments enumeration. Different environments require different services to be

present (for example a Servlet container doesn't require transaction, EJB or JPA services).

By default an EE environment is assumed, but you can adjust the environment by calling

bootstrap.setEnvironment().

Weld uses a generic-typed service registry to allow services to be registered. All services

implement the Service interface. The service registry allows services to be added and retrieved.

A.1.1. Deployment structure

An application is often comprised of a number of modules. For example, a Java EE deployment

may contain a number of EJB modules (containing business logic) and WAR modules (containing

the user interface). A container may enforce certain accessibility rules which limit the visibility of

Appendix A. Integrating Weld ...

136

classes between modules. CDI allows these same rules to apply to bean and observer method

resolution. As the accessibility rules vary between containers, Weld requires the container to

describe the deployment structure, via the Deployment SPI.

The CDI specification discusses Bean Deployment Archives (BDAs) archives which are marked as

containing beans which should be deployed to the CDI container, and made available for injection

and resolution. Weld reuses this description of Bean Deployment Archives in its deployment

structure SPI. Each deployment exposes the BDAs which it contains; each BDA may also

reference other which it can access. Together, the transitive closure of this graph forms the beans

which are deployed in the application.

To describe the deployment structure to Weld, the container should provide an implementation of

Deployment. Deployment.getBeanDeploymentArchives() allows Weld to discover the modules

which make up the application. The CDI specification also allows beans to be specified

programmatically as part of the bean deployment. These beans may, or may not, be in an existing

BDA. For this reason, Weld will call Deployment.loadBeanDeploymentArchive(Class clazz)

for each programmatically described bean.

As programmatically described beans may result in additional BDAs being added to the

graph, Weld will discover the BDA structure every time an unknown BDA is returned by

Deployment.loadBeanDeploymentArchive.

Virtual BDAs

In a strict container, each BDA might have to explicitly specify which other BDAs

it can access. However many containers will allow an easy mechanism to make

BDAs bi-directionally accessible (such as a library directory). In this case, it is

allowable (and reasonable) to describe all such archives as a single, 'virtual'

BeanDeploymentArchive.

A container, might, for example, use a flat accessibility structure for the application.

In this case, a single BeanDeploymentArchive would be attached to the

Deployment.

BeanDeploymentArchive provides three methods which allow it's contents to be discovered

by Weld BeanDeploymentArchive.getBeanClasses() must return all the classes in the BDA,

BeanDeploymentArchive.getBeansXml() must return all the deployment descriptors in the

archive, and BeanDeploymentArchive.getEjbs() must provide an EJB descriptor for every EJB

in the BDA, or an empty list if it is not an EJB archive.

BDA X may also reference another BDA Y whose beans can be resolved by, and injected into,

any bean in BDA X. These are the accessible BDAs, and every BDA that is directly accessible by

BDA X should be returned. A BDA will also have BDAs which are accessible transtivively, and the

transitive closure of the sub-graph of BDA X describes all the beans resolvable by BDA X.

EJB descriptors

137

Matching the classloader structure for the deployment

In practice, you can regard the deployment structure represented by Deployment,

and the virtual BDA graph as a mirror of the classloader structure for a deployment.

If a class can from BDA X can be loaded by another in BDA Y, it is accessible, and

therefore BDA Y's accessible BDAs should include BDA X.

To specify the directly accessible BDAs, the container should provide an implementation of

BeanDeploymentArchive.getBeanDeploymentArchives().

Tip

Weld allows the container to describe a circular graph, and will convert a graph to

a tree as part of the deployment process.

Certain services are provided for the whole deployment, whilst some are provided per-BDA. BDA

services are provided using BeanDeploymentArchive.getServices() and only apply to the BDA

on which they are provided.

A.1.2. EJB descriptors

Weld delegates EJB 3 bean discovery to the container so that it doesn't duplicate the work done

by the EJB container, and respects any vendor-extensions to the EJB definition.

The EjbDescriptor should return the relevant metadata as defined in the EJB

specification. Each business interface of a session bean should be described using a

BusinessInterfaceDescriptor.

A.1.3. EE resource injection and resolution services

All the EE resource services are per-BDA services, and may be provided using one of two

methods. Which method to use is at the discretion of the integrator.

The integrator may choose to provide all EE resource injection services themselves, using another

library or framework. In this case the integrator should use the EE environment, and implement

the Section A.1.8, “Injection Services” SPI.

Alternatively, the integrator may choose to use CDI to provide EE resource injection. In this

case, the EE_INJECT environment should be used, and the integrator should implement the

Section A.1.4, “EJB services” [138], Section A.1.7, “Resource Services” and Section A.1.5, “JPA

services”.

Appendix A. Integrating Weld ...

138

Important

CDI only provides annotation-based EE resource injection; if you wish to provide

deployment descriptor (e.g. ejb-jar.xml) injection, you must use Section A.1.8,

“Injection Services”.

If the container performs EE resource injection, the injected resources must be serializable. If EE

resource injection is provided by Weld, the resolved resource must be serializable.

Tip

If you use a non-EE environment then you may implement any of the EE service

SPIs, and Weld will provide the associated functionality. There is no need to

implement those services you don't need!

A.1.4. EJB services

EJB services are split between two interfaces which are both per-BDA.

EJBServices is used to resolve local EJBs used to back session beans, and must always be

provided in an EE environment. EJBServices.resolveEjb(EjbDescriptor ejbDescriptor)

returns a wrapper SessionObjectReference around the EJB reference. This wrapper allows

Weld to request a reference that implements the given business interface, and, in the case of

SFSBs, both request the removal of the EJB from the container and query whether the EJB has

been previously removed.

EJBResolutionServices.resolveEjb(InjectionPoint ij) allows the resolution of @EJB (for

injection into managed beans). This service is not required if the implementation of Section A.1.8,

“Injection Services” takes care of @EJB injection.

A.1.5. JPA services

Just as EJB resolution is delegated to the container, resolution of @PersistenceContext for

injection into managed beans (with the InjectionPoint provided), is delegated to the container.

To allow JPA integration, the JpaServices interface should be implemented. This service

is not required if the implementation of Section A.1.8, “Injection Services” takes care of

@PersistenceContext injection.

A.1.6. Transaction Services

Weld delegates JTA activities to the container. The SPI provides a couple hooks to easily achieve

this with the TransactionServices interface.

Resource Services

139

Any javax.transaction.Synchronization implementation may be passed to the

registerSynchronization() method and the SPI implementation should immediately register

the synchronization with the JTA transaction manager used for the EJBs.

To make it easier to determine whether or not a transaction is currently active for the requesting

thread, the isTransactionActive() method can be used. The SPI implementation should query

the same JTA transaction manager used for the EJBs.

A.1.7. Resource Services

The resolution of @Resource (for injection into managed beans) is delegated to the container.

You must provide an implementation of ResourceServices which provides these operations. This

service is not required if the implementation of Section A.1.8, “Injection Services” takes care of

@Resource injection.

A.1.8. Injection Services

An integrator may wish to use InjectionServices to provide additional field or method injection

over-and-above that provided by Weld. An integration into a Java EE environment may use

InjectionServices to provide EE resource injection for managed beans.

InjectionServices provides a very simple contract, the

InjectionServices.aroundInject(InjectionContext ic); intercepter will be called for every

instance that CDI injects, whether it is a contextual instance, or a non-contexutal instance injected

by InjectionTarget.inject().

The InjectionContext can be used to discover additional information about the injection being

performed, including the target being injected. ic.proceed() should be called to perform CDI-

style injection, and call initializer methods.

A.1.9. Security Services

In order to obtain the Principal representing the current caller identity, the container should

provide an implementation of SecurityServices.

A.1.10. Bean Validation Services

In order to obtain the default ValidatorFactory for the application deployment, the container

should provide an implementation of ValidationServices.

A.1.11. Identifying the BDA being addressed

When a client makes a request to an application which uses Weld, the request may be addressed

at any of the BDAs in the application deployment. To allow Weld to correctly service the request,

it needs to know which BDA the request is addressed at. Where possible, Weld will provide some

context, but use of these by the integrator is optional.

Appendix A. Integrating Weld ...

140

Tip

Most Servlet contains use a classloader-per-WAR, this may provide a good way

to identify the BDA in use for web requests.

When Weld needs to identify the BDA, it will use one of these services, depending on what is

servicing the request:

ServletServices.getBeanDeploymentArchive(ServletContext ctx)

Identify the WAR in use. The ServletContext is provided for additional context.

A.1.12. The bean store

Weld uses a map like structure to store bean instances

- org.jboss.weld.context.api.BeanStore. You may find

org.jboss.weld.context.api.helpers.ConcurrentHashMapBeanStore useful.

A.1.13. The application context

Weld expects the Application Server or other container to provide the storage for each application's

context. The org.jboss.weld.context.api.BeanStore should be implemented to provide an

application scoped storage.

A.1.14. Initialization and shutdown

The org.jboss.weld.bootstrap.api.Bootstrap interface defines the initialization for Weld,

bean deployment and bean validation. To boot Weld, you must create an instance of

org.jboss.weld.bootstrap.WeldBeansBootstrap (which implements Boostrap), tell it about

the services in use, and then request the container start.

The bootstrap is split into phases, container initialization, bean deployment, bean validation

and shutdown. Initialization will create a manager, and add the built-in contexts, and examine

the deployment structure. Bean deployment will deploy any beans (defined using annotations,

programtically, or built in). Bean validation will validate all beans.

To initialize the container, you call Bootstrap.startInitialization(). Before calling

startInitialization(), you must register any services required by the environment. You

can do this by calling, for example, bootstrap.getServices().add(JpaServices.class, new

MyJpaServices()). You must also provide the application context bean store.

Having called startInitialization(), the Manager for each BDA can be obtained by calling

Bootstrap.getManager(BeanDeploymentArchive bda).

To deploy the discovered beans, call Bootstrap.deployBeans().

To validate the deployed beans, call Bootstrap.validateBeans().

Resource loading

141

To place the container into a state where it can service requests, call

Bootstrap.endInitialization()

To shutdown the container you call Bootstrap.shutdown(). This allows the container to perform

any cleanup operations needed.

A.1.15. Resource loading

Weld needs to load classes and resources from the classpath at various times. By default, they

are loaded from the Thread Context ClassLoader if available, if not the same classloader that was

used to load Weld, however this may not be correct for some environments. If this is case, you

can implement org.jboss.weld.spi.ResourceLoader.

A.2. The contract with the container

There are a number of requirements that Weld places on the container for correct functioning that

fall outside implementation of APIs.

Classloader isolation

If you are integrating Weld into an environment that supports deployment of multiple

applications, you must enable, automatically, or through user configuation, classloader

isolation for each CDI application.

Servlet

If you are integrating Weld into a Servlet environment you must register

org.jboss.weld.servlet.WeldListener as a Servlet listener, either automatically, or

through user configuration, for each CDI application which uses Servlet.

JSF

If you are integrating Weld into a JSF environment you must register

org.jboss.weld.jsf.WeldPhaseListener as a phase listener.

If you are integrating Weld into a JSF environment you must register

org.jboss.weld.el.WeldELContextListener as as an EL Context listener.

If you are integrating Weld into a JSF environment you must obtain the bean

manager for the module and then call BeanManager.wrapExpressionFactory(), passing

Application.getExpressionFactory() as the argument. The wrapped expression factory

must be used in all EL expression evaluations performed by JSF in this web application.

If you are integrating Weld into a JSF environment you must obtain the bean manager for the

module and then call BeanManager.getELResolver(), The returned EL resolver should be

registered with JSF for this web application.

Tip

There are a number of ways you can obtain the bean manager for the module.

You could call Bootstrap.getManager(), passing in the BDA for this module.

Appendix A. Integrating Weld ...

142

Alternatively, you could use the injection into Java EE component classes, or

look up the bean manager in JNDI.

If you are integrating Weld into a JSF environment you must register

org.jboss.weld.servlet.ConversationPropagationFilter as a Servlet listener, either

automatically, or through user configuration, for each CDI application which uses JSF. This

filter can be registered for all Servlet deployment safely.

Note

Weld only supports JSF 1.2 and above.

JSP

If you are integrating Weld into a JSP environment you must register

org.jboss.weld.el.WeldELContextListener as as an EL Context listener.

If you are integrating Weld into a JSP environment you must obtain the bean

manager for the module and then call BeanManager.wrapExpressionFactory(), passing

Application.getExpressionFactory() as the argument. The wrapped expression factory

must be used in all EL expression evaluations performed by JSP.

If you are integrating Weld into a JSP environment you must obtain the bean manager for the

module and then call BeanManager.getELResolver(), The returned EL resolver should be

registered with JSP for this web application.

Tip

There are a number of ways you can obtain the bean manager for the module.

You could call Bootstrap.getManager(), passing in the BDA for this module.

Alternatively, you could use the injection into Java EE component classes, or

look up the bean manager in JNDI.

Session Bean Interceptor

If you are integrating Weld into an EJB environment you must register

org.jboss.weld.ejb.SessionBeanInterceptor as a EJB interceptor for all EJBs in the

application, either automatically, or through user configuration, for each CDI application which

uses enterprise beans.

Important

You must register the SessionBeanInterceptor as the inner most interceptor

in the stack for all EJBs.

The contract with the container

143

The weld-core.jar

Weld can reside on an isolated classloader, or on a shared classloader. If you choose to use an

isolated classloader, the default SingletonProvider, IsolatedStaticSingletonProvider,

can be used. If you choose to use a shared classloader, then you will need to choose another

strategy.

You can provide your own implementation of Singleton and SingletonProvider and

register it for use using SingletonProvider.initialize(SingletonProvider provider).

Weld also provides an implementation of Thread Context Classloader per application strategy,

via the TCCLSingletonProvider.

Binding the manager in JNDI

You should bind the bean manager for the bean deployment archive into JNDI at

java:comp/Manager. The type should be javax.enterprise.inject.spi.BeanManager.

To obtain the correct bean manager for the bean deployment archive, you may call

bootstrap.getBeanManager(beanDeploymentArchive)

Performing CDI injection on Java EE component classes

The CDI specification requires the container to provide injection into non-contextual resources

for all Java EE component classes. Weld delegates this responsibility to the container.

This can be achieved using the CDI defined InjectionTarget SPI. Furthermore, you

must perform this operation on the correct bean manager for the bean deployment archive

containing the EE component class.

The CDI specification also requires that a ProcessInjectionTarget event is

fired for every Java EE component class. Furthermore, if an observer calls

ProcessInjectionTarget.setInjectionTarget() the container must use the specified

injection target to perform injection.

To help the integrator, Weld provides WeldManager.fireProcessInjectionTarget() which

returns the InjectionTarget to use.

// Fire ProcessInjectionTarget, returning the InjectionTarget

// to use

InjectionTarget it = weldBeanManager.fireProcessInjectionTarget(clazz);

// Per instance required, create the creational context

CreationalContext<?> cc = beanManager.createCreationalContext(null);

// Produce the instance, performing any constructor injection required

Object instance = it.produce();

// Perform injection and call initializers

it.inject(instance, cc);

Appendix A. Integrating Weld ...

144

// Call the post-construct callback

it.postConstruct(instance);

// Call the pre-destroy callback

it.preDestroy(instance);

// Clean up the instance

it.dispose();

cc.release();

The container may intersperse other operations between these calls. Further, the integrator

may choose to implement any of these calls in another manner, assuming the contract is

fulfilled.

When performing injections on EJBs you must use the Weld-defined SPI, WeldManager.

Furthermore, you must perform this operation on the correct bean manager for the bean

deployment archive containing the EJB.

// Obtain the EjbDescriptor for the EJB

// You may choose to use this utility method to get the descriptor

EjbDescriptor<?> ejbDescriptor = beanManager.getEjbDescriptor(ejbName);

// Get an the Bean object

Bean<?> bean = beanManager.getBean(ejbDescriptor);

// Create the injection target

InjectionTarget it = deploymentBeanManager.createInjectionTarget(ejbDescriptor);

// Per instance required, create the creational context

CreationalContext<?> cc = deploymentBeanManager.createCreationalContext(bean);

// Perform injection and call initializers

it.inject(instance, cc);

// You may choose to have CDI call the post construct and pre destroy

// lifecycle callbacks

// Call the post-construct callback

it.postConstruct(instance);

// Call the pre-destroy callback

it.preDestroy(instance);

The contract with the container

145

// Clean up the instance

it.dispose();

cc.release();

146

	Weld - JSR-299 Reference Implementation
	Table of Contents
	A note about naming and nomenclature
	Part I. Loosely-coupled, contextual components with strong typing
	Chapter 1. Getting started with JSR-299 (CDI)
	1.1. What is a bean?
	1.2. Your first bean (or is it?)
	1.3. The anatomy of a bean
	1.3.1. Bean types, qualifiers and dependency injection
	1.3.2. Scope
	1.3.3. EL name
	1.3.4. Alternatives
	1.3.5. Interceptor binding types

	1.4. What kinds of classes can be beans?
	1.4.1. Managed beans
	1.4.2. Session beans
	1.4.3. Producer methods
	1.4.4. Producer fields
	1.4.5. Java EE resources
	1.4.6. Built-in beans

	Chapter 2. JSF web application example
	Chapter 3. Getting started Weld, the JSR-299 reference implementation
	3.1. Prerequisites
	3.2. Deploying to JBoss AS
	3.3. Deploying to GlassFish
	3.4. Deploying to Apache Tomcat
	3.4.1. Deploying with Ant
	3.4.2. Deploying with Maven

	3.5. Deploying to Jetty
	3.6. The numberguess example in depth
	3.6.1. The numberguess example in Apache Tomcat or Jetty
	3.6.2. The numberguess example for Apache Wicket
	3.6.2.1. Creating the Eclipse project
	3.6.2.2. Running the example from Eclipse
	3.6.2.3. Running the example from the command line in JBoss AS or Tomcat
	3.6.2.4. Understanding the code

	3.6.3. The numberguess example for Java SE with Swing

	3.7. The translator example in depth

	Chapter 4. Dependency injection and programmatic lookup
	4.1. Where you can @Inject
	4.2. What gets injected
	4.3. Qualifier annotations
	4.3.1. Qualifiers with members
	4.3.2. Combining qualifiers
	4.3.3. Qualifiers on producer methods
	4.3.4. The default qualifier

	4.4. Fixing unsatisfied dependencies
	4.5. Client proxies
	4.6. Obtaining a contextual instance by programmatic lookup
	4.7. Bean names and EL lookup
	4.8. Lifecycle callbacks and resource injections

	Chapter 5. Scopes and contexts
	5.1. Scope types
	5.2. Built-in scopes
	5.3. The conversation scope
	5.3.1. Conversation demarcation
	5.3.2. Conversation propagation
	5.3.3. Conversation timeout

	5.4. The dependent pseudo-scope
	5.4.1. The @New annotation

	Chapter 6. Producer methods
	6.1. Scope of a producer method
	6.2. Injection into producer methods
	6.3. Use of @New with producer methods

	Part II. Developing loosely-coupled code
	Chapter 7. Interceptors
	7.1. Interceptor bindings
	7.2. Implementing interceptors
	7.3. Enabling interceptors
	7.4. Interceptor bindings with members
	7.5. Multiple interceptor binding annotations
	7.6. Interceptor binding type inheritance
	7.7. Use of @Interceptors

	Chapter 8. Decorators
	8.1. Delegate object
	8.2. Enabling decorators

	Chapter 9. Events
	9.1. Event payload
	9.2. Event observers
	9.3. Event producers (Firing events)
	9.4. Conditional observer methods
	9.5. Event qualifiers with members
	9.6. Multiple event bindings
	9.7. Transactional observers

	Part III. Making the most of strong typing
	Chapter 10. Stereotypes
	10.1. Default scope for a stereotype
	10.2. Interceptor bindings for stereotypes
	10.3. Name defaulting with stereotypes
	10.4. Alternatives as stereotypes
	10.5. Stereotype stacking
	10.6. Built-in stereotypes

	Chapter 11. Specialization, inheritance and alternatives
	11.1. Bean alternatives
	11.2. Using specialization
	11.3. Inheritance

	Part IV. CDI and the Java EE ecosystem
	Chapter 12. Java EE integration
	12.1. Injecting Java EE resources into a bean
	12.2. Calling a bean from a Servlet
	12.3. Calling a bean from a Message-Driven Bean
	12.4. JMS endpoints
	12.5. Packaging and deployment

	Chapter 13. Extending CDI through portable extensions
	13.1. The BeanManager object
	13.2. The Bean class
	13.3. The Context interface

	Chapter 14. Next steps
	Part V. Weld reference
	Chapter 15. Application servers and environments supported by Weld
	15.1. Using Weld with JBoss AS
	15.2. GlassFish
	15.3. Servlet containers (such as Tomcat or Jetty)
	15.3.1. Tomcat
	15.3.2. Jetty

	15.4. Java SE
	15.4.1. CDI SE Module

	Chapter 16. CDI extensions available as part of Weld
	16.1. Weld Logger

	Chapter 17. Alternative view layers
	17.1. Wicket CDI integration
	17.1.1. The WebApplication class
	17.1.2. Conversations with Wicket
	17.1.2.1. Starting and stopping conversations in Wicket
	17.1.2.2. Long running conversation propagation in Wicket

	Appendix A. Integrating Weld into other environments
	A.1. The Weld SPI
	A.1.1. Deployment structure
	A.1.2. EJB descriptors
	A.1.3. EE resource injection and resolution services
	A.1.4. EJB services
	A.1.5. JPA services
	A.1.6. Transaction Services
	A.1.7. Resource Services
	A.1.8. Injection Services
	A.1.9. Security Services
	A.1.10. Bean Validation Services
	A.1.11. Identifying the BDA being addressed
	A.1.12. The bean store
	A.1.13. The application context
	A.1.14. Initialization and shutdown
	A.1.15. Resource loading

	A.2. The contract with the container

