
JSR-299: Contexts and Dependency Injection for
the Java EE platform

JSR-299 Expert Group

Specification lead
Gavin King, Red Hat Middleware, LLC

Version
Expert group draft

Table of Contents
Evaluation license ... vii
1. Architecture .. 1

1.1. Contracts ... 1
1.2. Relationship to other specifications ... 2

1.2.1. Relationship to the Java EE platform specification .. 2
1.2.2. Relationship to EJB ... 2
1.2.3. Relationship to managed beans .. 2
1.2.4. Relationship to JSF ... 3

1.3. Introductory examples .. 3
1.3.1. JSF example .. 3
1.3.2. EJB example .. 5
1.3.3. Java EE component environment example ... 5
1.3.4. Event example ... 5
1.3.5. Interceptor example ... 6
1.3.6. Decorator example .. 7

2. Concepts ... 9
2.1. Functionality provided by the container to the bean .. 9
2.2. Bean types ..10

2.2.1. Legal bean types ..10
2.2.2. Typecasting between bean types ...10

2.3. Bindings ...11
2.3.1. Built-in binding types ...11
2.3.2. Defining new binding types ...12
2.3.3. Declaring the bindings of a bean ...12
2.3.4. Specifying bindings of an injected field ..13
2.3.5. Specifying bindings of a method or constructor parameter ...13

2.4. Scopes ...13
2.4.1. Built-in scope types ..14
2.4.2. Defining new scope types ..14
2.4.3. Declaring the bean scope ...14
2.4.4. Default scope ..15

2.5. Deployment types ..15
2.5.1. Built-in deployment types ..15
2.5.2. Defining new deployment types ..16
2.5.3. Declaring the deployment type of a bean ..16
2.5.4. Default deployment type ...17
2.5.5. Enabled deployment types ...17
2.5.6. Deployment type precedence ...18

2.6. Bean EL names ..18
2.6.1. Declaring the bean EL name ..18
2.6.2. Default bean EL names ...18
2.6.3. Beans with no EL name ..18

2.7. Stereotypes ...19
2.7.1. Defining new stereotypes ..19

2.7.1.1. Declaring the default scope and deployment type for a stereotype19
2.7.1.2. Specifying interceptor bindings for a stereotype ..19
2.7.1.3. Specifying name defaulting for a stereotype ...20
2.7.1.4. Stereotypes with additional stereotypes ..20

2.7.2. Declaring the stereotypes for a bean ..20
2.7.3. Built-in stereotypes ..20

3. Programming model ..22
3.1. Managed beans ..22

3.1.1. Which Java classes are managed beans? ...22
3.1.2. Bean types of a managed bean ..22
3.1.3. Declaring a managed bean ...23
3.1.4. Bean constructors ..23

3.1.4.1. Declaring a bean constructor ...23

JSR-299 Expert group draft ii

3.1.4.2. Bean constructor parameters ..24
3.1.5. Specializing a managed bean ..24
3.1.6. Default name for a managed bean ...24

3.2. Session beans ..24
3.2.1. EJB remove methods of session beans ...25
3.2.2. Bean types of a session bean ..25
3.2.3. Declaring a session bean ...25
3.2.4. Specializing a session bean ..25
3.2.5. Default name for a session bean ..26

3.3. Producer methods ...26
3.3.1. Bean types of a producer method ..26
3.3.2. Declaring a producer method ...27
3.3.3. Producer method parameters ..27
3.3.4. Specializing a producer method ..27
3.3.5. Disposer methods ..28
3.3.6. Disposed parameter of a disposer method ...28
3.3.7. Declaring a disposer method ..28
3.3.8. Disposer method parameters ..29
3.3.9. Disposer method resolution ...29
3.3.10. Default name for a producer method ..29

3.4. Producer fields ...29
3.4.1. Bean types of a producer field ..30
3.4.2. Declaring a producer field ...30
3.4.3. Default name for a producer field ..30

3.5. Resources ...30
3.5.1. Declaring a resource ...31
3.5.2. Bean types of a resource ..31
3.5.3. The JTA TransactionManager ..31

3.6. Message destinations ..32
3.6.1. Bean types of a message destination ..32
3.6.2. Declaring a message destination ...32

3.7. Injected fields ..33
3.7.1. Declaring an injected field ...33

3.8. Initializer methods ..33
3.8.1. Declaring an initializer method ...34
3.8.2. Initializer method parameters ...34

3.9. The default binding at injection points ..34
3.10. Beans with the @New binding ..35

4. Inheritance and specialization ...36
4.1. Inheritance of type-level metadata ...36
4.2. Inheritance of member-level metadata ..37
4.3. Specialization ..37

4.3.1. Direct and indirect specialization ..38
4.3.2. Most specialized enabled bean for a bean ...39
4.3.3. Inconsistent specialization ...39

5. Dependency injection, lookup and EL ..40
5.1. Inter-module accessibility ..40
5.2. Typesafe resolution ..40

5.2.1. Unsatisfied and ambiguous dependencies ...41
5.2.2. Legal injection point types ...41
5.2.3. Assignability of raw and parameterized types ..41
5.2.4. Primitive types and null values ...42
5.2.5. Binding annotations with members ..42
5.2.6. Multiple bindings ...42

5.3. EL name resolution ...43
5.3.1. Ambiguous EL names ...43

5.4. Client proxies ..43
5.4.1. Unproxyable bean types ..44
5.4.2. Client proxy invocation ...44

5.5. Dependency injection ..44
5.5.1. Injectable references ...45
5.5.2. Injected reference validity ...45

JSR-299: Contexts and Dependency Injection for the Java EE
platform

JSR-299 Expert group draft iii

5.5.3. Injection using the bean constructor ...45
5.5.4. Injection of fields and initializer methods ...45
5.5.5. Destruction of dependent objects ..46
5.5.6. Invocation of producer or disposer methods ..46
5.5.7. Access to producer field values ..46
5.5.8. Invocation of observer methods ..46
5.5.9. Injection point metadata ..47

5.6. Programmatic lookup ..47
5.6.1. The Instance interface ...48
5.6.2. The built-in Instance ...49
5.6.3. Using AnnotationLiteral ..49

5.7. Integration with Unified EL ..50
6. Scopes and contexts ...51

6.1. The Contextual interface ..51
6.1.1. Instance creation ..51
6.1.2. Instance destruction ..51

6.2. The Context interface ..52
6.3. Normal scopes and pseudo-scopes ...53
6.4. Dependent pseudo-scope ...53

6.4.1. Dependent scope lifecycle ...53
6.4.2. Dependent objects ..54
6.4.3. Dependent object destruction ...54

6.5. Contextual instances and contextual references ..54
6.5.1. The active context object for a scope ...55
6.5.2. Contextual instance of a bean ...55
6.5.3. Contextual reference for a bean ..55
6.5.4. Contextual reference validity ...56

6.6. Passivation and passivating scopes ..56
6.6.1. Passivation capable beans ..56
6.6.2. Passivation capable dependencies ...56
6.6.3. Passivating scopes ...57
6.6.4. Validation of passivation capable beans and dependencies ...57

6.7. Context management for built-in scopes ...58
6.7.1. Request context lifecycle ...58
6.7.2. Session context lifecycle ...58
6.7.3. Application context lifecycle ..58
6.7.4. Conversation context lifecycle ..59
6.7.5. The Conversation interface ..60

7. Lifecycle of contextual instances ..61
7.1. Restriction upon bean instantiation ..61
7.2. Container invocations and interception ...62
7.3. Lifecycle of contextual instances ...62

7.3.1. Lifecycle of managed beans ...62
7.3.2. Lifecycle of stateful session beans ...63
7.3.3. Lifecycle of stateless session and singleton beans ...63
7.3.4. Lifecycle of producer methods ...63
7.3.5. Lifecycle of producer fields ...63
7.3.6. Lifecycle of resources ...64
7.3.7. Lifecycle of message destinations ...64

8. Decorators ..65
8.1. Decorator beans ...65

8.1.1. Declaring a decorator ...65
8.1.2. Decorator delegate injection points ..65
8.1.3. Decorated types of a decorator ...66

8.2. Decorator enablement and ordering ..66
8.3. Decorator resolution ...66
8.4. Decorator stack creation ..67
8.5. Decorator invocation ...67

9. Interceptor bindings ..68
9.1. Interceptor binding types ...68

9.1.1. Interceptor binding types with additional interceptor bindings ..68
9.1.2. Interceptor bindings for stereotypes ...68

JSR-299: Contexts and Dependency Injection for the Java EE
platform

JSR-299 Expert group draft iv

9.2. Declaring the interceptor bindings of an interceptor ..68
9.3. Binding an interceptor to a bean ..69
9.4. Interceptor enablement and ordering ..69
9.5. Interceptor resolution ..70

9.5.1. Interceptors with multiple bindings ...70
9.5.2. Interceptor binding types with members ...71

10. Events ..72
10.1. Event types and binding types ...72
10.2. The Observer interface ..72
10.3. Observer resolution ...72

10.3.1. Assignability of type variables, raw and parameterized types ..73
10.3.2. Event binding types with members ..73
10.3.3. Multiple event bindings ...74

10.4. Firing events and registering observers ...74
10.4.1. The Event interface ..74
10.4.2. The built-in Event ..75

10.5. Observer methods ...75
10.5.1. Event parameter of an observer method ..76
10.5.2. Declaring an observer method ..76
10.5.3. Observer method parameters ..76
10.5.4. Conditional observer methods ..76
10.5.5. Transactional observer methods ..77
10.5.6. Asynchronous observer methods ...77

10.6. Observer notification ...77
10.6.1. Observer method notification ...77
10.6.2. Observer method invocation context ..78

10.7. JMS event mappings ...78
11. Portable extensions ..80

11.1. The Bean interface ..80
11.1.1. The Decorator interface ...80
11.1.2. The Interceptor interface ..81

11.2. The BeanManager object ...81
11.2.1. Obtaining a contextual reference for a bean ...81
11.2.2. Obtaining an injectable reference ..81
11.2.3. Obtaining a Bean by type ...82
11.2.4. Obtaining a Bean by name ...82
11.2.5. Obtaining the most specialized bean ..82
11.2.6. Obtaining a passivation capable bean by identifier ..82
11.2.7. Resolving an ambiguous dependency ...82
11.2.8. Registering a Bean ...83
11.2.9. Registering an Observer ..83
11.2.10. Firing an event ...83
11.2.11. Observer resolution ...84
11.2.12. Decorator resolution ..84
11.2.13. Interceptor resolution ..84
11.2.14. Validating a dependency ..84
11.2.15. Determining if an annotation is a binding type, scope type, stereotype or interceptor binding
type ...85
11.2.16. Discovering the enabled deployment types ..85
11.2.17. Registering a Context ..85
11.2.18. Obtaining the active Context for a scope ...85
11.2.19. Obtaining the ELResolver ..85

11.3. Alternative metadata sources ..85
11.4. Helper objects for Bean implementations ..86

11.4.1. InjectionTarget, Producer and Listener ...87
11.4.2. ManagedBean and SessionBean ..88
11.4.3. The ProducerBean interface ...88
11.4.4. The ObserverMethod interface ..89

11.5. Container lifecycle events ..89
11.5.1. BeforeBeanDiscovery event ...89
11.5.2. AfterBeanDiscovery event ...90
11.5.3. AfterDeploymentValidation event ...90

JSR-299: Contexts and Dependency Injection for the Java EE
platform

JSR-299 Expert group draft v

11.5.4. BeforeShutdown event ..90
11.5.5. ProcessAnnotatedType event ..91
11.5.6. ProcessInjectionTarget event ..91
11.5.7. ProcessBean event ..92
11.5.8. ProcessObserverMethod event ..93

11.6. Activities ..93
11.6.1. Current activity ..94

12. Packaging and deployment ...95
12.1. Bean deployment archives ..95
12.2. Application initialization lifecycle ...95
12.3. Bean discovery ...95
12.4. Problems detected automatically by the container ...96

A. Helper literals ..98
A.1. Generic type literals ...98
A.2. Annotation instance literals ...99

B. Packages .. 101
B.1. javax.interceptor .. 101
B.2. javax.decorator .. 101
B.3. javax.enterprise.event ... 101
B.4. javax.enterprise.context .. 101
B.5. javax.enterprise.context.spi .. 101
B.6. javax.enterprise.inject ... 101
B.7. javax.enterprise.inject.stereotype .. 102
B.8. javax.enterprise.inject.deployment .. 102
B.9. javax.enterprise.inject.spi .. 102

JSR-299: Contexts and Dependency Injection for the Java EE
platform

JSR-299 Expert group draft vi

Evaluation license
Copyright 2009 Red Hat Middleware LLC.

All rights reserved.

NOTICE

The Specification is protected by copyright and the information described therein may be protected by one or more U.S.
patents, foreign patents, or pending applications. Except as provided under the following license, no part of the Specifica-
tion may be reproduced in any form by any means without the prior written authorization of Red Hat Middleware LLC and
its licensors, if any. Any use of the Specification and the information described therein will be governed by the terms and
conditions of this Agreement.

Subject to the terms and conditions of this license, including your compliance with Paragraphs 1 and 2 below, Red Hat
Middleware LLC hereby grants you a fully-paid, non-exclusive, non-transferable, limited license (without the right to sub-
license) under Red Hat Middleware LLC's intellectual property rights to:

1. Review the Specification for the purposes of evaluation. This includes: (i) developing implementations of the Specifica-
tion for your internal, non-commercial use; (ii) discussing the Specification with any third party; and (iii) excerpting brief
portions of the Specification in oral or written communications which discuss the Specification provided that such excerpts
do not in the aggregate constitute a significant portion of the Specification.

2. Distribute implementations of the Specification to third parties for their testing and evaluation use, provided that any
such implementation:

(i) does not modify, subset, superset or otherwise extend the Licensor Name Space, or include any public or protected
packages, classes, Java interfaces, fields or methods within the Licensor Name Space other than those required/authorized
by the Specification or Specifications being implemented;

(ii) is clearly and prominently marked with the word "UNTESTED" or "EARLY ACCESS" or "INCOMPATIBLE" or
"UNSTABLE" or "BETA" in any list of available builds and in proximity to every link initiating its download, where the
list or link is under Licensee's control; and

(iii) includes the following notice:

"This is an implementation of an early-draft specification developed under the Java Community Process (JCP). The code is
not compatible with any specification of the JCP."

The grant set forth above concerning your distribution of implementations of the Specification is contingent upon your
agreement to terminate development and distribution of your implementation of early draft upon final completion of the
Specification. If you fail to do so, the foregoing grant shall be considered null and void.

No provision of this Agreement shall be understood to restrict your ability to make and distribute to third parties applica-
tions written to the Specification.

Other than this limited license, you acquire no right, para or interest in or to the Specification or any other Red Hat Mid-
dleware LLC intellectual property, and the Specification may only be used in accordance with the license terms set forth
herein. This license will expire on the earlier of: (a) two (2) years from the date of Release listed above; (b) the date on
which the final version of the Specification is publicly released; or (c) the date on which the Java Specification Request
(JSR) to which the Specification corresponds is withdrawn. In addition, this license will terminate immediately without
notice from Red Hat Middleware LLC if you fail to comply with any provision of this license. Upon termination, you must
cease use of or destroy the Specification.

"Licensor Name Space" means the public class or interface declarations whose names begin with "java", "javax",
"com.redhat" or their equivalents in any subsequent naming convention adopted through the Java Community Process, or
any recognized successors or replacements thereof.

TRADEMARKS

No right, para, or interest in or to any trademarks, service marks, or trade names of Red Hat Middleware LLC or Red Hat's
licensors is granted hereunder. Java and Java-related logos, marks and names are trademarks or registered trademarks of
Sun Microsystems, Inc. in the U.S. and other countries.

JSR-299 Expert group draft vii

DISCLAIMER OF WARRANTIES

THE SPECIFICATION IS PROVIDED "AS IS" AND IS EXPERIMENTAL AND MAY CONTAIN DEFECTS OR DE-
FICIENCIES WHICH CANNOT OR WILL NOT BE CORRECTED BY RED HAT MIDDLEWARE LLC. RED HAT
MIDDLEWARE LLC MAKES NO REPRESENTATIONS OR WARRANTIES, EITHER EXPRESS OR IMPLIED, IN-
CLUDING BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NON-INFRINGEMENT THAT THE CONTENTS OF THE SPECIFICATION ARE SUITABLE FOR
ANY PURPOSE OR THAT ANY PRACTICE OR IMPLEMENTATION OF SUCH CONTENTS WILL NOT IN-
FRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADE SECRETS OR OTHER RIGHTS. This document
does not represent any commitment to release or implement any portion of the Specification in any product.

THE SPECIFICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS.
CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION THEREIN; THESE CHANGES WILL BE IN-
CORPORATED INTO NEW VERSIONS OF THE SPECIFICATION, IF ANY. RED HAT MIDDLEWARE LLC MAY
MAKE IMPROVEMENTS AND/OR CHANGES TO THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED
IN THE SPECIFICATION AT ANY TIME. Any use of such changes in the Specification will be governed by the then-
current license for the applicable version of the Specification.

LIMITATION OF LIABILITY

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL RED HAT MIDDLEWARE LLC OR ITS LI-
CENSORS BE LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUE, PROFITS
OR DATA, OR FOR SPECIAL, INDIRECT, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES,
HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF OR RELATED
TO ANY FURNISHING, PRACTICING, MODIFYING OR ANY USE OF THE SPECIFICATION, EVEN IF RED HAT
MIDDLEWARE LLC AND/OR ITS LICENSORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGES.

You will hold Red Hat Middleware LLC (and its licensors) harmless from any claims based on your use of the Specifica-
tion for any purposes other than the limited right of evaluation as described above, and from any claims that later versions
or releases of any Specification furnished to you are incompatible with the Specification provided to you under this li-
cense.

RESTRICTED RIGHTS LEGEND

If this Software is being acquired by or on behalf of the U.S. Government or by a U.S. Government prime contractor or
subcontractor (at any tier), then the Government's rights in the Software and accompanying documentation shall be only as
set forth in this license; this is in accordance with 48 C.F.R. 227.7201 through 227.7202-4 (for Department of Defense
(DoD) acquisitions) and with 48 C.F.R. 2.101 and 12.212 (for non-DoD acquisitions).

REPORT

You may wish to report any ambiguities, inconsistencies or inaccuracies you may find in connection with your evaluation
of the Specification ("Feedback"). To the extent that you provide Red Hat Middleware LLC with any Feedback, you
hereby: (i) agree that such Feedback is provided on a non-proprietary and non-confidential basis, and (ii) grant Red Hat
Middleware LLC a perpetual, non-exclusive, worldwide, fully paid-up, irrevocable license, with the right to sublicense
through multiple levels of sublicensees, to incorporate, disclose, and use without limitation the Feedback for any purpose
related to the Specification and future versions, implementations, and test suites thereof.

GENERAL TERMS

Any action related to this Agreement will be governed by California law and controlling U.S. federal law. The U.N. Con-
vention for the International Sale of Goods and the choice of law rules of any jurisdiction will not apply.

The Specification is subject to U.S. export control laws and may be subject to export or import regulations in other coun-
tries. Licensee agrees to comply strictly with all such laws and regulations and acknowledges that it has the responsibility
to obtain such licenses to export, re-export or import as may be required after delivery to Licensee.

This Agreement is the parties' entire agreement relating to its subject matter. It supersedes all prior or contemporaneous or-
al or written communications, proposals, conditions, representations and warranties and prevails over any conflicting or
additional terms of any quote, order, acknowledgment, or other communication between the parties relating to its subject
matter during the term of this Agreement. No modification to this Agreement will be binding, unless in writing and signed
by an authorized representative of each party.

Evaluation license

JSR-299 Expert group draft viii

Chapter 1. Architecture

This specification provides a powerful new set of services to Java EE components.

• The lifecycle and interactions of stateful components bound to well-defined lifecycle contexts, where the set of con-
texts is extensible

• A sophisticated, typesafe dependency injection mechanism, including a facility for choosing between various compon-
ents that implement the same Java interface at deployment time

• Integration with the Unified Expression Language (EL), allowing any component to be used directly within a JSF or
JSP page

• The ability to decorate injected components

• An event notification model

• A web conversation context in addition to the three standard web contexts defined by the Java Servlets specification

• An SPI allowing portable extensions to integrate cleanly with the Java EE environment

To take advantage of these facilities, the Java EE component developer provides additional component-level metadata in
the form of Java annotations and application-level metadata in the form of an XML descriptor.

The services defined by this specification allow Java EE components to be bound to lifecycle contexts, to be injected, and
to interact in a loosely coupled fashion by firing and observing events. Various kinds of objects are injectable, including
EJB 3 session beans, managed beans and Java EE resources. We refer to these objects in general terms as beans and to in-
stances of beans that are bound to contexts as contextual instances. Contextual instances may be injected into other objects
by the dependency injection service.

The use of these services significantly simplifies the task of creating Java EE applications by integrating the Java EE web
tier with Java EE enterprise services. In particular, EJB components may be used as JSF managed beans, thus integrating
the programming models of EJB and JSF.

It's even possible to integrate with third-party frameworks. A portable extension may provide objects to be injected or ob-
tain contextual instances using the dependency injection service. The framework may even raise and observe events using
the event notification service.

An application that takes advantage of these services may be designed to execute in either the Java EE environment or the
Java SE environment. If the application uses Java EE services such as transaction management and persistence in the Java
SE environment, the services are restricted to the subset defined for embedded usage by the EJB specification.

1.1. Contracts

This specification defines the responsibilities of:

• the application developer who uses these services, and

• the vendor who implements the functionality defined by this specification and provides a runtime environment in
which the application executes.

This runtime environment is called the container. For example, the container might be a Java EE container or an embed-
dable EJB container.

Chapter 2, Concepts, Chapter 3, Programming model, Chapter 4, Inheritance and specialization, Chapter 9, Interceptor
bindings, Section 8.1, “Decorator beans” and Section 10.5, “Observer methods” define the programming model for Java
EE components that take advantage of the services defined by this specification, the responsibilities of the component de-
veloper, and the annotations used by the component developer to specify metadata.

Chapter 5, Dependency injection, lookup and EL, Chapter 6, Scopes and contexts, Chapter 7, Lifecycle of contextual in-
stances, Chapter 8, Decorators, Chapter 10, Events and Section 9.5, “Interceptor resolution” define the semantics and be-
havior of the services, the responsibilities of the container implementation and the APIs used by the application to interact

JSR-299 Expert group draft 1

directly with the container.

Chapter 12, Packaging and deployment defines how Java EE applications that use the services defined by this specifica-
tion must be packaged into bean deployment archives, and the responsibilities of the container implementation at applica-
tion initialization time.

Chapter 11, Portable extensions, Section 6.1, “The Contextual interface” and Section 6.2, “The Context interface” define
an SPI that allows portable extensions to integrate with the container.

1.2. Relationship to other specifications

An application developer creates Java EE components such as EJBs, servlets and JavaBeans and then provides additional
metadata that declares additional behavior defined by this specification. These components may take advantage of the ser-
vices defined by this specification, together with the enterprise and presentational aspects defined by other Java EE plat-
form technologies.

In addition, this specification defines an SPI that allows alternative, non-platform technologies to integrate with the con-
tainer, for example, alternative web presentation technologies.

1.2.1. Relationship to the Java EE platform specification

In the Java EE 6 environment, all component classes supporting injection, as defined by the Java EE 6 platform specifica-
tion, may inject beans via the dependency injection service.

The Java EE platform specification defines a facility for injecting resources that exist in the Java EE component eniron-
ment. Resources are identified by string-based names. This specification bolsters that functionality, adding the ability to in-
ject an open-ended set of object types, including, but not limited to, component environment resources, based upon
typesafe bindings.

1.2.2. Relationship to EJB

EJB defines a programming model for application components that access transactional resources in a multi-user environ-
ment. EJB allows concerns such as role-based security, transaction demarcation, concurrency and scalability to be spe-
cified declaratively using annotations and XML deployment descriptors and enforced by the EJB container at runtime.

EJB components may be stateful, but are not by nature contextual. References to stateful component instances must be ex-
plicitly passed between clients and stateful instances must be explicitly destroyed by the application.

This specification enhances the EJB component model with contextual lifecycle management.

Any session bean instance obtained via the dependency injection service is a contextual instance. It is bound to a lifecycle
context and is available to other objects that execute in that context. The container automatically creates the instance when
it is needed by a client. When the context ends, the container automatically destroys the instance.

Message-driven and entity beans are by nature non-contextual objects and may not be injected into other objects.

The container performs dependency injection on all EJB instances, even those which are not contextual instances.

1.2.3. Relationship to managed beans

The managed beans specification defines the basic programming model for application components managed by the Java
EE container.

As defined by this specification, most Java classes, including all JavaBeans, are managed beans.

This specification defines contextual lifecycle management and dependency injection as generic services applicable to all
managed beans.

Any managed bean instance obtained via the dependency injection service is a contextual instance. It is bound to a life-
cycle context and is available to other objects that execute in that context. The container automatically creates the instance
when it is needed by a client. When the context ends, the container automatically destroys the instance.

Architecture

JSR-299 Expert group draft 2

The container performs dependency injection on all managed bean instances, even those which are not contextual in-
stances.

1.2.4. Relationship to JSF

JavaServer Faces is a web-tier presentation framework that provides a component model for graphical user interface com-
ponents and an event-driven interaction model that binds user interface components to objects accessible via Unified EL.

This specification allows any bean to be assigned a Unified EL name. Thus, a JSF application may take advantage of the
sophisticated context and dependency injection model defined by this specification.

1.3. Introductory examples

The following examples demonstrate the use of lifecycle contexts and dependency injection.

1.3.1. JSF example

The following JSF page defines a login prompt for a web application:

<f:view>
<h:form>

<h:panelGrid columns="2" rendered="#{!login.loggedIn}">
<h:outputLabel for="username">Username:</h:outputLabel>
<h:inputText id="username" value="#{credentials.username}"/>
<h:outputLabel for="password">Password:</h:outputLabel>
<h:inputText id="password" value="#{credentials.password}"/>

</h:panelGrid>
<h:commandButton value="Login" action="#{login.login}" rendered="#{!login.loggedIn}"/>
<h:commandButton value="Logout" action="#{login.logout}" rendered="#{login.loggedIn}"/>

</h:form>
</f:view>

The Unified EL expressions in this page refer to beans named credentials and login.

The Credentials bean has a lifecycle that is bound to the JSF request:

@Model
public class Credentials {

private String username;
private String password;

public String getUsername() { return username; }
public void setUsername(String username) { this.username = username; }

public String getPassword() { return password; }
public void setPassword(String password) { this.password = password; }

}

The @Model annotation defined in Section 2.7.3, “Built-in stereotypes” is a stereotype that identifies the Credentials bean
as a model object in an MVC architecture.

The Login bean has a lifecycle that is bound to the HTTP session:

@SessionScoped @Model
public class Login {

@Current Credentials credentials;
@Users EntityManager userDatabase;

private User user;

public void login() {

List<User> results = userDatabase.createQuery(
"select u from User u where u.username=:username and u.password=:password")
.setParameter("username", credentials.getUsername())
.setParameter("password", credentials.getPassword())
.getResultList();

if (!results.isEmpty()) {

Architecture

JSR-299 Expert group draft 3

user = results.get(0);
}

}

public void logout() {
user = null;

}

public boolean isLoggedIn() {
return user!=null;

}

@Produces @LoggedIn User getCurrentUser() {
if (user==null) {

throw new NotLoggedInException();
}
else {

return user;
}

}

}

The @SessionScoped annotation defined in Section 2.4.1, “Built-in scope types” is a scope type that specifies the lifecycle
of instances of Login.

The @Current annotation defined in Section 2.3.1, “Built-in binding types” is a binding type. Applied to a field, it causes
the Credentials bean to be injected into any contextual instance of Login created by the container.

The @Users annotation is a binding type defined by the application:

@BindingType
@Retention(RUNTIME)
@Target({METHOD, FIELD, PARAMETER, TYPE})
public @interface Users {}

Applied to a field, it causes the JPA EntityManager to be injected by the container.

The @LoggedIn annotation is another binding type defined by the application:

@BindingType
@Retention(RUNTIME)
@Target({METHOD, FIELD, PARAMETER, TYPE})
public @interface LoggedIn {}

The @Produces annotation defined in Section 3.3.2, “Declaring a producer method” identifies the method getCur-

rentUser() as a producer method, which will be called whenever another bean in the system needs the currently logged-in
user, for example, whenever the user attribute of the DocumentEditor class is injected by the container:

@Model
public class DocumentEditor {

@Current Document document;
@LoggedIn User user;
@Documents EntityManager docDatabase;

public void save() {
document.setCreatedBy(currentUser);
em.persist(document);

}

}

The @Documents annotation is another application-defined binding type. The use of distinct binding types enables the con-
tainer to distinguish which JPA persistence unit is required.

When the login form is submitted, JSF assigns the entered username and password to an instance of the Credentials bean
that is automatically instantiated by the container. Next, JSF calls the login() method of an instance of Login that is auto-
matically instantiated by the container. This instance continues to exist for and be available to other requests in the same
HTTP session, and provides the User object representing the current user to any other bean that requires it (for example,
DocumentEditor). If the producer method is called before the login() method initializes the user object, it throws a Not-

LoggedInException.

Architecture

JSR-299 Expert group draft 4

1.3.2. EJB example

Alternatively, we could write our Login bean to take advantage of the functionality defined by EJB:

@Stateful @SessionScoped @Model
public class Login {

@Current Credentials credentials;
@Users EntityManager userDatabase;

private User user;

@TransactionAttribute(REQUIRES_NEW)
@RolesAllowed("guest")
public void login() {

...
}

public void logout() {
user = null;

}

public boolean isLoggedIn() {
return user!=null;

}

@RolesAllowed("user")
@Produces @LoggedIn User getCurrentUser() {

...
}

}

The EJB @Stateful annotation specifies that this bean is an EJB stateful session bean. The EJB @TransactionAttribute

and @RolesAllowed annotations declare the EJB transaction demarcation and security attributes of the annotated methods.

1.3.3. Java EE component environment example

In the previous examples, we injected container-managed persistence contexts using binding types. We need to tell the
container what persistence context is being referred to by which binding type. We can declare references to persistence
contexts and other resources in the Java EE component environment in Java code.

public class Databases {

@Produces @PersistenceContext(unitName="UserData")
@Users EntityManager userDatabase;

@Produces @PersistenceContext(unitName="DocumentData")
@Documents EntityManager docDatabase;

}

The JPA @PersistenceContext annotation identifies the JPA persistence unit.

1.3.4. Event example

Beans may raise events. For example, our Login class could raise events when a user logs in or out.

@SessionScoped @Model
public class Login {

@Current Credentials credentials;
@Users EntityManager userDatabase;

@LoggedIn Event<User> userLoggedInEvent;
@LoggedOut Event<User> userLoggedOutEvent;

private User user;

public void login() {

List<User> results = ... ;

if (!results.isEmpty()) {
user = results.get(0);
userLoggedInEvent.fire(user);

Architecture

JSR-299 Expert group draft 5

}

}

public void logout() {
userLoggedOutEvent.fire(user);
user = null;

}

public boolean isLoggedIn() {
return user!=null;

}

@Produces @LoggedIn User getCurrentUser() {
...

}

}

The method fire() of the built-in bean of type Event defined in Section 10.4.1, “The Event interface” allows the applica-
tion to fire events. Events consist of an event object—in this case the User—and event bindings. Event bindings—such as
@LoggedIn and @LoggedOut—allow observers to specify which events of a certain type they are interested in.

Other beans may observer these events and use them to synchronize their internal state, with no coupling to the bean pro-
ducing the events:

@SessionScoped
public class Permissions {

@Produces
private Set<Permission> permissions = new ArrayList<Permission>();

@Users EntityManager userDatabase;

void onLogin(@Observes @LoggedIn User user) {
permissions = new HashSet(userDatabase.createQuery(

"select p from Permission p where p.user.username=:username")
.setParameter("username", user.getUsername())
.getResultList());

}

void onLogout(@Observes @LoggedOut User user {
permissions.clear();

}

}

The @Produces annotation applied to a field identifies the field as a producer field, as defined in Section 3.4, “Producer
fields”, a kind of shortcut version of a producer method. This producer field allows the permissions of the current user to
be injected to any injection point of type @Current Set<Permission>.

The @Observes annotation defined in Section 10.5.2, “Declaring an observer method” identifies the method with the an-
notated parameter as an observer method that is called by the container whenever an event matching the type and bindings
of the annotated parameter is fired.

1.3.5. Interceptor example

Interceptors allow common, cross-cutting concerns to be applied to beans via custom annotations. Interceptor types may
be individually enabled or disabled at deployment time.

The AuthorizationInterceptor class defines a custom authorization check:

@Secure @Interceptor
public class AuthorizationInterceptor {

@LoggedIn User user;

@AroundInvoke public void authorize(InvocationContext ic) {
try {

if (!user.isBanned()) {
System.out.println("Authorized");
ic.proceed();

}
else {

System.out.println("Not authorized");

Architecture

JSR-299 Expert group draft 6

throw new NotAuthorizedException();
}

}
catch (NotAuthenticatedException nae) {

System.out.println("Not authenticated");
throw nae;

}
}

}

The @Interceptor annotation, defined in Section 9.2, “Declaring the interceptor bindings of an interceptor”, identifies the
AuthorizationInterceptor class as an interceptor. The @Secure annotation is a custom interceptor binding type, as
defined in Section 9.1, “Interceptor binding types”.

@Inherited
@InterceptorBindingType
@Target({TYPE, METHOD})
@Retention(RUNTIME)
public @interface Secure {}

The @Secure annotation is used to apply the interceptor to a bean:

@Model
public class DocumentEditor {

@Current Document document;
@LoggedIn User user;
@PersistenceContext EntityManager em;

@Secure
public void save() {

document.setCreatedBy(currentUser);
em.persist(document);

}

}

When the save() method is invoked, the authorize() method of the interceptor will be called. The invocation will pro-
ceed to the DocumentEditor class only if the authorization check is successful.

1.3.6. Decorator example

Decorators are similar to interceptors, but apply only to beans of a particular Java interface. Like interceptors, decorators
may be easily enabled or disabled at deployment time. Unlike interceptors, decorators are aware of the semantics of the in-
tercepted method.

For example, the DataAccess interface might be implemented by many beans:

public interface DataAccess {

public Object load(Object id);
public Object getId();

public void save();
public void delete();

public Class getDataType();

}

The DataAccessAuthorizationDecorator class defines the authorization checks:

@Decorator
public abstract class DataAccessAuthorizationDecorator

implements DataAccess {

@Decorates DataAccess delegate;

@Current Set<Permission> permissions;

public void save() {
authorize("save");
delegate.save();

}

Architecture

JSR-299 Expert group draft 7

public void delete() {
authorize("delete");
delegate.delete();

}

private void authorize(String action) {
Object id = delegate.getId();
Class type = delegate.getDataType();
if (permissions.contains(new Permission(action, type, id))) {

System.out.println("Authorized for " + action);
}
else {

System.out.println("Not authorized for " + action);
throw new NotAuthorizedException(action);

}
}

}

The @Decorator annotation defined in Section 8.1.1, “Declaring a decorator” identifies the DataAccessAuthorization-

Decorator class as a decorator. The @Decorates annotation defined in Section 8.1.2, “Decorator delegate injection points”
identifies the delegate, which the decorator uses to delegate method calls to the container. The decorator applies to any
bean that implements DataAccess.

The decorator intercepts invocations just like an interceptor. However, unlike an interceptor, the decorator contains func-
tionality that is specific to the semantics of the method being called.

Decorators may be declared abstract, relieving the developer of the responsibility of implementing all methods of the dec-
orated interface. If a decorator does not implement a method of a decorated interface, the decorator will simply not be
called when that method is invoked upon the decorated bean.

Architecture

JSR-299 Expert group draft 8

Chapter 2. Concepts

A Java EE component is a bean if the lifecycle of its instances may be managed by the container according to the lifecycle
context model defined in Chapter 6, Scopes and contexts. A bean may bear metadata defining its lifecycle and interactions
with other components.

Speaking more abstractly, a bean is a source of contextual objects which define application state and/or logic. These ob-
jects are called contextual instances of the bean. The container creates and destroys these instances and associates them
with the appropriate context. Contextual instances of a bean may be injected into other objects (including other bean in-
stances) that execute in the same context, and may be used in EL expressions that are evaluated in the same context.

A bean comprises the following attributes:

• A (nonempty) set of bean types

• A (nonempty) set of bindings

• A scope

• A deployment type

• Optionally, a bean EL name

• A set of interceptor bindings

• A bean implementation

In most cases, a bean developer provides the bean implementation by writing business logic in Java code. The developer
then defines the remaining attributes by explicitly annotating the bean class, or by allowing them to be defaulted by the
container, as specified in Chapter 3, Programming model. In certain other cases—for example, Java EE component envir-
onment resources, defined in Section 3.5, “Resources”—the developer provides only the annotations and the bean imple-
mentation is provided by the container.

The deployment type, bean types and bindings of a bean determine where its instances will be injected by the container, as
defined in Chapter 5, Dependency injection, lookup and EL.

The bean developer may also create interceptors and/or decorators or reuse existing interceptors and/or decorators. The in-
terceptor bindings of a bean determine which interceptors will be applied at runtime. The bean types and bindings of a
bean determine which decorators will be applied at runtime. Interceptors are defined by Java interceptors specification, and
interceptor bindings are specified in Chapter 9, Interceptor bindings. Decorators are defined in Chapter 8, Decorators.

2.1. Functionality provided by the container to the bean

A bean is provided by the container with the following capabilities:

• transparent creation and destruction and scoping to a particular context, specified in Chapter 6, Scopes and contexts
and Chapter 7, Lifecycle of contextual instances,

• scoped resolution by bean type and binding annotation type when injected into a Java-based client, as defined by Sec-
tion 5.2, “Typesafe resolution”,

• scoped resolution by name when used in a Unified EL expression, as defined by Section 5.3, “EL name resolution”,

• lifecycle callbacks and automatic injection of other bean instances, specified in Chapter 3, Programming model and
Chapter 5, Dependency injection, lookup and EL,

• method interception, callback interception, and decoration, as defined in Chapter 9, Interceptor bindings and
Chapter 8, Decorators, and

• event notification, as defined in Chapter 10, Events.

JSR-299 Expert group draft 9

2.2. Bean types

A bean type defines a client-visible type of the bean. A bean may have multiple bean types. For example, the following
bean has three bean types:

public class BookShop
extends Business
implements Shop<Book> {

...
}

The bean types are BookShop, Business and Shop<Book>.

Meanwhile, this session bean has only the local interfaces BookShop and Auditable as bean types, since the bean class is
not a client-visible type.

@Stateful
public class BookShopBean

extends Business
implements BookShop, Auditable {

...
}

The rules for determining the set of bean types for a bean are defined in Section 3.1.2, “Bean types of a managed bean”,
Section 3.2.2, “Bean types of a session bean”, Section 3.3.1, “Bean types of a producer method”, Section 3.4.1, “Bean
types of a producer field”, Section 3.5.2, “Bean types of a resource” and Section 3.6.1, “Bean types of a message destina-
tion”.

All beans have the bean type java.lang.Object.

The bean types of a bean are used by the rules of typesafe resolution defined in Section 5.2, “Typesafe resolution”.

2.2.1. Legal bean types

Almost any Java type may be a bean type of a bean:

• A bean type may be an interface, a concrete class or an abstract class, and may be declared final or have final methods.

• A bean type may be a parameterized type with actual type parameters and type variables.

• A bean type may be an array type. Two array types are considered identical only if the element type is identical.

• A bean type may be a primitive type. Primitive types are considered to be identical to their corresponding wrapper
types in java.lang.

• A bean type may be a raw type.

A type variable is not a legal bean type. A parameterized type that contains a wildcard tye parameter is not a legal bean
type.

Note that certain additional restrictions are specified in Section 5.4.1, “Unproxyable bean types” for beans with a normal
scope, as defined in Section 6.3, “Normal scopes and pseudo-scopes”.

2.2.2. Typecasting between bean types

A client of a bean may typecast its contextual reference to a bean to any bean type of the bean which is a Java interface.
However, the client may not in general typecast its contextual reference to an arbitrary concrete bean type of the bean. For
example, if our managed bean was injected to the following field:

@Current Business biz;

Then the following typecast is legal:

Shop<Book> bookShop = (Shop<Book>) biz;

Concepts

JSR-299 Expert group draft 10

However, the following typecast is not legal and might result in an exception at runtime:

BookShop bookShop = (BookShop) biz;

2.3. Bindings

For a given bean type, there may be multiple beans which implement the type. For example, an application may have two
implementations of the interface PaymentProcessor:

class SynchronousPaymentProcessor
implements PaymentProcessor {

...
}

class AsynchronousPaymentProcessor
implements PaymentProcessor {

...
}

A client that needs a PaymentProcessor that processes payments synchronously needs some way to distinguish between
the two different implementations. One approach would be for the client to explicitly specify the class that implements the
PaymentProcessor interface. However, this approach creates a hard dependence between client and implementa-
tion—exactly what use of the interface was designed to avoid!

A binding type represents some client-visible semantic associated with a type that is satisfied by some implementations of
the type (and not by others). For example, we could introduce binding types representing synchronicity and asynchron-
icity. In Java code, binding types are represented by annotations.

@Synchronous
class SynchronousPaymentProcessor

implements PaymentProcessor {
...

}

@Asynchronous
class AsynchronousPaymentProcessor

implements PaymentProcessor {
...

}

Finally, binding types are applied to injection points to distinguish which implementation is required by the client. For ex-
ample, when the container encounters the following injected field, an instance of SynchronousPaymentProcessor will be
injected:

@Synchronous PaymentProcessor paymentProcessor;

But in this case, an instance of AsynchronousPaymentProcessor will be injected:

@Asynchronous PaymentProcessor paymentProcessor;

The container inspects the binding annotations and type of the injected attribute to determine the bean instance to be injec-
ted, according to the rules of typesafe resolution defined in Section 5.2, “Typesafe resolution”.

Binding types are also used as event selectors by observers of events, as defined in Chapter 10, Events, and to bind decor-
ators to beans, as specified in Chapter 8, Decorators.

2.3.1. Built-in binding types

The three standard binding types are defined in the package javax.enterprise.inject.

Every bean has the built-in binding @Any, even if it does not explicitly declare this binding, except for beans with the built-
in binding @New defined in Section 3.10, “Beans with the @New binding”.

If a bean does not explicitly declare a binding, the bean has exactly one additional binding, of type @Current. This is
called the default binding.

Concepts

JSR-299 Expert group draft 11

The following declarations are equivalent:

@Current
public class Order {}

public class Order {}

Both declarations result in a bean with two bindings: @Any and @Current.

The default binding is also assumed for any injection point that does not explicitly declare a binding. The following declar-
ations, in which the use of the @Initializer annotation identifies the constructor parameter as an injection point, are equi-
valent:

public class Order {
@Initializer
public Order(@Current OrderProcessor processor) { ... }

}

public class Order {
@Initializer
public Order(OrderProcessor processor) { ... }

}

2.3.2. Defining new binding types

A binding type is a Java annotation defined as @Target({METHOD, FIELD, PARAMETER, TYPE}) and
@Retention(RUNTIME).

A binding type may be declared by specifying the @javax.enterprise.inject.BindingType meta-annotation.

@BindingType
@Retention(RUNTIME)
@Target({METHOD, FIELD, PARAMETER, TYPE})
public @interface Synchronous {}

@BindingType
@Retention(RUNTIME)
@Target({METHOD, FIELD, PARAMETER, TYPE})
public @interface Asynchronous {}

A binding type may define annotation members.

@BindingType
@Retention(RUNTIME)
@Target({METHOD, FIELD, PARAMETER, TYPE})
public @interface PayBy {

PaymentMethod value();
}

2.3.3. Declaring the bindings of a bean

A bean's bindings are declared by annotating the bean class or producer method or field with the binding types.

@LDAP
class LdapAuthenticator

implements Authenticator {
...

}

public class Shop {

@Produces @All
public List<Product> getAllProducts() { ... }

@Produces @WishList
public List<Product> getWishList() { }

@Produces @ShoppingCart
public List<Product> getShoppingCart() { }

Concepts

JSR-299 Expert group draft 12

}

Any bean may declare multiple binding types.

@Synchronous @Reliable
class SynchronousReliablePaymentProcessor

implements PaymentProcessor {
...

}

2.3.4. Specifying bindings of an injected field

Binding types may be applied to injected fields (see Section 3.7, “Injected fields”) to determine the bean that is injected,
according to the rules of typesafe resolution defined in Section 5.2, “Typesafe resolution”.

@LDAP Authenticator authenticator;

A bean may only be injected to an injection point if it has all the bindings of the injection point.

@Synchronous @Reliable PaymentProcessor paymentProcessor;

@All List<Product> catalog;

@WishList List<Product> wishList;

@ShoppingCart List<Product> cart;

2.3.5. Specifying bindings of a method or constructor parameter

Binding types may be applied to parameters of producer methods, initializer methods, disposer methods, observer methods
or bean constructors (see Chapter 3, Programming model) to determine the bean instance that is passed when the method
is called by the container. The container uses the rules of typesafe resolution defined in Section 5.2, “Typesafe resolution”
to determine values for these parameters.

For example, when the container encounters the following producer method, an instance of SynchronousPaymentPro-

cessor will be passed to the first parameter and an instance of AsynchronousPaymentProcessor will be passed to the
second parameter:

@Produces
PaymentProcessor getPaymentProcessor(@Synchronous PaymentProcessor sync,

@Asynchronous PaymentProcessor async) {
return isSynchronous() ? sync : async;

}

2.4. Scopes

Java EE components such as servlets, EJBs and JavaBeans do not have a well-defined scope. These components are either:

• singletons, such as EJB singleton beans, whose state is shared between all clients,

• stateless objects, such as servlets and stateless session beans, which do not contain client-visible state, or

• objects that must be explictly created and destroyed by their client, such as JavaBeans and stateful session beans,
whose state is shared by explicit reference passing between clients.

Scoped objects, by contrast, exist in a well-defined lifecycle context:

• they may be automatically created when needed and then automatically destroyed when the context in which they were
created ends, and

• their state is automatically shared by clients that execute in the same context.

Concepts

JSR-299 Expert group draft 13

All beans have a scope. The scope of a bean determines the lifecycle of its instances, and which instances of the bean are
visible to instances of other beans, as defined in Chapter 6, Scopes and contexts. A scope type is represented by an annota-
tion type.

For example, an object that represents the current user is represented by a session scoped object:

@Produces @SessionScoped User getCurrentUser() { ... }

An object that represents an order is represented by a conversation scoped object:

@ConversationScoped
public class Order {

...
}

A list that contains the results of a search screen might be represented by a request scoped object:

@Produces @RequestScoped @Named("orders")
List<Order> getOrderSearchResults() { ... }

The set of scope types is extensible.

2.4.1. Built-in scope types

There are five standard scope types defined by this specification, all defined in the package javax.enterprise.context.

• The @RequestScoped, @ApplicationScoped and @SessionScoped annotations defined in Section 6.7, “Context man-
agement for built-in scopes” represent the standard scopes defined by the Java Servlets specification.

• The @ConversationScoped annotation represents the conversation scope defined in Section 6.7.4, “Conversation con-
text lifecycle”.

• Finally, there is a @Dependent pseudo-scope for dependent objects, as defined in Section 6.4, “Dependent pseudo-
scope”.

2.4.2. Defining new scope types

A scope type is a Java annotation defined as @Target({TYPE, METHOD, FIELD}) and @Retention(RUNTIME). All scope
types must also specify the @javax.enterprise.context.ScopeType meta-annotation.

For example, the following annotation declares a "business process scope":

@Inherited
@ScopeType
@Target({TYPE, METHOD, FIELD})
@Retention(RUNTIME)
public @interface BusinessProcessScoped {}

Custom scopes are normally defined by portable extensions, which must also provide a context object, as defined in Sec-
tion 6.2, “The Context interface”, that implements the custom scope.

2.4.3. Declaring the bean scope

The bean's scope is defined by annotating the bean class or producer method or field with a scope type.

A bean class or producer method or field may specify at most one scope type annotation. If a bean class or producer meth-
od or field specifies multiple scope type annotations, the container automatically detects the problem and treats it as a
definition error, as defined in Section 12.4, “Problems detected automatically by the container”.

The following examples demonstrate the use of built-in scope types:

@RequestScoped
public class ProductList implements DataModel { ... }

Concepts

JSR-299 Expert group draft 14

public class Shop {

@Produces @SessionScoped @WishList
public List<Product> getWishList() { }

@Produces @ConversationScoped @ShoppingCart
public List<Product> getShoppingCart() { }

}

Likewise, a bean with the custom business process scope may be declared by annotating it with the
@BusinessProcessScoped annotation:

@BusinessProcessScoped
public class Order {

...
}

Alternatively, a scope type may be specified using a stereotype annotation, as defined in Section 2.7.2, “Declaring the ste-
reotypes for a bean”.

2.4.4. Default scope

When no scope is explicitly declared by annotating the bean class or producer method or field the scope of a bean is de-
faulted.

The default scope for a bean which does not explicitly declare a scope depends upon its declared stereotypes:

• If the bean does not declare any stereotype with a declared default scope, the default scope for the bean is @Dependent.

• If all stereotypes declared by the bean that have some declared default scope have the same default scope, then that
scope is the default scope for the bean.

• If there are two different stereotypes declared by the bean that declare different default scopes, then there is no default
scope and the bean must explicitly declare a scope. If it does not explicitly declare a scope, the container automatically
detects the problem and treats it as a definition error, as defined in Section 12.4, “Problems detected automatically by
the container”.

If a bean explicitly declares a scope, any default scopes declared by stereotypes are ignored.

2.5. Deployment types

In many applications, there are various implementations of a particular type, and the implementation used at runtime varies
between different deployments of the system. Therefore, a developer may associate a particular implementation of a bean
type with a certain deployment scenario.

A deployment type represents a deployment scenario. Beans may be classified by deployment type, and thereby associated
with various deployment scenarios.

Deployment types allow the container to identify which beans should be enabled for use in a particular deployment of the
system. The deployment type also determines the precedence of a bean, used to resolve ambiguous dependencies and EL
names, as specified in Section 5.2.1, “Unsatisfied and ambiguous dependencies” and Section 5.3.1, “Ambiguous EL
names”.

The set of deployment types is extensible.

2.5.1. Built-in deployment types

There are two standard deployment types defined by this specification, both in the package
javax.enterprise.inject.deployment.

• The default deployment type for beans which do not explicitly declare a deployment type is @Production.

• All standard beans defined by this specification, and provided by the container, are defined using the @Standard de-

Concepts

JSR-299 Expert group draft 15

ployment type. For example, the Conversation object defined in Section 6.7.4, “Conversation context lifecycle” and
the BeanManager object defined in Section 11.2, “The BeanManager object” have this deployment type.

No bean may be declared with the @Standard deployment type unless explicitly required by this specification.

2.5.2. Defining new deployment types

A deployment type is a Java annotation defined as @Target({TYPE, METHOD, FIELD}) and @Retention(RUNTIME). All de-
ployment types must also specify the @javax.enterprise.inject.deployment.DeploymentType meta-annotation.

Applications and portable extensions may define their own deployment types. For example, the following deployment type
might identify beans which are used only at a particular site at which the application is deployed:

@DeploymentType
@Target({TYPE, METHOD, FIELD})
@Retention(RUNTIME)
public @interface Australian {}

This deployment type might be used by a portable extension that integrates with the container:

@DeploymentType
@Target({TYPE, METHOD, FIELD})
@Retention(RUNTIME)
public @interface DaoFramework {}

This deployment type might be used to define mock objects for integration testing:

@DeploymentType
@Target({TYPE, METHOD, FIELD})
@Retention(RUNTIME)
public @interface Mock {}

2.5.3. Declaring the deployment type of a bean

The deployment type of the bean is declared by annotating the bean class or producer method or field.

A bean class or producer method or field may specify at most one deployment type. If multiple deployment type annota-
tions are specified, the container automatically detects the problem and treats it as a definition error, as defined in Sec-
tion 12.4, “Problems detected automatically by the container”.

This bean has the deployment type @Production:

@Production
public class Order {}

This bean has the deployment type @Mock:

@Mock
public class MockOrder extends Order {}

By default, if no deployment type annotation is explicitly specified, a producer method or field inherits the deployment
type of the bean in which it is defined.

This producer method has the deployment type @Production:

@Production
public class Login {

@Produces
public User getUser() { ... }

}

This producer method has the deployment type @Australian:

@Production
public class TaxPolicies {

Concepts

JSR-299 Expert group draft 16

@Produces @Australian
public TaxPolicy getAustralianTaxPolicy() { ... }

}

Alternatively, a deployment type may be specified using a stereotype annotation, as defined in Section 2.7.2, “Declaring
the stereotypes for a bean”.

2.5.4. Default deployment type

When no deployment type is explicitly declared by annotating the bean class or producer method or field, the deployment
type is defaulted.

The default deployment type for a bean which does not explicitly declare a deployment type depends upon its declared ste-
reotypes:

• If a producer method or field does not declare any stereotype with a declared default deployment type, then the default
deployment type is the deployment type of the bean that declares the producer method or field.

• If any other kind of bean does not declare any stereotype with a declared default deployment type, then the default de-
ployment type is @Production.

• Otherwise, the default deployment type for the bean is the highest-precedence default deployment type declared by any
stereotype declared by the bean.

Thus, the following declarations are equivalent:

@Production
public class Order {}

public class Order {}

If a bean explicitly declares a deployment type, any default deployment type declared by stereotypes are ignored.

2.5.5. Enabled deployment types

In a particular deployment, only some deployment types are enabled. Beans declared with a deployment type that is not
enabled are not available to be instantiated at runtime.

The container inspects the deployment type of each bean that exists in a particular deployment (see Section 12.3, “Bean
discovery”) to determine whether the bean is enabled in this deployment. If the deployment type is enabled, an instance of
the bean may be obtained by lookup, injection or EL resolution. Otherwise, the bean is never instantiated by the container.

By default, only the built-in deployment types are enabled. To enable a custom deployment type, a <deploy> element must
be included in a beans.xml file and the deployment type must be declared using the annotation type name.

<beans>
<deploy>

<type>javax.enterprise.inject.deployment.Production</type>
<type>org.mycompany.myfwk.DaoFramework</type>
<type>org.mycompany.site.Australian</type>
<type>org.mycompany.myfwk.Mock</type>

</deploy>
</beans>

If a <deploy> element is specified, the explicitly declared deployment types are enabled, together with @Standard, which
need not be declared explicitly.

If no <deploy> element is specified in any beans.xml file, only the @Standard and @Production deployment types are en-
abled.

If the <deploy> element is specified in more than one beans.xml document, the container automatically detects the prob-
lem and treats it as a deployment problem, as defined in Section 12.4, “Problems detected automatically by the container”.

Concepts

JSR-299 Expert group draft 17

2.5.6. Deployment type precedence

In a particular deployment, all enabled deployment types are strongly ordered in terms of precedence. The precedence of a
deployment type is used to resolve ambiguous EL names and ambiguous dependencies, as specified in Section 5.2.1,
“Unsatisfied and ambiguous dependencies” and Section 5.3.1, “Ambiguous EL names”.

If a <deploy> element is specified, the order of the deployment type declarations determines the deployment type preced-
ence. Deployment types which appear later in this list have a higher precedence than deployment types which appear earli-
er. The @Standard deployment type always has the lowest precedence of any deployment type.

If no <deploy> element is specified, the @Production deployment type has a higher precedence than the @Standard de-
ployment type.

2.6. Bean EL names

A bean may have a bean EL name. A bean with an EL name may be referred to by its name in Unified EL expressions. A
valid bean EL name is a period-separated list of valid EL identifiers.

The following strings are valid EL names:

org.mydomain.myapp.settings

orderManager

There is no relationship between the EL name of a session bean and the EJB name of the bean.

Subject to the restrictions defined in Section 5.3.1, “Ambiguous EL names”, multiple beans may share the same EL name.

Bean EL names allow the direct use of beans in JSP or JSF pages, as defined in Section 5.7, “Integration with Unified
EL”. For example, a bean with the name products could be used like this:

<h:outputText value="#{products.total}"/>

Bean EL names are used by the rules of EL name resolution defined in Section 5.3, “EL name resolution”.

2.6.1. Declaring the bean EL name

To specify the EL name of a bean, the @javax.enterprise.inject.Named annotation is applied to the bean class or produ-
cer method or field. This bean is named products:

@Named("products")
public class ProductList implements DataModel { ... }

If the @Named annotation does not specify the value member, the default EL name is assumed.

2.6.2. Default bean EL names

In the following circumstances, a default EL name must be assigned by the container:

• A bean class or producer method or field of a bean declares a @Named annotation and no EL name is explicitly specified
by the value member.

• A bean declares a stereotype that declares an empty @Named annotation, and the bean does not explicitly specify an EL
name.

The default name for a bean depends upon the bean implementation. The rules for determining the default name for a bean
are defined in Section 3.1.6, “Default name for a managed bean”, Section 3.2.5, “Default name for a session bean”, Sec-
tion 3.3.10, “Default name for a producer method” and Section 3.4.3, “Default name for a producer field”.

2.6.3. Beans with no EL name

Concepts

JSR-299 Expert group draft 18

If @Named is not specified, by neither the bean nor its stereotypes, a bean has no EL name.

2.7. Stereotypes

In many systems, use of architectural patterns produces a set of recurring bean roles. A stereotype allows a framework de-
veloper to identify such a role and declare some common metadata for beans with that role in a central place.

A stereotype encapsulates any combination of:

• a default deployment type,

• a default scope, and

• a set of interceptor bindings.

A stereotype may also specify that all beans with the stereotype have defaulted bean EL names.

A bean may declare zero, one or multiple stereotypes.

2.7.1. Defining new stereotypes

A bean stereotype is a Java annotation defined as @Target({TYPE, METHOD, FIELD}), @Target(TYPE), @Target(METHOD),
@Target(FIELD) or @Target({METHOD, FIELD}) and @Retention(RUNTIME).

A stereotype may be declared by specifying the @javax.enterprise.inject.stereotype.Stereotype meta-annotation.

@Stereotype
@Target(TYPE)
@Retention(RUNTIME)
public @interface Action {}

A stereotype may not declare any binding annotation. If a stereotype declares a binding annotation, the container automat-
ically detects the problem and treats it as a definition error, as defined in Section 12.4, “Problems detected automatically
by the container”.

2.7.1.1. Declaring the default scope and deployment type for a stereotype

A stereotype may declare at most one scope. If a stereotype declares more than one scope, the container automatically de-
tects the problem and treats it as a definition error, as defined in Section 12.4, “Problems detected automatically by the
container”.

A stereotype may declare at most one deployment type. If a stereotype declares more than one deployment type, the con-
tainer automatically detects the problem and treats it as a definition error, as defined in Section 12.4, “Problems detected
automatically by the container”.

For example, the following stereotype might be used to identify action classes in a web application:

@RequestScoped
@Production
@Stereotype
@Target(TYPE)
@Retention(RUNTIME)
public @interface Action {}

Then actions would have scope @RequestScoped and deployment type @Production unless the scope or deployment type
explicitly specified by the bean.

2.7.1.2. Specifying interceptor bindings for a stereotype

A stereotype may declare zero, one or multiple interceptor bindings, as defined in Section 9.1.2, “Interceptor bindings for
stereotypes”.

We may specify interceptor bindings that apply to all actions:

Concepts

JSR-299 Expert group draft 19

@RequestScoped
@Secure
@Transactional
@Production
@Stereotype
@Target(TYPE)
@Retention(RUNTIME)
public @interface Action {}

2.7.1.3. Specifying name defaulting for a stereotype

A stereotype may declare an empty @Named annotation. If a stereotype declares a non-empty @Named annotation, the con-
tainer automatically detects the problem and treats it as a definition error, as defined in Section 12.4, “Problems detected
automatically by the container”.

We may specify that every bean with the stereotype has a defaulted name when a name is not explicitly specified by the
bean:

@RequestScoped
@Secure
@Transactional
@Named
@Production
@Stereotype
@Target(TYPE)
@Retention(RUNTIME)
public @interface Action {}

2.7.1.4. Stereotypes with additional stereotypes

A stereotype may declare other stereotypes.

@Auditable
@Action
@Stereotype
@Target(TYPE)
@Retention(RUNTIME)
public @interface AuditableAction {}

Stereotype declarations are transitive—a stereotype declared by a second stereotype is inherited by all beans and other ste-
reotypes that declare the second stereotype.

Stereotypes declared @Target(TYPE) may not be applied to stereotypes declared @Target({TYPE, METHOD, FIELD}),
@Target(METHOD), @Target(FIELD) or @Target({METHOD, FIELD}).

2.7.2. Declaring the stereotypes for a bean

Stereotype annotations may be applied to a bean class or producer method or field.

@Action
public class LoginAction { ... }

The default deployment type and default scope declared by the stereotype may be overridden by the bean:

@Mock @ApplicationScoped @Action
public class MockLoginAction extends LoginAction { ... }

Multiple stereotypes may be applied to the same bean:

@Dao @Action
public class LoginAction { ... }

2.7.3. Built-in stereotypes

The built-in stereotype @javax.enterprise.inject.stereotype.Model is intended for use with beans that define the
model layer of an MVC web application architecture such as JSF:

Concepts

JSR-299 Expert group draft 20

@Named
@RequestScoped
@Stereotype
@Target({TYPE, METHOD, FIELD})
@Retention(RUNTIME)
public @interface Model {}

In addition, the special-purpose @Interceptor and @Decorator stereotypes are defined in Chapter 9, Interceptor bindings.

Concepts

JSR-299 Expert group draft 21

Chapter 3. Programming model

The container provides built-in support for injection and contextual lifecycle management of the following kinds of bean:

• Managed beans

• Session beans

• Producer methods and fields

• Resources (Java EE resources, persistence contexts, persistence units, remote EJBs and web services)

• Message destinations (JMS topics and queues)

An application or portable extension may provide other kinds of beans by implementing the interface Bean defined in Sec-
tion 11.1, “The Bean interface” and registering the implementation with the container, as defined in Section 11.2.8,
“Registering a Bean”.

3.1. Managed beans

A managed bean is a bean that is implemented by a Java class. This class is called the bean class of the managed bean.
The basic lifecycle and semantics of managed beans are defined by the Managed Beans specification.

If the bean class of a managed bean is annotated with both the @Interceptor and @Decorator stereotypes, the container
automatically detects the problem and treats it as a definition error, as defined in Section 12.4, “Problems detected auto-
matically by the container”.

If a managed bean has a public field, it must have scope @Dependent. If a managed bean with a public field declares any
scope other than @Dependent, the container automatically detects the problem and treats it as a definition error, as defined
in Section 12.4, “Problems detected automatically by the container”.

If the managed bean class is a parameterized type, it must have scope @Dependent. If a managed bean with a parameterized
bean class declares any scope other than @Dependent, the container automatically detects the problem and treats it as a
definition error, as defined in Section 12.4, “Problems detected automatically by the container”.

3.1.1. Which Java classes are managed beans?

A top-level Java class is a managed bean if it is defined to be a managed bean by any other Java EE specification, or if it
meets all of the following conditions:

• It is not a non-static inner class.

• It is a concrete class, or is annotated @Decorator.

• It is not annotated with an EJB component-defining annotation or declared as an EJB bean class in ejb-jar.xml.

• It has an appropriate constructor—either:

• the class has a constructor with no parameters, or

• the class declares a constructor annotated @Initializer.

All Java classes that meet these conditions are managed beans and thus no special declaration is required to define a man-
aged bean.

3.1.2. Bean types of a managed bean

The set of bean types for a managed bean contains the bean class, every superclass and all interfaces it implements directly
or indirectly.

Note the additional restrictions upon bean types of beans with normal scopes defined in Section 5.4.1, “Unproxyable bean

JSR-299 Expert group draft 22

types”.

3.1.3. Declaring a managed bean

A managed bean with a constructor that takes no parameters does not require any special annotations. The following
classes are beans:

public class Shop { .. }

class PaymentProcessorImpl implements PaymentProcessor { ... }

A bean class may also specify a scope, name, deployment type, stereotypes and/or bindings:

@ConversationScoped @Current
public class ShoppingCart { ... }

A managed bean may extend another managed bean:

@Named("loginAction")
public class LoginAction { ... }

@Mock
@Named("loginAction")
public class MockLoginAction extends LoginAction { ... }

The second bean is a "mock object" that overrides the implementation of LoginAction when running in an embedded EJB
Lite based integration testing environment.

3.1.4. Bean constructors

When the container instantiates a managed bean, it calls the bean constructor. The bean constructor is a constructor of the
bean class.

The application may call bean constructors directly. However, if the application directly instantiates the bean, no paramet-
ers are passed to the constructor by the container; the returned object is not bound to any context; no dependencies are in-
jected by the container; and the lifecycle of the new instance is not managed by the container.

3.1.4.1. Declaring a bean constructor

The bean constructor may be identified by annotating the constructor @Initializer.

@SessionScoped
public class ShoppingCart {

private User customer;

@Initializer
public ShoppingCart(User customer) {

this.customer = customer;
}

public ShoppingCart(ShoppingCart original) {
this.customer = original.customer;

}

ShoppingCart() {}

...

}

@ConversationScoped
public class Order {

private Product product;
private User customer;

@Initializer
public Order(@Selected Product product, User customer) {

this.product = product;

Programming model

JSR-299 Expert group draft 23

this.customer = customer;
}

public Order(Order original) {
this.product = original.product;
this.customer = original.customer;

}

Order() {}

...

}

If a managed bean does not explicitly declare a constructor using @Initializer, the constructor that accepts no parameters
is the bean constructor.

If a managed bean has more than one constructor annotated @Initializer, the container automatically detects the problem
and treats it as a definition error, as defined in Section 12.4, “Problems detected automatically by the container”.

If a bean constructor has a parameter annotated @Disposes, or @Observes, the container automatically detects the problem
and treats it as a definition error, as defined in Section 12.4, “Problems detected automatically by the container”.

3.1.4.2. Bean constructor parameters

A bean constructor may have any number of parameters. All parameters of a bean constructor are injection points.

3.1.5. Specializing a managed bean

If a bean class of a managed bean X is annotated @Specializes, then the bean class of X must directly extend the bean
class of another managed bean Y. Then X directly specializes Y, as defined in Section 4.3, “Specialization”.

If the bean class of X does not directly extend the bean class of another managed bean, the container automatically detects
the problem and treats it as a definition error, as defined in Section 12.4, “Problems detected automatically by the contain-
er”.

For example, MockLoginAction directly specializes LoginAction:

public class LoginAction { ... }

@Mock @Specializes
public class MockLoginAction extends LoginAction { ... }

3.1.6. Default name for a managed bean

The default name for a managed bean is the unqualified class name of the bean class, after converting the first character to
lower case.

For example, if the bean class is named ProductList, the default bean EL name is productList.

3.2. Session beans

An session bean is a bean that is implemented by a session bean with an EJB 3.x client view. The basic lifecycle and se-
mantics of an EJB session bean are defined by the EJB specification.

A stateless session bean must belong to the @Dependent pseudo-scope. A singleton bean must belong to either the
@ApplicationScoped scope or to the @Dependent pseudo-scope. If a session bean specifies an illegal scope, the container
automatically detects the problem and treats it as a definition error, as defined in Section 12.4, “Problems detected auto-
matically by the container”. A stateful session bean may have any scope.

When a contextual instance of a session bean is obtained via the dependency injection service, the behavior of Session-
Context.getInvokedBusinessInterface() is specific to the container implementation. Portable applications should not
rely upon the value returned by this method.

Programming model

JSR-299 Expert group draft 24

If the bean class of a session bean is annotated @Interceptor or @Decorator, the container automatically detects the prob-
lem and treats it as a definition error, as defined in Section 12.4, “Problems detected automatically by the container”.

If the session bean class is a parameterized type, it must have scope @Dependent. If a session bean with a parameterized
bean class declares any scope other than @Dependent, the container automatically detects the problem and treats it as a
definition error, as defined in Section 12.4, “Problems detected automatically by the container”.

3.2.1. EJB remove methods of session beans

If a session bean is a stateful session bean:

• If the scope is @Dependent, the application may call any EJB remove method of an instance of the session bean.

• Otherwise, the application may not directly call any EJB remove method of any instance of the session bean.

If the application directly calls an EJB remove method of an instance of a session bean that is a stateful session bean and
declares any scope other than @Dependent, an UnsupportedOperationException is thrown.

If the application directly calls an EJB remove method of an instance of a session bean that is a stateful session bean and
has scope @Dependent then no parameters are passed to the method by the container. Furthermore, the container ignores
the instance instead of destroying it when Contextual.destroy() is called, as defined in Section 7.3.2, “Lifecycle of
stateful session beans”.

3.2.2. Bean types of a session bean

The set of bean types for a session bean contains all local interfaces of the bean and their superinterfaces. If the session
bean has a bean class local view, the set of bean types contains the bean class and all superclasses. In addition,
java.lang.Object is a bean type of every session bean.

Remote interfaces are not included in the set of bean types.

3.2.3. Declaring a session bean

A session bean does not require any special annotations. The following EJBs are beans:

@Singleton
class Shop { .. }

@Stateless
class PaymentProcessorImpl implements PaymentProcessor { ... }

A bean class may also specify a scope, name, deployment type, stereotypes and/or bindings:

@ConversationScoped @Stateful @Current @Model
public class ShoppingCart { ... }

A session bean class may extend another bean class:

@Stateless
@Named("loginAction")
public class LoginActionImpl implements LoginAction { ... }

@Stateless
@Mock
@Named("loginAction")
public class MockLoginActionImpl extends LoginActionImpl { ... }

3.2.4. Specializing a session bean

If a bean class of a session bean X is annotated @Specializes, then the bean class of X must directly extend the bean class
of another session bean Y. Then X directly specializes Y, as defined in Section 4.3, “Specialization”.

Programming model

JSR-299 Expert group draft 25

If the bean class of X does not directly extend the bean class of another session bean, the container automatically detects
the problem and treats it as a definition error, as defined in Section 12.4, “Problems detected automatically by the contain-
er”.

For example, MockLoginActionBean directly specializes LoginActionBean:

@Stateless
public class LoginActionBean implements LoginAction { ... }

@Stateless @Mock @Specializes
public class MockLoginActionBean extends LoginActionBean { ... }

3.2.5. Default name for a session bean

The default name for a managed bean is the unqualified class name of the session bean class, after converting the first
character to lower case.

For example, if the bean class is named ProductList, the default bean EL name is productList.

3.3. Producer methods

A producer method acts as a source of objects to be injected, where:

• the objects to be injected are not required to be instances of beans, or

• the concrete type of the objects to be injected may vary at runtime, or

• the objects require some custom initialization that is not performed by the bean constructor.

A producer method must be a method of a managed bean class or session bean class. A producer method may be either
static or non-static. If the bean is a session bean, the producer method must be either a business method of the EJB or a
static method of the bean class.

If a producer method sometimes returns a null value, then the producer method must have scope @Dependent. If a producer
method returns a null value at runtime, and the producer method declares any other scope, an IllegalProductException

is thrown by the container. This restriction allows the container to use a client proxy, as defined in Section 5.4, “Client
proxies”.

If the producer method return type is a parameterized type, it must specify an actual type parameter or type variable for
each type parameter.

If a producer method return type contains a wildcard type parameter the container automatically detects the problem and
treats it as a definition error, as defined in Section 12.4, “Problems detected automatically by the container”.

If the producer method return type is a parameterized type with a type variable, it must have scope @Dependent. If a produ-
cer method with a parameterized return type with a type variable declares any scope other than @Dependent, the container
automatically detects the problem and treats it as a definition error, as defined in Section 12.4, “Problems detected auto-
matically by the container”.

If a producer method return type is a type variable the container automatically detects the problem and treats it as a defini-
tion error, as defined in Section 12.4, “Problems detected automatically by the container”.

The application may call producer methods directly. However, if the application calls a producer method directly, no para-
meters will be passed to the producer method by the container; the returned object is not bound to any context; and its life-
cycle is not managed by the container.

A bean may declare multiple producer methods.

3.3.1. Bean types of a producer method

The bean types of a producer method depend upon the method return type:

Programming model

JSR-299 Expert group draft 26

• If the return type is an interface, the set of bean types contains the return type, all interfaces it extends directly or indir-
ectly and java.lang.Object.

• If a return type is primitive or is a Java array type, the set of bean types contains exactly two types: the method return
type and java.lang.Object.

• If the return type is a class, the set of bean types contains the return type, every superclass and all interfaces it imple-
ments directly or indirectly.

Note the additional restrictions upon bean types of beans with normal scopes defined in Section 5.4.1, “Unproxyable bean
types”.

3.3.2. Declaring a producer method

A producer method may be declared by annotating a method with the @javax.enterprise.inject.Produces annotation.

public class Shop {

@Produces PaymentProcessor getPaymentProcessor() { ... }

@Produces List<Product> getProducts() { ... }

}

A producer method may also specify scope, name, deployment type, stereotypes and/or bindings.

public class Shop {

@Produces @ApplicationScoped @Catalog @Named("catalog")
List<Product> getProducts() { ... }

}

If a producer method is annotated @Initializer, has a parameter annotated @Disposes, or has a parameter annotated
@Observes, the container automatically detects the problem and treats it as a definition error, as defined in Section 12.4,
“Problems detected automatically by the container”.

If a non-static method of a session bean class is annotated @Produces, and the method is not a business method of the ses-
sion bean, the container automatically detects the problem and treats it as a definition error, as defined in Section 12.4,
“Problems detected automatically by the container”.

3.3.3. Producer method parameters

An producer method may have any number of parameters. All producer method parameters are injection points.

public class OrderFactory {

@Produces @ConversationScoped
public Order createCurrentOrder(@New(Order.class) Order order, @Selected Product product)
{

order.setProduct(product);
return order;

}

}

3.3.4. Specializing a producer method

If a producer method X is annotated @Specializes, then it must be non-static and directly override another producer meth-
od Y. Then X directly specializes Y, as defined in Section 4.3, “Specialization”.

If the method is static or does not directly override another producer method, the container automatically detects the prob-
lem and treats it as a definition error, as defined in Section 12.4, “Problems detected automatically by the container”.

For example:

@Mock
public class MockShop extends Shop {

Programming model

JSR-299 Expert group draft 27

@Override @Specializes
@Produces
PaymentProcessor getPaymentProcessor() {

return new MockPaymentProcessor();
}

@Override @Specializes
@Produces
List<Product> getProducts() {

return PRODUCTS;
}

...

}

3.3.5. Disposer methods

A disposer method allows the application to perform customized cleanup of an object returned by a producer method.

A disposer method must be a method of a managed bean class or session bean class. A disposer method may be either stat-
ic or non-static. If the bean is a session bean, the disposer method must be a business method of the EJB or a static method
of the bean class.

A bean may declare multiple disposer methods.

3.3.6. Disposed parameter of a disposer method

Each disposer method must have exactly one disposed parameter, of the same type as the corresponding producer method
return type. When searching for disposer methods for a producer method, the container considers the type and bindings of
the disposed parameter. If a disposed parameter resolves to a producer method declared by the same bean class, according
to the rules of typesafe resolution defined in Section 5.2, “Typesafe resolution”, the container must call this method when
destroying any instance returned by that producer method.

A disposer method may resolve to multiple producer methods declared by the bean class, in which case the container must
call it when destroying any instance returned by any of these producer methods.

3.3.7. Declaring a disposer method

A disposer method may be declared by annotating a parameter @javax.enterprise.inject.Disposes. That parameter is
the disposed parameter.

Bindings may be declared by annotating the disposed parameter:

public class UserDatabaseEntityManager {

@Produces @ConversationScoped @UserDatabase
public EntityManager create(EntityManagerFactory emf) {

return emf.createEntityManager();
}

public void close(@Disposes @UserDatabase EntityManager em) {
em.close();

}

}

If a method has more than one parameter annotated @Disposes, the container automatically detects the problem and treats
it as a definition error, as defined in Section 12.4, “Problems detected automatically by the container”.

If a disposer method is annotated @Produces, or @Initializer or has a parameter annotated @Observes, the container
automatically detects the problem and treats it as a definition error, as defined in Section 12.4, “Problems detected auto-
matically by the container”.

If a non-static method of a session bean class has a parameter annotated @Disposes, and the method is not a business meth-
od of the session bean, the container automatically detects the problem and treats it as a definition error, as defined in Sec-
tion 12.4, “Problems detected automatically by the container”.

Programming model

JSR-299 Expert group draft 28

3.3.8. Disposer method parameters

In addition to the disposed parameter, a disposer method may declare additional parameters, which may also specify bind-
ings. These additional parameters are injection points.

public void close(@Disposes @UserDatabase EntityManager em, @Logger Log log) { ... }

3.3.9. Disposer method resolution

When searching for disposer methods for a producer method, the container searches for disposer methods which satisfy the
following rules:

• the disposer method must be by the same bean class as the producer method, and

• the disposed parameter must resolve to the producer method, according to the rules of typesafe resolution defined in
Section 5.2, “Typesafe resolution”.

If there are multiple disposer methods for a single producer method, the container automatically detects the problem and
treats it as a definition error, as defined in Section 12.4, “Problems detected automatically by the container”.

If the disposed parameter of a disposer method does not resolve to any producer method declared by the bean class, the
container automatically detects the problem and treats it as a definition error, as defined in Section 12.4, “Problems detec-
ted automatically by the container”.

3.3.10. Default name for a producer method

The default name for a producer method is the method name, unless the method follows the JavaBeans property getter
naming convention, in which case the default name is the JavaBeans property name.

For example, this producer method is named products:

@Produces @Named
public List<Product> getProducts() { ... }

This producer method is named paymentProcessor:

@Produces @Named
public PaymentProcessor paymentProcessor() { ... }

3.4. Producer fields

A producer field is a slightly simpler alternative to a producer method.

A producer field must be a field of a managed bean class or session bean class. A producer field may be either static or
non-static.

If a producer field sometimes contains a null value when accessed, then the producer field must have scope @Dependent. If
a producer method contains a null value at runtime, and the producer field declares any other scope, an IllegalProduc-

tException is thrown by the container. This restriction allows the container to use a client proxy, as defined in Sec-
tion 5.4, “Client proxies”.

If the producer field type is a parameterized type, it must specify an actual type parameter or type variable for each type
parameter.

If a producer field type contains a wildcard type parameter the container automatically detects the problem and treats it as
a definition error, as defined in Section 12.4, “Problems detected automatically by the container”.

If the producer field type is a parameterized type with a type variable, it must have scope @Dependent. If a producer field
with a parameterized type with a type variable declares any scope other than @Dependent, the container automatically de-
tects the problem and treats it as a definition error, as defined in Section 12.4, “Problems detected automatically by the
container”.

Programming model

JSR-299 Expert group draft 29

If a producer field type is a type variable the container automatically detects the problem and treats it as a definition error,
as defined in Section 12.4, “Problems detected automatically by the container”.

The application may access producer fields directly. However, if the application accesses a producer field directly, the re-
turned object is not bound to any context; and its lifecycle is not managed by the container.

A bean may declare multiple producer fields.

3.4.1. Bean types of a producer field

The bean types of a producer field depend upon the field type:

• If the field type is an interface, the set of bean types contains the field type, all interfaces it extends directly or indir-
ectly and java.lang.Object.

• If a field type is primitive or is a Java array type, the set of bean types contains exactly two types: the field type and
java.lang.Object.

• If the field type is a class, the set of bean types contains the field type, every superclass and all interfaces it implements
directly or indirectly.

Note the additional restrictions upon bean types of beans with normal scopes defined in Section 5.4.1, “Unproxyable bean
types”.

3.4.2. Declaring a producer field

A producer field may be declared by annotating a field with the @javax.enterprise.inject.Produces annotation.

public class Shop {

@Produces PaymentProcessor paymentProcessor =;

@Produces List<Product> products =;

}

A producer field may also specify scope, name, deployment type, stereotypes and/or bindings.

public class Shop {

@Produces @ApplicationScoped @Catalog @Named("catalog")
List<Product> products =;

}

3.4.3. Default name for a producer field

The default name for a producer field is the field name.

For example, this producer field is named products:

@Produces @Named
public List<Product> products = ...;

3.5. Resources

A resource is a bean that represents a reference to a resource, persistence context, persistence unit, remote EJB or web ser-
vice in the Java EE component environment.

@CustomerDatabase Datasource customerData;

@CustomerDatabase EntityManager customerDatabaseEntityManager;

Programming model

JSR-299 Expert group draft 30

@CustomerDatabase EntityManagerFactory customerDatabaseEntityManagerFactory;

@Current PaymentService remotePaymentService;

The container is not required to support resources with scope other than @Dependent. Portable applications should not
define resources with any scope other than @Dependent.

A resource may not have an EL name.

3.5.1. Declaring a resource

A resource may be declared by specifying a Java EE component environment injection annotation as part of a producer
field declaration.

• For a Java EE resource, @Resource must be specified.

• For a persistence context, @PersistenceContext must be specified.

• For a persistence unit, @PersistenceUnit must be specified.

• For a remote EJB, @EJB must be specified.

• For a web service, @WebServiceRef must be specified.

The injection annotation specifies the metadata needed to obtain the resources, entity manager, entity manager factory, re-
mote EJB instance or web service reference from the component environment.

@WebServiceRef(name="java:app/service/PaymentService",
wsdlLocation="http://theirdomain.com/services/PaymentService.wsdl")

PaymentService paymentService;

@EJB(ejbLink="../their.jar#PaymentService")
PaymentService paymentService;

@Resource(name="java:global/env/jdbc/CustomerDatasource")
@CustomerDatabase Datasource customerDatabase;

@PersistenceContext(unitName="CustomerDatabase")
@CustomerDatabase EntityManager customerDatabasePersistenceContext;

@PersistenceUnit(unitName="CustomerDatabase")
@CustomerDatabase EntityManagerFactory customerDatabasePersistenceUnit;

The bean type, bindings and deployment type of the resource are determined by the producer field declaration.

If the producer field declaration specifies an EL name, the container automatically detects the problem and treats it as a
definition error, as defined in Section 12.4, “Problems detected automatically by the container”.

If the resource, persistence context, persistence unit, remote EJB or web service in the Java EE component environment is
not of the same type as the producer field declaration, the container automatically detects the problem and treats it as a
definition error, as defined in Section 12.4, “Problems detected automatically by the container”.

3.5.2. Bean types of a resource

The bean types of a resource are the declared type of the field declaration, together with java.lang.Object.

3.5.3. The JTA TransactionManager

The container must provide a built-in resource with bean type javax.transaction.TransactionManager and binding
@Current, representing a reference to the JTA transaction manager.

Programming model

JSR-299 Expert group draft 31

3.6. Message destinations

Beans that send JMS messages must interact with at least two different objects defined by the JMS API:

• to send a message to a queue, the bean must interact with a QueueSession and the QueueSender, or

• to send a message to a topic, the bean must interact with a TopicSession and the TopicPublisher.

A message destination is a bean that represents a message destination reference in the Java EE component environment.

• For a queue, the Queue, QueueConnection, QueueSession, QueueReceiver and/or QueueSender may be injected.

• For a topic, the Topic, TopicConnection, TopicSession, TopicSubscriber and/or TopicPublisher may be injected.

The lifecycles of the injected objects are managed by the container, and therefore the application need not explicitly
close() any injected object. If the application calls the close() method of the injected object, an UnsupportedOpera-

tionException is thrown by the container.

For example:

@PaymentProcessor QueueSender paymentSender;
@PaymentProcessor QueueSession paymentSession;

public void sendMessage() {
MapMessage msg = paymentSession.createMapMessage();
...
paymentSender.send(msg);

}

@Prices TopicPublisher pricePublisher;
@Prices TopicSession priceSession;

public void sendMessage(String price) {
pricePublisher.send(priceSession.createTextMessage(price));

}

A message destination must have scope @Dependent and may not have an EL name.

3.6.1. Bean types of a message destination

The bean types of a message destination depend upon whether it represents a queue or topic.

• If the message destination represents a queue, the bean types are Queue, QueueConnection, QueueSession, QueueRe-
ceiver and QueueSender.

• If the message destination represents a topic, the bean types are Topic, TopicConnection, TopicSession, TopicSub-
scriber and TopicPublisher.

In addition, the supertypes Session, MessageProducer, MessageConsumer, Connection and Destination are bean types of
any message destination.

3.6.2. Declaring a message destination

A message destination may be declared by specifying a @Resource annotation as part of a producer field declaration of
type Topic or Queue.

The @Resource annotation specifies the metadata needed to obtain the topic or queue from the component environment.

Each message destination declaration must also specify the JMS ConnectionFactory to be used, using the
@javax.inject.enterprise.ConnectionFactory annotation.

class Jms {

@Resource(name="java:global/env/jms/PaymentQueue")
@ConnectionFactory(@Resource(name="java:global/env/jms/ConnectionFactory"))
@Produces @PaymentProcessor Queue paymentQueue;

Programming model

JSR-299 Expert group draft 32

}

The bindings and deployment type of the resource are determined by the producer field declaration.

Alternatively, the @ConnectionFactory may be specified at the class level:

@ConnectionFactory(@Resource(name="java:global/env/jms/ConnectionFactory"))
class Jms {

@Resource(name="java:global/env/jms/Prices")
@Produces @Prices Topic pricesTopic;

@Resource(name="java:global/env/jms/PaymentQueue")
@Produces @PaymentProcessor Queue paymentQueue;

}

A field level @ConnectionFactory annotation overrides any @ConnectionFactory specified at the class level.

If no @ConnectionFactory is specified at either the class or field level, the container automatically detects the problem and
treats it as a definition error, as defined in Section 12.4, “Problems detected automatically by the container”.

If the producer field declaration specifies an EL name or any scope other than @Dependent, the container automatically de-
tects the problem and treats it as a definition error, as defined in Section 12.4, “Problems detected automatically by the
container”.

If the message destination in the Java EE component environment is not of the same type as the producer field declaration,
the container automatically detects the problem and treats it as a definition error, as defined in Section 12.4, “Problems de-
tected automatically by the container”.

3.7. Injected fields

An injected field is a non-static, non-final field of a bean class, or of any Java EE component class supporting injection.

As defined in Section 5.5, “Dependency injection”, injected fields are initialized by the container before initializer meth-
ods are called, and before the @PostConstruct callback occurs.

If a field is a producer field, it is not an injected field.

3.7.1. Declaring an injected field

An injected field may be declared by annotating the field with any binding type.

@ConversationScoped
public class Order {

@Selected Product product;
@Current User customer;

}

3.8. Initializer methods

An initializer method is a non-static method of a bean class, or of any Java EE component class supporting injection.

If the bean is a session bean, the initializer method is not required to be a business method of the session bean.

A bean class may declare multiple (or zero) initializer methods.

As defined in Section 5.5, “Dependency injection”, initializer methods are called by the container after injected fields are
initialized, and before the @PostConstruct callback occurs.

Method interceptors are never called when the container calls an initializer method.

Programming model

JSR-299 Expert group draft 33

The application may call initializer methods directly, but then no parameters will be passed to the method by the container.

3.8.1. Declaring an initializer method

An initializer method may be declared by annotating the method @javax.enterprise.inject.Initializer.

@ConversationScoped
public class Order {

private Product product;
private User customer;

@Initializer
void setProduct(@Selected Product product)
{

this.product = product;
}

@Initializer
public void setCustomer(User customer)
{

this.customer = customer;
}

}

If an initializer method is annotated @Produces, has a parameter annotated @Disposes, or has a parameter annotated
@Observes, the container automatically detects the problem and treats it as a definition error, as defined in Section 12.4,
“Problems detected automatically by the container”.

3.8.2. Initializer method parameters

An initializer method may have any number of parameters. All initializer method parameters are injection points.

3.9. The default binding at injection points

If an injection point declares no binding, the default binding @Current is assumed.

The following are equivalent:

@ConversationScoped
public class Order {

private Product product;
private User customer;

@Initializer
public void init(@Selected Product product, User customer)
{

this.product = product;
this.customer = customer;

}

}

@ConversationScoped
public class Order {

private Product product;
private User customer;

@Initializer
public void init(@Selected Product product, @Current User customer)
{

this.product = product;
this.customer = customer;

}

}

The following definitions are equivalent:

public class Payment {

Programming model

JSR-299 Expert group draft 34

public Payment(BigDecimal amount) { ... }

@Initializer Payment(Order order) {
this(order.getAmount();

}

}

public class Payment {

public Payment(BigDecimal amount) { ... }

@Initializer Payment(@Current Order order) {
this(order.getAmount();

}

}

3.10. Beans with the @New binding

For each managed bean, and for each session bean, a second bean exists which:

• has the same bean class,

• has the same bean types,

• has the same bean constructor, initializer methods and injected fields, and

• has the same interceptor bindings.

However, this second bean:

• has scope @Dependent,

• has deployment type @Standard,

• has a exactly one binding: @javax.enterprise.inject.New(X.class) where X is the bean class,

• has no bean EL name,

• has no stereotypes, and

• has no observer methods, producer methods or fields or disposer methods.

This allows the application to obtain a new instance of a bean which is not bound to the declared scope, but has had de-
pendency injection performed. For example:

@Produces @ConversationScoped
@Special Order getSpecialOrder(@New(Order.class) Order order) {

...
return order;

}

This bean is available even if the bean class declares a disabled deployment type.

When the binding @New is specified at an injection point and no value member is explicitly specified, the container de-
faults the value to the declared type of the injection point. So the following injection point has binding
@New(Order.class):

@Produces @ConversationScoped
@Special Order getSpecialOrder(@New Order order) { ... }

Programming model

JSR-299 Expert group draft 35

Chapter 4. Inheritance and specialization

The implementation of a bean may by extended by the implementation of a second bean. This specification recognizes two
distinct scenarios in which this situation occurs:

• The second bean specializes the first bean in certain deployment scenarios. In these deployments, the second bean
completely replaces the first, fulfilling the same role in the system.

• The second bean is simply reusing the Java implementation, and otherwise bears no relation to the first bean. The first
bean may not even have been designed for use as a contextual object.

The two cases are quite dissimilar.

By default, Java implementation reuse is assumed. In this case, the producer, disposer and observer methods of the first
bean are not inherited by the second bean.

The bean developer may explicitly specify that the second bean specializes the first through use of an annotation. In the
case of specialization, the specialized bean receives all invocations, including producer, disposer and observer method in-
vocations that would have been received by the first bean. In a particular deployment, there may be only one bean that ful-
fills the specific role. The specialized bean inherits, and may not override, the bindings and name of the first bean.

However, in both cases, injected fields, initializer methods and lifecycle callback methods of the first bean are inherited by
the second bean.

Inheritance of type-level metadata is controlled via use of the Java @Inherited meta-annotation. Type-level metadata is
never inherited from interfaces implemented by a bean.

4.1. Inheritance of type-level metadata

Suppose a class X is extended directly or indirectly by the bean class of a managed bean or session bean Y.

• If X is annotated with a binding type, stereotype or interceptor binding type Z then Y inherits the annotation if and
only if Z declares the @Inherited meta-annotation and neither Y nor any intermediate class that is a subclass of X and
a superclass of Y declares an annotation of type Z.

(This behavior is defined by the Java Language Specification.)

• If X is annotated with a scope type Z then Y inherits the annotation if and only if Z declares the @Inherited meta-
annotation and neither Y nor any intermediate class that is a subclass of X and a superclass of Y declares a scope type.

(This behavior is different to what is defined in the Java Language Specification.)

• If X is annotated with a deployment type Z then Y inherits the annotation if and only if Z declares the @Inherited

meta-annotation and neither Y nor any intermediate class that is a subclass of X and a superclass of Y declares a de-
ployment type.

(This behavior is different to what is defined in the Java Language Specification.)

Scope types and deployment types explicitly declared by X and inherited by Y from X take precedence over default scopes
and default deployment types of stereotypes declared or inherited by Y.

For annotations defined by the application or third-party extensions, it is recommended that:

• scope types should be declared @Inherited,

• binding types should not be declared @Inherited,

• deployment types should not be declared @Inherited,

• interceptor binding types should be declared @Inherited, and

• stereotypes may be declared @Inherited, depending upon the semantics of the stereotype.

JSR-299 Expert group draft 36

All scope types, binding types, deployment types and interceptor binding types defined by this specification adhere to
these recommendations.

The stereotypes defined by this specification are not declared @Inherited.

However, in special circumstances, these recommendations may be ignored.

Note that the @Named annotation is not declared @Inherited and bean EL names are not inherited unless specialization is
used.

4.2. Inheritance of member-level metadata

Suppose a class X is extended directly or indirectly by the bean class of a managed bean or session bean Y.

• If X declares an injected field x then Y inherits x.

(This behavior is defined by the Common Annotations for the Java Platform specification.)

• If X declares an initializer, observer, @PostConstruct or @PreDestroy method x() then Y inherits x() if and only if
neither Y nor any intermediate class that is a subclass of X and a superclass of Y overrides the method x().

(This behavior is defined by the Common Annotations for the Java Platform specification.)

• If X declares a non-static method x() annotated with an interceptor binding type Z then Y inherits the binding if and
only if neither Y nor any intermediate class that is a subclass of X and a superclass of Y overrides the method x().

(This behavior is defined by the Common Annotations for the Java Platform specification.)

• If X declares a non-static producer or disposer method x() then Y does not inherit this method unless Y is explicitly
declared to specialize X.

(This behavior is different to what is defined in the Common Annotations for the Java Platform specification.)

• If X declares a non-static producer field x then Y does not inherit this field unless Y is explicitly declared to specialize
X.

(This behavior is different to what is defined in the Common Annotations for the Java Platform specification.)

If X is a parameterized type, and an injection point, producer method, producer field, disposer method or observer method
declared by X is inherited by Y, and the declared type of the injection point, producer method, producer field, disposed
parameter or event parameter contains type variables declared by X, the type of the injection point, producer method, pro-
ducer field, disposed parameter or event parameter inherited in Y is the declared type, after substitution of actual type ar-
guments declared by Y or any intermediate class that is a subclass of X and a superclass of Y.

For example, the bean DaoClient has an injection point of type Dao<T>.

public class DaoClient<T> {

@Current Dao<T> dao;
...

}

This injection point is inherited by UserDaoClient, but the type of the inherited injection point is Dao<User>.

public class UserDaoClient
extends DaoClient<Order> { ... }

4.3. Specialization

If two beans both support a certain bean type, and share at least one binding, then they are both eligible for injection to any
injection point with that declared type and binding. The container will choose the bean with the highest priority enabled
deployment type.

Inheritance and specialization

JSR-299 Expert group draft 37

Consider the following beans:

@Current @Asynchronous
public class AsynchronousService implements Service {

...
}

@Mock @Current
public class MockAsynchronousService extends AsynchronousService {

...
}

Suppose that the deployment type @Mock is enabled:

<beans>
<deploy>

<type>javax.enterprise.inject.deployment.Production</type>
<type>org.mycompany.myfwk.Mock</type>

</deploy>
</beans>

Then the following attribute will receive an instance of MockAsynchronousService:

@Current Service service;

However, if the bean with the lower priority deployment type declares a binding that is not declared by the bean with the
higher priority deployment type, then the bean with the higher priority deployment type will not be eligible for injection to
an injection point with that binding.

Therefore, the following attribute will receive an instance of AsynchronousService even though the deployment type
@Mock is enabled:

@Current @Asynchronous Service service;

This is a useful feature in many circumstances, however, it is not always what is intended by the developer.

The only way one bean can completely override a lower-priority bean at all injection points is if it implements all the bean
types and declares all the bindings of the lower-priority bean. However, if the lower-priority bean declares a producer
method or observer method, then even this is not enough to ensure that the lower-priority bean is never called!

To help prevent developer error, the first bean may:

• directly extend the bean class of the lower-priority bean, or

• directly override the lower-priority producer method, in the case of a producer method bean, and then

explicitly declare that it specializes the lower-priority bean.

When an enabled bean specializes a lower-priority bean, we can be certain that the lower-priority bean is never instantiated
or called by the container. Even if the lower-priority bean defines a producer or observer method, the method will be called
upon an instance of the first bean.

4.3.1. Direct and indirect specialization

The annotation @javax.enterprise.inject.deployment.Specializes is used to indicate that one bean directly special-
izes another bean, as defined in Section 3.1.5, “Specializing a managed bean”, Section 3.2.4, “Specializing a session bean”
and Section 3.3.4, “Specializing a producer method”.

Formally, a bean X is said to specialize another bean Y if either:

• X directly specializes Y, or

• a bean Z exists, such that X directly specializes Z and Z specializes Y.

Then X will inherit the bindings and name of Y:

Inheritance and specialization

JSR-299 Expert group draft 38

• the bindings of X include all bindings of Y, together with all bindings declared explicitly by X, and

• if Y has a name, the name of X is the same as the name of Y.

If X declares a name explicitly, using @Named, the container automatically detects the problem and treats it as a definition
error, as defined in Section 12.4, “Problems detected automatically by the container”.

Furthermore, X must have all the bean types of Y. If X does not support some bean type of Y, the container automatically
detects the problem and treats it as a definition error, as defined in Section 12.4, “Problems detected automatically by the
container”.

For example, the following bean would have the inherited bindings @Current and @Asynchronous:

@Mock @Specializes
public class MockAsynchronousService extends AsynchronousService {

...
}

If AsynchronousService declared a name:

@Current @Asynchronous @Named("asyncService")
public class AsynchronousService implements Service{

...
}

Then the name would also automatically be inherited by MockAsynchronousService.

4.3.2. Most specialized enabled bean for a bean

If, in a particular deployment, an enabled bean X specializes a bean Y and is not itself specialized by any other enabled
bean, we call it the most specialized enabled bean for Y in that deployment.

Non-static producer methods, producer fields, disposer methods and observer methods of a bean are invoked upon an in-
stance of the most specialized enabled bean that specializes the bean, as defined by Section 5.5.6, “Invocation of producer
or disposer methods”, Section 5.5.7, “Access to producer field values” and Section 5.5.8, “Invocation of observer meth-
ods”.

4.3.3. Inconsistent specialization

If, in a particular deployment, either

• some enabled bean X specializes another enabled bean Y and the deployment type of X does not have a higher preced-
ence than the deployment type of Y, or

• more than one enabled bean directly specializes the same bean,

we say that inconsistent specialization exists. The container automatically detects inconsistent specialization and treats it
as a deployment problem, as defined in Section 12.4, “Problems detected automatically by the container”.

Inheritance and specialization

JSR-299 Expert group draft 39

Chapter 5. Dependency injection, lookup and EL

The container injects references to contextual instances to the following kinds of injection point:

• Any injected field of a bean class

• Any parameter of a bean constructor, initializer method, producer method or disposer method

• Any parameter of an observer method, except for the event parameter

References to contextual instances may also be obtained by programmatic lookup or by Unified EL expression evaluation.

In general, a bean type or bean EL name does not uniquely identify a bean. When resolving a bean at an injection point,
the container considers bean type, bindings and deployment type precedence. When resolving a name in an EL expression,
the container considers name and deployment type precedence. This allows bean developers to decouple type from imple-
mentation.

The container is required to support circularities in the bean dependency graph where at least one bean participating in
every circular chain of dependencies has a normal scope, as defined in Section 6.3, “Normal scopes and pseudo-scopes”.
The container is not required to support circular chains of dependencies where every bean participating in the chain has a
pseudo-scope.

5.1. Inter-module accessibility

Beans packaged in a certain Java EE module or library are available for injection, lookup and EL resolution to classes and
JSP/JSF pages packaged in some other Java EE module or library if and only if the first module or library is required to be
accessible to the other module or library by the Java EE platform specification.

Note that, in some containers, a bean class might be accessible to some other class even when this is not required by the
Java EE platform specification. For the purposes of this specification, a class is not considered accessible to another class
unless accessibility is explicitly required by the Java EE platform specification.

For a custom implementation of the Bean interface defined in Section 11.1, “The Bean interface”, the container calls get-

BeanClass() to determine the bean class of the bean, and InjectionPoint.getMember().getDeclaringClass() to de-
termine the class that declares an injection point.

5.2. Typesafe resolution

The process of matching a bean to an injection point is called typesafe resolution. The container considers bean type and
bindings when resolving a bean to be injected to an injection point. The type and bindings of the injection point are called
the required type and required bindings.

Typesafe resolution usually occurs at application initialization time, allowing the container to warn the user if any enabled
beans have unsatisfied or unresolvable ambiguous dependencies.

When resolving beans that are eligible for injection to an injection point, the container identifies the set of matching en-
abled beans which satisfy the following conditions:

• The bean has a bean type that matches the required type. For this purpose, primitive types are considered to match their
corresponding wrapper types in java.lang and array types are considered to match only if their element types are
identical. Parameterized and raw types are considered to match if they are identical or if the bean type is assignable to
the required type, as defined in Section 5.2.3, “Assignability of raw and parameterized types”.

• The bean has the required bindings. If no required bindings were explicitly specified, the container assumes the re-
quired binding @Current. The container narrows the set of matching beans to just those where for each required bind-
ing, the bean declares a matching binding with (a) the same type and (b) the same annotation member value for each
member which is not annotated @javax.enterprise.inject.NonBinding (see Section 5.2.5, “Binding annotations
with members”).

• The bean class is required to be accessible to the class that owns the injection point, according to the class loading re-
quirements of the Java EE platform specification.

JSR-299 Expert group draft 40

5.2.1. Unsatisfied and ambiguous dependencies

An unsatisfied dependency exists at an injection point when no enabled accessible bean has the bean type and bindings de-
clared by the injection point.

An ambiguous dependency exists at an injection point when there are multiple enabled accessible beans with the bean type
and bindings declared by the injection point.

Note that an unsatisfied of ambiguous dependency cannot exist for a decorator delegate injection point, defined in Sec-
tion 8.1.2, “Decorator delegate injection points”.

When an ambiguous dependency exists, the container attempts to resolve the ambiguity by examining the deployment
types of the matching beans, as defined in Section 2.5.6, “Deployment type precedence”. If there is exactly one bean
whose deployment type has a higher precedence than the deployment types of every other matching bean, the container
will select this bean, and the ambiguous dependency is called resolvable.

The container must validate all injection points of all enabled beans and other Java EE component classes supporting in-
jection when the application is initialized to ensure that there are no unsatisfied or unresolvable ambiguous dependencies.
If an unsatisfied or unresolvable ambiguous dependency exists, the container automatically detects the problem and treats
it as a deployment problem, as defined in Section 12.4, “Problems detected automatically by the container”.

For a custom implementation of the Bean interface defined in Section 11.1, “The Bean interface”, the container calls get-

InjectionPoints() to determine the injection points of the bean.

5.2.2. Legal injection point types

Any legal bean type, as defined in Section 2.2.1, “Legal bean types” may be the required type of an injection point. Fur-
thermore, the required type of an injection point may contain a wildcard type parameter. However, a type variable is not a
legal injection point type.

If an injection point type is a type variable, the container automatically detects the problem and treats it as a definition er-
ror, as defined in Section 12.4, “Problems detected automatically by the container”.

5.2.3. Assignability of raw and parameterized types

A parameterized bean type is considered assignable to a raw required type if the raw types are identical and all type para-
meters of the bean type are either unbounded type variables or java.lang.Object.

A parameterized bean type is considered assignable to a parameterized required type if they have identical raw type and
for each parameter:

• the required type parameter and the bean type parameter are actual types with identical raw type, and, if the type is
parameterized, the bean type parameter is assignable to the required type parameter according to these rules, or

• the required type parameter is a wildcard, the bean type parameter is an actual type and the actual type is assignable to
the upper bound, if any, of the wildcard and assignable from the lower bound, if any, of the wildcard, or

• the required type parameter is a wildcard, the bean type parameter is a type variable and the upper bound of the type
variable is assignable to the upper bound, if any, of the wildcard and assignable from the lower bound, if any, of the
wildcard, or

• the required type parameter is an actual type, the bean type parameter is a type variable and the actual type is as-
signable to the upper bound, if any, of the type variable, or

• the required type parameter and the bean type parameter are both type variables and the upper bound of the required
type parameter is assignable to the upper bound, if any, of the bean type parameter.

For example, Dao is eligible for injection to any injection point of type @Current Dao<Order>, @Current Dao<User>,
@Current Dao<?>, @Current Dao<? extends Persistent> or @Current Dao<X extends Persistent> where X is a type
variable.

public class Dao<T extends Persistent> { ... }

Dependency injection, lookup and EL

JSR-299 Expert group draft 41

Furthermore, UserDao is eligible for injection to any injection point of type @Current Dao<User>, @Current Dao<?>,
@Current Dao<? extends Persistent> or @Current Dao<? extends User>.

public class UserDao extends Dao<User> { ... }

5.2.4. Primitive types and null values

For the purposes of typesafe resolution and dependency injection, primitive types and their corresponding wrapper types in
the package java.lang are considered identical and assignable. If necessary, the container performs boxing or unboxing
when it injects a value to a field or parameter of primitive or wrapper type.

However, if an injection point of primitive type resolves to a bean that may have null values, such as a producer method
with a non-primitive return type or a producer field with a non-primitive type, the container automatically detects the prob-
lem and treats it as a deployment problem, as defined in Section 12.4, “Problems detected automatically by the container”.

For a custom implementation of the Bean interface defined in Section 11.1, “The Bean interface”, the container calls is-

Nullable() to determine whether the bean may have null values.

5.2.5. Binding annotations with members

According to the rules above, binding types with members are supported:

@PayBy(CHEQUE)
class ChequePaymentProcessor implements PaymentProcessor { ... }

@PayBy(CREDIT_CARD)
class CreditCardPaymentProcessor implements PaymentProcessor { ... }

Then only ChequePaymentProcessor is a candidate for injection to the following attribute:

@PayBy(CHEQUE) PaymentProcessor paymentProcessor;

On the other hand, only CreditCardPaymentProcessor is a candidate for injection to this attribute:

@PayBy(CREDIT_CARD) PaymentProcessor paymentProcessor;

The container calls the equals() method of the annotation member value to compare values.

An annotation member may be excluded from consideration using the @NonBinding annotation.

@BindingType
@Retention(RUNTIME)
@Target({METHOD, FIELD, PARAMETER, TYPE})
public @interface PayBy {

PaymentMethod value();
@NonBinding String comment();

}

Array-valued or annotation-valued members of a binding type must be annotated @NonBinding. If an array-valued or an-
notation-valued member of a binding type is not annotated @NonBinding, the container automatically detects the problem
and treats it as a definition error, as defined in Section 12.4, “Problems detected automatically by the container”.

5.2.6. Multiple bindings

According to the rules above, a bean class or producer method or field may declare multiple bindings:

@Synchronous @PayBy(CHEQUE)
class ChequePaymentProcessor implements PaymentProcessor { ... }

Then ChequePaymentProcessor would be considered a candidate for injection into any of the following attributes:

@PayBy(CHEQUE) PaymentProcessor paymentProcessor;

@Synchronous PaymentProcessor paymentProcessor;

Dependency injection, lookup and EL

JSR-299 Expert group draft 42

@Synchronous @PayBy(CHEQUE) PaymentProcessor paymentProcessor;

A bean must declare all of the bindings that are specified at the injection point to be considered a candidate for injection.

5.3. EL name resolution

The process of matching a bean to a name used in EL is called name resolution. Since there is no typing information avail-
able in EL, the container may consider only the EL name.

When resolving a bean by name, the container identifies the set of matching enabled beans which satisfy the following
conditions:

• The bean has the given EL name.

• The bean class is required to be accessible to classes in the same bean deployment archive as the JSP or JSF page con-
taining the EL expression, according to the class loading requirements of the Java EE platform specification.

Name resolution usually occurs at runtime.

5.3.1. Ambiguous EL names

An ambiguous EL name exists in an EL expression when there are multiple enabled accessible beans which have the given
EL name.

When an ambiguous EL name exists, the container attempts to resolve the ambiguity by examining the deployment types
of the matching beans, as defined in Section 2.5.6, “Deployment type precedence”. If there is exactly one bean whose de-
ployment type has a higher precedence than the deployment types of every other matching bean, the container will select
this bean, and the ambiguous name is called resolvable.

All unresolvable ambiguous EL names are detected by the container when the application is initialized. If, in a particular
deployment, two beans are both accessible to classes in a certain bean deployment archive, according to the class loading
requirements of the Java EE platform specification, and either:

• the two beans have the same EL name and the same deployment type, or

• the EL name of one bean is of the form x.y, where y is a valid bean EL name, and x is the EL name of the other bean,

the container automatically detects the problem and treats it as a deployment problem, as defined in Section 12.4,
“Problems detected automatically by the container”.

5.4. Client proxies

An injected reference, or reference obtained by programmatic lookup, is usually a contextual reference as defined by Sec-
tion 6.5.3, “Contextual reference for a bean”.

A contextual reference to a bean with a normal scope, as defined in Section 6.3, “Normal scopes and pseudo-scopes”, is
not a direct reference to a contextual instance of the bean (the object returned by Contextual.create()). Instead, the con-
textual reference is a client proxy object. A client proxy implements/extends some or all of the all bean types of the bean
and delegates all method calls to the current instance (as defined in Section 6.3, “Normal scopes and pseudo-scopes”) of
the bean.

There are a number of reasons for this indirection:

• The container must guarantee that when any valid injected reference to a bean of normal scope is invoked, the invoca-
tion is always processed by the current instance of the injected bean. In certain scenarios, for example if a request
scoped bean is injected into a session scoped bean, or into a servlet, this rule requires an indirect reference. (Note that
the @Dependent pseudo-scope is not a normal scope.)

• The container may use a client proxy when creating beans with circular dependencies. This is only necessary when the
circular dependencies are initialized via a managed bean constructor or producer method parameter. (Beans with scope

Dependency injection, lookup and EL

JSR-299 Expert group draft 43

@Dependent never have circular dependencies.)

• Finally, client proxies are may be passivated, even when the bean itself may not be. Therefore the container must use a
client proxy whenever a bean with normal scope is injected into a bean with a passivating scope, as defined in Sec-
tion 6.6, “Passivation and passivating scopes”. (On the other hand, beans with scope @Dependent must be serialized
along with their client.)

Client proxies are never required for a bean whose scope is a pseudo-scope such as @Dependent.

Client proxies may be shared between multiple injection points. For example, a particular container might instantiate ex-
actly one client proxy object per bean. (However, this strategy is not required by this specification.)

5.4.1. Unproxyable bean types

Certain legal bean types cannot be proxied by the container:

• classes without a non-private constructor with no parameters,

• classes which are declared final or have final methods,

• primitive types,

• and array types.

If an injection point whose declared type cannot be proxied by the container resolves to a bean with a normal scope, the
container automatically detects the problem and treats it as a deployment problem, as defined in Section 12.4, “Problems
detected automatically by the container”.

5.4.2. Client proxy invocation

Every time a method of the bean is invoked upon a client proxy, the client proxy must:

• obtain a contextual instance of the bean, as defined in Section 6.5.2, “Contextual instance of a bean”, and

• invoke the method upon this instance.

If the scope is not active, as specified in Section 6.5.1, “The active context object for a scope”, the client proxy rethrows
the ContextNotActiveException or IllegalStateException.

The behavior of all methods declared by java.lang.Object, except for toString(), is undefined for a client proxy. Port-
able applications should not invoke any method declared by java.lang.Object, except for toString(), on a client proxy.

5.5. Dependency injection

From time to time the container instantiates beans and other Java EE component classes supporting injection. The resulting
instance may or may not be a contextual instance as defined by Section 6.5.2, “Contextual instance of a bean”.

The container is required to perform dependency injection whenever it creates one of the following contextual objects:

• contextual instances of session beans, and

• contextual instances of managed beans.

The container is also required to perform dependency injection whenever it instantiates any of the following non-
contextual objects:

• non-contextual instances of session beans (for example, session beans obtained by the application from JNDI or injec-
ted using @EJB),

• non-contextual instances of managed beans, and

Dependency injection, lookup and EL

JSR-299 Expert group draft 44

• instances of any other Java EE component class supporting injection.

In a Java EE 5 environment, the container is not required to support injection for non-contextual objects.

The container interacts with instances of beans and other Java EE component classes supporting injection by calling meth-
ods and getting and setting the field values.

5.5.1. Injectable references

To obtain an injectable reference for an injection point, the container must:

• Identify a bean according to the rules defined in Section 5.2, “Typesafe resolution” and resolving ambiguities accord-
ing to Section 5.2.1, “Unsatisfied and ambiguous dependencies”.

• Obtain a contextual reference for this bean and the type of the injection point according to Section 6.5.3, “Contextual
reference for a bean”.

For certain combinations of scopes, the container is permitted to optimize the above procedure:

• The container is permitted to directly inject a contextual instance of the bean, as defined in Section 6.5.2, “Contextual
instance of a bean”.

• If an incompletely initialized instance of the bean is registered with the current CreationalContext, as defined in Sec-
tion 6.1, “The Contextual interface”, the container is permitted to directly inject this instance.

However, in performing these optimizations, the container must respect the rules of injected reference validity.

5.5.2. Injected reference validity

Injected references to a bean are valid for a certain period of time:

• A reference to a bean injected into a field, bean constructor or initializer method is valid until the object into which it
was injected is destroyed.

• A reference to a bean injected into a producer method is valid until the producer method bean instance that is being
produced is destroyed.

• A reference to a bean injected into a disposer method or observer method is valid until the invocation of the method
completes.

The application should not invoke a method of an invalid reference. If the application invokes a method of an invalid in-
jected reference, the behavior is undefined.

5.5.3. Injection using the bean constructor

When the container instantiates a managed bean with a constructor annotated @Initializer, the container calls this con-
structor, passing an injectable reference to each parameter. If there is no constructor annotated @Initializer, the contain-
er calls the constructor with no parameters.

5.5.4. Injection of fields and initializer methods

When the container creates a new instance of a managed bean, session bean, or of any other Java EE component class sup-
porting injection, the container must perform the following steps after injection of Java EE component environment re-
sources has been performed and before the @PostConstruct callback occurs and before the servlet init() method is
called:

• First, the container initializes the values of all injected fields. The container sets the value of each injected field to an
injectable reference.

• Next, the container calls all initializer methods, passing an injectable reference to each parameter.

Dependency injection, lookup and EL

JSR-299 Expert group draft 45

5.5.5. Destruction of dependent objects

When the container destroys an instance of a bean or of any Java EE component class supporting injection, the container
destroys all dependent objects, as defined in Section 6.4.3, “Dependent object destruction”, after the @PreDestroy callback
completes and after the servlet destroy() method is called.

5.5.6. Invocation of producer or disposer methods

When the container calls a producer or disposer method, the behavior depends upon whether the method is static or non-
static:

• If the method is static, the container must invoke the method.

• Otherwise, if the method is non-static, the container must:

• Determine the most specialized enabled bean that specializes the bean which declares the method, as defined in
Section 4.3.2, “Most specialized enabled bean for a bean”.

• Obtain a contextual instance of the most specialized bean, as defined by Section 6.5.2, “Contextual instance of a
bean”.

• Invoke the method upon this instance, as a business method invocation, as defined in Section 7.2, “Container in-
vocations and interception”.

The container passes an injectable reference to each injected method parameter. The container is also responsible for des-
troying dependent objects created during this invocation, as defined in Section 6.4.3, “Dependent object destruction”.

5.5.7. Access to producer field values

When the container accesses the value of a producer field, the value depends upon whether the field is static or non-static:

• If the producer field is static, the container must access the field value.

• Otherwise, if the producer field is non-static, the container must:

• Determine the most specialized enabled bean that specializes the bean which declares the producer field, as defined
in Section 4.3.2, “Most specialized enabled bean for a bean”.

• Obtain an contextual instance of the most specialized bean, as defined by Section 6.5.2, “Contextual instance of a
bean”.

• Access the field value of this instance.

5.5.8. Invocation of observer methods

When the container calls an observer method (defined in Section 10.5, “Observer methods”), the behavior depends upon
whether the method is static or non-static:

• If the observer method is static, the container must invoke the method.

• Otherwise, if the observer method is non-static, the container must:

• Determine the most specialized enabled bean that specializes the bean which declares the observer method, as
defined in Section 4.3.2, “Most specialized enabled bean for a bean”.

• Obtain a contextual instance of the bean according to Section 6.5.2, “Contextual instance of a bean”. If this observ-
er method is a conditional observer method, obtain the contextual instance that already exists, without creating a
new contextual instance.

• Invoke the observer method on the resulting instance, if any, as a business method invocation, as defined in Sec-

Dependency injection, lookup and EL

JSR-299 Expert group draft 46

tion 7.2, “Container invocations and interception”.

The container must pass the event object to the event parameter and an injectable instance to each injected method para-
meter. The container is also responsible for destroying dependent objects created during this invocation, as defined in Sec-
tion 6.4.3, “Dependent object destruction”.

5.5.9. Injection point metadata

The interface javax.enterprise.inject.spi.InjectionPoint provides access to metadata about an injection point. An
instance of InjectionPoint may represent an injected field or a parameter of a bean constructor, initializer method, pro-
ducer method, disposer method or observer method.

public interface InjectionPoint {
public Type getType();
public Set<Annotation> getBindings();
public Bean<?> getBean();
public Member getMember();
public Annotated getAnnotated();
public boolean isDelegate();
public boolean isTransient();

}

• The getBean() method returns the Bean object representing the bean that defines the injection point. If the injection
point does not belong to a bean, getBean() returns a null value.

• The getType() and getBindings() methods return the required type and required bindings of the injection point.

• The getMember() method returns the Field object in the case of field injection, the Method object in the case of meth-
od parameter injection or the Constructor object in the case of constructor parameter injection.

• The getAnnotated() method returns an instance of javax.enterprise.inject.spi.AnnotatedField or
javax.enterprise.inject.spi.AnnotatedParameter, depending upon whether the injection point is an injected field
or a constructor/method parameter.

• The isDelegate() method returns true if the injection point is a decorator delegate injection point, and false other-
wise.

• The isTransient() method returns true if the injection point is a transient field, and false otherwise.

Occasionally, a component with scope @Dependent needs to access metadata relating to the object into which it is injected.
For example, the following producer method creates injectable Loggers. The log category of a Logger depends upon the
class of the object into which it is injected:

@Produces Logger createLogger(InjectionPoint injectionPoint) {
return Logger.getLogger(injectionPoint.getMember().getDeclaringClass().getName());

}

The container must provide a bean with deployment type @Standard, scope @Dependent, bean type InjectionPoint and
binding @Current, allowing dependent objects, as defined in Section 6.4.2, “Dependent objects”, to obtain information
about the injection point to which they belong. The built-in implementation must be a passivation capable dependency, as
defined in Section 6.6.2, “Passivation capable dependencies”.

If a bean that declares any scope other than @Dependent has an injection point of type InjectionPoint and binding
@Current, the container automatically detects the problem and treats it as a definition error, as defined in Section 12.4,
“Problems detected automatically by the container”.

If an object that is not a bean has an injection point of type InjectionPoint and binding @Current, the container automat-
ically detects the problem and treats it as a definition error, as defined in Section 12.4, “Problems detected automatically
by the container”.

5.6. Programmatic lookup

In certain situations, injection is not the most convenient way to obtain a contextual reference. For example, it may not be

Dependency injection, lookup and EL

JSR-299 Expert group draft 47

used when:

• the bean type or bindings vary dynamically at runtime, or

• depending upon the deployment, there may be no bean which satisfies the type and bindings, or

• we would like to iterate over all beans of a certain type.

In these situations, an instance of the javax.enterprise.inject.Instance interface may be injected:

@Current Instance<PaymentProcessor> paymentProcessor;

The method get() returns a contextual reference:

PaymentProcessor pp = paymentProcessor.get();

Any combination of bindings may be specified at the injection point:

@PayBy(CHEQUE) Instance<PaymentProcessor> chequePaymentProcessor;

Or, the @Any binding may be used, allowing the application to specify bindings dynamically:

@Any Instance<PaymentProcessor> anyPaymentProcessor;
...
Annotation binding = synchronously ? new SynchronousBinding() : new AsynchronousBinding();
PaymentProcessor pp = anyPaymentProcessor.select(binding).get().process(payment);

In this example, the returned bean has binding @Synchronous or @Asynchronous depending upon the value of synchron-
ously.

It's even possible to iterate over a set of beans:

@Any Instance<PaymentProcessor> anyPaymentProcessor;
...
for (PaymentProcessor pp: anyPaymentProcessor) pp.test();

5.6.1. The Instance interface

The Instance interface provides a method for obtaining instances of beans with a specified combination of required type
and bindings, and inherits the ability to iterate beans with that combination of required type and bindings from
java.lang.Iterable:

public interface Instance<T> extends Iterable<T> {

public T get();

public Instance<T> select(Annotation... bindings);
public <U extends T> Instance<U> select(Class<U> subtype, Annotation... bindings);
public <U extends T> Instance<U> select(TypeLiteral<U> subtype, Annotation... bindings);

}

For an injected Instance:

• the required type is the type parameter specified at the injection point, and

• the required bindings are the bindings specified at the injection point.

For example, this injected Instance has required type PaymentProcessor and required binding @Any:

@Any Instance<PaymentProcessor> any;

The select() method returns a child Instance for a given required type and additional required bindings. If no required
type is given, the required type is the same as the parent.

Dependency injection, lookup and EL

JSR-299 Expert group draft 48

For example, this child Instance has required type AsynchronousPaymentProcessor and additional required binding
@Asynchronous:

Instance<AsynchronousPaymentProcessor> async = anyPaymentProcessor.select(
AsynchronousPaymentProcessor.class,
new AsynchronousBinding());

If two instances of the same binding type are passed to select(), an IllegalArgumentException is thrown.

If an instance of an annotation that is not a binding type is passed to select(), an IllegalArgumentException is thrown.

The get() method must:

• Identify a bean that matches the required type and required bindings and is accessible to the class into which the parent
Instance was injected, according to the rules of typesafe resolution, as defined in Section 5.2, “Typesafe resolution”
and resolving ambiguities according to Section 5.2.1, “Unsatisfied and ambiguous dependencies”.

• If typesafe resolution results in an unsatisfied dependency, throw an UnsatisfiedResolutionException. If typesafe
resolution results in an unresolvable ambiguous dependency, throw an AmbiguousResolutionException.

• Otherwise, obtain a contextual reference for the bean and the required type, as defined in Section 6.5.3, “Contextual
reference for a bean”.

The iterator() method must:

• Identify the set of beans that match the required type and required bindings and are accessible to the class into which
the parent Instance was injected, according to the rules of typesafe resolution, as defined in Section 5.2, “Typesafe
resolution”.

• Return an Iterator, that iterates over the set of contextual references for the resulting beans and required type, as
defined in Section 6.5.3, “Contextual reference for a bean”.

5.6.2. The built-in Instance

The container must provide a built-in bean with:

• Instance<X> for every legal bean type X in its set of bean types,

• every binding type in its set of binding types,

• deployment type @Standard,

• scope @Dependent,

• no bean EL name, and

• an implementation provided automatically by the container.

The built-in implementation must be a passivation capable dependency, as defined in Section 6.6.2, “Passivation capable
dependencies”.

5.6.3. Using AnnotationLiteral

When the application calls select(), it may pass instances of binding annotation types. The helper class
javax.enterprise.inject.AnnotationLiteral makes it easier to implement annotation types:

public class SynchronousBinding
extends AnnotationLiteral<Synchronous>
implements Synchronous {}

public abstract class PayByBinding
extends AnnotationLiteral<PayBy>
implements PayBy {}

Dependency injection, lookup and EL

JSR-299 Expert group draft 49

Then the application may easily instantiate instances of the binding type:

PaymentProcessor pp = paymentProcessor.get(new SynchronousBinding(),
new PayByBinding() { public PaymentMethod value() { return CHEQUE; } });

5.7. Integration with Unified EL

The container must provide a Unified EL ELResolver to the servlet engine and JSF implementation that resolves bean EL
names using the rules of name resolution defined in Section 5.3, “EL name resolution” and resolving ambiguities accord-
ing to Section 5.3.1, “Ambiguous EL names”.

• If a name used in an EL expression does not resolve to any bean, the ELResolver must return a null value.

• Otherwise, if a name used in an EL expression resolves to exactly one bean, the ELResolver must return a contextual
instance of the bean, as defined in Section 6.5.2, “Contextual instance of a bean”.

For each distinct name that appears in the EL expression, the resolver must be called at most once. Even if a name appears
more than once in the same expression, the container may not call the resolver multiple times with that name. This restric-
tion ensures that there is a unique instance of each bean with scope @Dependent in any EL evaluation.

Dependency injection, lookup and EL

JSR-299 Expert group draft 50

Chapter 6. Scopes and contexts

Associated with every scope type is a context object. The context object determines the lifecycle and visibility of instances
of all beans with that scope. In particular, the context object defines:

• When a new instance of any bean with that scope is created

• When an existing instance of any bean with that scope is destroyed

• Which injected references refer to any instance of a bean with that scope

The context implementation collaborates with the container via the Context and Contextual interfaces to create and des-
troy contextual instances.

6.1. The Contextual interface

The javax.enterprise.context.spi.Contextual interface defines operations to create and destroy contextual instances
of a certain type:

public interface Contextual<T> {

public T create(CreationalContext<T> creationalContext);
public void destroy(T instance, CreationalContext<T> creationalContext);

}

Any implementation of Contextual is called a contextual type.

In particular, the Bean interface defined in Section 11.1, “The Bean interface” extends Contextual, so all beans are contex-
tual types.

The container and portable extensions may define implementations of the Contextual interface that do not extend Bean,
but it is not recommended that applications directly implement Contextual.

6.1.1. Instance creation

The method Contextual.create() is responsible for creating new contextual instances of the type.

If any exception occurs while creating an instance, the exception is rethrown by the create() method. If the exception is a
checked exception, it must be wrapped and rethrown as an (unchecked) CreationException.

The interface javax.enterprise.context.spi.CreationalContext provides an operation that allows the create() meth-
od to register an incompletely initialized contextual instance with the container. A contextual instance is considered incom-
pletely initialized until the create() method returns the instance.

public interface CreationalContext<T> {

public void push(T incompleteInstance);

...

}

The method push() registers the incompletely initialized instance.

If create() calls push(), it must also return the instance passed to push().

The implementation of Contextual is not required to call push(). However, for certain bean scopes, invocation of push()
between instantiation and injection helps the container minimize the use of client proxy objects (which would otherwise be
required to allow circular dependencies).

6.1.2. Instance destruction

The method Contextual.destroy() is responsible for destroying instances of the type. In particular, it is responsible for

JSR-299 Expert group draft 51

destroying all dependent objects of an instance.

If any exception occurs while destroying an instance, the exception must be caught by the destroy() method.

If the application invokes a contextual instance after it has been destroyed, the behavior is undefined.

The interface javax.enterprise.context.spi.CreationalContext provides an operation that allows the destroy()

method to destroy dependent objects.

public interface CreationalContext<T> {

...

public void release();

}

The method release() destroys all dependent objects of the instance which is being destroyed, as defined in Section 6.4.3,
“Dependent object destruction”.

6.2. The Context interface

The javax.enterprise.context.spi.Context interface provides an operation for obtaining contextual instances with a
particular scope of any contextual type. Any instance of Context is called a context object.

The context object is responsible for creating and destroying contextual instances by calling operations of the Contextual

interface.

The Context interface is called by the container and may be called by portable extensions. It should not be called directly
by the application.

public interface Context {

public Class<? extends Annotation> getScopeType();

public <T> T get(Contextual<T> bean);
public <T> T get(Contextual<T> bean, CreationalContext<T> creationalContext);

boolean isActive();

}

The method getScopeType() returns the scope type of the context object.

At a particular point in the execution of the program a context object may be active with respect to the current thread.
When a context object is active the isActive() method returns true. Otherwise, we say that the context object is inactive
and the isActive() method returns false.

The get() method obtains contextual instances of the contextual type represented by the given instance of Contextual.
The get() method may either:

• return an existing instance of the given contextual type, or

• if no CreationalContext is given, return a null value, or

• if a CreationalContext is given, create a new instance of the given contextual type by calling Contextual.create(),
passing the given CreationalContext, and return the new instance.

If the context object is inactive, the get() method must throw a ContextNotActiveException.

The get() method may not return a null value unless no CreationalContext is given, or Contextual.create() returns a
null value.

The get() method may not create a new instance of the given contextual type unless a CreationalContext is given.

The context object is responsible for destroying any contextual instance it creates by passing the instance to the destroy()

method of the Contextual object representing the contextual type. A destroyed instance must not subsequently be returned
by the get() method.

Scopes and contexts

JSR-299 Expert group draft 52

The context object must pass the same instance of CreationalContext to Contextual.destroy() that it passed to Con-

textual.create() when it created the instance.

6.3. Normal scopes and pseudo-scopes

Most scopes are normal scopes. The context object for a normal scope type is a mapping from each enabled contextual
type with that scope to an instance of that contextual type. There may be no more than one mapped instance per contextual
type per thread. The set of all mapped instances of contextual types with a certain scope for a certain thread is called the
context for that scope associated with that thread.

A context may be associated with one or more threads. A context with a certain scope is said to propagate from one point
in the execution of the program to another when the set of mapped instances of contextual types with that scope is pre-
served.

The context associated with the current thread is called the current context for the scope. The mapped instance of a contex-
tual type associated with a current context is called the current instance of the contextual type.

The get() operation of the context object for an active normal scope returns the current instance of the given contextual
type.

At certain points in the execution of the program a context may be destroyed. When a context is destroyed, all mapped in-
stances belonging to that context are destroyed by passing them to the Contextual.destroy() method.

Contexts with normal scopes must obey the following rule:

Suppose beans A, B and Z all have normal scopes. Suppose A has an injection point x, and B has an injection point y. Sup-
pose further that both x and y resolve to bean Z according to the rules of typesafe resolution. If a is the current instance of
A, and b is the current instance of B, then both a.x and b.y refer to the same instance of Z. This instance is the current in-
stance of Z.

Any scope that is not a normal scope is called a pseudo-scope. The concept of a current instance is not well-defined in the
case of a pseudo-scope.

All pseudo-scopes must be explicitly declared @ScopeType(normal=false), to indicate to the container that no client
proxy is required.

All scopes defined by this specification, except for the @Dependent pseudo-scope, are normal scopes.

6.4. Dependent pseudo-scope

The @Dependent scope type is a pseudo-scope. Beans declared with scope type @Dependent behave differently to beans
with other built-in scope types.

When a bean is declared to have @Dependent scope:

• No injected instance of the bean is ever shared between multiple injection points.

• Any injected instance of the bean is bound to the lifecycle of the instance into which it is injected.

• Any instance of the bean that is used to evaluate a Unified EL expression exists to service that evaluation only.

• Any instance of the bean that receives a producer method, producer field, disposer method or observer method invoca-
tion exists to service that invocation only.

Every invocation of the get() operation of the Context object for the @Dependent scope with a CreationalContext re-
turns a new instance of the given bean.

Every invocation of the get() operation of the Context object for the @Dependent scope with no CreationalContext re-
turns a null value.

6.4.1. Dependent scope lifecycle

Scopes and contexts

JSR-299 Expert group draft 53

The @Dependent scope is inactive except:

• when the container is creating a contextual instance of a bean, injecting its dependencies or creating its decorators, or

• when the container is injecting dependencies of a Java EE component class supporting injection, or

• when a contextual instance of a bean with scope @Dependent is created by the container to receive a producer method,
producer field, disposer method or observer method invocation, or

• while an observer or disposer method is invoked, or

• while a Unified EL expression is evaluated, or

• when Instance.get(), Instance.iterator().next() or BeanManager.getReference() is invoked upon an instance
of Instance or BeanManager injected by the container into a bean or other Java EE component class supporting injec-
tion.

6.4.2. Dependent objects

Many instances of beans with scope @Dependent belong to some other bean or Java EE component class instance and are
called dependent objects.

• Instances of decorators with scope @Dependent are dependent objects of the bean instance they decorate.

• An instance of a bean with scope @Dependent injected into a field, bean constructor or initializer method is a dependent
object of the bean or Java EE component class instance into which it was injected.

• An instance of a bean with scope @Dependent injected into a producer method is a dependent object of the producer
method bean instance that is being produced.

• An instance of a bean with scope @Dependent obtained by direct invocation of an Instance or BeanManager is a de-
pendent object of the instance of Instance or BeanManager.

6.4.3. Dependent object destruction

The container is responsible for destroying @Dependent scoped contextual instances by passing them to the Contextu-

al.destroy() method.

The container must:

• destroy all dependent objects of a contextual bean instance when the instance is destroyed by the context object,

• destroy all dependent objects of a non-contextual instance of a bean or other Java EE component class when the in-
stance is destroyed by the container,

• destroy all @Dependent scoped contextual instances injected into method parameters of a disposer or observer method
when the invocation completes,

• destroy any @Dependent scoped contextual instance created to receive a producer method, producer field, disposer
method or observer method invocation when the invocation completes, and

• destroy all @Dependent scoped contextual instances created during an EL expression evaluation when the evaluation
completes.

Finally, the container is permitted to destroy any @Dependent scoped contextual instance at any time if the instance is no
longer referenced by the application (excluding weak, soft and phantom references).

6.5. Contextual instances and contextual references

The Context object is the ultimate source of the contextual instances that underly contextual references.

Scopes and contexts

JSR-299 Expert group draft 54

6.5.1. The active context object for a scope

From time to time, the container must obtain an active context object for a certain scope type.

The container must search for an active instance of Context associated with the scope type.

• If no active context object exists for the scope type, the container throws a ContextNotActiveException.

• If more than one active context object exists for the given scope type, the container must throw an IllegalStateEx-

ception.

If there is exactly one active instance of Context associated with the scope type, we say that the scope is active.

6.5.2. Contextual instance of a bean

From time to time, the container must obtain a contextual instance of a bean.

The container must:

• obtain the active context object for the bean scope, then

• obtain an instance of the bean by calling Context.get(), passing the Bean instance representing the bean and an in-
stance of CreationalContext.

From time to time, the container attempts to obtain a contextual instance of a bean that already exists, without creating a
new contextual instance.

The container must:

• obtain the active context object for the bean scope, then

• obtain an instance of the bean by calling Context.get(), passing the Bean instance representing the bean without
passing any instance of CreationalContext.

A contextual instance of any of the built-in kinds of bean defined in Chapter 3, Programming model is considered an in-
ternal container construct, and it is therefore not strictly required that a contextual instance of a built-in kind of bean dir-
ectly implement the bean types of the bean. However, in this case, the container is required to transform its internal repres-
entation to an object that does implement the bean types expected by the application before injecting or returning a contex-
tual instance to the application.

6.5.3. Contextual reference for a bean

From time to time, the container must obtain a contextual reference for a bean and a given bean type of the bean. A con-
textual reference implements the given bean type and all bean types of the bean which are Java interfaces. A contextual
reference is not, in general, required to implement all concrete bean types of the bean.

• If the bean has a normal scope and the given bean type cannot be proxied by the container, as defined in Section 5.4.1,
“Unproxyable bean types”, the container throws an UnproxyableResolutionException.

• If the bean has a normal scope, then the contextual reference for the bean is a client proxy, as defined in Section 5.4,
“Client proxies”, created by the container, that implements the given bean type and all bean types of the bean which
are Java interfaces.

• Otherwise, if the bean has a pseudo-scope, the container must obtain a contextual instance of the bean.

The container must ensure that every injection point of type InjectionPoint and binding @Current of any dependent ob-
ject instantiated during this process receives:

• an instance of InjectionPoint representing the injection point into which the dependent object will be injected, or

• a null value if it is not being injected into any injection point.

Scopes and contexts

JSR-299 Expert group draft 55

6.5.4. Contextual reference validity

Contextual reference of a bean are valid only for a certain period of time. The application should not invoke a method of
an invalid reference.

The validity of a contextual reference depends upon whether the scope of the injected bean is a normal scope or a pseudo-
scope.

• Any reference to a bean with a normal scope is valid as long as the application maintains a hard reference to it.
However, it may only be invoked when the context associated with the normal scope is active. If it is invoked when the
context is inactive, a ContextNotActiveException is thrown by the container.

• Any reference to a bean with a pseudo-scope (such as @Dependent) is valid until the bean instance to which it refers is
destroyed. It may be invoked even if the context associated with the pseudo-scope is not active. If the application in-
vokes a method of a reference to an instance that has already been destroyed, the behavior is undefined.

6.6. Passivation and passivating scopes

The temporary transfer of the state of an idle object held in memory to some form of secondary storage is called passiva-
tion. The transfer of the passivated state back into memory is called activation.

6.6.1. Passivation capable beans

A bean is called passivation capable if the container is able to temporarily transfer the state of any idle instance to second-
ary storage.

• As defined by the EJB specification, all stateful session beans are passivation capable. Stateless and singleton session
beans are not passivation capable.

• A managed bean is passivation capable if and only if the bean class is serializable.

• A producer method is passivation capable if and only if it never returns a value which is not passivation capable at
runtime. A producer method with a return type that implements or extends serializable is passivation capable. A produ-
cer method with a return type that is declared final and does not implement serializable is not passivation capable.

• A producer field is passivation capable if and only if it never refers to a value which is not passivation capable at
runtime. A producer field with a type that implements or extends serializable is passivation capable. A producer field
with a type that is declared final and does not implement serializable is not passivation capable.

A custom implementation of Bean is passivation capable if it implements the interface PassivationCapable. An imple-
mentation of Contextual that is not a bean is passivation capable if it implements both PassivationCapable and Serial-

izable.

public interface PassivationCapable {
public String getId();

}

The getId() method must return a value that uniquely identifies the instance of Bean or Contextual. It is recommended
that the string contain the package name of the class that implements Bean or Contextual.

6.6.2. Passivation capable dependencies

A bean is called a passivation capable dependency if any contextual reference for that bean is preserved when the object
holding the reference is passivated and then activated.

The container must guarantee that:

• all session beans are passivation capable dependencies,

• all beans with normal scope are passivation capable dependencies,

Scopes and contexts

JSR-299 Expert group draft 56

• all passivation capable beans with scope @Dependent are passivation capable dependencies,

• all resources and message destinations are passivation capable dependencies, and

• the built-in beans of type Instance, Event, InjectionPoint and BeanManager are passivation capable dependencies.

A custom implementation of Bean is a passivation capable dependency if it implements PassivationCapable or if get-

ScopeType() returns a normal scope type.

6.6.3. Passivating scopes

A passivating scope requires that:

• beans with the scope are passivation capable, and

• implementations of Contextual passed to any context object for the scope are passivation capable.

Passivating scopes must be explicitly declared @ScopeType(passivating=true).

For example, the built-in session and conversation scopes defined in Section 6.7, “Context management for built-in
scopes” are passivating scopes. No other built-in scopes are passivating scopes.

6.6.4. Validation of passivation capable beans and dependencies

For every bean which declares a passivating scope, and for every stateful session bean, the container must validate that the
bean truly is passivation capable and that, in addition, its dependencies are passivation capable.

If a managed bean which declares a passivating scope:

• is not passivation capable, or

• has a non-transient injected field, bean constructor parameter or initializer method parameter that does not resolve to a
passivation capable dependency,

then the container automatically detects the problem and treats it as a deployment problem, as defined in Section 12.4,
“Problems detected automatically by the container”.

If a stateful session bean:

• has a non-transient injected field, bean constructor parameter or initializer method parameter that does not resolve to a
passivation capable dependency,

then the container automatically detects the problem and treats it as a deployment problem, as defined in Section 12.4,
“Problems detected automatically by the container”.

If a producer method declares a passivating scope and:

• the container is able to determine that it is not passivation capable by inspecting its return type, or

• has a parameter that does not resolve to a passivation capable dependency,

then the container automatically detects the problem and treats it as a deployment problem, as defined in Section 12.4,
“Problems detected automatically by the container”.

If a producer field declares a passivating scope and:

• the container is able to determine that it is not passivation capable by inspecting its type,

then the container automatically detects the problem and treats it as a deployment problem, as defined in Section 12.4,
“Problems detected automatically by the container”.

In some cases, the container is not able to determine whether a producer method or field is passivation capable. If a produ-

Scopes and contexts

JSR-299 Expert group draft 57

cer method or field which declares a passivating scope returns an unserializable object at runtime, the container must
throw an IllegalProductException. If a producer method or field of scope @Dependent returns an unserializable object
for injection into an injection point that requires a passivation capable dependency, the container must throw an Illegal-

ProductException

For a custom implementation of Bean, the container calls getInjectionPoints() to determine the injection points, and
InjectionPoint.isTransient() to determine whether the injected point is a transient field.

If a bean which declares a passivating scope type, or any stateful session bean, has a decorator which is not a passivation
capable dependency, the container automatically detects the problem and treats it as a deployment problem, as defined in
Section 12.4, “Problems detected automatically by the container”.

6.7. Context management for built-in scopes

The container provides an implementation of the Context interface for each of the built-in scopes.

The built-in context object is active during servlet, web service and EJB invocations, or in the case of the conversation
context object, for JSF requests. For other kinds of invocations, a portable extension may define a custom context object
for any or all of the built-in scopes. For example, a third-party web application framework might provide a conversation
context object for the built-in conversation scope.

For each of the built-in normal scopes, contexts propagate across any Java method call, including invocation of EJB local
business methods. The built-in contexts do not propagate across remote method invocations or to asynchronous processes
such as JMS message listeners or EJB timer service timeouts.

6.7.1. Request context lifecycle

The request context is provided by a built-in context object for the built-in scope type @RequestScoped.

• The request scope is active during the service() method of any servlet in the web application and during the doFil-

ter() method of any servlet filter. The request context is destroyed at the end of the servlet request, after the ser-

vice() method and all doFilter() methods return.

• The request scope is active during any Java EE web service invocation. The request context is destroyed after the web
service invocation completes.

• The request scope is active during any asynchronous observer method notification. The request context is destroyed
after the notification completes.

• The request scope is active during any remote method invocation of any EJB, during any asynchronous method invoc-
ation of any EJB, during any call to an EJB timeout method and during message delivery to any EJB message-driven
bean. The request context is destroyed after the remote method invocation, asynchronous method invocation, timeout
or message delivery completes.

6.7.2. Session context lifecycle

The session context is provided by a built-in context object for the built-in passivating scope type @SessionScoped. The
session scope is active:

• during the service() method of any servlet in the web application and during the doFilter() method of any servlet
filter, and

• when the disposer method or @PreDestroy callback of any bean with scope @RequestScoped or @ConversationScoped
is called.

The session context is shared between all servlet requests that occur in the same HTTP servlet session. The session context
is destroyed when the HTTPSession is invalidated or times out.

6.7.3. Application context lifecycle

Scopes and contexts

JSR-299 Expert group draft 58

The application context is provided by a built-in context object for the built-in scope type @ApplicationScoped. The ap-
plication scope is active:

• during the service() method of any servlet in the web application and during the doFilter() method of any servlet
filter,

• during any Java EE web service invocation,

• during any asynchronous observer method notification,

• during any remote method invocation of any EJB, during any asynchronous method invocation of any EJB, during any
call to an EJB timeout method and during message delivery to any EJB message-driven bean, and

• when the disposer method or @PreDestroy callback of any bean with any normal scope other than
@ApplicationScoped is called.

The application context is shared between all servlet requests, asynchronous observer method notifications, web service in-
vocations, EJB remote method invocations, EJB asynchronous method invocations, EJB timeouts and message deliveries
to message driven beans that execute within the same application. The application context is destroyed when the applica-
tion is shut down.

6.7.4. Conversation context lifecycle

The conversation context is provided by a built-in context object for the built-in passivating scope type
@ConversationScoped. The conversation scope is active:

• during all standard lifecycle phases of any JSF faces or non-faces request, and

• when the disposer method or @PreDestroy callback of any bean with scope @RequestScoped is called.

The conversation context provides access to state associated with a particular conversation. Every JSF request has an asso-
ciated conversation. This association is managed automatically by the container according to the following rules:

• Any JSF request has exactly one associated conversation.

• The conversation associated with a JSF request is determined at the beginning of the restore view phase and does not
change during the request.

Any conversation is in one of two states: transient or long-running.

• By default, a conversation is transient

• A transient conversation may be marked long-running by calling Conversation.begin()

• A long-running conversation may be marked transient by calling Conversation.end()

All long-running conversations have a string-valued unique identifier, which may be set by the application when the con-
versation is marked long-running, or generated by the container.

If the conversation associated with the current JSF request is in the transient state at the end of a JSF request, it is des-
troyed, and the conversation context is also destroyed.

If the conversation associated with the current JSF request is in the long-running state at the end of a JSF request, it is not
destroyed. Instead, it may be propagated to other requests according to the following rules:

• The long-running conversation context associated with a request that renders a JSF view is automatically propagated to
any faces request (JSF form submission) that originates from that rendered page.

• The long-running conversation context associated with a request that results in a JSF redirect (a redirect resulting from
a navigation rule or JSF NavigationHandler) is automatically propagated to the resulting non-faces request, and to any
other subsequent request to the same URL. This is accomplished via use of a GET request parameter named cid con-
taining the unique identifier of the conversation.

Scopes and contexts

JSR-299 Expert group draft 59

• The long-running conversation associated with a request may be propagated to any non-faces request via use of a GET
request parameter named cid containing the unique identifier of the conversation. In this case, the application must
manage this request parameter.

When no conversation is propagated to a JSF request, the request is associated with a new transient conversation.

All long-running conversations are scoped to a particular HTTP servlet session and may not cross session boundaries.

In the following cases, a propagated long-running conversation cannot be restored and reassociated with the request:

• When the HTTP servlet session is invalidated, all long-running conversation contexts created during the current ses-
sion are destroyed.

• The container is permitted to arbitrarily destroy any long-running conversation that is associated with no current JSF
request, in order to conserve resources.

The conversation timeout, which may be specified by calling Conversation.setTimeout() is a hint to the container that a
conversation should not be destroyed if it has been active within the last given interval in milliseconds.

If the propagated conversation cannot be restored, the container must associate the request with a new transient conversa-
tion and throw an exception of type javax.context.NonexistentConversationException from the restore view phase of
the JSF lifecycle. The application may handle this exception using the JSF ExceptionHandler.

The container ensures that a long-running conversation may be associated with at most one request at a time, by blocking
or rejecting concurrent requests. If the container rejects a request, it must associate the request with a new transient conver-
sation and throw an exception of type javax.context.BusyConversationException from the restore view phase of the
JSF lifecycle. The application may handle this exception using the JSF ExceptionHandler.

6.7.5. The Conversation interface

The container provides a built-in bean with bean type Conversation, scope @RequestScoped, deployment type @Standard

and binding @Current, named javax.enterprise.context.conversation.

public interface Conversation {
public void begin();
public void begin(String id);
public void end();
public boolean isLongRunning();
public String getId();
public long getTimeout();
public void setTimeout(long milliseconds);
public boolean isTransient();

}

• begin() marks the current transient conversation long-running. A conversation identifier may, optionally, be specified.
If no conversation identifier is specified, an identifier is generated by the container.

• end() marks the current long-running conversation transient.

• getId() returns the identifier of the current long-running conversation, or a null value if the current conversation is
transient.

• getTimeout() returns the timeout, in milliseconds, of the current conversation.

• setTimeout() sets the timeout of the current conversation.

• isTransient() returns true if the conversation is marked transient, or false if it is marked long-running.

If end() is called, and the current conversation is marked transient, an IllegalStateException is thrown.

If begin() is called, and the current conversation is already marked long-running, an IllegalStateException is thrown.

If begin() is called with an explicit conversation identifier, and a long-running conversation with that identifier already
exists, an IllegalArgumentException is thrown.

Scopes and contexts

JSR-299 Expert group draft 60

Chapter 7. Lifecycle of contextual instances

The lifecycle of a contextual instance of a bean is managed by the context object for the bean's scope, as defined in
Chapter 6, Scopes and contexts.

Every bean in the system is represented by an instance of the Bean interface defined in Section 11.1, “The Bean interface”.
This interface is a subtype of Contextual. To create and destroy contextual instances, the context object calls the cre-

ate() and destroy() operations defined by the interface Contextual, as defined in Section 6.1, “The Contextual inter-
face”.

7.1. Restriction upon bean instantiation

The managed bean and EJB specifications place very few programming restrictions upon the bean class of a bean. In par-
ticular, the class is a concrete class and is not required to implement any special interface or extend any special superclass.
Therefore, bean classes are easy to instantiate and unit test.

However, if the application directly instantiates a bean class, instead of letting the container perform instantiation, the res-
ulting instance is not managed by the container and is not a contextual instance as defined by Section 6.5.2, “Contextual
instance of a bean”. Furthermore, the capabilities listed in Section 2.1, “Functionality provided by the container to the
bean” will not be available to that particular instance. In a deployed application, it is the container that is responsible for
instantiating beans and initializing their dependencies.

If the application requires more control over instantiation of a contextual instance, a producer method or field may be used.
Any Java object may be returned by a producer method or field. It is not required that the returned object be a contextual
reference for a bean. However, if the object is not a contextual reference for another bean, the object will be contextual in-
stance of the producer method bean, and therefore available for injection into other objects and use in EL expressions, but
the other capabilities listed in Section 2.1, “Functionality provided by the container to the bean” will not be available to the
object.

In the following example, a producer method returns instances of other beans:

@SessionScoped
public class PaymentStrategyProducer {

private PaymentStrategyType paymentStrategyType;

public void setPaymentStrategyType(PaymentStrategyType type) {
paymentStrategyType = type;

}

@Produces PaymentStrategy getPaymentStrategy(@CreditCard PaymentStrategy creditCard,
@Cheque PaymentStrategy cheque,
@Online PaymentStrategy online) {

switch (paymentStrategyType) {
case CREDIT_CARD: return creditCard;
case CHEQUE: return cheque;
case ONLINE: return online;
default: throw new IllegalStateException();

}
}

}

In this case, any object returned by the producer method has already had its dependencies injected, receives lifecycle call-
backs and event notifications and has interception enabled.

But in this example, the returned objects are not contextual instances:

@SessionScoped
public class PaymentStrategyProducer {

private PaymentStrategyType paymentStrategyType;

public void setPaymentStrategyType(PaymentStrategyType type) {
paymentStrategyType = type;

}

@Produces PaymentStrategy getPaymentStrategy() {
switch (paymentStrategyType) {

case CREDIT_CARD: return new CreditCardPaymentStrategy();
case CHEQUE: return new ChequePaymentStrategy();

JSR-299 Expert group draft 61

case ONLINE: return new OnlinePaymentStrategy();
default: throw new IllegalStateException();

}
}

}

In this case, any object returned by the producer method will not have any dependencies injected by the container, receives
no lifecycle callbacks or event notifications and does not have interception enabled.

7.2. Container invocations and interception

When the container invokes a method of a bean, the invocation may or may not be treated as a business method invocation.
If, and only if, the invocation is a business method invocation:

• it passes through the method interceptor and decorator stacks, and

• in the case of a session bean, it is subject to EJB services such as declarative transaction management, concurrency, se-
curity and asynchronicity, as defined by the EJB specification.

Otherwise, the invocation is treated as a normal Java method call and is not intercepted by the container.

• Invocations of initializer methods by the container are not business method invocations.

• Invocations of producer, disposer and observer methods by the container are business method invocations and are in-
tercepted by method interceptors and decorators.

• Invocation of lifecycle callbacks by the container are not business method invocations, but are intercepted by intercept-
ors for lifecycle callbacks.

• Invocations of interceptors and decorator methods during method or lifecycle callback interception are not business
method invocations, and therefore no recursive interception occurs.

7.3. Lifecycle of contextual instances

The actual mechanics of bean creation and destruction varies according to what kind of bean is being created or destroyed.

7.3.1. Lifecycle of managed beans

Note: this lifecycle will be defined by the Managed Beans specification.

When the create() method of the Bean object that represents a managed bean is called:

• First, the container calls the bean constructor to obtain an instance of the bean, as defined in Section 5.5.3, “Injection
using the bean constructor”. The container is permitted to return an instance of a container-generated subclass of the
bean class, allowing interceptor and decorator bindings.

• Next, the container performs Java EE component environment injection, as required by the managed bean specifica-
tion.

• Next, the container performs dependency injection, as defined in Section 5.5.4, “Injection of fields and initializer meth-
ods”.

• Finally, the container calls the @PostConstruct method, if any.

When the destroy() method is called:

• The container calls the @PreDestroy method, if any.

• Finally, the container destroys dependent objects, as defined in Section 5.5.5, “Destruction of dependent objects”.

Lifecycle of contextual instances

JSR-299 Expert group draft 62

7.3.2. Lifecycle of stateful session beans

When the create() method of a Bean object that represents a stateful session bean that is called, the container creates and
returns a container-specific internal local reference to a new session bean instance. The reference must be passivation cap-
able. This reference is not directly exposed to the application.

Before injecting or returning a contextual instance to the application, the container transforms its internal reference into an
object that implements the bean types expected by the application and delegates method invocations to the underlying
stateful session bean instance. This object must be passivation capable.

When the destroy() method is called, and if the underlying EJB was not already removed by direct invocation of a re-
move method by the application, the container removes the stateful session bean. The @PreDestroy callback must be in-
voked by the container.

Note that the container performs additional work when the underlying EJB is created and removed, as defined in Sec-
tion 5.5, “Dependency injection”

7.3.3. Lifecycle of stateless session and singleton beans

When the create() method of a Bean object that represents a stateless session or singleton session bean is called, the con-
tainer creates and returns a container-specific internal local reference to the session bean. This reference is not directly ex-
posed to the application.

Before injecting or returning a contextual instance to the application, the container transforms its internal reference into an
object that implements the bean types expected by the application and delegates method invocations to the underlying ses-
sion bean. This object must be passivation capable.

When the destroy() method is called, the container simply discards this internal reference.

Note that the container performs additional work when the underlying EJB is created and removed, as defined in Sec-
tion 5.5, “Dependency injection”

7.3.4. Lifecycle of producer methods

When the create() method of a Bean object that represents a producer method is called, the container must invoke the
producer method as defined by Section 5.5.6, “Invocation of producer or disposer methods”. The return value of the pro-
ducer method, after method interception completes, is the new contextual instance to be returned by Bean.create().

If the producer method returns a null value and the producer method bean has the scope @Dependent, the create() method
returns a null value.

Otherwise, if the producer method returns a null value, and the scope of the producer method is not @Dependent, the cre-

ate() method throws an IllegalProductException.

When the destroy() method is called, and if there is a disposer method for this producer method, the container must in-
voke the disposer method as defined by Section 5.5.6, “Invocation of producer or disposer methods”, passing the instance
given to destroy() to the disposed parameter.

Finally, the container destroys dependent objects.

7.3.5. Lifecycle of producer fields

When the create() method of a Bean object that represents a producer field is called, the container must access the produ-
cer field as defined by Section 5.5.7, “Access to producer field values” to obtain the current value of the field. The value of
the producer field is the new contextual instance to be returned by Bean.create().

If the producer field contains a null value and the producer field bean has the scope @Dependent, the create() method re-
turns a null value.

Otherwise, if the producer field contains a null value, and the scope of the producer field is not @Dependent, the create()

method throws an IllegalProductException.

Lifecycle of contextual instances

JSR-299 Expert group draft 63

7.3.6. Lifecycle of resources

When the create() method of a Bean object that represents a resource is called, the container creates and returns a con-
tainer-specific internal reference to the Java EE component environment resource, entity manager, entity manager factory,
remote EJB instance or web service reference. This reference is not directly exposed to the application.

Before injecting or returning a contextual instance to the application, the container transforms its internal reference into an
object that implements the bean types expected by the application and delegates method invocations to the underlying re-
source, entity manager, entity manager factory, remote EJB instance or web service reference. This object must be passiva-
tion capable.

When the destroy() method is called, the container discards this internal reference. For certain kinds of resource, for ex-
ample persistence contexts, the container eventually performs additional cleanup to destroy state associated with the client
or transaction, as required by the Java EE platform specification.

7.3.7. Lifecycle of message destinations

An instance of a message destination is a proxy object, provided by the container, that implements all the bean types spe-
cified in Section 3.6.1, “Bean types of a message destination”, delegating the actual implementation of these methods dir-
ectly to the underlying JMS objects. This proxy object must be passivation capable.

A message destination proxy object is a dependent object of the object it is injected into.

When the create() method of a Bean object that represents a message destination is called, the container creates and re-
turns a proxy object.

The methods of this proxy object delegate to JMS objects obtained as needed using the metadata provided by the message
destination declaration.

• The Destination is obtained using the metadata specified by @Resource.

• The appropriate ConnectionFactory for the topic or queue is obtained using the metadata specified by
@ConnectionFactory.

• The Connection is obtained by calling QueueConnectionFactory.createQueueConnection() or TopicConnection-

Factory.createTopicConnection(). The container is permitted to share a connection between multiple proxy objects.

• The Session object is obtained by calling QueueConnection.createQueueSession() or TopicConnec-

tion.createTopicSession().

• The MessageProducer object is obtained by calling QueueSession.createSender() or TopicSes-

sion.createPublisher().

• The MessageConsumer object is obtained by calling QueueSession.createReceiver() or TopicSes-

sion.createSubscriber().

When the destroy() method is called, the container must ensure that all JMS objects created by the proxy object are des-
troyed by calling close() if necessary.

• The Connection is destroyed by calling Connection.close() if necessary. If the connection is being shared between
multiple proxy objects, the container is not required to close the connection when the proxy is destroyed.

• The Session object is destroyed by calling Session.close().

• The MessageProducer object is destroyed by calling MessageProducer.close().

• The MessageConsumer object is destroyed by calling MessageConsumer.close().

The close() method of a message destination proxy object always throws an UnsupportedOperationException.

Lifecycle of contextual instances

JSR-299 Expert group draft 64

Chapter 8. Decorators

A decorator implements one or more bean types and intercepts business method invocations of beans which implement
those bean types. These bean types are called decorated types.

Decorators are superficially similar to interceptors, but because they directly implement operations with business se-
mantics, they are able to implement business logic and, conversely, unable to implement the orthogonal concerns for
which interceptors are optimized.

Decorators may be bound to any managed bean that is not itself an interceptor or decorator or to any EJB session or mes-
sage-driven bean.

8.1. Decorator beans

A decorator is a managed bean. The set of decorated types of a decorator includes all interfaces implemented directly or
indirectly by the bean class, except for java.io.Serializable. The decorator bean class and its superclasses are not dec-
orated types of the decorator. The decorator class may be abstract.

8.1.1. Declaring a decorator

A decorator is declared by annotating the bean class with the @javax.decorator.Decorator stereotype.

@Decorator
class TimestampLogger implements Logger { ... }

8.1.2. Decorator delegate injection points

All decorators have a delegate injection point.

A delegate injection point is an injection point of the bean class. The type and bindings of the injection point are called the
delegate type and delegate bindings.

The delegate injection point must be be declared by annotating the field with the @javax.decorator.Decorates annota-
tion:

@Decorator
class TimestampLogger implements Logger {

@Decorates @Any Logger logger;
...

}

@Decorator
class TimestampLogger implements Logger {

private Logger logger;

public TimestampLogger(@Decorates @Debug Logger logger) {
this.logger=logger;

}
...

}

The decorator applies to any bean that is eligible for injection to the delegate injection point, according to the rules defined
in Section 5.2, “Typesafe resolution”.

A decorator must have exactly one delegate injection point. If a decorator has more than one delegate injection point, or
does not have a delegate injection point, the container automatically detects the problem and treats it as a definition error,
as defined in Section 12.4, “Problems detected automatically by the container”.

The delegate injection point must be an injected field, initializer method parameter or bean constructor method parameter.
If an injection point that is not an injected field, initializer method parameter or bean constructor method parameter is an-
notated @Decorates, the container automatically detects the problem and treats it as a definition error, as defined in Sec-
tion 12.4, “Problems detected automatically by the container”.

If a bean class that is not a decorator has an injection point annotated @Decorates, the container automatically detects the

JSR-299 Expert group draft 65

problem and treats it as a definition error, as defined in Section 12.4, “Problems detected automatically by the container”.

If a decorator applies to a managed bean, and the bean class is declared final, the container automatically detects the prob-
lem and treats it as a definition error, as defined in Section 12.4, “Problems detected automatically by the container”.

If a decorator applies to a managed bean with a non-static, non-private, final method, and the decorator also implements
that method, the container automatically detects the problem and treats it as a definition error, as defined in Section 12.4,
“Problems detected automatically by the container”.

The container must inject a delegate object to the delegate injection point. The delegate object implements the delegate
type and delegates method invocations along the decorator stack.

8.1.3. Decorated types of a decorator

The delegate type of a decorator must implement or extend every decorated type. If the delegate type does not implement
or extend a decorated type of the decorator, the container automatically detects the problem and treats it as a definition er-
ror, as defined in Section 12.4, “Problems detected automatically by the container”.

A decorator is not required to implement the delegate type.

A decorator may be an abstract Java class, and is not required to implement every method of every decorated type.

The decorator intercepts every method:

• declared by a decorated type of the decorator

• that is implemented by the bean class of the decorator.

8.2. Decorator enablement and ordering

By default, decorators are not enabled. A decorator must be explicitly enabled by listing its bean class under the
<decorators> element in beans.xml.

<beans>
<decorators>

<class>org.mycompany.myfwk.TimestampLogger</class>
<class>org.mycompany.myfwk.IdentityLogger</class>

</decorators>
</beans>

The order of the decorator declarations determines the decorator ordering. Decorators which occur earlier in the list are
called first.

If a class listed under the <decorators> element is not the bean class of at least one decorator, the container automatically
detects the problem and treats it as a deployment problem, as defined in Section 12.4, “Problems detected automatically by
the container”.

If the bean class of a decorator with a disabled deployment type is listed under the <decorators> element, the container
automatically detects the problem and treats it as a deployment problem, as defined in Section 12.4, “Problems detected
automatically by the container”.

If the <decorators> element is specified in more than one beans.xml document, the container automatically detects the
problem and treats it as a deployment problem, as defined in Section 12.4, “Problems detected automatically by the con-
tainer”.

Decorators are called after interceptors.

8.3. Decorator resolution

The following procedure must be used by the container when resolving decorators for a certain bean:

• First, the container identifies the set of matching enabled decorators such that the bean is eligible for injection to the
delegate injection point according to the rules defined in Section 5.2, “Typesafe resolution”.

Decorators

JSR-299 Expert group draft 66

• Next, the container orders the matching decorators according to the decorator ordering specified in Section 8.2,
“Decorator enablement and ordering”.

8.4. Decorator stack creation

When a bean with decorators is created, the container must:

• Identify the decorators for the bean according to Section 8.3, “Decorator resolution”.

• For each decorator, obtain a contextual reference, as defined in Section 6.5.3, “Contextual reference for a bean”.

• Build an ordered list of the decorator instances.

The resulting ordered list of decorator instances is called the decorator stack.

8.5. Decorator invocation

Whenever a business method is invoked on an instance of a bean with decorators, the container intercepts the business
method invocation and, after processing the interceptor stack, invokes decorators of the bean.

The container searches for the first decorator in the decorator stack for the instance that implements the method that is be-
ing invoked as a business method. If no such decorator exists, the container invokes the business method of the intercepted
instance. Otherwise, the container calls the method of the decorator.

When any decorator is invoked by the container, it may in turn invoke a method of the delegate. The container intercepts
the delegate invocation and searches for the first decorator in the decorator stack for the instance such that:

• the decorator implements the method that is being invoked upon the delegate, and

• the decorator has not previously been invoked during this business method invocation.

If no such decorator exists, the container invokes the business method of the intercepted instance. Otherwise, the container
calls the method of the decorator.

Eventually, by recursion, the decorator stack is exhausted of uninvoked decorators.

Decorators

JSR-299 Expert group draft 67

Chapter 9. Interceptor bindings

Managed beans and EJB session and message-driven beans support interception. The Java interceptors specification
defines the basic programming model and semantics. This specification defines a typesafe mechanism for binding inter-
ceptors to beans using interceptor binding types.

9.1. Interceptor binding types

An interceptor binding type is a Java annotation defined as @Target({TYPE, METHOD}) or @Target(TYPE) and
@Retention(RUNTIME).

An interceptor binding type may be declared by specifying the @javax.interceptor.InterceptorBindingType meta-
annotation.

@Inherited
@InterceptorBindingType
@Target({TYPE, METHOD})
@Retention(RUNTIME)
public @interface Transactional {}

Multiple interceptors may be bound to the same interceptor binding type or types.

9.1.1. Interceptor binding types with additional interceptor bindings

An interceptor binding type may declare other interceptor bindings.

@Inherited
@InterceptorBindingType
@Target({TYPE, METHOD})
@Retention(RUNTIME)
@Transactional
public @interface DataAccess {}

Interceptor bindings are transitive—an interceptor binding declared by an interceptor binding type is inherited by all beans
and other interceptor binding types that declare that interceptor binding type.

Interceptor binding types declared @Target(TYPE) may not be applied to interceptor binding types declared
@Target({TYPE, METHOD}).

9.1.2. Interceptor bindings for stereotypes

Interceptor bindings may be applied to a stereotype by annotating the stereotype annotation:

@Transactional
@Secure
@Production
@RequestScoped
@Stereotype
@Target(TYPE)
@Retention(RUNTIME)
public @interface Action {}

An interceptor binding declared by a stereotype is inherited by any bean that declares that stereotype.

If a stereotype declares interceptor bindings, it must be defined as @Target(TYPE).

9.2. Declaring the interceptor bindings of an interceptor

The interceptor bindings of an interceptor are specified by annotating the interceptor bean class with the binding types and
the @javax.interceptor.Interceptor annotation.

@Transactional @Interceptor
public class TransactionInterceptor {

@AroundInvoke

JSR-299 Expert group draft 68

public Object manageTransaction(InvocationContext ctx) { ... }

}

If an interceptor does not declare an @Interceptor annotation, it must be bound to beans using @Interceptors or ejb-

jar.xml.

All interceptors declared using @Interceptor must specify at least one interceptor binding. If an interceptor declared using
@Interceptor does not declare any interceptor binding, the container automatically detects the problem and treats it as a
definition error, as defined in Section 12.4, “Problems detected automatically by the container”.

An interceptor for lifecycle callbacks may only declare interceptor binding types that are defined as @Target(TYPE). If an
interceptor for lifecycle callbacks declares an interceptor binding type that is defined @Target({TYPE, METHOD}), the con-
tainer automatically detects the problem and treats it as a definition error, as defined in Section 12.4, “Problems detected
automatically by the container”.

9.3. Binding an interceptor to a bean

An interceptor bindings may be declared by annotating the bean class, or a method of the bean class, with the interceptor
binding type.

In the following example, the TransactionInterceptor will be applied at the class level, and therefore applies to all busi-
ness methods of the class:

@Transactional
public class ShoppingCart { ... }

In this example, the TransactionInterceptor will be applied at the method level:

public class ShoppingCart {

@Transactional
public void placeOrder() { ... }

}

9.4. Interceptor enablement and ordering

Interceptors may be enabled or disabled at deployment time. Disabled interceptors are never called at runtime.

By default, interceptors bound via interceptor bindings are not enabled. An interceptor must be explicitly enabled by list-
ing its bean class under the <interceptors> element in beans.xml.

<beans>
<interceptors>

<class>org.mycompany.myfwk.TransactionInterceptor</class>
<class>org.mycompany.myfwk.LoggingInterceptor</class>

</interceptors>
</beans>

The order of the interceptor declarations determines the interceptor ordering. Interceptors which occur earlier in the list are
called first.

If a class listed under the <interceptors> element is not the bean class of at least one interceptor, the container automatic-
ally detects the problem and treats it as a deployment problem, as defined in Section 12.4, “Problems detected automatic-
ally by the container”.

If the bean class of an interceptor with a disabled deployment type is listed under the <interceptors> element, the con-
tainer automatically detects the problem and treats it as a deployment problem, as defined in Section 12.4, “Problems de-
tected automatically by the container”.

If the <interceptors> element is specified in more than one beans.xml document, the container automatically detects the
problem and treats it as a deployment problem, as defined in Section 12.4, “Problems detected automatically by the con-
tainer”.

Interceptor bindings

JSR-299 Expert group draft 69

Interceptors declared using @Interceptors or in ejb-jar.xml are called before interceptors declared using interceptor
bindings.

Interceptors are called before decorators.

9.5. Interceptor resolution

The following procedure must be used by the container when resolving interceptors for a certain bean and lifecycle call-
back or business method.

For a lifecycle callback, the bean interceptor bindings include the interceptor bindings declared by the bean at the class
level, including interceptor bindings declared as meta-annotations of other interceptor bindings, recursively, and of stereo-
types.

For a method, the bean interceptor bindings include the interceptor bindings declared by the bean at the class level, includ-
ing interceptor bindings declared as meta-annotations of other interceptor bindings, recursively, and of stereotypes, togeth-
er with all interceptor bindings declared at the method level, including interceptor bindings declared as meta-annotations
of other interceptor bindings, recursively.

• First, the container identifies the set of matching enabled interceptors which satisfy the following conditions:

• For each interceptor binding declared by the interceptor, there exists an interceptor binding in the set of bean inter-
ceptor bindings with (a) the same type and (b) the same annotation member value for each member which is not
annotated @javax.enterprise.inject.NonBinding (see Section 9.5.2, “Interceptor binding types with members”).

• The interceptor intercepts the given kind of lifecycle callback or business method.

• Next, the container orders the matching interceptors according to the interceptor ordering specified in Section 9.4,
“Interceptor enablement and ordering”.

9.5.1. Interceptors with multiple bindings

An interceptor class may specify multiple interceptor bindings, in which case the interceptor will be applied only to beans
that declare all the bindings at the class level, and to methods of beans for which every binding appears at either the meth-
od or class level.

Consider the following interceptor:

@Transactional @Secure @Interceptor
public class TransactionalSecurityInterceptor {

@AroundInvoke
public void aroundInvoke() { ... }

}

This interceptor will be bound to all methods of this bean:

@Transactional @Secure
public class ShoppingCart { ... }

The interceptor will also be bound to the placeOrder() method of this bean:

@Transactional
public class ShoppingCart {

@Secure
public void placeOrder() { ... }

}

However, it will not be bound to the placeOrder() method of this bean, since the @Secure interceptor binding does not
appear:

@Transactional

Interceptor bindings

JSR-299 Expert group draft 70

public class ShoppingCart {

public void placeOrder() { ... }

}

9.5.2. Interceptor binding types with members

According to the rules of interceptor resolution defined above, interceptor binding types may have annotation members.

This interceptor binding type declares a member:

@Inherited
@InterceptorBindingType
@Target({TYPE, METHOD})
@Retention(RUNTIME)
public @interface Transactional {

boolean requiresNew() default false;
}

Any interceptor with that interceptor binding type must select a member value:

@Transactional(requiresNew=true) @Interceptor
public class RequiresNewTransactionInterceptor {

@AroundInvoke
public Object manageTransaction(InvocationContext ctx) { ... }

}

The RequiresNewTransactionInterceptor applies to this bean:

@Transactional(requiresNew=true)
public class ShoppingCart { ... }

But not to this bean:

@Transactional
public class ShoppingCart { ... }

Annotation member values are compared using equals().

An annotation member may be excluded from consideration using the @NonBinding annotation.

@Inherited
@InterceptorBindingType
@Target({TYPE, METHOD})
@Retention(RUNTIME)
public @interface Transactional {

@NonBinding boolean requiresNew() default false;
}

Array-valued or annotation-valued members of an interceptor binding type must be annotated @NonBinding. If an array-
valued or annotation-valued member of an interceptor binding type is not annotated @NonBinding, the container automatic-
ally detects the problem and treats it as a definition error, as defined in Section 12.4, “Problems detected automatically by
the container”.

If the set of interceptor bindings of a bean or interceptor, including bindings inherited from stereotypes and other intercept-
or bindings, has two instances of a certain interceptor binding type and the instances have different values of some annota-
tion member, the container automatically detects the problem and treats it as a definition error, as defined in Section 12.4,
“Problems detected automatically by the container”.

Interceptor bindings

JSR-299 Expert group draft 71

Chapter 10. Events

Beans may produce and consume events. This facility allows beans to interact in a completely decoupled fashion, with no
compile-time dependency between the two beans. Most importantly, it allows stateful beans in one architectural or physic-
al tier of the application to synchronize their internal state with state changes that occur in a different tier.

An event comprises:

• A Java object—the event object

• A (possibly empty) set of instances of binding types—the event bindings

The event object acts as a payload, to propagate state from producer to consumer. The event bindings act as topic selectors,
allowing the consumer to narrow to set of events it observes.

An event consumer observes events of a specific type, the observed event type, with a specific set of instances of event
binding types, the observed event bindings.

10.1. Event types and binding types

An event object is an instance of a concrete Java class with no type variables. The event types of the event include all su-
perclasses and interfaces of the runtime class of the event object.

An event type may not contain a type variable.

An event binding type is just an ordinary binding type as specified in Section 2.3.2, “Defining new binding types” with the
exception that it may be declared @Target({FIELD, PARAMETER}).

More formally, an event binding type is a Java annotation defined as @Target({FIELD, PARAMETER}) or
@Target({METHOD, FIELD, PARAMETER, TYPE}) and @Retention(RUNTIME). All event binding types must specify the
@javax.enterprise.inject.BindingType meta-annotation.

Every event has the binding @javax.enterprise.inject.Any, even if it does not explicitly declare this binding.

Any Java type may be an observed event type.

10.2. The Observer interface

An observer consumes events and allows the application to react to events that occur.

Observers of events implement the interface javax.enterprise.event.Observer where T is the observed event type.

public interface Observer<T> {

public boolean notify(T event);

}

If notify() returns true, the container may deregister the observer and stop sending event notifications to it. However,
the container is permitted to call notify() even after a previous invocation of notify() has returned false.

The container is permitted to call notify() concurrently. Implementations of Observer are not permitted to perform their
own concurrency management. It is therefore recommended that observers be immutable objects.

10.3. Observer resolution

An event consumer will be notified of an event if the observed event type it specifies is one of the event types of the event,
and if all the observed event bindings it specifies are event bindings of the event.

The process of matching an event to its observers is called observer resolution. The container considers event type and
bindings when resolving observers.

JSR-299 Expert group draft 72

Observer resolution usually occurs at runtime.

When resolving observers of an event, the container identifies the set of observers which satisfy the following conditions:

• The event object must be assignable to the observed event type, taking type parameters into consideration.

• For each observed event binding, the event bindings must contain a matching binding with (a) the same type and (b)
the same annotation member value for each member which is not annotated @javax.enterprise.inject.NonBinding.

If the runtime type of the event object contains a type variable, the container must throw an IllegalArgumentException.

10.3.1. Assignability of type variables, raw and parameterized types

An event type is considered assignable to a type variable if the event type is assignable to the upper bound, if any.

A parameterized event type is considered assignable to a raw observed event type if the raw types are identical.

A parameterized event type is considered assignable to a parameterized observed event type if they have identical raw type
and for each parameter:

• the observed event type parameter is an actual type with identical raw type to the event type parameter, and, if the type
is parameterized, the event type parameter is assignable to the observed event type parameter according to these rules,
or

• the observed event type parameter is a wildcard and the event type parameter is assignable to the upper bound, if any,
of the wildcard and assignable from the lower bound, if any, of the wildcard, or

• the observed event type parameter is a type variable and the event type parameter is assignable to the upper bound, if
any, of the type variable.

10.3.2. Event binding types with members

As usual, the binding type may have annotation members:

@BindingType
@Target(PARAMETER)
@Retention(RUNTIME)
public @interface Role {

String value();
}

Consider the following event:

public void login() {
final User user = ...;
manager.fireEvent(new LoggedInEvent(user),

new RoleBinding() { public String value() { return user.getRole(); });
}

Where RoleBinding is an implementation of the binding type Role:

public abstract class RoleBinding
extends AnnotationLiteral<Role>
implements Role {}

Then the following observer method will always be notified of the event:

public void afterLogin(@Observes LoggedInEvent event) { ... }

Whereas this observer method may or may not be notified, depending upon the value of user.getRole():

public void afterAdminLogin(@Observes @Role("admin") LoggedInEvent event) { ... }

As usual, the container uses equals() to compare event binding type member values.

Events

JSR-299 Expert group draft 73

10.3.3. Multiple event bindings

An event parameter may have multiple bindings:

public void afterDocumentUpdatedByAdmin(@Observes @Updated @ByAdmin Document doc) { ... }

Then this observer method will only be notified if all the observed event bindings are specified when the event is fired:

manager.fireEvent(document, new UpdatedBinding() {}, new ByAdminBinding() {});

Other, less specific, observers will also be notified of this event:

public void afterDocumentUpdated(@Observes @Updated Document doc) { ... }

public void afterDocumentEvent(@Observes Document doc) { ... }

10.4. Firing events and registering observers

Beans fire events via an instance of the javax.enterprise.event.Event interface, which may be injected:

@Any Event<LoggedInEvent> loggedInEvent;

The method fire() accepts an event object:

public void login() {
...
loggedInEvent.fire(new LoggedInEvent(user));

}

Any combination of bindings may be specified at the injection point:

@Admin Event<LoggedInEvent> adminLoggedInEvent;

Or, the application may specify bindings dynamically:

@Any Event<LoggedInEvent> loggedInEvent;
...
LoggedInEvent event = new LoggedInEvent(user);
if (user.isAdmin()) {

loggedInEvent.select(new AdminBinding()).fire(event);
}
else {

loggedInEvent.fire(event);
}

In this example, the event sometimes has the binding @Admin, depending upon the value of user.isAdmin().

The addObserver() method registers an observer:

loggedInEvent.addObserver(
new Observer<LoggedInEvent>() { public void notify(LoggedInEvent user) { ... } });

10.4.1. The Event interface

The Event interface provides a method for firing events with a specified combination of type and bindings, and a method
for registering observers for events with that combination of type and bindings:

public interface Event<T> {

public void fire(T event);
public void addObserver(Observer<T> observer);
public void removeObserver(Observer<T> observer);

public Event<T> select(Annotation... bindings);
public <U extends T> Event<U> select(Class<U> subtype, Annotation... bindings);
public <U extends T> Event<U> select(TypeLiteral<U> subtype, Annotation... bindings);

Events

JSR-299 Expert group draft 74

}

For an injected Event:

• the specified type is the type parameter specified at the injection point, and

• the specified bindings are the bindings specified at the injection point.

For example, this injected Event has specified type LoggedInEvent and specified binding @Any:

@Any Event<LoggedInEvent> any;

The select() method returns a child Event for a given specified type and additional specified bindings. If no specified
type is given, the specified type is the same as the parent.

For example, this child Event has required type AdminLoggedInEvent and additional specified binding @Admin:

Event<AdminLoggedInEvent> admin = any.select(
AdminLoggedInEvent.class,
new AdminBinding());

If the specified type contains a type variable, an IllegalArgumentException is thrown.

If two instances of the same binding type are passed to select(), an IllegalArgumentException is thrown.

If an instance of an annotation that is not a binding type is passed to select(), an IllegalArgumentException is thrown.

The method fire() fires an event with the specified bindings and notifies observers, as defined by Section 10.6,
“Observer notification”.

If the runtime type of the event object contains a type variable, an IllegalArgumentException is thrown.

The method addObserver() registers the given observer for events of the specified type and bindings.

The method removeObserver() deregisters the given observer.

10.4.2. The built-in Event

The container must provide a built-in bean with:

• Event<X> in its set of bean types, for every Java type X that does not contain a type variable,

• every event binding type in its set of binding types,

• deployment type @Standard,

• scope @Dependent,

• no bean EL name, and

• an implementation provided automatically by the container.

The built-in implementation must be a passivation capable dependency, as defined in Section 6.6.2, “Passivation capable
dependencies”.

10.5. Observer methods

An observer method is an observer defined via annotations, instead of by explicitly implementing the Observer interface.

Unlike regular observers, observer methods are automatically discovered and registered by the container.

An observer method must be a method of a managed bean class or session bean class. An observer method may be either

Events

JSR-299 Expert group draft 75

static or non-static. If the bean is a session bean, the observer method must be either a business method of the EJB or a
static method of the bean class.

There may be arbitrarily many observer methods with the same event parameter type and bindings.

A bean may declare multiple observer methods.

10.5.1. Event parameter of an observer method

Each observer method must have exactly one event parameter, of the same type as the event type it observes. When
searching for observer methods for an event, the container considers the type and bindings of the event parameter.

If the event parameter does not explicitly declare any binding, the observer method observes events with no binding.

The event parameter type may contain a type variable or wildcard.

10.5.2. Declaring an observer method

An observer method may be declared by annotating a parameter @javax.enterprise.event.Observes. That parameter is
the event parameter. The declared type of the parameter is the observed event type.

public void afterLogin(@Observes LoggedInEvent event) { ... }

If a method has more than one parameter annotated @Observes, the container automatically detects the problem and treats
it as a definition error, as defined in Section 12.4, “Problems detected automatically by the container”.

Observed event bindings may be declared by annotating the event parameter:

public void afterLogin(@Observes @Admin LoggedInEvent event) { ... }

If an observer method is annotated @Produces or @Initializer or has a parameter annotated @Disposes, the container
automatically detects the problem and treats it as a definition error, as defined in Section 12.4, “Problems detected auto-
matically by the container”.

If a non-static method of a session bean class has a parameter annotated @Observes, and the method is not a business meth-
od of the EJB, the container automatically detects the problem and treats it as a definition error, as defined in Section 12.4,
“Problems detected automatically by the container”.

10.5.3. Observer method parameters

In addition to the event parameter, observer methods may declare additional parameters, which may declare bindings.
These additional parameters are injection points.

public void afterLogin(@Observes LoggedInEvent event, @Manager User user, @Logger Log log) { ... }

public void afterAdminLogin(@Observes @Admin LoggedInEvent event, @Logger Log log) { ... }

10.5.4. Conditional observer methods

A conditional observer method is an observer method which is notified of an event only if an instance of the bean that
defines the observer method already exists in the current context.

A conditional observer method may be declared by specifying notify=IF_EXISTS.

public void refreshOnDocumentUpdate(@Observes(notify=IF_EXISTS) @Updated Document doc) { ... }

The enumeration javax.enterprise.event.Notify identifies the supported values of notify:

public enum Notify { IF_EXISTS, SYNCHRONOUSLY, ASYNCHRONOUSLY }

Events

JSR-299 Expert group draft 76

10.5.5. Transactional observer methods

Transactional observer methods are observer methods which receive event notifications during the before or after comple-
tion phase of the transaction in which the event was fired. If no transaction is in progress when the event is fired, they are
notified at the same time as other observers.

• A before completion observer method is called during the before completion phase of the transaction.

• An after completion observer method is called during the after completion phase of the transaction.

• An after success observer method is called during the after completion phase of the transaction, only when the transac-
tion completes successfully.

• An after failure observer method is called during the after completion phase of the transaction, only when the transac-
tion fails.

The enumeration javax.enterprise.event.TransactionPhase identifies the kind of transaction observer:

public enum TransactionPhase {
IN_PROGRESS,
BEFORE_COMPLETION,
AFTER_COMPLETION,
AFTER_FAILURE,
AFTER_SUCCESS

}

A transactional observer method may be declared by specifying any value other than IN_PROGRESS for during:

void onDocumentUpdate(@Observes(during=AFTER_SUCCESS) @Updated Document doc) { ... }

10.5.6. Asynchronous observer methods

Asynchronous observer methods are observer methods which receive event notifications asynchronously.

An asynchronous observer method may be declared by specifying notify=ASYNCHRONOUSLY.

void onDocumentUpdate(@Observes(notify=ASYNCHRONOUSLY) @Updated Document doc) { ... }

An asynchronous observer method may also be a transactional observer method. However, it may not be a before comple-
tion observer method or a conditional observer method. If an observer method is declared notify=ASYNCHRONOUSLY and
during=BEFORE_COMPLETION, the container automatically detects the problem and treats it as a definition error, as defined
in Section 12.4, “Problems detected automatically by the container”.

10.6. Observer notification

When an event is fired by the application, the container must:

• determine the observers for that event according to the rules of observer resolution defined by Section 10.3, “Observer
resolution”, then,

• for each observer, call the notify() method of the Observer interface, passing the event object.

The order in which observers are called in not defined, and so portable applications should not rely upon the order in
which observers are called.

Observers may throw exceptions. If an observer throws an exception, the exception aborts processing of the event. No oth-
er observers of that event will be called. The fireEvent() method rethrows the exception.

Any observer called before completion of a transaction may call setRollbackOnly() to force a transaction rollback. An
observer may not directly initiate, commit or rollback JTA transactions.

10.6.1. Observer method notification

Events

JSR-299 Expert group draft 77

For every observer method of an enabled bean, the container is responsible for providing and registering an implementa-
tion of the Observer interface that delegates event notifications to the observer method, by calling the observer method as
defined in Section 5.5.8, “Invocation of observer methods”.

The notify() method of the Observer implementation for an observer method either invokes the observer method imme-
diately, or asynchronously, or registers the observer method for later invocation during the transaction completion phase,
using a JTA Synchronization.

• If the observer method is an asynchronous transactional observer method and there is currently a JTA transaction in
progress, the observer object calls the observer method asynchronously during the after transaction completion phase.

• Otherwise, if the observer method is a transactional observer method and there is currently a JTA transaction in pro-
gress, the observer object calls the observer method during the appropriate transaction completion phase.

• Otherwise, if the observer method is an asynchronous observer method, the container calls the observer method asyn-
chronously.

• Otherwise, the container calls the observer immediately.

The container is not required to guarantee delivery of asynchronous events in the case of a server shutdown or failure.

Observer methods may throw exceptions:

• If the observer is a transactional or asynchronous observer method, any exception is caught and logged by the contain-
er.

• Otherwise, the exception is rethrown by the notify() method of the observer object. If the exception is a checked ex-
ception, it is wrapped and rethrown as an (unchecked) ObserverException.

10.6.2. Observer method invocation context

The transaction context, client security context and lifecycle contexts active when an observer method is invoked depend
upon what kind of observer method it is.

• If the observer method is an asynchronous observer method, it is called with no active transaction, no client security
context and with a new request context that is destroyed when the observer method returns. The application context is
also active.

• Otherwise, if the observer method is a before completion transactional observer method, it is called within the context
of the transaction that is about to complete and with the same client security context and lifecycle contexts.

• Otherwise, if the observer method is any other kind of transactional observer method, it is called in an unspecified
transaction context, but with the same client security context and lifecycle contexts as the transaction that just com-
pleted.

• Otherwise, the observer method is called in the same transaction context, client security context and lifecycle contexts
as the invocation of Event.fire().

Of course, the transaction and security contexts for a business method of a session bean also depend upon the transaction
attribute and @RunAs descriptor, if any.

10.7. JMS event mappings

An event type may be mapped to JMS topic.

An event mapping is a special kind of observer method that is declared by an interface, for example:

interface EventMappings {
void mapLoggedInEvent(@Observes LoggedInEvent event, @Events Topic eventTopic);

}

Where the parameter of type Topic resolves to the following message destination:

Events

JSR-299 Expert group draft 78

@Resource(name="java:global/env/jms/Events")
@ConnectionFactory(@Resource(name="java:global/env/jms/ConnectionFactory"))
@Produces @Events Topic eventTopic;

The event parameter specifies the mapped event type and bindings. Every message destination representing a topic that
any injected parameter resolves to is a mapped topic.

An event mapping may be specified as a member of any interface.

All observers of mapped event types must be asynchronous observer methods. If an observer for a mapped event type is
not an asynchronous observer method, the container automatically detects the problem and treats it as a deployment prob-
lem, as defined in Section 12.4, “Problems detected automatically by the container”.

For every event mapping, the container must:

• send a message containing the serialized event and its event bindings to every mapped topic whenever an event with
the mapped event type and bindings is fired, and

• monitor every mapped topic for messages containing events of that mapped event type and bindings and notify all loc-
al observers whenever a message containing an event is received.

Thus, events with the mapped event type and bindings are distributed to other processes which have the same event map-
ping.

Events

JSR-299 Expert group draft 79

Chapter 11. Portable extensions

A portable extension may integrate with the container by:

• Providing its own beans, interceptors and decorators to the container

• Injecting dependencies into its own objects using the dependency injection service

• Providing a context implementation for a custom scope

• Augmenting or overriding the annotation-based metadata with metadata from some other source

Bean definitions provided by a portable extension may be associated with a certain activity.

Integration with portable extensions is enabled via the important SPI interfaces Bean and BeanManager.

11.1. The Bean interface

The interface javax.enterprise.inject.spi.Bean defines everything the container needs to manage instances of a cer-
tain bean.

public interface Bean<T>
extends Contextual<T> {

public Set<Type> getTypes();
public Set<Annotation> getBindings();
public Class<? extends Annotation> getScopeType();
public Class<? extends Annotation> getDeploymentType();
public String getName();
public Class<?> getBeanClass();
public boolean isNullable();
public Set<InjectionPoint> getInjectionPoints();

}

Note that implementations of Bean must also implement the inherited operations defined by the Contextual interface
defined in Section 6.1, “The Contextual interface”.

• getTypes(), getBindings(), getScopeType(), getDeploymentType() and getName() must return the bean types,
bindings, scope type, deployment type, and EL name of the bean, as defined in Chapter 2, Concepts.

• getBeanClass() returns the bean class of the managed bean or session bean or of the bean that declares the producer
method or field.

• getInjectionPoints() returns a set of InjectionPoint objects, defined in Section 5.5.9, “Injection point metadata”,
representing injection points of the bean, that will be validated by the container at initialization time.

• isNullable() must return true if the method create() sometimes returns a null value, and false otherwise, as
defined in Section 5.2.4, “Primitive types and null values”.

An instance of Bean exists for every enabled bean in a deployment.

An application or portable extension may add support for new kinds of beans beyond those defined by the this specifica-
tion (managed beans, session beans, producer methods and fields, resources and message destinations) by implementing
Bean and registering beans with the container, using the mechanism defined in Section 11.2.8, “Registering a Bean”.

11.1.1. The Decorator interface

The Bean object for a decorator must implement the interface javax.enterprise.inject.spi.Decorator.

public interface Decorator<T> extends Bean<T> {
public Set<Type> getDecoratedTypes();
public Type getDelegateType();
public Set<Annotation> getDelegateBindings();

}

JSR-299 Expert group draft 80

• getDecoratedTypes() returns the decorated types of the decorator.

• getDelegateType() and getDelegateBindings() return the delegate type and bindings of the decorator.

11.1.2. The Interceptor interface

The Bean object for an interceptor must implement javax.enterprise.inject.spi.Interceptor.

public interface Interceptor<T> extends Bean<T> {
public Set<Annotation> getInterceptorBindings();
public boolean intercepts(InterceptionType type);
public Object intercept(InterceptionType type, T instance, InvocationContext ctx);

}

• getInterceptorBindings() returns the interceptor bindings of the interceptor.

• intercepts() returns true if the interceptor intercepts callbacks or business methods of the given type, and false oth-
erwise.

• intercept() invokes the specified kind of lifecycle callback or business method upon the given instance.

An InterceptionType identifies the kind of lifecycle callback or business method.

public enum InterceptionType {
AROUND_INVOKE, POST_CONSTRUCT, PRE_DESTROY, PRE_PASSIVATE, POST_ACTIVATE

}

11.2. The BeanManager object

Portable extensions sometimes interact directly with the container via programmatic API call. The interface
javax.enterprise.inject.spi.BeanManager provides operations for obtaining contextual references for beans, along
with many other operations of use to portable extensions.

The container provides a built-in bean with bean type BeanManager, scope @Dependent, deployment type @Standard and
binding @Current. The built-in implementation must be a passivation capable dependency, as defined in Section 6.6.2,
“Passivation capable dependencies”.

Thus, any bean may obtain an instance of BeanManager by injecting it:

@Current BeanManager manager;

Any operation of BeanManager may be called at any time during the execution of the application.

11.2.1. Obtaining a contextual reference for a bean

The method BeanManager.getReference() returns a contextual reference for a given bean and bean type, as defined in
Section 6.5.3, “Contextual reference for a bean”.

public Object getReference(Bean<?> bean, Type beanType);

The first parameter is the Bean object representing the bean. The second parameter represents a bean type that must be im-
plemented by any client proxy that is returned.

If the given type is not a bean type of the given bean, an IllegalArgumentException is thrown.

11.2.2. Obtaining an injectable reference

The method BeanManager.getInjectableReference() returns an injectable reference for a given injection point, as
defined in Section 5.5.1, “Injectable references”.

If the InjectionPoint represents a decorator delegate injection point, getInjectableReference() returns a delegate, as
defined in Section 8.1.2, “Decorator delegate injection points”.

Portable extensions

JSR-299 Expert group draft 81

public Object getInjectableReference(InjectionPoint ij, CreationalContext<?> ctx);

If typesafe resolution results in an unsatisfied dependency, the container must throw an UnsatisfiedResolutionExcep-

tion. If typesafe resolution results in an unresolvable ambiguous dependency, the container must throw an AmbiguousRes-

olutionException.

Implementations of Bean usually maintain a reference to an instance of BeanManager. When the Bean implementation per-
forms dependency injection, it must obtain the contextual instances to inject by calling BeanMan-

ager.getInjectableReference(), passing an instance of InjectionPoint that represents the injection point and the in-
stance of CreationalContext that was passed to Bean.create().

11.2.3. Obtaining a Bean by type

The method BeanManager.getBeans() returns the set of beans which match the given required type and bindings and are
accessible to the class into which the BeanManager was injected, according to the rules of typesafe resolution, as defined in
Section 5.2, “Typesafe resolution”.

public Set<Bean<?>> getBeans(Type beanType, Annotation... bindings);

The first parameter is a required bean type. The remaining parameters are required bindings.

If no bindings are passed to getBeans(), the default binding @Current is assumed.

If the given type represents a type variable, an IllegalArgumentException is thrown.

If two instances of the same binding type are given, an IllegalArgumentException is thrown.

If an instance of an annotation that is not a binding type is given, an IllegalArgumentException is thrown.

11.2.4. Obtaining a Bean by name

The method BeanManager.getBeans() which accepts a string returns the set of beans which match the given EL name and
are accessible to the class into which the BeanManager was injected, according to the rules of EL name resolution, as
defined in Section 5.3, “EL name resolution”.

public Set<Bean<?>> getBeans(String name);

The parameter is an EL name.

11.2.5. Obtaining the most specialized bean

The method BeanManager.getMostSpecializedBean() returns the Bean object representing the most specialized enabled
bean registered with the container that specializes the given bean, as defined in Section 4.3.2, “Most specialized enabled
bean for a bean”.

public <X> Bean<? extends X> getMostSpecializedBean(Bean<X> bean);

11.2.6. Obtaining a passivation capable bean by identifier

The method BeanManager.getPassivationCapableBean() returns the PassivationCapableBean with the given identifier.

public Bean<?> getPassivationCapableBean(String id);

11.2.7. Resolving an ambiguous dependency

The method BeanManager.getHighestPrecedenceBean() returns the Bean with the highest precedence deployment type in
a set of beans.

public <X> Bean<? extends X> getHighestPrecedenceBean(Set<Bean<? extends X>> beans);

Portable extensions

JSR-299 Expert group draft 82

If there is no unique bean which has a higher precedence deployment type than all other beans in the set, the container
must throw an AmbiguousResolutionException.

11.2.8. Registering a Bean

The method BeanManager.addBean() fires a ProcessBean event and then registers a new bean with the container, thereby
making it available for injection into other beans.

public void addBean(Bean<?> bean);

The Bean parameter may represent an interceptor or decorator.

The container must fire a ProcessBean event containing the given Bean and then register the resulting Bean after all ob-
servers of this event have been notified. If the Bean object implements ManagedBean, the event should be of type Process-

ManagedBean. If the Bean object implements ProducerBean, the event should be of type ProcessProducerBean.

11.2.9. Registering an Observer

The method BeanManager.addObserver() registers a new observer with the container. The container must begin sending
event notifications to the registered observer.

public void addObserver(Observer<?> observer, Annotation... bindings);

The first parameter is the observer object. The observed event type is the actual type parameter of Observer declared by
the class of the observer object. The remaining parameters are observed event bindings. The observer is notified when an
event object that is assignable to the observed event type is raised with the observed event bindings.

If the runtime type of the observer object contains a type variable, an IllegalArgumentException is thrown.

If two instances of the same binding type are given, an IllegalArgumentException is thrown.

If an instance of an annotation that is not a binding type is given, an IllegalArgumentException is thrown.

An alternative form fires a ProcessObserverMethod event and then registers an ObserverMethod with the container:

public void addObserver(ObserverMethod<?, ?> observerMethod);

The container must fire a ProcessObserverMethod event containing the ObserverMethod and then register the resulting
ObserverMethod after all observers of this event have been notified.

The method BeanManager.removeObserver() deregisters an observer. The container must stop sending event notifications
to the deregistered observer.

public interface BeanManager {

public void removeObserver(Observer<?> observer);

...
}

If two instances of the same binding type are passed to addObserver() or removeObserver(), an IllegalArgumentExcep-

tion is thrown.

If an instance of an annotation that is not a binding type is passed to addObserver() or removeObserver(), an IllegalAr-

gumentException is thrown.

11.2.10. Firing an event

The method BeanManager.fireEvent() fires an event and notifies observers, according to Section 10.6, “Observer notific-
ation”.

public void fireEvent(Object event, Annotation... bindings);

Portable extensions

JSR-299 Expert group draft 83

The first argument is the event object. The remaining parameters are event bindings.

If the runtime type of the event object contains a type variable, an IllegalArgumentException is thrown.

If two instances of the same binding type are given, an IllegalArgumentException is thrown.

If an instance of an annotation that is not a binding type is given, an IllegalArgumentException is thrown.

11.2.11. Observer resolution

The method BeanManager.resolveObservers() resolves observers for an event according to the rules of observer resolu-
tion defined in Section 10.3, “Observer resolution”.

public <T> Set<Observer<T>> resolveObservers(T event, Annotation... bindings);

The first parameter of resolveObservers() is the event object. The remaining parameters are event bindings.

If the runtime type of the event object contains a type variable, an IllegalArgumentException is thrown.

If two instances of the same binding type are given, an IllegalArgumentException is thrown.

If an instance of an annotation that is not a binding type is given, an IllegalArgumentException is thrown.

11.2.12. Decorator resolution

The method BeanManager.resolveDecorators() returns the ordered list of enabled decorators for a set of bean types and
a set of bindings, as defined in Section 8.3, “Decorator resolution”.

List<Decorator<?>> resolveDecorators(Set<Type> types, Annotation... bindings);

The first argument is the set of bean types of the decorated bean. The annotations are bindings declared by the decorated
bean.

If two instances of the same binding type are given, an IllegalArgumentException is thrown.

If an instance of an annotation that is not a binding type is given, an IllegalArgumentException is thrown.

If the set of bean types is empty, an IllegalArgumentException is thrown.

11.2.13. Interceptor resolution

The method BeanManager.resolveInterceptors() returns the ordered list of enabled interceptors for a set of interceptor
bindings, as defined in Section 9.5, “Interceptor resolution”.

List<Interceptor<?>> resolveInterceptors(InterceptionType type,
Annotation... interceptorBindings);

If two instances of the same interceptor binding type are given, an IllegalArgumentException is thrown.

If no interceptor binding type instance is given, an IllegalArgumentException is thrown.

If an instance of an annotation that is not an interceptor binding type is given, an IllegalArgumentException is thrown.

11.2.14. Validating a dependency

The BeanManager.validate() operation validates a dependency:

public void validate(InjectionPoint injectionPoint);

The method validate() validates the dependency and throws an InjectionException if there is a deployment problem
(for example, an unsatisfied or unresolvable ambiguous dependency) associated with the injection point.

Portable extensions

JSR-299 Expert group draft 84

11.2.15. Determining if an annotation is a binding type, scope type, stereotype or interceptor
binding type

A portable extension may test an annotation to determine if it is a binding type, scope type, stereotype or interceptor bind-
ing type, obtain the set of meta-annotations declared by a stereotype or interceptor binding type, or obtain a ScopeType

representing a scope type.

public boolean isScopeType(Class<? extends Annotation> annotationType);
public boolean isBindingType(Class<? extends Annotation> annotationType);
public boolean isInterceptorBindingType(Class<? extends Annotation> annotationType);
public boolean isStereotype(Class<? extends Annotation> annotationType);

public ScopeType getScopeDefinition(Class<? extends Annotation> scopeType)
public Set<Annotation> getInterceptorBindingTypeDefinition(Class<? extends Annotation> bindingType);
public Set<Annotation> getStereotypeDefinition(Class<? extends Annotation> stereotype);

11.2.16. Discovering the enabled deployment types

The method BeanManager.getEnabledDeploymentTypes() exposes the list of enabled deployment types, in order of lower
to higher precedence, as defined by Section 2.5.5, “Enabled deployment types”.

public List<Class<? extends Annotation>> getEnabledDeploymentTypes();

Portable extensions may use this method to inspect meta-annotations that appear on the deployment types and thereby dis-
cover information about the deployment.

11.2.17. Registering a Context

A custom implementation of Context may be associated with a scope type by calling BeanManager.addContext().

public void addContext(Context context);

11.2.18. Obtaining the active Context for a scope

The method BeanManager.getContext() retrieves an active context object associated with the a given scope, as defined in
Section 6.5.1, “The active context object for a scope”.

public Context getContext(Class<? extends Annotation> scopeType);

11.2.19. Obtaining the ELResolver

The method BeanManager.getELResolver() returns the javax.el.ELResolver specified in Section 5.7, “Integration with
Unified EL”.

public ELResolver getELResolver();

11.3. Alternative metadata sources

A portable extension may provide an alternative metadata source, such as configuration by XML.

The interfaces AnnotatedType, AnnotatedField, AnnotatedMethod, AnnotatedConstructor and AnnotatedParameter in
the package javax.enterprise.inject.spi allow a portable extension to specify metadata that overrides the annotations
that exist on a bean class. The portable extension is responsible for implementing the interfaces, thereby exposing the
metadata to the container.

public interface AnnotatedType<X>
extends Annotated {

public Class<X> getJavaClass();
public Set<AnnotatedConstructor<X>> getConstructors();
public Set<AnnotatedMethod<? super X>> getMethods();
public Set<AnnotatedField<? super X>> getFields();

}

Portable extensions

JSR-299 Expert group draft 85

public interface AnnotatedField<X>
extends AnnotatedMember<X> {

public Field getJavaMember();
}

public interface AnnotatedMethod<X>
extends AnnotatedCallable<X> {

public Method getJavaMember();
}

public interface AnnotatedConstructor<X>
extends AnnotatedCallable<X> {

public Constructor<X> getJavaMember();
}

public interface AnnotatedParameter<X>
extends Annotated {

public int getPosition();
public AnnotatedCallable<X> getDeclaringCallable();

}

public interface AnnotatedMember<X>
extends Annotated {

public Member getJavaMember();
public boolean isStatic();
public AnnotatedType<X> getDeclaringType();

}

public interface AnnotatedCallable<X>
extends AnnotatedMember<X> {

public List<AnnotatedParameter<X>> getParameters();
}

The interface Annotated exposes the overriding annotations and type declarations.

public interface Annotated {
public Type getType();
public <T extends Annotation> T getAnnotation(Class<T> annotationType);
public Set<Annotation> getAnnotations();
public boolean isAnnotationPresent(Class<? extends Annotation> annotationType);

}

11.4. Helper objects for Bean implementations

Portable extensions sometimes provide custom implementations of Bean or inject dependencies directly into objects which
are not contextual bean instances. To simplify the implementation of portable extensions, the BeanManager provides access
to helper objects which parse and validate the standard metadata defined by this specification and perform injection upon
an object according to the standard injection lifecycle defined in Section 5.5.3, “Injection using the bean constructor”.

public interface BeanManager {

public <T> InjectionTarget<T> createInjectionTarget(Class<T> type);
public <T> InjectionTarget<T> createInjectionTarget(AnnotatedType<T> type);

public <T> ManagedBean<T> createManagedBean(Class<T> type);
public <T> ManagedBean<T> createManagedBean(AnnotatedType<T> type);

...
}

• createInjectionTarget() returns a container provided instance of InjectionTarget for the given type or throws an
IllegalArgumentException if there is a definition error associated with any injection point of the type.

• createManagedBean() returns an instance of ManagedBean representing the given managed bean type, or throws an Il-

legalArgumentException if there is any kind of definition error associated with the type.

When an AnnotatedType is passed to createInjectionTarget() or createManagedBean() the container ignores the an-
notations and types declared by the elements of the actual Java class and uses the metadata provided via the Annotated in-
terface instead.

Portable extensions

JSR-299 Expert group draft 86

11.4.1. InjectionTarget, Producer and Listener

The interface javax.enterprise.inject.spi.Producer provides a generic operation for producing an instance of a type.

public interface Producer<T> {
public T produce(CreationalContext<T> ctx);
public Set<InjectionPoint> getInjectionPoints();

}

For any container provided implementation of Producer that represents a class:

• produce() calls the constructor annotated @Initializer if it exists, or the constructor with no parameters otherwise,
as defined in Section 5.5.3, “Injection using the bean constructor”.

• getInjectionPoints() returns the set of InjectionPoint objects representing all injected fields, bean constructor
parameters and initializer method parameters.

For any container provided implementation of Producer that represents a producer method or field:

• produce() calls the producer method on, or accesses the producer field of, a contextual instance of the most special-
ized bean that specializes the bean that declares the producer method, as defined in Section 5.5.6, “Invocation of pro-
ducer or disposer methods”.

• getInjectionPoints() returns the set of InjectionPoint objects representing all parameters of the producer method.

The subinterface javax.enterprise.inject.spi.InjectionTarget provides operations for performing dependency in-
jection and lifecycle callbacks on an instance of a type.

public interface InjectionTarget<T>
extends Producer<T> {

public void inject(T instance, CreationalContext<T> ctx);
public void postConstruct(T instance);
public void preDestroy(T instance);

}

For any container provided implementation of InjectionTarget:

• inject() performs dependency injection upon the given object. First, the container performs Java EE component en-
vironment injection according to the semantics required by the Java EE platform specification. Next, it sets the value
all injected fields, and then calls all the initializer methods, as defined in Section 5.5.4, “Injection of fields and initial-
izer methods”.

• postConstruct() calls the @PostConstruct callback, if it exists, according to the semantics required by the Java EE
platform specification.

• preDestroy() calls the @PreDestroy callback, if it exists, according to the semantics required by the Java EE platform
specification.

The interface javax.enterprise.inject.spi.Listener provides a generic operation for notifying an instance of a type.

public interface Listener<T> {
public void notify(T instance);
public Set<InjectionPoint> getInjectionPoints();

}

For any container provided implementation of Listener that represents a disposer method:

• notify() calls the disposer method on a contextual instance of the most specialized bean that specializes the bean that
declares the disposer method, as defined in Section 5.5.6, “Invocation of producer or disposer methods”.

• getInjectionPoints() returns the set of InjectionPoint objects representing all parameters of the disposer method.

For any container provided implementation of Listener that represents an observer method:

• notify() calls the observer method on a contextual instance of the most specialized bean that specializes the bean that

Portable extensions

JSR-299 Expert group draft 87

declares the observer method, as defined in Section 5.5.8, “Invocation of observer methods”.

• getInjectionPoints() returns the set of InjectionPoint objects representing all parameters of the disposer method.

11.4.2. ManagedBean and SessionBean

The interface javax.enterprise.inject.spi.BeanClass defines common operations for managed and session beans.

public interface BeanClass<X> {
public Set<ProducerBean<X, ?>> getProducerBeans();
public Set<ObserverMethod<X, ?>> getObserverMethods();
public InjectionTarget<X> getInjectionTarget();
public void setInjectionTarget(InjectionTarget<X> injectionTarget);
public Class<X> getBeanClass();
public AnnotatedType<X> getAnnotatedType();

}

• getProducerBeans() returns a set of ProducerBean objects representing the producer methods and fields of the bean,
including resources and message destinations.

• getObserverMethods() returns a set of ObserverMethod objects representing the observer methods of the bean.

• getInjectionTarget() initially returns a container provided implementation of InjectionTarget for the bean class.

• setInjectionTarget() allows a portable extension to replace the InjectionTarget used by this bean.

• getBeanClass() returns the bean class.

• getAnnotatedType() returns the AnnotatedType representing the bean class.

The interface javax.enterprise.inject.spi.ManagedBean represents a managed bean.

public interface ManagedBean<X>
extends Bean<X>, BeanClass<X> {}

The interface javax.enterprise.inject.spi.SessionBean represents a session bean.

public interface SessionBean<X>
extends Bean<Object>, BeanClass<X> {

public String getEjbName();
public SessionBeanType getSessionBeanType();

}

• getEjbName() returns the EJB name of the session bean.

• getSessionBeanType() returns a javax.enterprise.inject.spi.SessionBeanType representing the kind of session
bean.

public enum SessionBeanType { STATELESS, STATEFUL, SINGLETON }

11.4.3. The ProducerBean interface

The ProducerBean interface represents a producer method or field.

public interface ProducerBean<X, T>
extends Bean<T> {

public Bean<X> getParentBean();
public Producer<T> getProducer();
public Listener<T> getDisposer();
public void setProducer(Producer<T> producer);
public void setDisposer(Listener<T> disposer);
public Class<X> getBeanClass();
public AnnotatedMember<? super X> getProducerMember();
public AnnotatedParameter<? super X> getDisposedParameter();

}

• getParentBean() returns a container provided implementation of Bean for the bean class that has the producer method

Portable extensions

JSR-299 Expert group draft 88

or field.

• getProducer() initially returns a container-provided implementation of Producer representing the producer method or
field.

• getDisposer() initially returns a container-provided implementation of Listener representing the disposer method, if
any, or a null value.

• setProducer() replaces the Producer used by this bean.

• setDisposer() replaces the Disposer used by this bean.

• getBeanClass() returns the bean class of the bean that has the producer method or field.

• getProducerMember() returns the AnnotatedMethod or AnnotatedField representing the producer method or field.

• getDisposedParameter() returns the AnnotatedParameter representing the disposed parameter of the disposer meth-
od, if any, or a null value.

11.4.4. The ObserverMethod interface

The interface javax.enterprise.inject.spi.ObserverMethod represents an observer method.

public interface ObserverMethod<X, T>
extends Observer<T> {

public Bean<X> getParentBean();
public Type getObservedEventType();
public Set<Annotation> getObservedEventBindings();
public Listener<T> getListener();
public void setListener(Listener<T> listener);
public AnnotatedParameter<? super X> getEventParameter();

}

• notify(), inherited from Observer, performs event notification, as defined in Section 10.6.1, “Observer method noti-
fication”.

• getParentBean() returns a container provided implementation of Bean for the bean that has the observer method.

• getObservedEventType() and getObservedEventBindings() return the observed event type and bindings of the ob-
server method.

• getListener() initially returns a container-provided implementation of Listener representing the observer method.

• setListener() replaces the Listener used to invoke the observer method.

11.5. Container lifecycle events

During the application initialization process, the container fires a series of events, allowing portable extensions to integrate
with the container initialization process defined in Section 12.2, “Application initialization lifecycle”.

Observers of these events must be service providers of the service javax.enterprise.inject.spi.Extension declared in
META-INF/services.

public interface Extension {}

The container instantiates a single instance of each service provider at the beginning of the application initialization pro-
cess and maintains a reference to it until the application shuts down.

For each service provider, the container must provide a bean of scope @ApplicationScoped, deployment type @Standard,
binding @Current, supporting injection of a reference to the service provider instance. The bean types of this bean include
the class of the service provider and all superclases and interfaces.

11.5.1. BeforeBeanDiscovery event

Portable extensions

JSR-299 Expert group draft 89

The container must fire an event before it begins the bean discovery process. The event object must be of type
javax.enterprise.inject.spi.BeforeBeanDiscovery:

public interface BeforeBeanDiscovery {
public void addBindingType(Class<? extends Annotation> bindingType);
public void addScopeType(Class<? extends Annotation> scopeType, boolean normal, boolean passivating);
public void addStereotype(Class<? extends Annotation> stereotype, Annotation... stereotypeDef);
public void addInterceptorBindingType(Class<? extends Annotation> bindingType, Annotation... bindingTypeDef);

}

The operations of the BeforeBeanDiscovery instance allow a portable extension to declare that any annotation as a bind-
ing type, scope type, stereotype or interceptor binding type.

void beforeBeanDiscovery(@Observes BeforeBeanDiscovery event) { ... }

If any observer method of the BeforeBeanDiscovery event throws an exception, the exception is treated as a definition er-
ror by the container.

11.5.2. AfterBeanDiscovery event

The container must fire a second event when it has fully completed the bean discovery process, validated that there are no
definition errors relating to the discovered beans, and registered Bean and Observer objects for the discovered beans, but
before detecting deployment problems.

The event object must be of type javax.enterprise.inject.spi.AfterBeanDiscovery:

public interface AfterBeanDiscovery {
public void addDefinitionError(Throwable t);

}

• addDefinitionError() registers a definition error with the container, causing the container to abort deployment after
all observers have been notified.

void afterBeanDiscovery(@Observes AfterBeanDiscovery event, BeanManager manager) { ... }

A portable extension might take advantage of this event to register beans and interceptors with the container.

If any observer method of the AfterBeanDiscovery event throws an exception, the exception is treated as a definition er-
ror by the container.

11.5.3. AfterDeploymentValidation event

The container must fire a third event after it has validated that there are no deployment problems and before creating con-
texts or processing requests.

The event object must be of type javax.enterprise.inject.spi.AfterDeploymentValidation:

public interface AfterDeploymentValidation {
public void addDeploymentProblem(Throwable t);

}

• addDeploymentProblem() registers a deployment problem with the container, causing the container to abort deploy-
ment after all observers have been notified.

void afterDeploymentValidation(@Observes AfterDeploymentValidation event, BeanManager manager) { ... }

If any observer method of the AfterDeploymentValidation event throws an exception, the exception is treated as a de-
ployment problem by the container.

The container must not allow any request to be processed by the deployment until all observers of this event return.

11.5.4. BeforeShutdown event

Portable extensions

JSR-299 Expert group draft 90

The container must fire a final event after it has finished processing requests and destroyed all contexts.

The event object must be of type javax.enterprise.inject.spi.BeforeShutdown:

public interface BeforeShutdown {}

void beforeShutdown(@Observes BeforeShutdown event, BeanManager manager) { ... }

If any observer method of the BeforeShutdown event throws an exception, the exception is ignored by the container.

11.5.5. ProcessAnnotatedType event

The container must fire an event for each Java class it discovers, before it reads the declared annotations.

The event object must be of type javax.enterprise.inject.spi.ProcessAnnotatedType<X>, where X is the class.

public interface ProcessAnnotatedType<X> {
public AnnotatedType<X> getAnnotatedType();
public void setAnnotatedType(AnnotatedType<X> type);

}

• getAnnotatedType() returns the AnnotatedType object that will be used by the container to read the declared annota-
tions.

• setAnnotatedType() replaces the AnnotatedType.

Any observer of this event is permitted to wrap and/or replace the AnnotatedType. The container must use the final value
of this property, after all observers have been called, to read the annotations of this class.

For example, the following observer decorates the AnnotatedType for every class that is discovered by the container.

<T> void decorateAnnotatedType(@Observes ProcessAnnotatedType<T> pat) {
pat.setAnnotatedType(decorate(pat.getAnnotatedType()));

}

If any observer method of a ProcessAnnotatedType event throws an exception, the exception is treated as a definition er-
ror by the container.

11.5.6. ProcessInjectionTarget event

The container must fire an event for each managed bean, session bean, Java EE component class supporting injection.

The event object must be of type javax.enterprise.inject.spi.ProcessInjectionTarget<X>, where X is the managed
bean class, session bean class or Java EE component class supporting injection.

public interface ProcessInjectionTarget<X> {
public AnnotatedType<X> getAnnotatedType();
public InjectionTarget<X> getInjectionTarget();
public void setInjectionTarget(InjectionTarget<X> injectionTarget);
public void addDefinitionError(Throwable t);

}

• getAnnotatedType() returns the AnnotatedType representing the managed bean class, session bean class or other Java
EE component class supporting injection.

• getInjectionTarget() returns the InjectionTarget object that will be used by the container to perform injection.

• setInjectionTarget()replaces the InjectionTarget.

• addDefinitionError() registers a definition error with the container, causing the container to abort deployment after
bean discovery is complete.

Any observer of this event is permitted to wrap and/or replace the InjectionTarget. The container must use the final
value of this property, after all observers have been called, whenever it performs injection upon the managed bean, session

Portable extensions

JSR-299 Expert group draft 91

bean or other Java EE component class supporting injection.

For example, this observer decorates the InjectionTarget for the all servlets.

<T extends Servlet> void decorateServlet(@Observes ProcessInjectionTarget<T> pit) {
pit.setInjectionTarget(decorate(pit.getInjectionTarget()));

}

If any observer method of a ProcessInjectionTarget event throws an exception, the exception is treated as a definition
error by the container.

11.5.7. ProcessBean event

The container must fire an event for each bean it discovers, before registering the Bean object.

The event object must be of type javax.enterprise.inject.spi.ProcessBean.

• For a managed bean with bean class X, the container must raise an event of type ProcessManagedBean<X>.

• For a session bean with bean class X, the container must raise an event of type ProcessSessionBean<X>.

• For a producer method or field of a bean class X with method return type or field type T, the container must raise an
event of type ProcessProducerBean<X, T>.

Resources and message destinations are considered to be producer fields.

public interface ProcessBean<X> {
public Bean<X> getBean();
public void setBean(Bean<X> bean);
public void veto();
public void addDefinitionError(Throwable t);

}

• getBean() returns the Bean object that is about to be registered.

• setBean() replaces the Bean object.

• veto() vetoes registration of the Bean.

• addDefinitionError() registers a definition error with the container, causing the container to abort deployment after
bean discovery is complete.

public interface ProcessManagedBean<X>
extends ProcessBean<X> {

public ManagedBean<X> getManagedBean();
}

• getManagedBean() returns the ManagedBean representing the managed bean class.

public interface ProcessSessionBean<X>
extends ProcessBean<X> {

public SessionBean<X> getSessionBean();
}

• getSessionBean() returns the SessionBean representing the session bean class.

public interface ProcessProducerBean<X, T>
extends ProcessBean<T> {

public ProducerBean<X, T> getProducerBean();
}

• getProducerBean() returns the ProducerBean representing the producer method or field.

Any observer of this event is permitted to wrap and/or replace the Bean. When all observers have been called, the container
registers the final value of this property, unless an observer called veto() or addDefinitionError(). The container must
not register any Bean object if any observer called veto() or addDefinitionError().

Portable extensions

JSR-299 Expert group draft 92

For example, the following observer decorates all session beans as they are discovered by the container.

<T> void decorateBean(@Observes ProcessSessionBean<T> pb) {
pb.setBean(decorate(pb.getBean()));

}

This observer decorates the bean with bean class PaymentProcessor.

void decoratePaymentProcessor(@Observes ProcessBean<PaymentProcessor> pb) {
pb.setBean(decorate(pb.getBean()));

}

If any observer method of a ProcessBean event throws an exception, the exception is treated as a definition error by the
container.

11.5.8. ProcessObserverMethod event

The container must fire an event for each observer method it discovers, before registering the Observer object.

The event object must be of type javax.enterprise.inject.spi.ProcessObserverMethod<X, T> where X is the bean
class of the bean that has the observer method and T is the observed event type.

public interface ProcessObserverMethod<X, T> {
public ObserverMethod<X, T> getObserverMethod();
public void setObserverMethod(ObserverMethod<X, T> observerMethod);
public void veto();
public void addDefinitionError(Throwable t);

}

• getObserverMethod()returns the ObserverMethod object that is about to be registered.

• setObserverMethod()replaces the ObserverMethod.

• veto() vetoes registration of the Bean.

• addDefinitionError() registers a definition error with the container, causing the container to abort deployment after
bean discovery is complete.

Any observer of this event is permitted to wrap and/or replace the ObserverMethod. When all observers have been called,
the container registers the final value of this property, unless an observer called veto() or addDefinitionError(). The
container must not register any ObserverMethod object if any observer called veto() or addDefinitionError().

If any observer method of a ProcessObserverMethod event throws an exception, the exception is treated as a definition er-
ror by the container.

11.6. Activities

Bean definitions may be scoped to an activity. This specification only provides a programmatic API for defining activities,
since this feature is intended for use with third-party orchestration frameworks that integrate with the container.

The method createActivity() creates a new child activity of an activity and returns a BeanManager for the activity:

public interface BeanManager {

public BeanManager createActivity();

...
}

A child activity inherits all beans, interceptors, decorators, observers, and contexts defined by its direct and indirect parent
activities:

• every bean belonging to a parent activity also belongs to the child activity, is eligible for injection into other beans be-
longing to the child activity and may be obtained by dynamic lookup via the child activity,

Portable extensions

JSR-299 Expert group draft 93

• every interceptor and decorator belonging to a parent activity also belongs to the child activity and may be applied to
any bean belonging to the child activity,

• every observer belonging to a parent activity also belongs to the child activity and receives events fired via the child
activity, and

• every context object belonging to the parent activity also belongs to the child activity.

Beans and observers may be registered with an activity by calling addBean() or addObserver() on the BeanManager ob-
ject that represents the activity.

Beans and observers registered with an activity are visible only to that activity and its children—they are never visible to
direct or indirect parent activities, or to other children of the parent activity:

• a bean registered with the child activity is not available for injection into any bean registered with a parent activity,

• a bean registered with a child activity is not available for injection into non-contextual objects,

• a bean registered with a child activity may not be obtained by dynamic lookup via the parent activity, and

• an observer registered with the child activity does not receive events fired via a parent activity.

If a bean registered with a child activity has the bean type and all bindings of some injection point of some bean registered
with a direct or indirect parent activity, the container automatically detects the problem and treats it as a deployment prob-
lem, as defined in Section 12.4, “Problems detected automatically by the container”.

The container is not required to support registration of an interceptor or decorator with a child activity. Portable extensions
and applications should not depend upon the ability to register an interceptor or decorator with a child activity.

11.6.1. Current activity

An activity may be associated with the current context for a normal scope by calling setCurrent(), passing the normal
scope type:

public interface BeanManager {

public BeanManager setCurrent(Class<? extends Annotation> scopeType);

...
}

If the given scope is inactive when setCurrent() is called, a ContextNotActiveException is thrown. If the given scope
type is not a normal scope, an IllegalArgumentException is thrown.

All EL evaluations (as defined Section 5.7, “Integration with Unified EL”), all calls to any injected BeanManager object or
BeanManager object obtained via JNDI lookup (as defined by Section 11.2, “The BeanManager object”), all calls to any in-
jected Event object (as defined in Section 10.4.1, “The Event interface”) and all calls to any injected Instance object (as
defined by Section 5.6.1, “The Instance interface”) are processed by the current activity:

• If the root activity has no active normal scope such that the current context for that scope has an associated activity, the
root activity is the current activity.

• If the root activity has exactly one active normal scope such that the current context for that scope has an associated
activity, that activity is the current activity.

• Otherwise, there is no well-defined current activity, and the behavior is undefined. Portable extensions and applica-
tions should not depend upon the behavior of the container when two different current contexts have an associated
activity.

A bean registered with an activity is only available to Unified EL expressions that are evaluated when that activity or one
of its children is the current activity.

Portable extensions

JSR-299 Expert group draft 94

Chapter 12. Packaging and deployment

When an application is started, the container must perform bean discovery, detect definition errors and deployment prob-
lems and raise events that allow portable extensions to integrate with the deployment lifecycle.

Bean discovery is the process of determining:

• What beans, interceptors and decorators exist in the bean deployment archive

• Which beans, interceptors and decorators are enabled for this deployment

• The precedence of the enabled beans, and the ordering of enabled interceptors and decorators

Additional beans may be registered programmatically with the container by the application or a portable extension after
the automatic bean discovery completes. Portable extensions may even integrate with the process of building the Bean ob-
ject for a bean, to enhance the container's built-in functionality.

12.1. Bean deployment archives

Bean classes must be deployed in any EAR, JAR, WAR, EJB-JAR or RAR archive or directory in the application
classpath that has a file named beans.xml in the metadata directory (META-INF, or WEB-INF in the case of a WAR). Any
such archive or directory is called a bean deployment archive.

When searching for beans, the container considers:

• any Java class in any bean deployment archive, and

• any ejb-jar.xml file in any bean deployment archive.

If a bean is deployed to a location that is not in the application classpath, or does not contain a file named beans.xml in the
metadata directory, it will not be discovered by the container.

12.2. Application initialization lifecycle

When an application is started, the container performs the following steps:

• First, the container must search for service providers for the service javax.enterprise.inject.spi.Extension

defined in Section 11.5, “Container lifecycle events”, instantiate a single instance of each service provider, and search
the service provider class for observer methods of initialization events.

• Next, the container must fire an event of type BeforeBeanDiscovery, as defined in Section 11.5.1,
“BeforeBeanDiscovery event”.

• Next, the container must perform bean discovery, and abort initialization of the application if any definition errors ex-
ist, as defined in Section 12.4, “Problems detected automatically by the container”.

• Next, the container must fire an event of type AfterBeanDiscovery, as defined in Section 11.5.2,
“AfterBeanDiscovery event”, and abort initialization of the application if any observer registers a definition error.

• Next, the container must detect deployment problems by validating bean dependencies and specialization and abort ini-
tialization of the application if any deployment problems exist, as defined in Section 12.4, “Problems detected auto-
matically by the container”.

• Next, the container must fire an event of type AfterDeploymentValidation, as defined in Section 11.5.3,
“AfterDeploymentValidation event”, and abort initialization of the application if any observer registers a deployment
problem.

• Finally, the container begins directing requests to the application.

12.3. Bean discovery

JSR-299 Expert group draft 95

The container automatically discovers managed beans (according to the rules of Section 3.1.1, “Which Java classes are
managed beans?”) and session beans in bean deployment archives and searches the bean classes for producer methods,
producer fields, disposer methods and observer methods.

For each Java class in any bean deployment archive, the container must:

• create an AnnotatedType representing the class and fire an event of type ProcessAnnotatedType, as defined in Sec-
tion 11.5.5, “ProcessAnnotatedType event”, and then

• inspect the class metadata to determine if it is a bean or other Java EE component class supporting injection, and then

• detect definition errors by validating the class and its metadata, and then

• if the class is a managed bean, session bean, or other Java EE component class supporting injection, create an Injec-

tionTarget for the class, as defined in Section 11.4.1, “InjectionTarget, Producer and Listener”, and fire an event of
type ProcessInjectionTarget, as defined in Section 11.5.6, “ProcessInjectionTarget event”, and then

• if the class is a bean, create a Bean object that implements the rules defined in Section 7.3.1, “Lifecycle of managed
beans”, Section 7.3.2, “Lifecycle of stateful session beans” or Section 7.3.3, “Lifecycle of stateless session and
singleton beans”, and fire an event of type ProcessManagedBean or ProcessSessionBean, as defined in Section 11.5.7,
“ProcessBean event”.

For each session bean declared in ejb-jar.xml in any bean deployment archive the container must:

• create a Bean object that implements the rules defined in Section 7.3.2, “Lifecycle of stateful session beans” or Sec-
tion 7.3.3, “Lifecycle of stateless session and singleton beans”, and fire an event of type ProcessSessionBean.

For each bean, the container must search the class for producer methods and fields, including resources and message des-
tinations, and for each producer method or field:

• create a Bean object that implements the rules defined in Section 7.3.4, “Lifecycle of producer methods”, Section 7.3.5,
“Lifecycle of producer fields”, Section 7.3.6, “Lifecycle of resources” or Section 7.3.7, “Lifecycle of message destina-
tions”, and fire an event of type ProcessProducerBean, as defined in Section 11.5.7, “ProcessBean event”.

For each bean, the container must search the class for observer methods, and for each observer method:

• create an Observer, as defined in Section 10.6.1, “Observer method notification”, for the observer method and fire an
event of type ProcessObserverMethod, as defined in Section 11.5.8, “ProcessObserverMethod event”.

The container determines which beans, interceptors and decorators are enabled, according to the rules defined in Sec-
tion 2.5.5, “Enabled deployment types”, Section 9.4, “Interceptor enablement and ordering” and Section 8.2, “Decorator
enablement and ordering”, taking into account any <deploy>, <interceptors> and <decorators> declarations in the
beans.xml files, and registers the Bean and Observer objects:

• For each enabled bean that is not an interceptor or decorator, the container registers an instance of the Bean interface
defined in Section 11.1, “The Bean interface”.

• For each enabled interceptor, the container registers an instance of the Interceptor interface defined in Sec-
tion 11.1.2, “The Interceptor interface”.

• For each enabled decorator, the container registers an instance of the Decorator interface defined in Section 11.1.1,
“The Decorator interface”.

• For each observer method of an enabled bean, the container registers an instance of the Observer interface defined in
Section 10.2, “The Observer interface”.

12.4. Problems detected automatically by the container

When the application violates a rule defined by this specification, the container automatically detects the problem. There
are three kinds of problem:

Packaging and deployment

JSR-299 Expert group draft 96

• Definition errors—occur when a single bean definition violates the rules of this specification

• Deployment problems—occur when there are problems resolving dependencies, or inconsistent specialization, in a par-
ticular deployment

• Execution errors—occur at runtime

Definition errors are developer errors. They may be detected by tooling at development time, and are also detected by the
container at initialization time. If a definition error exists in a deployment, initialization will be aborted by the container.

Deployment problems are detected by the container at initialization time. If a deployment problem exists in a deployment,
initialization will be aborted by the container.

The container is permitted to define a non-portable mode, for use at development time, in which some definition errors and
deployment problems do not cause application initialization to abort.

Execution errors may not be detected until they actually occur at runtime.

Execution errors are represented by instances of javax.enterprise.inject.InjectionException and its subclasses.

public class InjectionException extends RuntimeException {

public InjectionException() { super(); }
public InjectionException(String message) { super(message); }
public InjectionException(String message, Throwable cause) { super(message, cause); }
public InjectionException(Throwable cause) { super(cause); }

}

This specification defines the following subclasses:

• CreationException

• IllegalProductException

• ObserverException

• ContextNotActiveException

• AmbiguousResolutionException

• UnsatisfiedResolutionException

• UnproxyableResolutionException

Packaging and deployment

JSR-299 Expert group draft 97

Appendix A. Helper literals
The Java language does not currently support a literal syntax for parameterized types or for inline instantiation of annota-
tion values. Therefore, this specification defines helper classes to simplify these tasks.

A.1. Generic type literals

The following helper class allows inline instantiation of an object that represents a parameterized type.

public abstract class TypeLiteral<T> {

private Type actualType;

protected TypeLiteral() {
Class<?> typeLiteralSubclass = getTypeLiteralSubclass(this.getClass());
if (typeLiteralSubclass == null) {

throw new RuntimeException(getClass() + " is not a subclass of TypeLiteral");
}
actualType = getTypeParameter(typeLiteralSubclass);
if (actualType == null) {

throw new RuntimeException(getClass() + " is missing type parameter in TypeLiteral");
}

}

public final Type getType() {
return actualType;

}

@SuppressWarnings("unchecked")
public final Class<T> getRawType() {

Type type = getType();
if (type instanceof Class) {

return (Class<T>) type;
}
else if (type instanceof ParameterizedType) {

return (Class<T>) ((ParameterizedType) type).getRawType();
}
else if (type instanceof GenericArrayType) {

return (Class<T>) Object[].class;
}
else {

throw new RuntimeException("Illegal type");
}

}

private static Class<?> getTypeLiteralSubclass(Class<?> clazz) {
Class<?> superclass = clazz.getSuperclass();
if (superclass.equals(TypeLiteral.class)) {

return clazz;
}
else if (superclass.equals(Object.class)) {

return null;
}
else {

return getTypeLiteralSubclass(superclass);
}

}

private static Type getTypeParameter(Class<?> superclass) {
Type type = superclass.getGenericSuperclass();
if (type instanceof ParameterizedType) {

ParameterizedType parameterizedType = (ParameterizedType) type;
if (parameterizedType.getActualTypeArguments().length == 1) {

return parameterizedType.getActualTypeArguments()[0];
}

}
return null;

}

}

An object that represents any parameterized type may be obtained by subclassing TypeLiteral.

TypeLiteral type = new TypeLiteral<List<String>>() {};

This object may be passed to APIs that perform typesafe resolution.

JSR-299 Expert group draft 98

A.2. Annotation instance literals

The following helper class allows inline instantiation of annotation type instances.

public abstract class AnnotationLiteral<T extends Annotation>
implements Annotation {

private Class<T> annotationType;
private Method[] members;

protected AnnotationLiteral() {
Class<?> annotationLiteralSubclass = getAnnotationLiteralSubclass(this.getClass());
if (annotationLiteralSubclass == null) {

throw new RuntimeException(getClass() + " is not a subclass of AnnotationLiteral");
}
annotationType = getTypeParameter(annotationLiteralSubclass);
if (annotationType == null) {

throw new RuntimeException(getClass() + " is missing type parameter in AnnotationLiteral");
}
members = annotationType.getDeclaredMethods();
for (Method member: members) {

method.setAccessible(true);
}

}

private static Class<?> getAnnotationLiteralSubclass(Class<?> clazz) {
Class<?> superclass = clazz.getSuperclass();
if (superclass.equals(AnnotationLiteral.class)) {

return clazz;
}
else if (superclass.equals(Object.class)) {

return null;
}
else {

return getAnnotationLiteralSubclass(superclass);
}

}

@SuppressWarnings("unchecked")
private static <T> Class<T> getTypeParameter(Class<?> annotationLiteralSuperclass) {

Type type = annotationLiteralSuperclass.getGenericSuperclass();
if (type instanceof ParameterizedType) {

ParameterizedType parameterizedType = (ParameterizedType) type;
if (parameterizedType.getActualTypeArguments().length == 1) {

return (Class<T>) parameterizedType
.getActualTypeArguments()[0];

}
}
return null;

}

public Class<? extends Annotation> annotationType() {
return annotationType;

}

@Override
public String toString() {
String string = "@" + annotationType().getName() + "(";
for (int i = 0; i < members.length; i++)
{

string += members[i].getName() + "=";
string += invoke(members[i], this);
if (i < members.length - 1)
{

string += ",";
}

}
return string + ")";

}

@Override
public boolean equals(Object other) {

if (other instanceof Annotation) {
Annotation that = (Annotation) other;
if (this.annotationType().equals(that.annotationType())) {

for (Method member: members) {
Object thisValue = invoke(member, this);
Object thatValue = invoke(member, that);
if (!thisValue.equals(thatValue)) {

return false;
}

}
return true;

}

Helper literals

JSR-299 Expert group draft 99

}
return false;

}

@Override
public int hashCode() {

int hashCode = 0;
for (Method member: members) {

int memberNameHashCode = 127 * member.getName().hashCode();
int memberValueHashCode = invoke(member, this).hashCode();
hashCode += memberNameHashCode ^ memberValueHashCode;

}
return hashCode;

}

private static Object invoke(Method method, Object instance) {
try {

return method.invoke(instance);
}
catch (IllegalArgumentException e) {

throw new RuntimeException("Error checking value of member method " +
method.getName() + " on " + method.getDeclaringClass(), e);

}
catch (IllegalAccessException e) {

throw new RuntimeException("Error checking value of member method " +
method.getName() + " on " + method.getDeclaringClass(), e);

}
catch (InvocationTargetException e) {

throw new RuntimeException("Error checking value of member method " +
method.getName() + " on " + method.getDeclaringClass(), e);

}
}

}

An instance of an annotation type may be obtained by subclassing AnnotationLiteral.

public abstract class PayByBinding
extends AnnotationLiteral<PayBy>
implements PayBy {}

PayBy payby = new PayByBinding() { public value() { return CHEQUE; } };

Annotation values are often passed to APIs that perform typesafe resolution.

Helper literals

JSR-299 Expert group draft 100

Appendix B. Packages
The annotations and interfaces defined by this specification are divided into several packages in the javax namespace.

B.1. javax.interceptor

The following annotations are defined in the package javax.interceptor:

• Annotations: @Interceptor, @InterceptorBindingType

B.2. javax.decorator

The package javax.decorator contains annotations relating to decorators.

• Annotations: @Decorator, @Decorates

B.3. javax.enterprise.event

The package javax.enterprise.event contains annotations and interfaces relating to events.

• Annotation: @Observes

• Interfaces: Event, Observer

• Enumerations: Notify, TransactionPhase

• Exception: ObserverException

B.4. javax.enterprise.context

The package javax.enterprise.context contains annotations and interfaces relating to scopes and contexts.

• Annotation: @ScopeType

• Scope types: @Dependent, @RequestScoped, @SessionScoped, @ApplicationScoped, @ConversationScoped

• Interface: Conversation

• Exceptions: ContextNotActiveException, BusyConversationException, NonexistentConversationException

B.5. javax.enterprise.context.spi

The package javax.enterprise.context.spi contains the custom context SPI.

• Interfaces: Context, Contextual, CreationalContext

B.6. javax.enterprise.inject

The package javax.enterprise.inject contains annotations and interfaces relating to bindings, bean EL names, injec-
tion and programmatic lookup.

• Annotations: @BindingType, @NonBinding, @Initializer, @Produces, @Disposes, @Named, @ConnectionFactory

• Binding types: @Any, @Current, @New

JSR-299 Expert group draft 101

• Interface: Instance

• Classes: TypeLiteral, AnnotationLiteral

• Exceptions: InjectionException, UnsatisfiedResolutionException, AmbiguousResolutionException, Unproxya-
bleResolutionException, CreationException, IllegalProductException

B.7. javax.enterprise.inject.stereotype

The package javax.enterprise.inject.stereotype contains annotations relating to stereotypes.

• Annotation: @Stereotype

• Stereotype: @Model

B.8. javax.enterprise.inject.deployment

The package javax.enterprise.inject.deployment contains annotations relating to deployment types and specializa-
tion.

• Annotations: @DeploymentType, @Specializes

• Deployment types: @Production, @Standard

B.9. javax.enterprise.inject.spi

The package javax.enterprise.inject.spi contains the portable extension integration SPI.

• Interfaces: BeanManager, InjectionPoint, Bean, Interceptor, Decorator, BeanClass, ManagedBean, SessionBean,
ProducerBean, ObserverMethod, InjectionTarget, Producer, Listener, Extension, Annotated, AnnotatedType, An-
notatedMember, AnnotatedCallable, AnnotatedField, AnnotatedMethod, AnnotatedConstructor, AnnotatedPara-
meter, BeforeBeanDiscovery, AfterBeanDiscovery, AfterDeploymentValidation, ProcessAnnotatedType, Pro-

cessInjectionTarget, ProcessBean, ProcessManagedBean, ProcessSessionBean, ProcessProducerBean, Pro-

cessObserverMethod, BeforeShutdown

• Enumerations: InterceptionType, SessionBeanType

Packages

JSR-299 Expert group draft 102

	JSR-299: Contexts and Dependency Injection for the Java EE platform
	Table of Contents
	Evaluation license
	Chapter 1. Architecture
	1.1. Contracts
	1.2. Relationship to other specifications
	1.2.1. Relationship to the Java EE platform specification
	1.2.2. Relationship to EJB
	1.2.3. Relationship to managed beans
	1.2.4. Relationship to JSF

	1.3. Introductory examples
	1.3.1. JSF example
	1.3.2. EJB example
	1.3.3. Java EE component environment example
	1.3.4. Event example
	1.3.5. Interceptor example
	1.3.6. Decorator example

	Chapter 2. Concepts
	2.1. Functionality provided by the container to the bean
	2.2. Bean types
	2.2.1. Legal bean types
	2.2.2. Typecasting between bean types

	2.3. Bindings
	2.3.1. Built-in binding types
	2.3.2. Defining new binding types
	2.3.3. Declaring the bindings of a bean
	2.3.4. Specifying bindings of an injected field
	2.3.5. Specifying bindings of a method or constructor parameter

	2.4. Scopes
	2.4.1. Built-in scope types
	2.4.2. Defining new scope types
	2.4.3. Declaring the bean scope
	2.4.4. Default scope

	2.5. Deployment types
	2.5.1. Built-in deployment types
	2.5.2. Defining new deployment types
	2.5.3. Declaring the deployment type of a bean
	2.5.4. Default deployment type
	2.5.5. Enabled deployment types
	2.5.6. Deployment type precedence

	2.6. Bean EL names
	2.6.1. Declaring the bean EL name
	2.6.2. Default bean EL names
	2.6.3. Beans with no EL name

	2.7. Stereotypes
	2.7.1. Defining new stereotypes
	2.7.1.1. Declaring the default scope and deployment type for a stereotype
	2.7.1.2. Specifying interceptor bindings for a stereotype
	2.7.1.3. Specifying name defaulting for a stereotype
	2.7.1.4. Stereotypes with additional stereotypes

	2.7.2. Declaring the stereotypes for a bean
	2.7.3. Built-in stereotypes

	Chapter 3. Programming model
	3.1. Managed beans
	3.1.1. Which Java classes are managed beans?
	3.1.2. Bean types of a managed bean
	3.1.3. Declaring a managed bean
	3.1.4. Bean constructors
	3.1.4.1. Declaring a bean constructor
	3.1.4.2. Bean constructor parameters

	3.1.5. Specializing a managed bean
	3.1.6. Default name for a managed bean

	3.2. Session beans
	3.2.1. EJB remove methods of session beans
	3.2.2. Bean types of a session bean
	3.2.3. Declaring a session bean
	3.2.4. Specializing a session bean
	3.2.5. Default name for a session bean

	3.3. Producer methods
	3.3.1. Bean types of a producer method
	3.3.2. Declaring a producer method
	3.3.3. Producer method parameters
	3.3.4. Specializing a producer method
	3.3.5. Disposer methods
	3.3.6. Disposed parameter of a disposer method
	3.3.7. Declaring a disposer method
	3.3.8. Disposer method parameters
	3.3.9. Disposer method resolution
	3.3.10. Default name for a producer method

	3.4. Producer fields
	3.4.1. Bean types of a producer field
	3.4.2. Declaring a producer field
	3.4.3. Default name for a producer field

	3.5. Resources
	3.5.1. Declaring a resource
	3.5.2. Bean types of a resource
	3.5.3. The JTA TransactionManager

	3.6. Message destinations
	3.6.1. Bean types of a message destination
	3.6.2. Declaring a message destination

	3.7. Injected fields
	3.7.1. Declaring an injected field

	3.8. Initializer methods
	3.8.1. Declaring an initializer method
	3.8.2. Initializer method parameters

	3.9. The default binding at injection points
	3.10. Beans with the @New binding

	Chapter 4. Inheritance and specialization
	4.1. Inheritance of type-level metadata
	4.2. Inheritance of member-level metadata
	4.3. Specialization
	4.3.1. Direct and indirect specialization
	4.3.2. Most specialized enabled bean for a bean
	4.3.3. Inconsistent specialization

	Chapter 5. Dependency injection, lookup and EL
	5.1. Inter-module accessibility
	5.2. Typesafe resolution
	5.2.1. Unsatisfied and ambiguous dependencies
	5.2.2. Legal injection point types
	5.2.3. Assignability of raw and parameterized types
	5.2.4. Primitive types and null values
	5.2.5. Binding annotations with members
	5.2.6. Multiple bindings

	5.3. EL name resolution
	5.3.1. Ambiguous EL names

	5.4. Client proxies
	5.4.1. Unproxyable bean types
	5.4.2. Client proxy invocation

	5.5. Dependency injection
	5.5.1. Injectable references
	5.5.2. Injected reference validity
	5.5.3. Injection using the bean constructor
	5.5.4. Injection of fields and initializer methods
	5.5.5. Destruction of dependent objects
	5.5.6. Invocation of producer or disposer methods
	5.5.7. Access to producer field values
	5.5.8. Invocation of observer methods
	5.5.9. Injection point metadata

	5.6. Programmatic lookup
	5.6.1. The Instance interface
	5.6.2. The built-in Instance
	5.6.3. Using AnnotationLiteral

	5.7. Integration with Unified EL

	Chapter 6. Scopes and contexts
	6.1. The Contextual interface
	6.1.1. Instance creation
	6.1.2. Instance destruction

	6.2. The Context interface
	6.3. Normal scopes and pseudo-scopes
	6.4. Dependent pseudo-scope
	6.4.1. Dependent scope lifecycle
	6.4.2. Dependent objects
	6.4.3. Dependent object destruction

	6.5. Contextual instances and contextual references
	6.5.1. The active context object for a scope
	6.5.2. Contextual instance of a bean
	6.5.3. Contextual reference for a bean
	6.5.4. Contextual reference validity

	6.6. Passivation and passivating scopes
	6.6.1. Passivation capable beans
	6.6.2. Passivation capable dependencies
	6.6.3. Passivating scopes
	6.6.4. Validation of passivation capable beans and dependencies

	6.7. Context management for built-in scopes
	6.7.1. Request context lifecycle
	6.7.2. Session context lifecycle
	6.7.3. Application context lifecycle
	6.7.4. Conversation context lifecycle
	6.7.5. The Conversation interface

	Chapter 7. Lifecycle of contextual instances
	7.1. Restriction upon bean instantiation
	7.2. Container invocations and interception
	7.3. Lifecycle of contextual instances
	7.3.1. Lifecycle of managed beans
	7.3.2. Lifecycle of stateful session beans
	7.3.3. Lifecycle of stateless session and singleton beans
	7.3.4. Lifecycle of producer methods
	7.3.5. Lifecycle of producer fields
	7.3.6. Lifecycle of resources
	7.3.7. Lifecycle of message destinations

	Chapter 8. Decorators
	8.1. Decorator beans
	8.1.1. Declaring a decorator
	8.1.2. Decorator delegate injection points
	8.1.3. Decorated types of a decorator

	8.2. Decorator enablement and ordering
	8.3. Decorator resolution
	8.4. Decorator stack creation
	8.5. Decorator invocation

	Chapter 9. Interceptor bindings
	9.1. Interceptor binding types
	9.1.1. Interceptor binding types with additional interceptor bindings
	9.1.2. Interceptor bindings for stereotypes

	9.2. Declaring the interceptor bindings of an interceptor
	9.3. Binding an interceptor to a bean
	9.4. Interceptor enablement and ordering
	9.5. Interceptor resolution
	9.5.1. Interceptors with multiple bindings
	9.5.2. Interceptor binding types with members

	Chapter 10. Events
	10.1. Event types and binding types
	10.2. The Observer interface
	10.3. Observer resolution
	10.3.1. Assignability of type variables, raw and parameterized types
	10.3.2. Event binding types with members
	10.3.3. Multiple event bindings

	10.4. Firing events and registering observers
	10.4.1. The Event interface
	10.4.2. The built-in Event

	10.5. Observer methods
	10.5.1. Event parameter of an observer method
	10.5.2. Declaring an observer method
	10.5.3. Observer method parameters
	10.5.4. Conditional observer methods
	10.5.5. Transactional observer methods
	10.5.6. Asynchronous observer methods

	10.6. Observer notification
	10.6.1. Observer method notification
	10.6.2. Observer method invocation context

	10.7. JMS event mappings

	Chapter 11. Portable extensions
	11.1. The Bean interface
	11.1.1. The Decorator interface
	11.1.2. The Interceptor interface

	11.2. The BeanManager object
	11.2.1. Obtaining a contextual reference for a bean
	11.2.2. Obtaining an injectable reference
	11.2.3. Obtaining a Bean by type
	11.2.4. Obtaining a Bean by name
	11.2.5. Obtaining the most specialized bean
	11.2.6. Obtaining a passivation capable bean by identifier
	11.2.7. Resolving an ambiguous dependency
	11.2.8. Registering a Bean
	11.2.9. Registering an Observer
	11.2.10. Firing an event
	11.2.11. Observer resolution
	11.2.12. Decorator resolution
	11.2.13. Interceptor resolution
	11.2.14. Validating a dependency
	11.2.15. Determining if an annotation is a binding type, scope type, stereotype or interceptor binding type
	11.2.16. Discovering the enabled deployment types
	11.2.17. Registering a Context
	11.2.18. Obtaining the active Context for a scope
	11.2.19. Obtaining the ELResolver

	11.3. Alternative metadata sources
	11.4. Helper objects for Bean implementations
	11.4.1. InjectionTarget, Producer and Listener
	11.4.2. ManagedBean and SessionBean
	11.4.3. The ProducerBean interface
	11.4.4. The ObserverMethod interface

	11.5. Container lifecycle events
	11.5.1. BeforeBeanDiscovery event
	11.5.2. AfterBeanDiscovery event
	11.5.3. AfterDeploymentValidation event
	11.5.4. BeforeShutdown event
	11.5.5. ProcessAnnotatedType event
	11.5.6. ProcessInjectionTarget event
	11.5.7. ProcessBean event
	11.5.8. ProcessObserverMethod event

	11.6. Activities
	11.6.1. Current activity

	Chapter 12. Packaging and deployment
	12.1. Bean deployment archives
	12.2. Application initialization lifecycle
	12.3. Bean discovery
	12.4. Problems detected automatically by the container

	Appendix A. Helper literals
	A.1. Generic type literals
	A.2. Annotation instance literals

	Appendix B. Packages
	B.1. javax.interceptor
	B.2. javax.decorator
	B.3. javax.enterprise.event
	B.4. javax.enterprise.context
	B.5. javax.enterprise.context.spi
	B.6. javax.enterprise.inject
	B.7. javax.enterprise.inject.stereotype
	B.8. javax.enterprise.inject.deployment
	B.9. javax.enterprise.inject.spi

