JSR-299: Contexts and Dependency Injection for
the Java EE platform

JSR-299 Expert Group

Specification lead
Gavin King, Red Hat Middleware, LLC

Version
Expert Group Draft
5 November 2009

Table of Contents

EVAIUBLTON [ICENSE ..ottt e e et ettt e ettt e e et et e e et et e e e e et e e e e et e eee Vi
N o 011 (= o O = PP PP TP UPPPTTRPPPPTN 1
N o 1 o T PP PT PP 1
1.2. Relationship to Other SPECITICALIONSuuiiiiiii et et e e e e e e 2
1.2.1. Relationship to the Java EE platform SpecifiCationcoeuviiieiiiiiiiiiiiiiieci e 2

1.2.2. RAEONSNIPTO BIBeiiiiiiiiiiiiet et e et e e e e et e eeeee 2
1.2.3. Relationship to managed BEaNSouu i 2
1.2.4. Relationship to Dependency INjection fOr JAVAccovuuiiiiiiiiiieeiii e 3
1.2.5. Relationship t0 JAVA INTEICEPLOISceieti ettt e et e e e eeees 3
1.2.6. RAEONSNIP IO JSF ...oeiiiitt e e e e et et e e e e e et e e eee 3

1.3, INtrOdUCLOIY EXAIMPIES ... ittt ettt ettt e et e e et et e e e e et s e e e ee b r e e e eebeneeeeebaneeeenes 3
L.3.0 JSF EXAMPIE ..o e e 3

L1.3.2. BIB @XAMPIE ..ot e e e e 5
1.3.3. Java EE component environment eXampleoouuuieiiiiiiieiiiiiee e e 5

1.3.4. BEVENE EXAIMPIE ...ttt ettt e e et e et e et et e e e e aena 6
1.3.5. Injection point metadata EXAMPIEcouuuiiii e e 7
1.3.6. INtErCEPLOr EXAMPIE ettt e et e e e 7
1.3.7. DECOraOr EXAMPIEeeeiiii e e ettt e e e e eee 8

P2 ©o [0 = o] = PP 10
2.1. Functionality provided by the container tothebean ..., 10
2.2, BBAN IY IS .ot 11
2.2.0. L0l DEANLYPES ...oeviieeeii et 11
2.2.2. Restricting the bean types of @bean ... 11

2.2.3. Typecasting between DEaN tYPESoouve i 12

P2 T O 1=) 1 PP 12
2.3.1. BUIlt-IN QUaIITIEN TYPES ..ottt 13
2.3.2. Defining NEeW QUELTTIEN TYPES ...ovveieieie e 13
2.3.3. Declaring the qualifiers of abean ..o 14
2.3.4. Specifying qualifiersof aninjected fieldcoouuiiiiiiiii 14
2.3.5. Specifying qualifiers of amethod or constructor parametercoevvvvveveneeiineveiieeeieeenn, 14

P S o o= S PP PPPT 15
2.4.1. BUIIT-IN SCOPETYPES ... ettt ettt et e et e et et e e e et e eeaans 15
2.4.2. DEfiNING NEW SCOPE LYPIES ... eeietiee ettt ettt e e et e et e e et e et e e e e et e e e naa e e eeaans 15
2.4.3. Declaring the AN SCOPEcceeiii e 16
244, DEFAUIT SCOPE ... eeeeti ettt ettt ettt e et a e et et e e e e aaans 16

2.5, BEANEL NAIMES ...ttt ettt e 16
2.5.1. Declaring the Dean EL NAIMEoiiiiiiiii e 17
2.5.2. Default DEAN EL NAIMESiiiii ettt et eaans 17
2.5.3. BEANSWItN NO EL NAIMEiiiiiiii ettt et e e 17

2.6, ATTEINALIVES ...t ettt e e e e aaans 17
2.6.1. Declaring @n alterNaLiVEcouuuiiiiiii e 17

S (= 151011 o1 S PP PP TPPT 18
2.7.1. DEfiNING NEW SLEIEOLYPES ... ieieti ettt e ettt ettt e et e et e e et e e e eaa e e eenans 18
2.7.1.1. Declaring the default scope for aStEr€OtYPevvuiiiiiiieiiii e 18

2.7.1.2. Specifying interceptor bindings for aStereotypeovvvveiiiiiiiiiiiieiii e, 18

2.7.1.3. Declaring @ @Named SLErEOLYPEuuiviirrieieiii ettt e eeeens 18

2.7.1.4. Declaring an @AILErNative StErEOLYPEuunveiiii ittt 19

2.7.1.5. Stereotypes with additional StErEOtYPESovviveiiiiiii e 19

2.7.2. Declaring the stereotypes for abeanoooiiiiiiiiiiiii 19

2.7.3. BUIIT-IN SEEIEOLYPES ... ieiiiiieeeeii ettt ettt et e et e e et e e e aaa e eeaans 20

2.8. Problems detected automatically by the Containerooviiiiiiiiiiii e 20
3. Programming MOo ettt ettt ettt e 21
3L MaANAJEA DEANS ... e 21
3.1.1. Which Javaclassesaremanaged Deans? ... 21
3.1.2. Bean types of amanaged DEANiiiiiiiiiii e 21
3.1.3. Declaring amanaged DEAINccouuniiiiii et 22
3.1.4. Specidizing amanaged DEaANi i 22

JSR-299 Expert Group Draft

JSR-299: Contexts and Dependency Injection for the Java EE

platform

3.1.5. Default name for amanaged DEANiiiiiiiiiiii 22

3.2, SESSIONBBANS ...t e 22
3.2.1. EJB remove methods of SeSSIoN DEaNScooeviiiiiiii i 23
3.2.2. Bean types Of @ SESSION DEANoieuiiiiiiii e 23
3.2.3. Declaring asession DEaANiiiiii 23
3.2.4. SpecializZing @SESSION DEANuiiiiiii e 23
3.2.5. Default name for aSeSsioN DEaNoovviiiiii 24

3.3 ProdUCEr MEINOGS ...t e et et 24
3.3.1. Bean types of aproducer MEthOdiiiiiiiiiiiii e 24
3.3.2. Declaring aproducer MELNOuiiiiiiiii e 25
3.3.3. Specidizing aproducer MEthOdcoouuiiiiiii e 25
3.3.4. DiSPOSEr MELNOASceeetiiieiii e et e et e e e e b s 26
3.3.5. Disposed parameter of adisposer MEtNOiiiiiiiiiii e 26
3.3.6. Declaring adisposer MELNOGccuuuiiiii e 26
3.3.7. Disposer MEethod rESOIULIONiceuiieiiii et 27
3.3.8. Default name for aproducer MELNOMooiiiiiiiiii e 27

A ProdUCEY FIEIOS ...t 27
3.4.1. Bean types of aproduCer fIeldv e 27

3.4.2. Declaring aproducer FIEldooiiiiiii e 28
3.4.3. Default name for aproducer FIeldcooeueiiiii 28

3.5, RESOUICES ...ttt ettt et et e e e et et et e e e e e e 28
3.5. 1. DECIANNG AIESOUICE ...cevvueeeei ettt ettt et e e et e e et s e e et e e e et e e e et e e e eban s 29
3.5.2. BEAN tYPES OF BTESOUICE ... eeevti ettt ettt e et e e e et e e e e b s 29

3.6. Additional BUITt-INDEANS ..o 29
3.7. BEAN CONSITUCTONS ... eeeeeit ettt ettt et e e e et et et et et et et e e e e ea e e e enneeen e eeneaes 30
3.7.1. Declaring abean CONSIIUCIONccuuuiiiiiii ettt e e e e e b 30

R e g T= o= B = o PR PT 31
3.8.1. Declaring an infeCted fIaldiiiiiii e 31

3.9, INItIAliZEr MELNOAS ... ettt a e 31
3.9.1. Declaring an initializer MELhOMooviiiiiii e 31

3.10. The default qualifier at iNJECtION POINESiiiiii e 32
3.11. The qualifier @Named at iNJECLION POINESceeuuniiiiii et 32
3.12. @NEeW QUAIITIEA DEANS ... i e e e e e e 33
4. Inheritance and SPECIAIIZALIONcceuueiieii e et 34
4.1. Inheritance of type-level MEtadalac.uuiiiiii 34
4.2. Inheritance of member-level MEtadataloovveuiiiiii 35
4.3, SPECIAIIZALION ...t 35
4.3.1. Direct and indirect SPECIAliZALIONceuuuiiiiiiii e 36

5. Dependency injection, [0OKUP @NA ELiiiiiiiiii e 38
L3N 1Y oo [1] =) Y P UPT 38
5.1.1. Declaring selected alternatives for abean deployment archivecooovviiiiiiiiinn. 38
5.1.2. Enabled and disabled BEaNScouuiiiiiiii 39
5.1.3. INCONSIStENt SPECIAIIZALTION ...e.vviiieiiii e 39
5.1.4. INter-mOdUlE INJECTION ...t et e e e 39

5.2, TYPESA @ FESOIULION ... ettt e e et e et e e ettt e e e e bt e e e e b as 40
5.2.1. Unsatisfied and ambiguous dependenCiesvvieiuiiiiiiiiie e 40
5.2.2. Legal inJeCtion POINE LYPESvuuiieit ettt et e bbb 40
5.2.3. Assignability of raw and parameterized tyPeSvveeueieiiiiii e 40
5.2.4. Primitivetypes and NUIT VAIUESoooiuiiiiiiii e 41
5.2.5. Qualifier annotationsS With MEMDErSiiiiiii e 41
5.2.6. MUIIPIE QUBITTIEIS .. et e e b 42

5.3 EL NAME TESOIULION ...ttt ettt ettt ettt e et et e e ettt e e e e bt eeeeban e as 42
5.3.1 AMDIQUOUS EL NBMESuiiiiiii ettt et ettt e et e e b 42

L O T 0| o0 (=SSP 43
5.4.1. UNproxXyable DEaN TYPESceeei i 43
5.4.2. CHENt ProXY INVOCEHION ... ceeetieieiit ettt et e et e b e e et e e e bt eeeeban s 43

5.5. DEPENENCY INJECLION ...eiiti ettt e et e e e e e e na s 44
5.5.1. Injection using the DEaN CONSITUCLONuiiiiii e 44
5.5.2. Injection of fieldsand initiaizer Methodsooooiiiiiiiii e, 44
5.5.3. Destruction of dependent ODJECESovveuiiiiiii e 44
5.5.4. Invocation of producer or disposer MELhOAScoeuuiiiiiiiiiiei e 45
5.5.5. Accessto producer FIEld VAIUESiiiiiiiii e 45

JSR-299 Expert Group Draft

JSR-299: Contexts and Dependency Injection for the Java EE

platform

5.5.6. Invocation of observer Methodscoouuiiiiiii 45
5.5.7. INjection POIiNt MELAJALAuuniiiiii i e e 45

5.6. Programimatic IO0KUDieeuueieiii ettt et e et e et e e e et e e e et e e e et e e e eba s 46
5.6.1. The INStaNCe INIEITACEui e e 47
5.6.2. The DUITT-IN TNSLBNCE ...ceevi e e e b 48
5.6.3. Using AnnotationLiteral and TYpeLiteralcoooiiiuiiiiiiiiiiiii e 48

6. SCOPES QNG CONTEXESvuiiiiti ettt ettt ettt e e et e ettt e et e tb e e e et r e et e tbr e e e et e e e e abnaeeennans 50
6.1. The Contextual INTEITACE iiiii et e e e 50
6.1.1. The Creational Context iNLErfACEuuiiiiiii i e 50

6.2. The CONEXE INTEITACE ... et ettt et e eeeaans 51
6.3. Normal SCOPES AN PSEUAO-SCOPESeevrueeeiii ettt e ettt e ettt e e et e e et e e e et e e e et e e e ebb e eeeaans 51
6.4. DEPENUENt PSEUAO-SCOPEvuuiiiiti ettt ettt ettt ettt e et et e e e et et et e e e eaa e et ebb e e esbanaeeeenans 52
6.4.1. DePendent ODJECEScovuii e 52
6.4.2. Destruction of objects with scope @Dependentvvveeiiiiiiiiiiieeii e 53
6.4.3. Dependent pseudo-scope and Unified ELoooouiiiiiiiiiii e 53

6.5. Contextual instances and contextual FEFErENCESiiiiiiiiiii e 53
6.5.1. The active context ODJECt FOr @SCOPE ... vvevrniiiiii e 53

6.5.2. Contextual iNStance of 8DEAN ... 54
6.5.3. Contextual referencefor abEanooov i 54
6.5.4. Contextual referenCe Validityoo.oiiiiiiiiiii 54
6.5.5. INJECLADI @ FEFEIEINCES ... cieet et 55
6.5.6. Injectable referenCe Validitycoouuiiiiiiiiii 55

6.6. Passivation and PassiVatiNg SCOPESc.uuuuitiuuu ettt e ettt e et e e et e e et e e e et e e e et e e e aaan e eaaans 55
6.6.1. Passivation Capabl@ DEANSiiiiiiiii e 55
6.6.2. Passivation capable dependENCIESiiiiiiiiiiiii e 56
6.6.3. PaSSIVALING SCOPES ..vuuitittiieeiiti ettt ettt et e e e et e ettt e et et e et et e e e et e e e e e e aaans 56
6.6.4. Vaidation of passivation capable beans and dependenciescooevvvviieviiievii e, 56

6.7. Context management for DUITE-iN SCOPEScvuuuiiiiiiii e 57
6.7.1. Request CONEXE HIFECYCIE ... i e 58
6.7.2. SESSION CONLEXE [IFECYCIE ...t e 58
6.7.3. Application CONEXE lIFECYCIEvuiiiiie e 58
6.7.4. Conversation CONEXt HIFECYCIE ... i e 59
6.7.5. The Conversation INLEITACEoviiiiuiiiiii e 60

7. Lifecycle of CONEXTUAl INSLANCES iiiiee ettt e e et e e e e e aeans 61
7.1. Restriction upon bean iNSEANLIALIONooeuueiiiiii e 61
7.2. Container invocations and INEErCEPTIONuuiiiiiii ettt e aeeaans 62
7.3. Lifecycle of contextual INSEANCESc..uuiiiiiiii e e 62
7.3.1. Lifecycle of Managed DEANScooouuiiiiiiii e 62
7.3.2. Lifecycle of stateful SESSION DEANSuviiiiiii i 63
7.3.3. Lifecycle of stateless session and SINgIEtoN Beanscovvviiiiiiiiiiii i 63
7.3.4. Lifecycle of producer MELNOOSuuiiiiiiiiiii e 63
7.3.5. Lifecycle of producer fIElASoooiiieiii 63
7.3.6. LIfECYCIE OF FTESOUICESevvieeeii ettt e e e e eaans 64

R oo = L o T PP 65
o I B L= oo = (ol o= g P RUP 65
8.1.1. DECIArING A UECONBLONuiieieti ettt ettt ettt et e et e e e et et e e e et e e e ebb e e e eaan s 65
8.1.2. Decorator delegate iNjECtION POINESccuuuueeiiii ettt e b 65
8.1.3. Decorated types Of @UECOTBIONuiiieii ettt e b 66

8.2. Decorator enablement and OFAENINGcveuueeiieii et 66
8.3. DECOTALON FESOIULIONeeetieeeeii ettt ettt ettt ettt e et e e e e et e e e et e e e e bt eeeeban s 66
8.3.1. Assignability of raw and parameterized types for delegate injection pointscccoeeevevennen. 67

R L= oo = (o] 01V e Tor= 1 o] o [P P 67
9. INtErCEPLOr DINTINGS ...eeiiiit e et e et e et e e e et e eeaans 68
9.1. Interceptor DINAING LYPESvuniiiiii ettt et e e et et e eeaaans 68
9.1.1. Interceptor binding types with additional interceptor bindingscccccoeveviiiiiiiiiiecee, 68
9.1.2. Interceptor bindings fOr SLErEOLYPESn i 68

9.2. Declaring the interceptor bindings of an INtErCEPLOrvviiiiiiiiiii e 68
9.3. Binding an interceptor t0 @hEANuu i 69
9.4. Interceptor enablement and OFAENINGiiiiiuiiiii et 69
O.5. INLEFCEPLOr FESOIULION ... ieeete ettt ettt e e et e e e et e e et e e e et e e eeaans 70
9.5.1. Interceptors with multiple DINAINGSoiiiie e 70
9.5.2. Interceptor binding types With MEMDErS ... e 71

JSR-299 Expert Group Draft

JSR-299: Contexts and Dependency Injection for the Java EE

platform

O T o] PP UPPTPPTRPPN 72
10.1. Event types and qUalTTIEN TYPES ...oevuieiiii e e 72
10.2. ODSEIVEN TESOIULIONvtieeiit ettt e et e e ettt e e et e e et et r e et e et e e e e et r e e e e et e e e enbaaeeeees 72
10.2.1. Assignability of type variables, raw and parameterized typescc.ovvveviveiiiieiiiieniineeiiees 73
10.2.2. Event qualifier typeSwith MEMDErSooiiiiii e 73
10.2.3. Multiple event QUALTTIENS i e e 73

O R e a1 g (o = Y= o TSP TRUPPIN 74
10.3.1. TRE BVENL INTEITACE ..o e 74
10.3.2. TREBUIIT-TN EVENE .ovtiiii e e e e et et e e e e aees 75

10.4. ODSEVEr MELNOSeeveeeeeit e ettt et e et e e e et e e et et e e e e et e e e eataneeeees 75
10.4.1. Event parameter of an observer methodccooiiiiiiiiiiiii 75
10.4.2. Declaring an observer MEtNOGoouuiiiiii e e e 75
10.4.3. Conditional observer Methodsoviiiiiiii i 76
10.4.4. Transactional observer MENOGSiiiiii e 76

10.5. OBSEVEr NOLITICAIION ... iiiitt et ettt e ettt e e e et e e e e et e e e eata e eeees 7
10.5.1. Observer method iNVOCATON COMEEXT ... iiiuutieeiiiiie et et 7

11, POrtablE EXEENSIONS ...ttt et oottt e e ettt e e e e et e e et et e e et e e e e et e eaeaba e aee 78
11,1 The BEAN INEEITACE ...oevtiiiiii e e e ettt e e et e e e e et e e e e et e e e eata e eeees 78
11.1.1. The DECOrator INLEITACEiiiieii et e et e e et e eeeaa e eees 78
11.1.2. The INterCaptOr INLEITACE i it e et e e e e e e e 79
11.1.3. The ObserverMethod INtErACEceeeii e e e 79

11.2. The Producer and InjectionTarget interfacescoouuuiiiiiiiiiiei e 79
11.3. The BEANM@NAQEr OLJECTuiiiiiiieeiii e et e e ettt e et e e et et e eeeaba e eeens 80
11.3.1. Obtaining a contextual referencefor abean ..o 80
11.3.2. Obtaining an injectabl@ refErenCeov e 81
11.3.3. Obtaining & CreatioNal CONEXLc.uuiiiiiiiie e eaa e eees 81
11.3.4. ObtainNing @BeaN DY TYPE i 81
11.3.5. Obtaining aBean DY NAIMEuuiiiiiiii e e 81
11.3.6. Obtaining a passivation capable bean by identifier ... 82
11.3.7. Resolving an ambiguous AEPENENCYocoevueiiiiiiii e 82
11.3.8. Validating @ depENAENCYeieeiiiiei i 82
11.3.9. FiFINQ 8N EVENL ...ttt e et e et e e et et e e et et e e e e et e e e e et e eeeab e aee 82
11.3.10. Observer Method reSOIULIONcceuuuieiiiii e 82
11.3.11. DECOrator FESOIULIONccevteeeitii et et et e et e e e et e e e e et e e e eaba e eeees 83
11.3.12. INtErceptor FESOIULIONueiiiii ettt e e et e e e et e e et e e eaae e aens 83
11.3.13. Determining if an annotation is a qualifier type, scope type, stereotype or interceptor binding
11 PP 83
11.3.14. Obtaining the active Context fOr @SCOPEiviiriiieiiii e 83
11.3.15. Obtaining the ELRESOIVEScoviieiiiiie et e aees 83
11.3.16. Wrapping aUnified EL EXPressiONFaCIOryvveiiiiiiieiiiiieeeeii et 84
11.3.17. Obtaining an AnnotatedType for aClasscoouuiiiiiiiiiie e 84
11.3.18. Obtaining an INJECHIONTAITELieiiiieieeeii et eaba e eees 84

11.4. Alternative MEtBOEIA SOUMCESuuueiiiti ettt ettt e e et e et e e et e e e e et e e e eat e e e eabe e e e eabaneeeens 84
11.5. ContaiNer [IFECYCIE BVENLSiiiiii e et e et eeeat e eees 85
11.5.1. BEfOreBeanDiSCOVEIY BVENTc.uuiiiiiiiiieeeeii et et e et e e et e e et e eeeaaa e eeees 86
11.5.2. ATterBEANDISCOVENY EVENEciiiiiieeeiii ettt e e et e e e et e e e eabe e e e eataneeeens 86
11.5.3. AfterDeploymentValidation BVENTcoouuiiiiiiiiii e 87
11.5.4. BEfOreShULAOWN BVENTiiiiiii et e et e e e e e eaa e eees 87
11.5.5. ProcesSANNOLAtEdTYPE BVENTuuiiiiii et e e e aees 87
11.5.6. ProcessINjeCtiONTaIGEL BVENLiiiiiii et et e e et e e et e eeeaaa e eens 88
11.5.7. ProCESSPrOUUCEN BVENTvuiiiiiii et ettt e et e e et e e eeaa e eaens 88
11.5.8. PrOCESSBEEN EVENTeuiitieii ettt ettt ettt e 89
11.5.9. ProcessObServerMethod BVENTc.oouuiiiiii e e 90

12. Packaging and deplOyMENTcooueiiiiii e e et 91
12.1. Bean deployMENt @rChIVESciiiiieeeee et e e et e e e et eeea e eees 91
12.2. Application initiaization HFECYCIEcoeueiiii e e 92
12.3. BEAN TISCOVENY ...ttt ettt ettt ettt e ettt r e et e e e et e bt e e e et ben e e e e et reeeeabaneeeenbanaeeees 92
12.4. Integration With UNIfIEd ELoouuiiiiiiiie e e et e e e e 93

JSR-299 Expert Group Draft

Evaluation license

Copyright 2009 Red Hat Middleware LLC.
All rights reserved.
NOTICE

The Specification is protected by copyright and the information described therein may be protected by one or more U.S.
patents, foreign patents, or pending applications. Except as provided under the following license, no part of the Specifica-
tion may be reproduced in any form by any means without the prior written authorization of Red Hat Middleware LLC and
its licensors, if any. Any use of the Specification and the information described therein will be governed by the terms and
conditions of this Agreement.

Subject to the terms and conditions of this license, including your compliance with Paragraphs 1 and 2 below, Red Hat
Middleware LLC hereby grants you a fully-paid, non-exclusive, non-transferable, limited license (without the right to sub-
license) under Red Hat Middleware LLC's intellectual property rightsto:

1. Review the Specification for the purposes of evaluation. Thisincludes: (i) developing implementations of the Specifica-
tion for your internal, non-commercial use; (ii) discussing the Specification with any third party; and (iii) excerpting brief
portions of the Specification in oral or written communications which discuss the Specification provided that such excerpts
do not in the aggregate constitute a significant portion of the Specification.

2. Distribute implementations of the Specification to third parties for their testing and evaluation use, provided that any
such implementation:

(i) does not modify, subset, superset or otherwise extend the Licensor Name Space, or include any public or protected
packages, classes, Java interfaces, fields or methods within the Licensor Name Space other than those required/authorized
by the Specification or Specifications being implemented;

(ii) is clearly and prominently marked with the word "UNTESTED" or "EARLY ACCESS" or "INCOMPATIBLE" or
"UNSTABLE" or "BETA" in any list of available builds and in proximity to every link initiating its download, where the
list or link isunder Licensee's control; and

(i) includes the following notice:

"Thisisan implementation of an early-draft specification developed under the Java Community Process (JCP). The codeis
not compatible with any specification of the JCP."

The grant set forth above concerning your distribution of implementations of the Specification is contingent upon your
agreement to terminate development and distribution of your implementation of early draft upon final completion of the
Specification. If you fail to do so, the foregoing grant shall be considered null and void.

No provision of this Agreement shall be understood to restrict your ability to make and distribute to third parties applica-
tions written to the Specification.

Other than this limited license, you acquire no right, para or interest in or to the Specification or any other Red Hat Mid-
dleware LLC intellectual property, and the Specification may only be used in accordance with the license terms set forth
herein. This license will expire on the earlier of: (a) two (2) years from the date of Release listed above; (b) the date on
which the final version of the Specification is publicly released; or (c) the date on which the Java Specification Request
(JSR) to which the Specification corresponds is withdrawn. In addition, this license will terminate immediately without
notice from Red Hat Middleware LLC if you fail to comply with any provision of this license. Upon termination, you must
cease use of or destroy the Specification.

"Licensor Name Space” means the public class or interface declarations whose names begin with "java', "javax",
"com.redhat" or their equivalents in any subsequent naming convention adopted through the Java Community Process, or
any recognized successors or replacements thereof.

TRADEMARKS

No right, para, or interest in or to any trademarks, service marks, or trade names of Red Hat Middleware LLC or Red Hat's
licensors is granted hereunder. Java and Java-related logos, marks and names are trademarks or registered trademarks of
Sun Microsystems, Inc. in the U.S. and other countries.

JSR-299 Expert Group Draft Vi

Evauation license

DISCLAIMER OF WARRANTIES

THE SPECIFICATION ISPROVIDED "ASIS" AND ISEXPERIMENTAL AND MAY CONTAIN DEFECTS OR DE-
FICIENCIES WHICH CANNOT OR WILL NOT BE CORRECTED BY RED HAT MIDDLEWARE LLC. RED HAT
MIDDLEWARE LLC MAKES NO REPRESENTATIONS OR WARRANTIES, EITHER EXPRESS OR IMPLIED, IN-
CLUDING BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NON-INFRINGEMENT THAT THE CONTENTS OF THE SPECIFICATION ARE SUITABLE FOR
ANY PURPOSE OR THAT ANY PRACTICE OR IMPLEMENTATION OF SUCH CONTENTS WILL NOT IN-
FRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADE SECRETS OR OTHER RIGHTS. This document
does not represent any commitment to release or implement any portion of the Specification in any product.

THE SPECIFICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS.
CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION THEREIN; THESE CHANGES WILL BE IN-
CORPORATED INTO NEW VERSIONS OF THE SPECIFICATION, IF ANY. RED HAT MIDDLEWARE LLC MAY
MAKE IMPROVEMENTS AND/OR CHANGES TO THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED
IN THE SPECIFICATION AT ANY TIME. Any use of such changes in the Specification will be governed by the then-
current license for the applicable version of the Specification.

LIMITATION OF LIABILITY

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL RED HAT MIDDLEWARE LLC OR ITS LI-
CENSORS BE LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUE, PROFITS
OR DATA, OR FOR SPECIAL, INDIRECT, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES,
HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF OR RELATED
TO ANY FURNISHING, PRACTICING, MODIFYING OR ANY USE OF THE SPECIFICATION, EVEN IF RED HAT
MIDDLEWARE LLC AND/OR ITS LICENSORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGES.

You will hold Red Hat Middleware LLC (and its licensors) harmless from any claims based on your use of the Specifica
tion for any purposes other than the limited right of evaluation as described above, and from any claims that later versions
or releases of any Specification furnished to you are incompatible with the Specification provided to you under this li-
cense.

RESTRICTED RIGHTS LEGEND

If this Software is being acquired by or on behalf of the U.S. Government or by a U.S. Government prime contractor or
subcontractor (at any tier), then the Government's rights in the Software and accompanying documentation shall be only as
set forth in this license; this is in accordance with 48 C.F.R. 227.7201 through 227.7202-4 (for Department of Defense
(DoD) acquisitions) and with 48 C.F.R. 2.101 and 12.212 (for non-DoD acquisitions).

REPORT

Y ou may wish to report any ambiguities, inconsistencies or inaccuracies you may find in connection with your evaluation
of the Specification ("Feedback"). To the extent that you provide Red Hat Middleware LLC with any Feedback, you
hereby: (i) agree that such Feedback is provided on a non-proprietary and non-confidential basis, and (ii) grant Red Hat
Middleware LLC a perpetual, non-exclusive, worldwide, fully paid-up, irrevocable license, with the right to sublicense
through multiple levels of sublicensees, to incorporate, disclose, and use without limitation the Feedback for any purpose
related to the Specification and future versions, implementations, and test suites thereof.

GENERAL TERMS

Any action related to this Agreement will be governed by Californialaw and controlling U.S. federal law. The U.N. Con-
vention for the International Sale of Goods and the choice of law rules of any jurisdiction will not apply.

The Specification is subject to U.S. export control laws and may be subject to export or import regulations in other coun-
tries. Licensee agrees to comply strictly with all such laws and regulations and acknowledges that it has the responsibility
to obtain such licenses to export, re-export or import as may be required after delivery to Licensee.

This Agreement is the parties' entire agreement relating to its subject matter. It supersedes all prior or contemporaneous or-
a or written communications, proposals, conditions, representations and warranties and prevails over any conflicting or
additional terms of any quote, order, acknowledgment, or other communication between the parties relating to its subject
matter during the term of this Agreement. No modification to this Agreement will be binding, unless in writing and signed
by an authorized representative of each party.

JSR-299 Expert Group Draft Vii

Chapter 1. Architecture

This specification defines a powerful set of complementary services that help improve the structure of application code.

« A wdl-defined lifecycle for stateful objects bound to lifecycle contexts, where the set of contextsis extensible

* A sophisticated, typesafe dependency injection mechanism, including the ability to select dependencies at either devel-
opment or deployment time, without verbose configuration

» Support for Java EE modularity and the Java EE component architecture—the modular structure of a Java EE applica-
tion is taken into account when resolving dependencies between Java EE components

« Integration with the Unified Expression Language (EL), alowing any contextual object to be used directly within a
JSF or JSP page

e The ahility to decorate injected objects

« The ability to associate interceptors to objects via typesafe interceptor bindings

* Anevent notification model

< A web conversation context in addition to the three standard web contexts defined by the Java Servlets specification
* An SPI dlowing portable extensions to integrate cleanly with the container

The services defined by this specification allow objects to be bound to lifecycle contexts, to be injected, to be associated
with interceptors and decorators, and to interact in aloosely coupled fashion by firing and observing events. Various kinds
of objects are injectable, including EJB 3 session beans, managed beans and Java EE resources. We refer to these objects
in general terms as beans and to instances of beans that belong to contexts as contextual instances. Contextual instances
may be injected into other objects by the dependency injection service.

To take advantage of these facilities, the developer provides additional bean-level metadata in the form of Java annotations
and application-level metadatain the form of an XML descriptor.

The use of these services significantly simplifies the task of creating Java EE applications by integrating the Java EE web
tier with Java EE enterprise services. In particular, EJB components may be used as JSF managed beans, thus integrating
the programming models of EJB and JSF.

It's even possible to integrate with third-party frameworks. A portable extension may provide objects to be injected or ob-
tain contextual instances using the dependency injection service. The framework may even raise and observe events using
the event notification service.

An application that takes advantage of these services may be designed to execute in either the Java EE environment or the
Java SE environment. If the application uses Java EE services such as transaction management and persistence in the Java
SE environment, the services are restricted to the subset defined for embedded usage by the EJB specification.

1.1. Contracts
This specification defines the responsibilities of:

» the application developer who uses these services, and

« the vendor who implements the functionality defined by this specification and provides a runtime environment in
which the application executes.

This runtime environment is called the container. For example, the container might be a Java EE container or an embed-
dable EJB container.

Chapter 2, Concepts, Chapter 3, Programming model, Chapter 4, Inheritance and specialization, Chapter 9, Interceptor
bindings, Section 8.1, “Decorator beans’ and Section 10.4, “Observer methods’ define the programming model for Java
EE components that take advantage of the services defined by this specification, the responsibilities of the component de-
veloper, and the annotations used by the component devel oper to specify metadata.

JSR-299 Expert Group Draft 1

Architecture

Chapter 5, Dependency injection, lookup and EL, Chapter 6, Scopes and contexts, Chapter 7, Lifecycle of contextual in-
stances, Chapter 8, Decorators, Chapter 10, Events and Section 9.5, “Interceptor resolution” define the semantics and be-
havior of the services, the responsibilities of the container implementation and the APIs used by the application to interact
directly with the container.

Chapter 12, Packaging and deployment defines how Java EE applications that use the services defined by this specifica-
tion must be packaged into bean deployment archives, and the responsibilities of the container implementation at applica-
tion initialization time.

Chapter 11, Portable extensions, Section 6.1, “The Contextual interface” and Section 6.2, “The Context interface” define
an SPI that allows portable extensions to integrate with the container.

1.2. Relationship to other specifications

An application developer creates container-managed components such as JavaBeans, EJBs or servlets and then provides
additional metadata that declares additional behavior defined by this specification. These components may take advantage
of the services defined by this specification, together with the enterprise and presentational aspects defined by other Java
EE platform technologies.

In addition, this specification defines an SPI that allows alternative, non-platform technologies to integrate with the con-
tainer and the Java EE environment, for example, alternative web presentation technologies.

1.2.1. Relationship to the Java EE platform specification

In the Java EE 6 environment, all component classes supporting injection, as defined by the Java EE 6 platform specifica-
tion, may inject beans via the dependency injection service.

The Java EE platform specification defines a facility for injecting resources that exist in the Java EE component environ-
ment. Resources are identified by string-based names. This specification bolsters that functionality, adding the ability to in-
ject an open-ended set of object types, including, but not limited to, component environment resources, based upon
typesafe qualifiers.

1.2.2. Relationship to EJB

EJB defines a programming model for application components that access transactional resources in a multi-user environ-
ment. EJB allows concerns such as role-based security, transaction demarcation, concurrency and scalability to be spe-
cified declaratively using annotations and XML deployment descriptors and enforced by the EJB container at runtime.

EJB components may be stateful, but are not by nature contextual. References to stateful component instances must be ex-
plicitly passed between clients and stateful instances must be explicitly destroyed by the application.

This specification enhances the EJB component model with contextual lifecycle management.

Any session bean instance obtained via the dependency injection service is a contextual instance. It is bound to alifecycle
context and is available to other objects that execute in that context. The container automatically creates the instance when
it is needed by a client. When the context ends, the container automatically destroys the instance.

Message-driven and entity beans are by nature non-contextual objects and may not be injected into other objects.

The container performs dependency injection on all session and message-driven bean instances, even those which are not
contextual instances.

1.2.3. Relationship to managed beans

The Managed Beans specification defines the basic programming model for application components managed by the Java
EE container.

As defined by this specification, most Java classes, including al JavaBeans, are managed beans.

This specification defines contextua lifecycle management and dependency injection as generic services applicable to all
managed beans.

JSR-299 Expert Group Draft 2

Architecture

Any managed bean instance obtained via the dependency injection service is a contextual instance. It is bound to a life-
cycle context and is available to other objects that execute in that context. The container automatically creates the instance
when it is needed by aclient. When the context ends, the container automatically destroys the instance.

The container performs dependency injection on all managed bean instances, even those which are not contextual in-
stances.

1.2.4. Relationship to Dependency Injection for Java

The Dependency Injection for Java specification defines a set of annotations for the declaring injected fields, methods and
constructors of abean. The dependency injection service makes use of these annotations.

1.2.5. Relationship to Java Interceptors

The Java Interceptors specification defines the basic programming model and semantics for interceptors. This specification
enhances that model by providing the ahility to associate interceptors with beans using typesafe interceptor bindings.

1.2.6. Relationship to JSF

JavaServer Faces is a web-tier presentation framework that provides a component model for graphical user interface com-
ponents and an event-driven interaction model that binds user interface components to objects accessible via Unified EL.

This specification allows any bean to be assigned a Unified EL name. Thus, a JSF application may take advantage of the
sophisticated context and dependency injection model defined by this specification.

1.3. Introductory examples

The following examples demonstrate the use of lifecycle contexts and dependency injection.

1.3.1. JSF example

The following JSF page defines alogin prompt for aweb application:

<f:view>
<h: formp
<h: panel Gid col ums="2" rendered="#{!|ogin.| oggedl n}">
<h: out put Label for="usernanme">User nane: </ h: out put Label >
<h: i nput Text id="usernane" val ue="#{credential s.usernane}"/>
<h: out put Label for="password">Passwor d: </ h: out put Label >
<h: i nput Text id="password" val ue="#{credential s. password}"/>
</ h: panel G'i d>
<h: commandBut t on val ue="Logi n" acti on="#{l ogi n. | ogin}" rendered="#{!I ogi n.| oggedl n}"/>
<h: commandBut t on val ue="Logout" action="#{l ogi n.|ogout}" rendered="#{l ogi n. | oggedln}"/>
</ h: form
</f:view

The Unified EL expressionsin this page refer to beans named cr edenti al s and | ogi n.
The credenti al s bean has alifecyclethat is bound to the JSF request:

@bdel
public class Credentials {

private String usernane;
private String password;

public String getUsernane() { return usernane; }
public void setUsername(String usernanme) { this.usernane = usernane; }

public String getPassword() { return password; }
public void setPassword(String password) { this.password = password; }

}

The @bdel annotation defined in Section 2.7.3, “Built-in stereotypes’ is a stereotype that identifies the o edenti al s bean
asamodel object in an MV C architecture.

JSR-299 Expert Group Draft 3

Architecture

The Logi n bean has alifecycle that is bound to the HTTP session:

@bessi onScoped @vbdel
public class Login {

@nject Credentials credentials;
@nject @sers EntityManager user Dat abase;

private CriteriaQuery<User> query;
private Paraneter<String> usernanmePar am
private Paraneter<String> passwor dPar am

private User user;

@ nj ect
void initQuery(@sers EntityManagerFactory enf) {
CriteriaBuilder cb = enf.getCriteriaBuilder();
user nanePar am = ch. paraneter (String. cl ass);
passwor dPar am = cb. paraneter (String. cl ass);
query = cb. createQuery(User.cl ass);
Root <User > u = query. fron(User.cl ass);
query. sel ect (u);
query. where(cb. equal (u. get (User_. usernane), usernaneParan),
ch. equal (u. get (User _. password), passwordParan));

}
public void login() {

Li st <User > results = userDat abase. creat eQuery(query)
. set Par anet er (user nanmePar am credenti al s. get User nane())
. set Par anet er (passwor dParam credenti al s. get Password())
.getResul tList();

if (!results.isEnpty()) {
user = results.get(0);
}

}

public void | ogout() {
user = null;

publ i c bool ean isLoggedl n() {
return user!=null;
}

@°r oduces @oggedl n User getCurrentUser() {
if (user==null) {
t hrow new Not Loggedl nException();

}
el se {

return user;
}

The @essi onScoped annotation defined in Section 2.4.1, “Built-in scope types’ is a scope type that specifies the lifecycle
of instances of Logi n.

The @nj ect annotation defined by the Dependency Injection for Java specification identifies an injected field which is
initialized by the container when the bean is instantiated, or an initializer method which is called by the container after the
bean isinstantiated, with injected parameters.

The @yser s annotation is a qualifier type defined by the application:

@ualifier

@Ret ent i on(RUNTI MVE)

@ar get ({ METHOD, FI ELD, PARAMETER, TYPE})
public @nterface Users {}

The @ogged! n annotation is another qualifier type defined by the application:

@ualifier

@Ret ent i on(RUNTI ME)

@rar get ({ MVETHOD, FI ELD, PARAMETER, TYPE})
public @nterface Loggedln {}

JSR-299 Expert Group Draft 4

Architecture

The @roduces annotation defined in Section 3.3.2, “Declaring a producer method” identifies the method get cur -
rent User () asaproducer method, which will be called whenever another bean in the system needs the currently logged-in
user, for example, whenever the user attribute of the bocunent Edi t or classisinjected by the container:

@bdel

public class Docunent Edi tor {

@ nj ect Docunent docunent;
@nj ect @oggedln User currentUser;
@nject @ocunents EntityManager docDat abase;

public void save() {
docunent . set Cr eat edBy(current User) ;
em per si st (docunent) ;

}

The @ocurent s annotation is another application-defined qualifier type. The use of distinct qualifier types enables the
container to distinguish which JPA persistence unit isrequired.

When the login form is submitted, JSF assigns the entered username and password to an instance of the ¢ edent i al s bean
that is automatically instantiated by the container. Next, JSF callsthel ogi n() method of an instance of Logi n that is auto-
matically instantiated by the container. This instance continues to exist for and be available to other requests in the same
HTTP session, and provides the user object representing the current user to any other bean that requires it (for example,
Docunent Edi t or). If the producer method is called before the I ogi n() method initializes the user object, it throws a Not -
Logged! nExcepti on.

1.3.2. EJB example

Alternatively, we could write our Logi n bean to take advantage of the functionality defined by EJB:

@5t at ef ul @bessi onScoped @mbdel
public class Login {

@nject Credentials credentials;
@nj ect @sers EntityManager userDat abase;

private User user;

@ nj ect
void initQuery(@Jsers EntityManager Factory enf) {
}

@ransacti onAttri but e(REQU RES_NEW
@Rol esAl | owed(" guest")
public void login() {

}

public void logout() {
user = null;

}

publ i c bool ean isLoggedln() {
return user!=null;

@Rol esAl | owed(" user™)
@r oduces @uoggedln User getCurrentUser() {

}
}

The EJB @t at ef ul annotation specifies that this bean is an EJB stateful session bean. The EJB @r ansactionAttribute
and @rol esAl | owed annotations declare the EJB transaction demarcation and security attributes of the annotated methods.

1.3.3. Java EE component environment example

In the previous examples, we injected container-managed persistence contexts using qualifier types. We need to tell the

JSR-299 Expert Group Draft 5

Architecture

container what persistence context is being referred to by which qualifier type. We can declare references to persistence
contexts and other resources in the Java EE component environment in Java code.
public class Databases {

@°r oduces @per si st enceCont ext (uni t Nane="User Dat a")
@Jsers EntityManager user Dat abaseEntityManager;

@°r oduces @Per si st enceUni t (unit Nane="User Dat a")
@Jsers EntityManager Factory user Dat abaseEntityManager Factory;

@°r oduces @per si st enceCont ext (uni t Name=" Docunent Dat a")
@ocunents EntityManager docDat abaseEntityManager;

The JPA @er si st enceCont ext and @per si st encelni t annotations identify the JPA persistence unit.

1.3.4. Event example
Beans may raise events. For example, our Logi n class could raise events when a user logsin or out.

@sessi onScoped @bdel
public class Login {

@nject Credentials credentials;
@nj ect @ssers EntityManager userDat abase;

@nj ect @Qoggedl n Event <User > user Logged| nEvent ;
@nj ect @oggedQut Event <User > user LoggedCQut Event ;

private User user;

@ nj ect
void initQuery(@Jsers EntityManager Factory enf) {
}

public void login() {
Li st<User> results = ...
if ('results.isEnpty()) {

user = results.get(0);
user Loggedl nEvent . fire(user);

}

public void | ogout ()
user LoggedQut Event . fire(user);
user = null;

}

publ i c bool ean isLoggedln() {
return user!=null;
}

@r oduces @uoggedln User getCurrentUser() {
}

The method fire() of the built-in bean of type Event defined in Section 10.3.1, “The Event interface” allows the applica
tion to fire events. Events consist of an event object—in this case the user —and event qualifiers. Event qualifiers—such
as @ogged! n and @oggedout —allow event consumers to specify which events of a certain type they are interested in.

Other beans may observe these events and use them to synchronize their internal state, with no coupling to the bean produ-
cing the events:

@sessi onScoped
public class Pernissions {

@r oduces
private Set<Perm ssion> perm ssions = new HashSet <Per m ssi on>();

JSR-299 Expert Group Draft 6

Architecture

@nject @sers EntityManager userDat abase;
Par anet er <Stri ng> user nanePar am
CriteriaQuery<Perm ssion> query;

@ nj ect
void initQuery(@sers EntityManagerFactory enf) {
CriteriaBuilder cb = enf.getCriteriaBuilder();
user nanePar am = ch. paraneter (String. cl ass);
query = cb. creat eQuery(Perm ssion. cl ass);
Root <Per m ssi on> p = query. fron{Perm ssion. cl ass);
query. sel ect (p);
query. where(ch. equal (p.get(Perm ssion_.user).get(User_.usernane),
user nanePar am);

}
voi d onLogi n(@bserves @oggedl n User user) {
perm ssi ons = new HashSet <Per m ssi on>(user Dat abase. cr eat eQuery(query)

. set Par anet er (user nanePar am user . get User nane())
.getResultList());

}

voi d onLogout (@bserves @oggedQut User user {
perm ssions. clear();
}

The @r oduces annotation applied to a field identifies the field as a producer field, as defined in Section 3.4, “Producer
fields’, akind of shortcut version of a producer method. This producer field allows the permissions of the current user to
be injected to an injection point of type Set <Per ni ssi on>.

The @»ser ves annotation defined in Section 10.4.2, “Declaring an observer method” identifies the method with the an-
notated parameter as an observer method that is called by the container whenever an event matching the type and qualifiers
of the annotated parameter isfired.

1.3.5. Injection point metadata example

It is possible to implement generic beans that introspect the injection point to which they belong. This makes it possible to
implement injection for Logger s, for example.

cl ass Loggers {

@r oduces Logger get Logger (I njectionPoint injectionPoint) {
return Logger. getLogger(injectionPoint.getMenber().getDeclaringd ass().getSinpleNane());
}

The 1 nj ecti onPoi nt interface defined in Section 5.5.7, “Injection point metadata’, provides metadata about the injection
point to the object being injected into it.

Then this class will have aLogger named " Per ni ssi ons" injected:

@sessi onScoped
public class Pernissions {

@nj ect Logger |og;

1.3.6. Interceptor example

Interceptors allow common, cross-cutting concerns to be applied to beans via custom annotations. Interceptor types may
be individually enabled or disabled at deployment time.

The Aut hori zat i onl nt ercept or class defines a custom authorization check:

@becure @ nterceptor
public class Authorizationlnterceptor {

JSR-299 Expert Group Draft 7

Architecture

@nj ect @oggedln User user;
@nj ect Logger |og;

@\r oundl nvoke
public Onject authorize(lnvocationContext ic) {
try {
if (luser.isBanned()) {
| og. fine("Authorized");
return ic.proceed();

}
el se {

| og. fine("Not authorized");

t hrow new Not Aut hori zedExcepti on();
}

}

catch (Not Aut henti cat edExcepti on nae) {
| og. fine("Not authenticated");
t hrow nae;

The @ nt er cept or annotation, defined in Section 9.2, “Declaring the interceptor bindings of an interceptor”, identifies the
Aut hori zati onl nterceptor class as an interceptor. The @ecure annotation is a custom interceptor binding type, as
defined in Section 9.1, “Interceptor binding types’.

@ nherited

@ nt er cept or Bi ndi ng
@rar get ({ TYPE, METHOD})
@Ret ent i on(RUNTI MVE)

public @nterface Secure {}

The @ecur e annotation is used to apply the interceptor to a bean:

@bdel

public class Docunent Edi tor {

@ nj ect Docunent docunent;
@nj ect @oggedln User user;
@nject @ocunents EntityManager em

@secur e
public void save() {

docunent . set Cr eat edBy(current User) ;
em per si st (docunent) ;

When the save() method is invoked, the aut hori ze() method of the interceptor will be called. The invocation will pro-
ceed to the Docunent Edi t or class only if the authorization check is successful.

1.3.7. Decorator example

Decorators are similar to interceptors, but apply only to beans of a particular Java interface. Like interceptors, decorators
may be easily enabled or disabled at deployment time. Unlike interceptors, decorators are aware of the semantics of the in-
tercepted method.

For example, the Dat aAccess interface might be implemented by many beans:

public interface DataAccess<T, V> {
public V getld(T object);
public T load(V id);
public void save(T object);
public void delete(T object);

public C ass<T> get DataType();

The Dat aAccessAut hori zat i onDecor at or class defines the authorization checks:

JSR-299 Expert Group Draft 8

Architecture

@ecor at or
public abstract class DataAccessAut horizationDecorator<T, V> inplenments DataAccess<T, V> {

@nj ect @el egat e Dat aAccess<T, V> del egate;

@nj ect Logger |og;
@ nj ect Set <Perm ssion> perm ssi ons;

public void save(T object) {
aut hori ze(Secur eActi on. SAVE, object);
del egat e. save(obj ect);

}

public void delete(T object) {
aut hori ze(Secur eActi on. DELETE, obj ect);
del egat e. del et e(obj ect) ;

}

private void authorize(SecureAction action, T object) {
V id = del egate. getld(object);
Cl ass<T> type = del egat e. get Dat aType();
if (perm ssions.contains(new Perm ssion(action, type, id))) {
| og. fine("Authorized for " + action);

}
el se {
| og. fine("Not authorized for " + action);
t hr ow new Not Aut hori zedExcepti on(action);
}

The @ecor at or annotation defined in Section 8.1.1, “Declaring a decorator” identifies the Dat aAccessAut hori zat i on-
Decor at or Class as a decorator. The @el egat e annotation defined in Section 8.1.2, “Decorator delegate injection points”
identifies the delegate, which the decorator uses to delegate method calls to the container. The decorator applies to any
bean that implements Dat aAccess.

The decorator intercepts invocations just like an interceptor. However, unlike an interceptor, the decorator contains func-
tionality that is specific to the semantics of the method being called.

Decorators may be declared abstract, relieving the developer of the responsibility of implementing all methods of the dec-
orated interface. If a decorator does not implement a method of a decorated interface, the decorator will simply not be
called when that method is invoked upon the decorated bean.

JSR-299 Expert Group Draft 9

Chapter 2. Concepts

A Java EE component is a bean if the lifecycle of its instances may be managed by the container according to the lifecycle
context model defined in Chapter 6, Scopes and contexts. A bean may bear metadata defining its lifecycle and interactions
with other components.

Speaking more abstractly, a bean is a source of contextual objects which define application state and/or logic. These ob-
jects are called contextual instances of the bean. The container creates and destroys these instances and associates them
with the appropriate context. Contextual instances of a bean may be injected into other objects (including other bean in-
stances) that execute in the same context, and may be used in EL expressions that are evaluated in the same context.

A bean comprises the following attributes:

A (nonempty) set of bean types

e A (nonempty) set of qualifiers

» A scope

e Optionadly, abean EL name

e A set of interceptor bindings

e A bean implementation

Furthermore, a bean may or may not be an aternative.

In most cases, a bean developer provides the bean implementation by writing business logic in Java code. The devel oper
then defines the remaining attributes by explicitly annotating the bean class, or by allowing them to be defaulted by the
container, as specified in Chapter 3, Programming model. In certain other cases—for example, Java EE component envir-
onment resources, defined in Section 3.5, “Resources’—the developer provides only the annotations and the bean imple-
mentation is provided by the container.

The bean types and qualifiers of a bean determine where its instances will be injected by the container, as defined in
Chapter 5, Dependency injection, lookup and EL.

The bean developer may also create interceptors and/or decorators or reuse existing interceptors and/or decorators. Thein-
terceptor bindings of a bean determine which interceptors will be applied at runtime. The bean types and qualifiers of a
bean determine which decorators will be applied at runtime. Interceptors are defined by Javainterceptors specification, and
interceptor bindings are specified in Chapter 9, Interceptor bindings. Decorators are defined in Chapter 8, Decorators.

2.1. Functionality provided by the container to the bean

A bean is provided by the container with the following capabilities:

» transparent creation and destruction and scoping to a particular context, specified in Chapter 6, Scopes and contexts
and Chapter 7, Lifecycle of contextual instances,

e scoped resolution by bean type and qualifier annotation type when injected into a Java-based client, as defined by Sec-
tion 5.2, “Typesafe resolution”,

» scoped resolution by name when used in a Unified EL expression, as defined by Section 5.3, “EL name resolution”,

« lifecycle callbacks and automatic injection of other bean instances, specified in Chapter 3, Programming model and
Chapter 5, Dependency injection, lookup and EL,

« method interception, callback interception, and decoration, as defined in Chapter 9, Interceptor bindings and
Chapter 8, Decorators, and

* event notification, as defined in Chapter 10, Events.

JSR-299 Expert Group Draft 10

Concepts

2.2. Bean types

A bean type defines a client-visible type of the bean. A bean may have multiple bean types. For example, the following
bean has three bean types:

public class BookShop
ext ends Busi ness
i mpl enent's Shop<Book> {

}
The bean types are Book Shop, Busi ness and Shop<Book>.

Meanwhile, this session bean has only the local interfaces BookShop and Audi t abl e as bean types, since the bean classis
not a client-visible type.

@t at ef ul
public cl ass BookShopBean
ext ends Busi ness
i mpl enent s BookShop, Auditable {

}

The rules for determining the (unrestricted) set of bean types for a bean are defined in Section 3.1.2, “Bean types of a man-
aged bean”, Section 3.2.2, “Bean types of a session bean”, Section 3.3.1, “Bean types of a producer method”, Sec-
tion 3.4.1, “Bean types of a producer field” and Section 3.5.2, “Bean types of aresource’.

All beans have the bean typej ava. | ang. Obj ect .

The bean types of abean are used by the rules of typesafe resolution defined in Section 5.2, “ Typesafe resolution”.

2.2.1. Legal bean types

Almost any Javatype may be abean type of a bean:

* A bean type may be an interface, a concrete class or an abstract class, and may be declared final or have final methods.
« A bean type may be a parameterized type with actual type parameters and type variables.
¢ A bean type may be an array type. Two array types are considered identical only if the element typeisidentical.

* A bean type may be a primitive type. Primitive types are considered to be identical to their corresponding wrapper
typesinj ava. | ang.

e A bean type may be araw type.

A type variable is not alega bean type. A parameterized type that contains a wildcard type parameter is not a legal bean
type.

Note that certain additional restrictions are specified in Section 5.4.1, “Unproxyable bean types’ for beans with a normal
scope, as defined in Section 6.3, “Normal scopes and pseudo-scopes”.

2.2.2. Restricting the bean types of a bean

The bean types of a bean may be restricted by annotating the bean class or producer method or field with the annotation
@ avax. enterprise.inject. Typed.

@yped(Shop. cl ass)
public class BookShop
ext ends Busi ness
i mpl enent's Shop<Book> {

}

When a @yped annotation is explicitly specified, only the types whose classes are explicitly listed using the val ue mem-
ber are bean types of the bean.

JSR-299 Expert Group Draft 11

Concepts

In the example, the bean has a single bean type: Shop<Book>.

If a bean class or producer method or field specifies a @yped annotation, and the val ue member specifies a class which
does not correspond to a type in the unrestricted set of bean types of a bean, the container automatically detects the prob-
lem and treats it as a definition error.

2.2.3. Typecasting between bean types

A client of a bean may typecast its contextua reference to a bean to any bean type of the bean which is a Java interface.
However, the client may not in general typecast its contextual reference to an arbitrary concrete bean type of the bean. For
example, if our managed bean was injected to the following field:

@ nj ect Busi ness biz;

Then the following typecast islegal:

Shop<Book> bookShop = (Shop<Book>) bi z;

However, the following typecast is not legal and might result in an exception at runtime;

BookShop bookShop = (BookShop) bi z;

2.3. Qualifiers

For a given bean type, there may be multiple beans which implement the type. For example, an application may have two
implementations of the interface Paynent Processor :

cl ass SynchronousPaynent Processor
i npl enent s Paynent Processor {

cl ass Asynchr onousPaynment Processor
i mpl enents Paynent Processor {

}

A client that needs a Paynent Processor that processes payments synchronously needs some way to distinguish between
the two different implementations. One approach would be for the client to explicitly specify the class that implements the
Payment Processor interface. However, this approach creates a hard dependence between client and implementa
tion—exactly what use of the interface was designed to avoid!

A qualifier type represents some client-visible semantic associated with atype that is satisfied by some implementations of
the type (and not by others). For example, we could introduce qualifier types representing synchronicity and asynchron-
icity. In Java code, qualifier types are represented by annotations.

@ynchr onous
cl ass SynchronousPaynent Processor
i mpl enents Paynent Processor {

@\synchr onous
cl ass Asynchr onousPaynment Processor
i mpl enents Paynent Processor {

}

Finally, qualifier types are applied to injection points to distinguish which implementation is required by the client. For ex-
ample, when the container encounters the following injected field, an instance of Synchr onousPaynent Processor will be
injected:

@nj ect @ynchronous Paynent Processor paynent Processor;

JSR-299 Expert Group Draft 12

Concepts

But in this case, an instance of Asynchr onousPaynent Processor will beinjected:

@ nj ect @\synchronous Paynent Processor paynent Processor;

The container inspects the qualifier annotations and type of the injected attribute to determine the bean instance to be in-
jected, according to the rules of typesafe resolution defined in Section 5.2, “ Typesafe resolution”.

An injection point may even specify multiple qualifiers.

Qualifier types are also used as event selectors by event consumers, as defined in Chapter 10, Events, and to bind decorat-
orsto beans, as specified in Chapter 8, Decorators.

2.3.1. Built-in qualifier types

Three standard qualifier types are defined in the package j avax. enterpri se. i nject. In addition, the built-in qualifier
type @aned is defined by the packagej avax. i nj ect .

Every bean has the built-in qualifier @ny, even if it does not explicitly declare this qualifier, except for the special @ew
qualified beans defined in Section 3.12, “ @New qualified beans’.

If a bean does not explicitly declare a qualifier other than @aned, the bean has exactly one additional qualifier, of type
@ef aul t. Thisis called the default qualifier.

The following declarations are equivalent:

@ef aul t
public class Oder { ... }
public class Oder { ... }

Both declarations result in a bean with two qualifiers. @ny and @ef aul t .
The following declaration results in a bean with three qualifiers: @ny, @ef aul t and @amed("ord").

@Nared(" ord")
public class Oder { ... }

The default qualifier is also assumed for any injection point that does not explicitly declare a qualifier, as defined in Sec-
tion 3.10, “The default qualifier at injection points’. The following declarations, in which the use of the @ nj ect annota-
tion identifies the constructor parameter as an injection point, are equivalent:

public class Oder {
@ nj ect
public Order(@efault OrderProcessor processor) { ... }

public class Oder {
@ nj ect
public Order (O derProcessor processor) { ... }

2.3.2. Defining new qualifier types

A qudifier type is a Java annotation defined as @rarget ({METHOD, FIELD, PARAMETER, TYPE}) and
@ret ent i on(RUNTI ME) .

A qualifier type may be declared by specifying the @ avax. i nj ect. Qual i fi er meta-annotation.

@ualifier

@Ret ent i on(RUNTI VE)

@ar get ({ METHOD, FI ELD, PARAMETER, TYPE})
public @nterface Synchronous {}

@ualifier
@Ret ent i on(RUNTI ME)
@rar get ({ METHOD, FI ELD, PARAMETER, TYPE})

JSR-299 Expert Group Draft 13

Concepts

public @nterface Asynchronous {}

A quadlifier type may define annotation members.

@ualifier
@Ret ent i on(RUNTI ME)
@ar get ({ METHOD, FI ELD, PARAVETER, TYPE})
public @nterface PayBy {
Paynment Met hod val ue();
}

2.3.3. Declaring the qualifiers of a bean
The qualifiers of abean are declared by annotating the bean class or producer method or field with the qualifier types.

@Q.DAP
cl ass LdapAut henti cat or
i npl enents Aut henticator {

public class Shop {

@roduces @\ |
public List<Product> getAllProducts() { ... }

@r oduces @W shLi st
public List<Product> getWshList() { ... }

}

Any bean may declare multiple qualifier types.

@ynchronous @Rel i abl e
cl ass SynchronousRel i abl ePaynent Processor
i mpl enents Paymnent Processor {

2.3.4. Specifying qualifiers of an injected field

Qualifier types may be applied to injected fields (see Section 3.8, “Injected fields’) to determine the bean that is injected,
according to the rules of typesafe resolution defined in Section 5.2, “ Typesafe resolution”.

@nj ect @QDAP Authenticator authenticator;

A bean may only be injected to an injection point if it has all the qualifiers of the injection point.

@nj ect @ynchronous @Rel i abl e Paynent Processor paynent Processor;
@nject @\ List<Product> catal og;

@nject @NshList List<Product> wi shlLi st;

2.3.5. Specifying qualifiers of a method or constructor parameter

Qualifier types may be applied to parameters of producer methods, initializer methods, disposer methods, observer meth-
ods or bean constructors (see Chapter 3, Programming model) to determine the bean instance that is passed when the
method is called by the container. The container uses the rules of typesafe resolution defined in Section 5.2, “ Typesafe res-
olution” to determine values for these parameters.

For example, when the container encounters the following producer method, an instance of Synchr onousPaynent Pr o-
cessor Will be passed to the first parameter and an instance of AsynchronousPaynent Processor Will be passed to the
second parameter:

@r oduces

JSR-299 Expert Group Draft 14

Concepts

Payment Processor get Payment Processor (@ynchronous Paynent Processor sync,
@\synchronous Paynent Processor async) {
return i sSynchronous() ? sync : async;

2.4. Scopes

Java EE components such as servlets, EJBs and JavaBeans do not have a well-defined scope. These components are either:

e singletons, such as EJB singleton beans, whose state is shared between all clients,
« stateless objects, such as servlets and statel ess session beans, which do not contain client-visible state, or

« objects that must be explicitly created and destroyed by their client, such as JavaBeans and stateful session beans,
whose state is shared by explicit reference passing between clients.

Scoped objects, by contrast, exist in awell-defined lifecycle context:

» they may be automatically created when needed and then automatically destroyed when the context in which they were
created ends, and

« their state isautomatically shared by clients that execute in the same context.

All beans have a scope. The scope of a bean determines the lifecycle of its instances, and which instances of the bean are
visible to instances of other beans, as defined in Chapter 6, Scopes and contexts. A scope type is represented by an annota-
tion type.

For example, an object that represents the current user is represented by a session scoped object:

@r oduces @pessi onScoped User getCurrentUser() { ... }

An object that represents an order is represented by a conversation scoped object:

@Conver sat i onScoped
public class Oder { ... }

A list that contains the results of a search screen might be represented by arequest scoped object:

@°r oduces @Request Scoped @Naned("orders")
Li st <Order> get Order SearchResults() { ... }

The set of scope typesis extensible.

2.4.1. Built-in scope types

There are five standard scope types defined by this specification, all defined in the packagej avax. enterpri se. cont ext .

¢ The @request Scoped, @ppl i cati onScoped and @essi onScoped annotations defined in Section 6.7, “Context man-
agement for built-in scopes’ represent the standard scopes defined by the Java Servlets specification.

e The @onversati onScoped annotation represents the conversation scope defined in Section 6.7.4, “Conversation con-
text lifecycle’.

e Findly, there is a @ependent pseudo-scope for dependent objects, as defined in Section 6.4, “Dependent pseudo-
scope”.

If an interceptor or decorator has any scope other than @ependent , non-portable behavior results.

2.4.2. Defining new scope types

A scope type is a Java annotation defined as @rar get ({ TYPE, METHOD, FIELD}) and @Ret enti on(RUNTI ME) . All scope
types must also specify the @ avax. i nj ect . Scope OF @ avax. ent er pri se. cont ext . Nor mal Scope meta-annotation.

JSR-299 Expert Group Draft 15

Concepts

For example, the following annotation declares a "business process scope”:

@nherited

@Nor mal Scope

@rarget ({ TYPE, METHOD, FIELD})

@Ret ent i on(RUNTI MVE)

public @nterface Busi nessProcessScoped {}

Custom scopes are normally defined by portable extensions, which must also provide a context object, as defined in Sec-
tion 6.2, “The Context interface”, that implements the custom scope.

2.4.3. Declaring the bean scope

The scope of abean is defined by annotating the bean class or producer method or field with a scope type.

A bean class or producer method or field may specify at most one scope type annotation. If a bean class or producer meth-
od or field specifies multiple scope type annotations, the container automatically detects the problem and treats it as a
definition error.

public class Shop {

@°r oduces @A\pplicationScoped @A |
public List<Product> getAllProducts() { ... }

@°r oduces @bessi onScoped @N shLi st
public List<Product> getWshList() { }

}

Likewise, a bean with the custom business process scope may be declared by annotating it with the
@usi nessProcessScoped annotation:

@Busi nessProcessScoped
public class Oder { ... }

Alternatively, a scope type may be specified using a stereotype annotation, as defined in Section 2.7.2, “ Declaring the ste-
reotypes for abean”.

2.4.4. Default scope

When no scope is explicitly declared by annotating the bean class or producer method or field the scope of a bean is de-
faulted.

The default scope for a bean which does not explicitly declare a scope depends upon its declared stereotypes:

« |f the bean does not declare any stereotype with a declared default scope, the default scope for the bean is @ependent .

< |f all stereotypes declared by the bean that have some declared default scope have the same default scope, then that
scope is the default scope for the bean.

« If there are two different stereotypes declared by the bean that declare different default scopes, then there is no default
scope and the bean must explicitly declare a scope. If it does not explicitly declare a scope, the container automatically
detects the problem and treats it as a definition error.

If abean explicitly declares a scope, any default scopes declared by stereotypes are ignored.

2.5. Bean EL names

A bean may have a bean EL name. A bean with an EL name may be referred to by its name in Unified EL expressions. A
valid bean EL nameis a period-separated list of valid EL identifiers.

The following strings are valid EL names:

or g. mydomai n. myapp. settings

JSR-299 Expert Group Draft 16

Concepts

or der Manager

There is no relationship between the EL name of a session bean and the EJB name of the bean.
Subject to the restrictions defined in Section 5.3.1, “ Ambiguous EL names’, multiple beans may share the same EL name.

Bean EL names alow the direct use of beans in JSP or JSF pages, as defined in Section 12.4, “Integration with Unified
EL". For example, abean with the name pr oduct s could be used like this:

<h: out put Text val ue="#{products.total}"/>

Bean EL names are used by the rules of EL name resolution defined in Section 5.3, “EL name resolution”.

2.5.1. Declaring the bean EL name

To specify the EL name of a bean, the qualifier @ avax. i nj ect . Naned is applied to the bean class or producer method or
field. Thisbean isnamed current Or der :

@Narred("current Order")
public class Oder { ... }

If the @amed annotation does not specify the val ue member, the EL name is defaulted.

2.5.2. Default bean EL names

In the following circumstances, a default EL name must be assigned by the container:

e A bean class or producer method or field of a bean declares a @aned annotation and no EL nameis explicitly specified
by the val ue member.

* A bean declares a stereotype that declares an empty @amed annotation, and the bean does not explicitly specify an EL
name.

The default name for a bean depends upon the bean implementation. The rules for determining the default name for a bean

are defined in Section 3.1.5, “Default name for a managed bean”, Section 3.2.5, “Default name for a session bean”, Sec-
tion 3.3.8, “Default name for a producer method” and Section 3.4.3, “ Default name for a producer field”.

2.5.3. Beans with no EL name
If @aned is not declared by the bean, nor by its stereotypes, a bean has no EL name.

If an interceptor or decorator has a name, non-portable behavior results.

2.6. Alternatives

An alternative is a bean that must be explicitly declared in the beans. xm fileif it should be available for lookup, injection
or EL resolution.

2.6.1. Declaring an alternative

An dternative may be declared by annotating the bean class or producer method or field with the @ t er nati ve annota-
tion.

@\ ternative
public class MockOrder extends Oder { ... }

Alternatively, an alternative may be declared by annotating a bean, producer method or producer field with a stereotype
that declaresan @\ t er nat i ve annotation.

If an interceptor or decorator is an aternative, non-portable behavior results.

JSR-299 Expert Group Draft 17

Concepts

2.7. Stereotypes

In many systems, use of architectural patterns produces a set of recurring bean roles. A stereotype allows a framework de-
veloper to identify such arole and declare some common metadata for beans with that role in a central place.

A stereotype encapsulates any combination of:

e adefault scope, and
e aset of interceptor bindings.

A stereotype may aso specify that:

« all beanswith the stereotype have defaulted bean EL names, or that
¢ al beanswith the stereotype are alternatives.

A bean may declare zero, one or multiple stereotypes.

2.7.1. Defining new stereotypes

A bean stereotype is a Java annotation defined as @rar get ({ TYPE, METHOD, FIELD}), @ar get (TYPE), @ar get (METHOD) ,
@rar get (FI ELD) Or @ar get ({ METHOD, FI ELD}) and @Ret enti on(RUNTI ME) .

A stereotype may be declared by specifying the @ avax. ent er pri se. i nj ect . St er eot ype meta-annotation.

@5t er eot ype

@rar get (TYPE)

@Ret ent i on(RUNTI MVE)

public @nterface Action {}

2.7.1.1. Declaring the default scope for a stereotype

The default scope of a stereotype is defined by annotating the stereotype with a scope type. A stereotype may declare at
most one scope. If a stereotype declares more than one scope, the container automatically detects the problem and treats it
as adefinition error.

For example, the following stereotype might be used to identify action classesin aweb application:

@Request Scoped

@5t er eot ype

@rar get (TYPE)

@Ret ent i on(RUNTI MVE)

public @nterface Action {}

Then actions would have scope @equest Scoped unless the scopeis explicitly specified by the bean.

2.7.1.2. Specifying interceptor bindings for a stereotype

The interceptor bindings of a stereotype are defined by annotating the stereotype with the interceptor binding types. A ste-
reotype may declare zero, one or multiple interceptor bindings, as defined in Section 9.1.2, “Interceptor bindings for ste-
reotypes’.

We may specify interceptor bindings that apply to all actions:

@Request Scoped

@becure

@ ansact i onal

@5t er eot ype

@rar get (TYPE)

@Ret ent i on(RUNTI MVE)

public @nterface Action {}

2.7.1.3. Declaring a @waned stereotype

JSR-299 Expert Group Draft 18

Concepts

A stereotype may declare an empty @iamed annotation, which specifies that every bean with the stereotype has a defaulted
name when aname is not explicitly specified by the bean.

If a stereotype declares a non-empty @aned annotation, the container automatically detects the problem and treats it as a
definition error.

We may specify that all actions have names:

@Request Scoped

@vecure

@r ansact i onal

@\aned

@5t er eot ype

@rar get (TYPE)

@Ret ent i on(RUNTI MVE)

public @nterface Action {}

A stereotype should not declare any qualifier annotation other than @vared. If a stereotype declares any other qualifier an-
notation, non-portable behavior results.

A stereotype should not be annotated @ryped. If a stereotype is annotated @yped, non-portable behavior resuilts.

2.7.1.4. Declaring an @ ternat i ve Stereotype

A stereotype may declare an @\ t er nat i ve annotation, which specifies that every bean with the stereotype is an aternat-
ive.

We may specify that all mock objects are alternatives:

@\ ternative

@5t er eot ype

@rar get (TYPE)

@Ret ent i on(RUNTI MVE)
public @nterface Mck {}

2.7.1.5. Stereotypes with additional stereotypes
A stereotype may declare other stereotypes.

@\udi tabl e

@\ction

@5t er eot ype

@rar get (TYPE)

@Ret ent i on(RUNTI VE)

public @nterface Auditabl eAction {}

Stereotype declarations are transitive—a stereotype declared by a second stereotype is inherited by all beans and other ste-
reotypes that declare the second stereotype.

Stereotypes declared @rar get (TYPE) may not be applied to stereotypes declared @rar get ({ TYPE, METHOD, FIELD}),
@rar get (METHOD) , @ar get (FI ELD) Or @ar get ({ METHOD, FI ELD}).

2.7.2. Declaring the stereotypes for a bean
Stereotype annotations may be applied to a bean class or producer method or field.

@\ction
public class LoginAction { ... }

The default scope declared by the stereotype may be overridden by the bean:

@mbck @\pplicationScoped @Action
public class MdckLogi nActi on extends Logi nAction { ... }

Multiple stereotypes may be applied to the same bean:

@ao @\ction
public class LoginAction { ... }

JSR-299 Expert Group Draft 19

Concepts

2.7.3. Built-in stereotypes

The built-in stereotype @ avax. ent er pri se. i nj ect . Model isintended for use with beans that define the model layer of an
MV C web application architecture such as JSF:

@\aned
@Request Scoped

@5t er eot ype

@rarget ({ TYPE, METHOD, FIELD})
@Ret ent i on(RUNTI MVE)

public @nterface Mdel {}

In addition, the special-purpose @ nt er cept or and @ecor at or stereotypes are defined in Section 9.2, “Declaring the in-
terceptor bindings of an interceptor” and Section 8.1.1, “Declaring a decorator”.

2.8. Problems detected automatically by the container

When the application violates a rule defined by this specification, the container automatically detects the problem. There
are three kinds of problem:

< Definition errors—occur when a single bean definition violates the rules of this specification

« Deployment problems—occur when there are problems resolving dependencies, or inconsistent specialization, in a par-
ticular deployment

e Exceptions—occur at runtime

Definition errors are developer errors. They may be detected by tooling at development time, and are also detected by the
container at initialization time. If a definition error exists in a deployment, initialization will be aborted by the container.

Deployment problems are detected by the container at initialization time. If a deployment problem exists in a deployment,
initialization will be aborted by the container.

The container is permitted to define a non-portable mode, for use at devel opment time, in which some definition errors and
deployment problems do not cause application initialization to abort.

Exceptions represent problems that may not be detected until they actually occur at runtime. All exceptions defined by this
specification are unchecked exceptions. All exceptions defined by this specification may be safely caught and handled by
the application.

JSR-299 Expert Group Draft 20

Chapter 3. Programming model

The container provides built-in support for injection and contextual lifecycle management of the following kinds of bean:

* Managed beans

* Session beans

* Producer methods and fields

» Resources (Java EE resources, persistence contexts, persistence units, remote EJBs and web services)

An application or portable extension may provide other kinds of beans by implementing the interface Bean defined in Sec-
tion 11.1, “The Bean interface”.

3.1. Managed beans

A managed bean is a bean that is implemented by a Java class. This class is called the bean class of the managed bean.
The basic lifecycle and semantics of managed beans are defined by the Managed Beans specification.

If the bean class of a managed bean is annotated with both the @ nt er cept or and @ecor at or stereotypes, the container
automatically detects the problem and treats it as a definition error.

If a managed bean has a public field, it must have scope @ependent . If a managed bean with a public field declares any
scope other than @ependent , the container automatically detects the problem and treats it as a definition error.

If the managed bean class is a generic type, it must have scope @ependent . If a managed bean with a parameterized bean
class declares any scope other than @ependent , the container automatically detects the problem and treats it as a definition
error.

3.1.1. Which Java classes are managed beans?

A top-level Java class is a managed bean if it is defined to be a managed bean by any other Java EE specification, or if it
meets all of the following conditions:

e Itisnot anon-static inner class.

* Itisaconcrete class, or isannotated @ecor at or .

* Itisnot annotated with an EJB component-defining annotation or declared as an EJB bean classinej b-j ar. xm .
e |t doesnot implement j avax. enterpri se. i nj ect. spi . Ext ensi on.

¢ It has an appropriate constructor—either:

» theclass has a constructor with no parameters, or

» theclass declares a constructor annotated @ nj ect .

All Java classes that meet these conditions are managed beans and thus no special declaration is required to define a man-
aged bean.

3.1.2. Bean types of a managed bean

The unrestricted set of bean types for a managed bean contains the bean class, every superclass and al interfaces it imple-
ments directly or indirectly.

Note the additional restrictions upon bean types of beans with normal scopes defined in Section 5.4.1, “Unproxyable bean
types’.

JSR-299 Expert Group Draft 21

Programming model

3.1.3. Declaring a managed bean

A managed bean with a constructor that takes no parameters does not require any special annotations. The following
classes are beans:

public class Shop { .. }
cl ass Paynent Processor | npl inplenments Paynent Processor { ... }

If the managed bean does not have a constructor that takes no parameters, it must have a constructor annotated @ nj ect .
No additional special annotations are required.

A bean class may specify a scope, name, stereotypes and/or qualifiers:

@Conver sati onScoped @ef aul t
public class ShoppingCart { ... }

A managed bean may extend another managed bean:

@Nared("1 ogi nActi on")

public class LoginAction { ... }

@bck

@\aned("| ogi nActi on")

public class MdckLogi nActi on extends Logi nAction { ... }

The second bean is a "mock object" that overrides the implementation of Logi nActi on when running in an embedded EJB
Lite based integration testing environment.

3.1.4. Specializing a managed bean

If a bean class of a managed bean X is annotated @peci al i zes, then the bean class of X must directly extend the bean
class of another managed bean Y. Then X directly specializes Y, as defined in Section 4.3, “ Specialization”.

If the bean class of X does not directly extend the bean class of another managed bean, the container automatically detects
the problem and treatsit as a definition error.

For example, MockLogi nAct i on directly specializes Logi nAct i on:

public class LoginAction { ... }

@bck @pecializes
public class MockLogi nAction extends LoginAction { ... }

3.1.5. Default name for a managed bean

The default name for a managed bean is the unqualified class name of the bean class, after converting the first character to
lower case.

For example, if the bean classis named Pr oduct Li st , the default bean EL nameis pr oduct Li st .

3.2. Session beans

A session bean is a bean that is implemented by a session bean with an EJB 3.x client view. The basic lifecycle and se-
mantics of EJB session beans are defined by the EJB specification.

A dtateless session bean must belong to the @ependent pseudo-scope. A singleton bean must belong to either the
@wppl i cati onScoped Scope or to the @ependent pseudo-scope. If a session bean specifies an illegal scope, the container
automatically detects the problem and treats it as a definition error. A stateful session bean may have any scope.

When a contextual instance of a session bean is obtained via the dependency injection service, the behavior of Sessi on-
Cont ext . get | nvokedBusi nessl nt erface() is specific to the container implementation. Portable applications should not

JSR-299 Expert Group Draft 22

Programming model

rely upon the value returned by this method.

If the bean class of a session bean is annotated @ nt er cept or Or @ecor at or, the container automatically detects the prob-
lem and treats it as a definition error.

If the session bean class is a generic type, it must have scope @ependent . If a session bean with a parameterized bean
class declares any scope other than @ependent , the container automatically detects the problem and treats it as a definition
error.

3.2.1. EJB remove methods of session beans

If asession bean is a stateful session bean:

» |f the scope is @ependent , the application may call any EJB remove method of a contextual instance of the session
bean.

e Otherwise, the application may not directly call any EJB remove method of any contextual instance of the session
bean.

If the application directly calls an EJB remove method of a contextual instance of a session bean that is a stateful session
bean and declares any scope other than @ependent , an Unsuppor t edOper at i onExcept i on iSthrown.

If the application directly calls an EJB remove method of a contextual instance of a session bean that is a stateful session
bean and has scope @ependent then no parameters are passed to the method by the container. Furthermore, the container
ignores the instance instead of destroying it when Cont ext ual . dest roy() iscalled, as defined in Section 7.3.2, “Lifecycle
of stateful session beans’.

3.2.2. Bean types of a session bean

The unrestricted set of bean types for a session bean contains all local interfaces of the bean and their superinterfaces. If
the session bean has a bean class local view, the unrestricted set of bean types contains the bean class and all superclasses.
In addition, j ava. | ang. Ovj ect isabean type of every session bean.

Remote interfaces are not included in the set of bean types.

3.2.3. Declaring a session bean

A session bean does not require any special annotations apart from the component-defining annotation (or XML declara-
tion) required by the EJB specification. The following EJBs are beans:

@i ngl et on
class Shop { .. }

@t at el ess
cl ass Paynent Processor | npl inplenments Paynent Processor { ... }

A bean class may also specify a scope, name, stereotypes and/or qualifiers:

@Conver sati onScoped @5t at eful @efault @bdel
public class ShoppingCart { ... }

A session bean class may extend another bean class:

@t at el ess
@aned("| ogi nActi on")
public class LoginActionlnpl inplenments LoginAction { ... }

@t at el ess

@mbck
@Narred("1 ogi nActi on")
public class MckLogi nActionl npl extends Logi nActionlnmpl { ... }

3.2.4. Specializing a session bean

JSR-299 Expert Group Draft 23

Programming model

If abean class of a session bean X is annotated @peci al i zes, then the bean class of X must directly extend the bean class
of another session bean Y. Then X directly specializes Y, as defined in Section 4.3, “ Specialization”.

If the bean class of X does not directly extend the bean class of another session bean, the container automatically detects
the problem and treatsit as a definition error.

For example, MockLogi nAct i onBean directly specializes Logi nAct i onBean:

@t at el ess
public class Logi nActi onBean inplenments Logi nAction { ... }

@5t at el ess @mbck @ppeci al i zes
public class MckLogi nActi onBean extends Logi nActionBean { ... }

3.2.5. Default name for a session bean

The default name for a managed bean is the unqualified class name of the session bean class, after converting the first
character to lower case.

For example, if the bean classis named Pr oduct Li st , the default bean EL nameis pr oduct Li st .

3.3. Producer methods

A producer method acts as a source of objects to be injected, where:

« theobjectsto beinjected are not required to be instances of beans, or
« the concrete type of the objects to be injected may vary at runtime, or
» the objects require some custom initialization that is not performed by the bean constructor.

A producer method must be a non-abstract method of a managed bean class or session bean class. A producer method may
be either static or non-static. If the bean is a session bean, the producer method must be either a business method of the
EJB or astatic method of the bean class.

If aproducer method sometimes returns a null value, then the producer method must have scope @ependent . If a producer
method returns a null value at runtime, and the producer method declares any other scope, an 1 11 egal Product Excepti on
is thrown by the container. This restriction allows the container to use a client proxy, as defined in Section 5.4, “Client
proxies’.

If the producer method return type is a parameterized type, it must specify an actual type parameter or type variable for
each type parameter.

If a producer method return type contains a wildcard type parameter the container automatically detects the problem and
treatsit as a definition error.

If the producer method return type is a parameterized type with atype variable, it must have scope @ependent . If a produ-
cer method with a parameterized return type with a type variable declares any scope other than @ependent , the container
automatically detects the problem and treats it as a definition error.

If a producer method return type is a type variable the container automatically detects the problem and treats it as a defini-
tion error.

The application may call producer methods directly. However, if the application calls a producer method directly, no para-
meters will be passed to the producer method by the container; the returned object is not bound to any context; and itslife-
cycleis not managed by the container.

A bean may declare multiple producer methods.

3.3.1. Bean types of a producer method

The bean types of a producer method depend upon the method return type:

JSR-299 Expert Group Draft 24

Programming model

« If thereturn typeis an interface, the unrestricted set of bean types contains the return type, al interfaces it extends dir-
ectly or indirectly and j ava. | ang. Ovj ect .

e |If areturn type is primitive or is a Java array type, the unrestricted set of bean types contains exactly two types: the
method return type and j ava. | ang. oj ect .

< |If the return type is a class, the unrestricted set of bean types contains the return type, every superclass and all inter-
facesit implements directly or indirectly.

Note the additional restrictions upon bean types of beans with normal scopes defined in Section 5.4.1, “Unproxyable bean
types’.

3.3.2. Declaring a producer method

A producer method may be declared by annotating a method with the @ avax. ent er pri se. i nj ect . Produces annotation.

public class Shop {
@°r oduces Paynent Processor get Paynent Processor() { ... }
@°r oduces Li st <Product > get Products() { ... }

}

A producer method may also specify scope, name, stereotypes and/or qualifiers.

public class Shop {
@°r oduces @M\ppl i cationScoped @atal og @Naned("cat al 0og")
Li st <Product > getProducts() { ... }

}

If a producer method is annotated @ nject, has a parameter annotated @i sposes, or has a parameter annotated
@bser ves, the container automatically detects the problem and treats it as a definition error.

If a non-static method of a session bean class is annotated @r oduces, and the method is not a business method of the ses-
sion bean, the container automatically detects the problem and treats it as a definition error.

Interceptors and decorators may not declare producer methods. If an interceptor or decorator has a method annotated
@ oduces, the container automatically detects the problem and treats it as a definition error.

A producer method may have any number of parameters. All producer method parameters are injection points.

public class O derFactory {

@°r oduces @onver sati onScoped

public Order createCurrent O der(@ew Order.class) Oder order, @el ected Product product) {
order. set Product (product);
return order;

3.3.3. Specializing a producer method

If aproducer method X is annotated @peci al i zes, then it must be non-static and directly override another producer meth-
od Y. Then X directly specializes Y, as defined in Section 4.3, “ Specialization”.

If the method is static or does not directly override another producer method, the container automatically detects the prob-
lem and treats it as a definition error.

For example:

@bck
public class MockShop extends Shop {

@verride @ppecializes

@r oduces

Paynent Processor get Paynent Processor () {
return new MockPaynent Processor();

}

@verride @ppecializes

JSR-299 Expert Group Draft 25

Programming model

@r oduces

Li st <Product > get Products() {
return PRODUCTS;

}

3.3.4. Disposer methods
A disposer method allows the application to perform customized cleanup of an object returned by a producer method.

A disposer method must be a non-abstract method of a managed bean class or session bean class. A disposer method may
be either static or non-static. If the bean is a session bean, the disposer method must be a business method of the EJB or a
static method of the bean class.

A bean may declare multiple disposer methods.

3.3.5. Disposed parameter of a disposer method

Each disposer method must have exactly one disposed parameter, of the same type as the corresponding producer method
return type. When searching for disposer methods for a producer method, the container considers the type and qualifiers of
the disposed parameter. If a disposed parameter resolves to a producer method declared by the same bean class, according
to the rules of typesafe resolution defined in Section 5.2, “Typesafe resolution”, the container must call this method when
destroying any instance returned by that producer method.

A disposer method may resolve to multiple producer methods declared by the bean class, in which case the container must
call it when destroying any instance returned by any of these producer methods.

3.3.6. Declaring a disposer method

A disposer method may be declared by annotating a parameter @ avax. enter pri se. i nj ect . Di sposes. That parameter is
the disposed parameter.

Qualifiers may be declared by annotating the disposed parameter:

public cl ass UserDat abaseEntityManager {

@°r oduces @onversati onScoped @Jser Dat abase

public EntityManager create(EntityManagerFactory enf) {
return enf.createEntityManager();

}

public void cl ose(@i sposes @Jser Dat abase EntityManager en) {
em cl ose();
}

}

If a method has more than one parameter annotated @i sposes, the container automatically detects the problem and treats
it asadefinition error.

If adisposer method is annotated @r oduces, or @ nj ect or has a parameter annotated @bser ves, the container automatic-
ally detects the problem and treats it as a definition error.

If anon-static method of a session bean class has a parameter annotated @i sposes, and the method is not a business meth-
od of the session bean, the container automatically detects the problem and treats it as a definition error.

Interceptors and decorators may not declare disposer methods. If an interceptor or decorator has a method annotated
@i sposes, the container automatically detects the problem and treats it as a definition error.

In addition to the disposed parameter, a disposer method may declare additional parameters, which may also specify quali-
fiers. These additional parameters are injection points.

public void close(@ sposes @Jser Dat abase EntityManager em @uogger Log log) { ... }

JSR-299 Expert Group Draft 26

Programming model

3.3.7. Disposer method resolution

When searching for disposer methods for a producer method, the container searches for disposer methods which satisfy the
following rules:

» thedisposer method must be declared by the same bean class as the producer method, and

e the disposed parameter must resolve to the producer method, according to the rules of typesafe resolution defined in
Section 5.2, “Typesafe resolution”.

If there are multiple disposer methods for a single producer method, the container automatically detects the problem and
treats it as a definition error.

If the disposed parameter of a disposer method does not resolve to any producer method declared by the bean class, the
container automatically detects the problem and treats it as a definition error.

3.3.8. Default name for a producer method

The default name for a producer method is the method name, unless the method follows the JavaBeans property getter
naming convention, in which case the default name is the JavaBeans property name.

For example, this producer method is named pr oduct s:

@°r oduces @\aned
publ i c List<Product> getProducts() { ... }

This producer method is named paynent Pr ocessor :

@r oduces @\aned
publ i ¢ Paynent Processor paynent Processor() { ... }

3.4. Producer fields

A producer field isadlightly ssimpler aternative to a producer method.

A producer field must be a field of a managed bean class or session bean class. A producer field may be either static or
non-static. If the bean is a session bean, the producer field must be a static field of the bean class.

If aproducer field sometimes contains a null value when accessed, then the producer field must have scope @ependent . If
a producer field contains a null value at runtime, and the producer field declares any other scope, an 111 egal Product Ex-
cepti on is thrown by the container. This restriction allows the container to use a client proxy, as defined in Section 5.4,
“Client proxies”.

If the producer field type is a parameterized type, it must specify an actua type parameter or type variable for each type
parameter.

If aproducer field type contains a wildcard type parameter the container automatically detects the problem and treats it as
adefinition error.

If the producer field type is a parameterized type with a type variable, it must have scope @ependent . If a producer field
with a parameterized type with a type variable declares any scope other than @ependent , the container automatically de-
tects the problem and treats it as a definition error.

If aproducer field typeis a type variable the container automatically detects the problem and treats it as a definition error.

The application may access producer fields directly. However, if the application accesses a producer field directly, the re-
turned object is not bound to any context; and its lifecycle is not managed by the container.

A bean may declare multiple producer fields.

3.4.1. Bean types of a producer field

JSR-299 Expert Group Draft 27

Programming model

The bean types of a producer field depend upon the field type:

< |If thefield type is an interface, the unrestricted set of bean types contains the field type, al interfaces it extends dir-
ectly or indirectly and j ava. | ang. Obj ect .

« |If afield typeisprimitive or is a Java array type, the unrestricted set of bean types contains exactly two types: the field
type andj ava. | ang. vj ect .

« |If thefield typeisaclass, the unrestricted set of bean types contains the field type, every superclass and al interfaces it
implements directly or indirectly.

Note the additional restrictions upon bean types of beans with normal scopes defined in Section 5.4.1, “Unproxyable bean
types’.

3.4.2. Declaring a producer field

A producer field may be declared by annotating afield with the @ avax. ent er pri se. i nj ect . Produces annotation.

public class Shop {
@°r oduces Paynent Processor paynment Processor =;
@°r oduces Li st <Product > products =;

}

A producer field may also specify scope, name, stereotypes and/or qualifiers.

public class Shop {
@r oduces @\pplicationScoped @:at al og @\aned("cat al og")
Li st <Product > products =;

}

If aproducer field is annotated @ nj ect , the container automatically detects the problem and treats it as a definition error.

If a non-static field of a session bean class is annotated @r oduces, the container automatically detects the problem and
treatsit as a definition error.

Interceptors and decorators may not declare producer fields. If an interceptor or decorator has a field annotated @r oduces,
the container automatically detects the problem and treats it as a definition error.

3.4.3. Default name for a producer field
The default name for a producer field is the field name.
For example, this producer field is named pr oduct s:
@r oduces @\aned
public List<Product> products = ...;
3.5. Resources

A resource is a bean that represents a reference to a resource, persistence context, persistence unit, remote EJB or web ser-
vice in the Java EE component environment.

By declaring aresource, we enable an object from the Java EE component environment to be injected by a specifying only
itstype and qualifiers at the injection point. For example, if @ust orer Dat abase isaqualifier:

@ nj ect @ust oner Dat abase Dat asour ce cust omer Dat a;
@nj ect @ustoner Dat abase EntityManager custoner Dat abaseEntityManager;
@ nj ect @ust onmer Dat abase EntityManager Fact ory custoner Dat abaseEnt it yManager Fact ory;

@ nj ect Paynent Servi ce renpt ePaynent Servi ce;

JSR-299 Expert Group Draft 28

Programming model

The container is not required to support resources with scope other than @ependent . Portable applications should not
define resources with any scope other than @ependent .

A resource may not have an EL name.

3.5.1. Declaring a resource

A resource may be declared by specifying a Java EE component environment injection annotation as part of a producer
field declaration.

» For aJava EE resource, @esour ce must be specified.

» For apersistence context, @er si st enceCont ext must be specified.
» For apersistence unit, @er si st enceuni t must be specified.

» For aremote EJB, @JB must be specified.

» For aweb service, @ebSer vi ceRef must be specified.

The injection annotation specifies the metadata needed to obtain the resource, entity manager, entity manager factory, re-
mote EJB instance or web service reference from the component environment.

@r oduces @wbServi ceRef (| ookup="j ava: app/ servi ce/ Paynment Servi ce")
Payment Servi ce paynent Servi ce;

@°r oduces @EJB(ej bLink="../their.jar#Paynment Servi ce")
Paynent Servi ce paynent Servi ce;

@°r oduces @Rresour ce(|l ookup="j ava: gl obal / env/j dbc/ Cust oner Dat asour ce")
@Cust oner Dat abase Dat asour ce cust oner Dat abase;

@°r oduces @per si st enceCont ext (uni t Nane="Cust oner Dat abase")
@Cust oner Dat abase EntityManager cust oner Dat abasePer si st enceCont ext ;

@°r oduces @per si st enceUnit (unit Name="Cust ormer Dat abase")
@Cust oner Dat abase EntityManager Fact ory cust oner Dat abasePer si st enceUni t;

The bean type and qualifiers of the resource are determined by the producer field declaration.

If the producer field declaration specifies an EL name, the container automatically detects the problem and treats it as a
definition error.

If the matching object in the Java EE component environment is not of the same type as the producer field declaration, the
container automatically detects the problem and treats it as a definition error.

3.5.2. Bean types of aresource
The unrestricted set of bean types of a resource is determined by the declared type of the producer field, as specified by
Section 3.4.1, “Bean types of a producer field”.

3.6. Additional built-in beans

A Java EE or embeddable EJB container must provide the following built-in beans, all of which have qualifier @ef aul t :

e a bean with bean type j avax. transacti on. User Transacti on, alowing injection of a reference to the JTA User-
Transacti on,

e abean with bean type j avax. security. Princi pal , allowing injection of a Pri nci pal representing the current caller
identity.

e abean with bean typej avax. val i dati on. Val i dat i onFact ory, alowing injection of the default Bean Validation val -

JSR-299 Expert Group Draft 29

Programming model

i dati onFact ory, and

e abean with bean typej avax. val i dati on. Val i dat or, allowing injection of a val i dat or for the default Bean Valida
tion val i dati onFactory.

These beans are passivation capable dependencies, as defined in Section 6.6.2, “ Passivation capable dependencies’.

If a Java EE component class has an injection point of type User Transact i on and qualifier @ef aul t, and may not validly
make use of the JTA User Transacti on according to the Java EE platform specification, the container automatically de-
tects the problem and treats it as a definition error.

3.7. Bean constructors

When the container instantiates a bean class, it calls the bean constructor. The bean constructor is a constructor of the bean
class.

The application may call bean constructors directly. However, if the application directly instantiates the bean, no paramet-
ers are passed to the constructor by the container; the returned object is not bound to any context; no dependencies are in-
jected by the container; and the lifecycle of the new instance is not managed by the container.

3.7.1. Declaring a bean constructor
The bean constructor may be identified by annotating the constructor @ nj ect .

@sessi onScoped
public class ShoppingCart {

private User customer;

@ nj ect

publ i ¢ Shoppi ngCart (User custoner) {
this.customer = custoner;

}

publ i ¢ Shoppi ngCart (Shoppi ngCart original) {
this. customer = original.custoner;
}

Shoppi ngCart () {}

@Conver sat i onScoped
public class Oder {

private Product product;
private User custoner;

@ nj ect

public Order(@el ected Product product, User custoner) ({
t hi s. product = product;
this. customer = custoner;

}

public Oder(Oder original) {
this. product = original.product;
this. customer = original.custoner;

Order() {}

If a bean class does not explicitly declare a constructor using @ nj ect , the constructor that accepts no parameters is the
bean constructor.

If abean class has more than one constructor annotated @ nj ect , the container automatically detects the problem and treats
it asadefinition error.

JSR-299 Expert Group Draft 30

Programming model

If abean constructor has a parameter annotated @i sposes, Or @bser ves, the container automatically detects the problem
and treats it as a definition error.

A bean constructor may have any number of parameters. All parameters of abean constructor are injection points.

3.8. Injected fields

Aninjected field is a non-static, non-final field of abean class, or of any Java EE component class supporting injection.

3.8.1. Declaring an injected field
An injected field may be declared by annotating the field @ avax. i nj ect . I nj ect .

@Conver sat i onScoped
public class Oder {

@nj ect @el ected Product product;
@nj ect User custoner;

}

If an injected field is annotated @r oduces, the container automatically detects the problem and treats it as a definition er-
ror.

3.9. Initializer methods

An initializer method is a non-abstract, non-static, non-generic method of a bean class, or of any Java EE component class
supporting injection. If the bean is a session bean, the initializer method is not required to be a business method of the ses-
sion bean.

A bean class may declare multiple (or zero) initializer methods.
Method interceptors are never called when the container calls an initializer method.

The application may call initializer methods directly, but then no parameters will be passed to the method by the container.

3.9.1. Declaring an initializer method
An initializer method may be declared by annotating the method @ avax. i nj ect . I nj ect .

@Conver sat i onScoped
public class Oder {

private Product product;
private User custoner;

@ nj ect

voi d set Product (@el ect ed Product product) {
t hi s. product = product;

@ nj ect

public void setCustomer(User custoner) {
thi s. customer = custoner;

}

}

If ageneric method of abean is annotated @ nj ect , the container automatically detects the problem and treats it as a defin-
ition error.

If an initializer method is annotated @r oduces, has a parameter annotated @i sposes, or has a parameter annotated
@bser ves, the container automatically detects the problem and treats it as a definition error.

An initializer method may have any number of parameters. All initializer method parameters are injection points.

JSR-299 Expert Group Draft 31

Programming model

3.10. The default qualifier at injection points

If an injection point declares no qualifier, the injection point has exactly one qualifier, the default qualifier @ef aul t .
The following are equivalent:

@Conver sat i onScoped
public class Oder {

private Product product;
private User custoner;

@ nj ect
public void init(@el ected Product product, User custoner) {

this. product = product;
this.custoner = custoner;

@Conver sat i onScoped
public class Oder {

private Product product;
private User custoner;

@ nj ect
public void init(@bel ected Product product, @efault User custoner) {

t hi s. product = product;
this. customer = custoner;

The following definitions are equivalent:

public class Paynment {
publ i c Paynent (Bi gDeci nal amount) { ... }

@nj ect Paynent (Order order) {
t hi s(order. get Amount () ;

public class Payment {
public Paynment (Bi gDeci mal amount) { ... }

@nj ect Paynent (@efault Order order) {
t hi s(order. get Amount () ;

Finally, the following are equivalent:

@nject Order order;

@nject @efault private Order order;

3.11. The qualifier @aned at injection points

The use of @aned as an injection point qualifier is not recommended, except in the case of integration with legacy code
that uses string-based names to identify beans.

If an injected field declares a @vaned annotation that does not specify the val ue member, the name of the field is assumed.
For example, the following field has the qualifier @anmed(" paynent Ser vi ce") :

@nj ect @laned Paynent Servi ce paynent Servi ce;

JSR-299 Expert Group Draft 32

Programming model

If any other injection point declares a @amed annotation that does not specify the val ue member, the container automatic-
ally detects the problem and treats it as a definition error.

3.12. @ew qualified beans

For each managed bean, and for each session bean, a second bean exists which:

* hasthe same bean class,

* hasthe same bean types,

* hasthe same bean constructor, initializer methods and injected fields, and
e hasthe same interceptor bindings.

However, this second bean:

* hasscope @ependent ,

e hasaexactly one qualifier: @ avax. enterpri se. i nj ect. New(X. cl ass) where X isthe bean class,
¢ hasnobean EL name,

* hasno stereotypes,

« has no observer methods, producer methods or fields or disposer methods, and

e isnot an aternative, and

* isenabled, in the sense of Section 5.1.2, “Enabled and disabled beans’, if and only if some other enabled bean has an
injection point with the qualifier @ew(X. cl ass) where X is the bean class.

Thisbean is called the @ew qualified bean for the class x.

Note that this second bean exists—and may be enabled and available for injection—even if the first bean is disabled, as
defined by Section 5.1.2, “Enabled and disabled beans’, or if the bean class is deployed outside of a bean deployment
archive, as defined in Section 12.1, “Bean deployment archives’, and is therefore not discovered during the bean discovery
process defined in Chapter 12, Packaging and deployment. The container discovers @new qualified beans by inspecting in-
jection points of other enabled beans.

This allows the application to obtain a new instance of a bean which is not bound to the declared scope, but has had de-
pendency injection performed. For example:

@°r oduces @Conver sati onScoped
@peci al O der get Speci al Order (@ew Order. class) Oder order) {

return order;

}

When the qualifier @ew is specified at an injection point and no val ue member is explicitly specified, the container de-
faults the value to the declared type of the injection point. So the following injection point has qualifier
@\ew(Or der. cl ass) :

@°r oduces @onver sati onScoped
@Bpeci al O der getSpecial Order(@ew Order order) { ... }

JSR-299 Expert Group Draft 33

Chapter 4. Inheritance and specialization

A bean may inherit type-level metadata and members from its superclasses.

Inheritance of type-level metadata by beans from their superclasses is controlled via use of the Java @ nherit ed meta-
annotation. Type-level metadatais never inherited from interfaces implemented by a bean.

Member-level metadata is not inherited. However, injected fields, initializer methods, lifecycle callback methods and non-
static observer methods are inherited by beans from their superclasses.

The implementation of abean may by extended by the implementation of a second bean. This specification recognizes two
distinct scenariosin which this situation occurs:

* The second bean specializes the first bean in certain deployment scenarios. In these deployments, the second bean
completely replaces the first, fulfilling the same role in the system.

e The second bean is simply reusing the Java implementation, and otherwise bears no relation to the first bean. The first
bean may not even have been designed for use as a contextual object.

The two cases are quite dissimilar.

By default, Java implementation reuse is assumed. In this case, the two beans have different roles in the system, and may
both be available in a particular deployment.

The bean developer may explicitly specify that the second bean specializes the first. Then second bean inherits, and may
not override, the qualifiers and name of the first bean. The second bean is able to serve the same role in the system as the
first. In aparticular deployment, only one of the two beans may fulfill that role.

4.1. Inheritance of type-level metadata

Suppose aclass X is extended directly or indirectly by the bean class of a managed bean or sessionbean Y.

« If X is annotated with a qualifier type, stereotype or interceptor binding type Z then Y inherits the annotation if and
only if Z declaresthe @ nheri t ed meta-annotation and neither Y nor any intermediate class that is a subclass of X and
asuperclass of Y declares an annotation of type Z.

(This behavior is defined by the Java Language Specification.)

« If X is annotated with a scope type Z then Y inherits the annotation if and only if Z declares the @ nheri t ed meta
annotation and neither Y nor any intermediate class that is a subclass of X and a superclass of Y declares a scope type.

(This behavior is different to what is defined in the Java L anguage Specification.)

A scope type explicitly declared by X and inherited by Y from X takes precedence over default scopes of stereotypes de-
clared or inherited by Y.

For annotations defined by the application or third-party extensions, it is recommended that:

» scope types should be declared @ nheri t ed,

qualifier types should not be declared @ nheri t ed,
< interceptor binding types should be declared @ nheri t ed, and
* stereotypes may be declared @ nheri t ed, depending upon the semantics of the stereotype.

All scope types, qualifier types, and interceptor binding types defined by this specification adhere to these recommenda-
tions.

The stereotypes defined by this specification are not declared @ nher i t ed.

However, in special circumstances, these recommendations may be ignored.

JSR-299 Expert Group Draft 34

Inheritance and specialization

Note that the @aned annotation is not declared @ nheri t ed and bean EL names are not inherited unless specialization is
used.

4.2. Inheritance of member-level metadata

Suppose aclass X is extended directly or indirectly by the bean class of a managed bean or sessionbean Y.

If X declares an injected field x then Y inherits x.
(This behavior is defined by the Common Annotations for the Java Platform specification.)

¢ |If X declares aninitializer, non-static observer, @ost Const ruct or @r eDest r oy method x() thenY inheritsx() if and
only if neither Y nor any intermediate class that is a subclass of X and a superclass of Y overrides the method x() .

(This behavior is defined by the Common Annotations for the Java Platform specification.)

e If X declares a non-static method x() annotated with an interceptor binding type Z then Y inherits the binding if and
only if neither Y nor any intermediate class that is a subclass of X and a superclass of Y overrides the method x() .

(This behavior is defined by the Common Annotations for the Java Platform specification.)
e |f X declares a non-static producer or disposer method x() then Y does not inherit this method.

(This behavior is different to what is defined in the Common Annotations for the Java Platform specification.)
* |If X declares anon-static producer field x then Y does not inherit thisfield.

(This behavior is different to what is defined in the Common Annotations for the Java Platform specification.)

If X is ageneric type, and an injection point, producer method, producer field, disposer method or observer method de-
clared by X isinherited by Y, and the declared type of the injection point, producer method, producer field, disposed para-
meter or event parameter contains type variables declared by X, the type of the injection point, producer method, producer
field, disposed parameter or event parameter inherited in Y is the declared type, after substitution of actual type arguments
declared by Y or any intermediate class that is a subclass of X and a superclass of Y.

For example, the bean DaoC i ent has an injection point of type Dao<T>.
public class DaoCient<T> {

@ nj ect Dao<T> dao;

}

Thisinjection point isinherited by User Daod i ent , but the type of the inherited injection point is Dao<User >.

public class UserDaoC i ent
extends DaoClient<Order> { ... }

4.3. Specialization

If two beans both support a certain bean type, and share at least one qualifier, then they are both eligible for injection to
any injection point with that declared type and qualifier.

Consider the following beans:

@ef ault @\synchr onous
public class AsynchronousService inplenments Service {

}

@\ ternative
public class MyckAsynchronousServi ce extends AsynchronousService {

}

JSR-299 Expert Group Draft 35

Inheritance and specialization

Suppose that the MockAsynchronousServi ce aternative is declared in the beans. xm file of some bean deployment
archive, as defined in Section 5.1, “Modul arity”:

<beans
xm ns="http://java. sun.com xm / ns/j avaee"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
xsi : schemaLocation="http://java. sun.com xm /ns/javaee http://java.sun.com xm /ns/javaeel/ beans_1 0. xsd">
<al ternatives>
<cl ass>or g. myconpany. nock. MockAsynchr onousSer vi ce</ cl ass>
</alternatives>
</ beans>

Then, according to the rules of Section 5.2.1, “Unsatisfied and ambiguous dependencies’, the following ambiguous de-
pendency is resolvable, and so the attribute will receive an instance of MockAsynchr onousSer vi ce:

@nj ect Service service;

However, the following attribute will receive an instance of AsynchronousSer vi ce, even though MockAsynchr onousSer -
vi ce isaselected aternative, because MockAsynchr onousSer vi ce does not have the qualifier @synchr onous:

@nj ect @synchronous Service service;

Thisisauseful behavior in some circumstances, however, it is not always what is intended by the developer.

The only way one bean can completely override a second bean at al injection pointsisif it implements al the bean types
and declares all the qualifiers of the second bean. However, if the second bean declares a producer method or observer
method, then even thisis not enough to ensure that the second bean is never called!

To help prevent developer error, the first bean may:

» directly extend the bean class of the second bean, or
« directly override the producer method, in the case that the second bean is a producer method, and then
explicitly declare that it specializes the second bean.

O\ ternative @pecializes
public class MdckAsynchronousServi ce extends AsynchronousService {

}

When an enabled bean, as defined in Section 5.1.2, “Enabled and disabled beans’, specializes a second bean, we can be
certain that the second bean is never instantiated or called by the container. Even if the second bean defines a producer or
observer method, the method will never be called.

4.3.1. Direct and indirect specialization

The annotation @ avax. enterpri se. i nj ect. depl oynent . Speci al i zes is used to indicate that one bean directly special-
izes another bean, as defined in Section 3.1.4, “ Specializing a managed bean”, Section 3.2.4, “ Specializing a session bean”
and Section 3.3.3, “ Specializing a producer method”.

Formally, abean X is said to specialize another bean Y if either:

e Xdirectly speciaizesY, or
e abean Z exists, such that X directly specializes Z and Z specidizesY.

Then X will inherit the qualifiers and name of Y:

« thequalifiersof X include all qualifiersof Y, together with all qualifiers declared explicitly by X, and
e if Y hasaname, the name of X isthe same asthe nameof Y.

Furthermore, X must have all the bean types of Y. If X does not have some bean type of Y, the container automatically de-
tects the problem and treats it as a definition error.

JSR-299 Expert Group Draft 36

Inheritance and specialization

If Y hasaname and X declares a name explicitly, using @vaned, the container automatically detects the problem and treats
it asadefinition error.

For example, the following bean would have the inherited qualifiers @ef aul t and @synchr onous:

@bck @pecializes
public class MckAsynchronousServi ce extends AsynchronousService {

}
If AsynchronousSer vi ce declared aname:

@efault @\synchronous @Naned("asyncService")
public class AsynchronousService inplenments Service{

}

Then the name would a so automatically be inherited by MockAsynchr onousSer vi ce.

If an interceptor or decorator is annotated @peci al i zes, hon-portable behavior results.

JSR-299 Expert Group Draft 37

Chapter 5. Dependency injection, lookup and EL

The container injects references to contextual instances to the following kinds of injection point:

* Any injected field of abean class

* Any parameter of abean constructor, initializer method, producer method or disposer method

* Any parameter of an observer method, except for the event parameter

References to contextual instances may also be obtained by programmatic lookup or by Unified EL expression evaluation.

In general, a bean type or bean EL name does not uniquely identify a bean. When resolving a bean at an injection point,
the container considers bean type, qualifiers and alternative declarations in beans. xm . When resolving a name in an EL
expression, the container considers the bean name and alternative declarations in beans. xni . This allows bean developers
to decouple type from implementation.

The container is required to support circularities in the bean dependency graph where at least one bean participating in
every circular chain of dependencies has a normal scope, as defined in Section 6.3, “Normal scopes and pseudo-scopes’.
The container is not required to support circular chains of dependencies where every bean participating in the chain has a
pseudo-scope.

5.1. Modularity

Beans and their clients may be deployed in modules in a module architecture such as the Java EE environment. In a mod-
ule architecture, certain modules are considered bean deployment archives. In the Java EE module architecture, any Java
EE module or library is a module. The Java EE module or library is a bean deployment archive if it contains abeans. xmi
file, asdefined in Section 12.1, “Bean deployment archives’.

A bean packaged in a certain module is available for injection, lookup and EL resolution to classes and JSP/JSF pages
packaged in some other module if and only if the bean class of the bean is required to be accessible to the other module by
the class accessibility requirements of the module architecture. In the Java EE module architecture, a bean class is access-
ible in a module if and only if it is required to be accessible according to the class loading requirements defined by the
Java EE platform specification.

Note that, in some Java EE implementations, a bean class might be accessible to some other class even when thisis not re-
quired by the Java EE platform specification. For the purposes of this specification, a class is hot considered accessible to
another class unless accessibility is explicitly required by the Java EE platform specification.

An alternative is not available for injection, lookup or EL resolution to classes or JSP/JSF pages in a module unless the
module is a bean deployment archive and the aternative is explicitly selected in that bean deployment archive. An atern-
ative is never available for injection, lookup or EL resolution in amodule that is not a bean deployment archive.

5.1.1. Declaring selected alternatives for a bean deployment archive

By default, a bean deployment archive has no selected alternatives. An aternative must be explicitly declared using the
<al ter nat i ves> element of the beans. xni file of the bean deployment archive.

The<al ternati ves> element contains alist of bean classes and stereotypes. An alternative is selected for the bean deploy-
ment archiveif either:

« theadlternativeis a managed bean or session bean and the bean class of the bean islisted,

« theadlternativeisaproducer method, field or resource, and the bean class that declares the method or field islisted, or
e any @ ternative stereotype of the aternativeislisted.

For example:

<beans
xm ns="http://java. sun.com xm / ns/ j avaee"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemaLocation="http://java. sun.com xm /ns/javaee http://java.sun.com xm /ns/javaeel/ beans_1 0. xsd">

JSR-299 Expert Group Draft 38

Dependency injection, lookup and EL

<al ternatives>
<cl ass>or g. myconpany. nyf wk. | nMenor yDat abase</ cl ass>
<st er eot ype>or g. nyconpany. nyf wk. Mock</ st er eot ype>
<st er eot ype>or g. nyconpany. si te. Austral i an</ st er eot ype>
</alternatives>
</ beans>

Each child <cl ass> element must specify the name of an alternative bean class. If there is no class with the specified
name, or if the class with the specified name is not an aternative bean class, the container automatically detects the prob-
lem and treats it as a deployment problem.

Each child <st er eot ype> element must specify the name of an @ t er nat i ve stereotype annotation. If there is no annota-
tion with the specified name, or the annotation is not an @\ t er nat i ve sterectype, the container automatically detects the
problem and treats it as a deployment problem.

If the same type is listed twice under the <al t er nati ves> element, the container automatically detects the problem and
treats it as a deployment problem.

For a custom implementation of the Bean interface defined in Section 11.1, “The Bean interface”, the container calls
i sAlternative() to determine whether the bean is an alternative, and get Beand ass() and get St er eot ypes() to determ-
ine whether an aternative is selected in a certain bean deployment archive.

5.1.2. Enabled and disabled beans

A bean is said to be enabled if:

* itisdeployed in abean deployment archive, and

e itisnot aproducer method or field of adisabled bean, and

* itisnot specialized by any other enabled bean, as defined in Section 4.3, “ Specialization”, and either
e itisnot an alternative, or it is aselected aternative of at least one bean deployment archive.
Otherwise, the bean is said to be disabled.

Note that Section 3.12, “@New qualified beans’ defines a special rule that determines whether a @aew qualified bean is en-
abled or disabled. Thisrule applies as only to @vew qualified beans, as an exception to the normal rule defined here.

5.1.3. Inconsistent specialization

Suppose an enabled bean X specializes a second bean Y. If there is another enabled bean that specializes Y we say that in-
consistent specialization exists. The container automatically detects inconsistent speciaization and treats it as a deploy-
ment problem.

5.1.4. Inter-module injection

A beanisavailable for injection in a certain module if:

e thebeanisnot an interceptor or decorator,
* thebeanisenabled,

e the bean is either not an aternative, or the module is a bean deployment archive and the bean is a selected alternative
of the bean deployment archive, and

» the bean classis required to be accessible to classes in the module, according to the class accessibility requirements of
the modul e architecture.

For a custom implementation of the Bean interface defined in Section 11.1, “The Bean interface”, the container calls get -
Beand ass() to determine the bean class of the bean and InjectionPoint.getMenber() and then Mem
ber . get Decl ari ngd ass() to determine the class that declares an injection point.

JSR-299 Expert Group Draft 39

Dependency injection, lookup and EL

5.2. Typesafe resolution

The process of matching a bean to an injection point is called typesafe resolution. The container considers bean type and
qualifiers when resolving a bean to be injected to an injection point. The type and qualifiers of the injection point are
called the required type and required qualifiers. Typesafe resolution usually occurs at application initialization time, al-
lowing the container to warn the user if any enabled beans have unsatisfied or unresolvable ambiguous dependencies.

A bean is assignable to a given injection point if:

» The bean has a bean type that matches the required type. For this purpose, primitive types are considered to match their
corresponding wrapper types in j ava. | ang and array types are considered to match only if their element types are
identical. Parameterized and raw types are considered to match if they are identical or if the bean type is assignable to
the required type, as defined in Section 5.2.3, “Assignability of raw and parameterized types’ or Section 8.3.1,
“Assignability of raw and parameterized types for delegate injection points’.

e Thebean has all the required qualifiers. If no required qualifiers were explicitly specified, the container assumesthe re-
quired qualifier @ef aul t . A bean has a required qualifier if it has a qualifier with (a) the same type and (b) the same
annotation member value for each member which is not annotated @ avax. ent er pri se. uti | . Nonbi ndi ng.

A bean is eligible for injection to a certain injection point if:

« itisavailablefor injection in the module that contains the class that declares the injection point, and
e itisassignabletotheinjection point (using Section 5.2.3, “Assignability of raw and parameterized types’).

For a custom implementation of the Bean interface defined in Section 11.1, “The Bean interface”, the container calls get -
Types() and get Quali fiers() to determine the bean types and qualifiers.

5.2.1. Unsatisfied and ambiguous dependencies

An unsatisfied dependency exists at an injection point when no bean is eligible for injection to the injection point. An am-
biguous dependency exists at an injection point when multiple beans are eligible for injection to the injection point.

Note that an unsatisfied or ambiguous dependency cannot exist for a decorator delegate injection point, defined in Sec-
tion 8.1.2, “Decorator delegate injection points’.

When an ambiguous dependency exists, the container attempts to resolve the ambiguity. If any eligible beans are aternat-
ives, the container eliminates all eligible beans that are not alternatives. If there is exactly one bean remaining, the contain-
er will select this bean, and the ambiguous dependency is called resolvable.

The container must validate all injection points of all enabled beans and of all other Java EE component classes supporting
injection when the application is initialized to ensure that there are no unsatisfied or unresolvable ambiguous dependen-
cies. If an unsatisfied or unresolvable ambiguous dependency exists, the container automatically detects the problem and
treats it as a deployment problem.

For a custom implementation of the Bean interface defined in Section 11.1, “The Bean interface”, the container calls get -
I nj ecti onPoi nts() to determine the set of injection points.

5.2.2. Legal injection point types

Any legal bean type, as defined in Section 2.2.1, “Legal bean types’ may be the required type of an injection point. Fur-
thermore, the required type of an injection point may contain a wildcard type parameter. However, atype variable is not a
legal injection point type.

If an injection point type is a type variable, the container automatically detects the problem and treats it as a definition er-
ror.

5.2.3. Assignability of raw and parameterized types

A parameterized bean type is considered assignable to a raw required type if the raw types are identical and al type para-
meters of the bean type are either unbounded type variables or j ava. | ang. Obj ect .

JSR-299 Expert Group Draft 40

Dependency injection, lookup and EL

A parameterized bean type is considered assignable to a parameterized required type if they have identical raw type and
for each parameter:

e the required type parameter and the bean type parameter are actual types with identical raw type, and, if the type is
parameterized, the bean type parameter is assignable to the required type parameter according to these rules, or

« therequired type parameter is a wildcard, the bean type parameter is an actual type and the actual type is assignable to
the upper bound, if any, of the wildcard and assignable from the lower bound, if any, of the wildcard, or

» therequired type parameter is a wildcard, the bean type parameter is a type variable and the upper bound of the type
variable is assignable to or assignable from the upper bound, if any, of the wildcard and assignable from the lower
bound, if any, of the wildcard, or

< the required type parameter is an actual type, the bean type parameter is a type variable and the actual type is as-
signable to the upper bound, if any, of the type variable, or

« therequired type parameter and the bean type parameter are both type variables and the upper bound of the required
type parameter is assignable to the upper bound, if any, of the bean type parameter.

For example, Dao is eligible for injection to any injection point of type @efault Dao<Order>, @efault Dao<User>,
@efault Dao<?>, @efault Dao<? extends Persistent>0Or @efault Dao<X extends Persistent>where X isatype
variable.

public class Dao<T extends Persistent> { ... }

Furthermore, User Dao is €eligible for injection to any injection point of type @efault Dao<User>, @efault Dao<?>,
@ef ault Dao<? extends Persistent>0r @efault Dao<? extends User>.

public class UserDao extends Dao<User> { ... }

Note that a special set of rules, defined in Section 8.3.1, “Assignability of raw and parameterized types for delegate injec-
tion points’, apply if and only if the injection point is a decorator delegate injection point.

5.2.4. Primitive types and null values

For the purposes of typesafe resolution and dependency injection, primitive types and their corresponding wrapper typesin
the package j ava. | ang are considered identical and assignable. If necessary, the container performs boxing or unboxing
when it injects avalue to afield or parameter of primitive or wrapper type.

However, if an injection point of primitive type resolves to a bean that may have null values, such as a producer method
with a non-primitive return type or a producer field with a non-primitive type, the container automatically detects the prob-
lem and treats it as a deployment problem.

For a custom implementation of the Bean interface defined in Section 11.1, “The Bean interface”, the container calsi s-
Nul | abl e() to determine whether the bean may have null values.

5.2.5. Qualifier annotations with members
Qualifier types may have annotation members.

@PayBy(CHEQUE) cl ass ChequePaynent Processor inpl enents Paynent Processor { ... }

@PayBy(CREDI T_CARD) cl ass Credit CardPaynent Processor inplenents Paynent Processor { ... }
Then only chequePaynent Processor isacandidate for injection to the following attribute:

@ nj ect @ayBy(CHEQUE) Paynent Processor paynent Processor;

On the other hand, only cr edi t Car dPaynent Processor isacandidate for injection to this attribute:

@nj ect @ayBy(CREDI T_CARD) Paynent Processor paynent Processor;

JSR-299 Expert Group Draft 41

Dependency injection, lookup and EL

The container callsthe equal s() method of the annotation member value to compare values.
An annotation member may be excluded from consideration using the @onbi ndi ng annotation.

@ualifier
@Ret ent i on(RUNTI MVE)
@rar get ({ METHOD, FI ELD, PARAMETER, TYPE})
public @nterface PayBy {
Paynent Met hod val ue();
@Nonbi ndi ng String comment ();
}

Array-valued or annotation-valued members of a qualifier type should be annotated @onbi ndi ng in a portable application.
If an array-valued or annotation-valued member of a qualifier type is not annotated @onbi ndi ng, non-portable behavior
results.

5.2.6. Multiple qualifiers

A bean class or producer method or field may declare multiple qualifiers.

@ynchronous @PayBy(CHEQUE) cl ass ChequePaynent Processor inpl ements Paynent Processor { ... }

Then chequePaynent Processor would be considered a candidate for injection into any of the following attributes:

@ nj ect @ayBy(CHEQUE) Paynent Processor paynent Processor;
@ nj ect @ynchronous Paynent Processor paynent Processor;
@ nj ect @ynchronous @PayBy(CHEQUE) Paynent Processor paynent Processor;

A bean must declare all of the qualifiers that are specified at the injection point to be considered a candidate for injection.

5.3. EL name resolution

The process of matching abean to aname used in EL is called name resolution. Since there is no typing information avail-
able in EL, the container may consider only the EL name. Name resolution usually occurs at runtime, during EL expres-
sion evaluation.

An EL name resolves to a bean if:

¢ the bean has the given EL name, and
» thebeanisavailable for injection in the war containing the JSP or JSF page with the EL expression.

For a custom implementation of the Bean interface defined in Section 11.1, “The Bean interface”, the container calls get -
Nane() to determine the bean EL name.

5.3.1. Ambiguous EL names

An ambiguous EL name existsin an EL expression when an EL name resolves to multiple beans. When an ambiguous EL
name exists, the container attempts to resolve the ambiguity. If any of the beans are alternatives, the container eliminates
al beans that are not aternatives. If there is exactly one bean remaining, the container will select this bean, and the am-
biguous EL nameis called resolvable.

All unresolvable ambiguous EL names are detected by the container when the application isinitialized. Suppose two beans
are both available for injection in a certain war, and either:

* thetwo beans have the same EL name and the name is not resolvable, or
» the EL name of one bean is of the form x. y, wherey isavalid bean EL name, and x is the EL name of the other bean,

the container automatically detects the problem and treats it as a deployment problem.

JSR-299 Expert Group Draft 42

Dependency injection, lookup and EL

5.4. Client proxies

An injected reference, or reference obtained by programmatic lookup, is usually a contextual reference as defined by Sec-
tion 6.5.3, “ Contextual reference for abean”.

A contextual reference to a bean with a normal scope, as defined in Section 6.3, “Normal scopes and pseudo-scopes’, is
not a direct reference to a contextual instance of the bean (the object returned by Cont ext ual . creat e()). Instead, the con-
textual reference is aclient proxy object. A client proxy implements/extends some or al of the all bean types of the bean
and delegates all method calls to the current instance (as defined in Section 6.3, “Normal scopes and pseudo-scopes’) of
the bean.

There are anumber of reasons for this indirection:

e The container must guarantee that when any valid injected reference to a bean of normal scope is invoked, the invoca-
tion is always processed by the current instance of the injected bean. In certain scenarios, for example if a request
scoped bean is injected into a session scoped bean, or into a servlet, this rule requires an indirect reference. (Note that
the @ependent pseudo-scope is not a normal scope.)

e The container may use a client proxy when creating beans with circular dependencies. Thisis only necessary when the
circular dependencies are initialized via a managed bean constructor or producer method parameter. (Beans with scope
@ependent hever have circular dependencies.)

« Finaly, client proxies are may be passivated, even when the bean itself may not be. Therefore the container must use a
client proxy whenever a bean with normal scope is injected into a bean with a passivating scope, as defined in Sec-
tion 6.6, “Passivation and passivating scopes’. (On the other hand, beans with scope @ependent must be serialized
along with their client.)

Client proxies are never required for a bean whose scope is a pseudo-scope such as @ependent .

Client proxies may be shared between multiple injection points. For example, a particular container might instantiate ex-
actly one client proxy object per bean. (However, this strategy is not required by this specification.)

5.4.1. Unproxyable bean types

Certain legal bean types cannot be proxied by the container:

e classes which don't have a non-private constructor with no parameters,
» classes which are declared final or have final methods,

e primitive types,

e and array types.

If an injection point whose declared type cannot be proxied by the container resolves to a bean with a normal scope, the
container automatically detects the problem and treats it as a deployment problem.

5.4.2. Client proxy invocation

Every time a method of the bean isinvoked upon a client proxy, the client proxy must:

« obtain acontextua instance of the bean, as defined in Section 6.5.2, “Contextual instance of abean”, and

* invoke the method upon this instance.

If the scope is not active, as specified in Section 6.5.1, “The active context object for a scope”, the client proxy rethrows
the Cont ext Not Act i veExcepti on OF I | | egal St at eExcept i on.

The behavior of all methods declared by j ava. | ang. Obj ect , except for t oSt ri ng() , is undefined for a client proxy. Port-
able applications should not invoke any method declared by j ava. | ang. Qbj ect, except for t oSt ri ng(), on aclient proxy.

JSR-299 Expert Group Draft 43

Dependency injection, lookup and EL

5.5. Dependency injection

From time to time the container instantiates beans and other Java EE component classes supporting injection. The resulting
instance may or may not be a contextual instance as defined by Section 6.5.2, “ Contextual instance of abean”.

The container is required to perform dependency injection whenever it creates one of the following contextual objects:

e contextual instances of session beans, and
e contextua instances of managed beans.

The container is aso required to perform dependency injection whenever it instantiates any of the following non-
contextual objects:

¢ non-contextual instances of session beans (for example, session beans obtained by the application from JNDI or injec-
ted using @JB),

« non-contextual instances of managed beans, and
« instances of any other Java EE component class supporting injection.
In aJava EE 5 environment, the container is not required to support injection for non-contextual objects.

The container interacts with instances of beans and other Java EE component classes supporting injection by calling meth-
ods and getting and setting field values.

The object injected by the container may not be a direct reference to a contextual instance of the bean. Instead, it isanin-
jectable reference, as defined by Section 6.5.5, “Injectable references’.

5.5.1. Injection using the bean constructor

When the container instantiates a managed bean or session bean with a constructor annotated @ nj ect , the container calls
this constructor, passing an injectable reference to each parameter. If there is no constructor annotated @ nj ect , the con-
tainer calls the constructor with no parameters.

5.5.2. Injection of fields and initializer methods

When the container creates a new instance of a managed bean, session bean, or of any other Java EE component class sup-
porting injection, the container must:

« Initialize the values of al injected fields. The container sets the value of each injected field to an injectable reference.
e Cdl al initializer methods, passing an injectable reference to each parameter.

The container must ensure that:

« Initializer methods declared by a class X in the type hierarchy of the bean are called after all injected fields declared by
X or by superclasses of X have been initialized, and after al Java EE component environment resource dependencies
declared by X or by superclasses of X have been injected.

« Any @ost Const ruct callback declared by aclass X in the type hierarchy of the bean is called after al initializer meth-
ods declared by X or by superclasses of X have been called, after all injected fields declared by X or by superclasses of
X have been initialized, and after all Java EE component environment resource dependencies declared by X or by su-
perclasses of X have been injected.

« Any servietinit() method is caled after all initializer methods have been caled, all injected fields have been initial-
ized and al Java EE component environment resource dependencies have been injected.

5.5.3. Destruction of dependent objects

When the container destroys an instance of a bean or of any Java EE component class supporting injection, the container

JSR-299 Expert Group Draft 44

Dependency injection, lookup and EL

destroys al dependent objects, as defined in Section 6.4.2, “Destruction of objects with scope @Dependent”, after the
@r eDest r oy callback completes and after the servlet dest roy() method is called.

5.5.4. Invocation of producer or disposer methods

When the container calls a producer or disposer method, the behavior depends upon whether the method is static or non-
static:

* |f the method is static, the container must invoke the method.

* Otherwisg, if the method is non-static, the container must:

* Obtain a contextual instance of the bean which declares the method, as defined by Section 6.5.2, “Contextua in-
stance of abean”.

» Invoke the method upon this instance, as a business method invocation, as defined in Section 7.2, “Container in-
vocations and interception”.

The container passes an injectable reference to each injected method parameter. The container is also responsible for des-
troying dependent objects created during this invocation, as defined in Section 6.4.2, “Destruction of objects with scope
@Dependent”.

5.5.5. Access to producer field values

When the container accesses the value of a producer field, the value depends upon whether the field is static or non-static:

« If the producer field is static, the container must access the field value.

e Otherwise, if the producer field is non-static, the container must:

e Obtain an contextual instance of the bean which declares the producer field, as defined by Section 6.5.2,
“Contextual instance of abean”.

* Accessthefield value of thisinstance.

5.5.6. Invocation of observer methods

When the container calls an observer method (defined in Section 10.4, “Observer methods”), the behavior depends upon
whether the method is static or non-static:

* |f the observer method is static, the container must invoke the method.

* Otherwise, if the observer method is non-static, the container must:

* Obtain a contextual instance of the bean which declares the observer method according to Section 6.5.2,
“Contextual instance of abean”. If this observer method is a conditional observer method, obtain the contextual in-
stance that aready exists, only if the scope of the bean that declares the observer method is currently active,
without creating a new contextual instance.

» Invoke the observer method on the resulting instance, if any, as a business method invocation, as defined in Sec-
tion 7.2, “ Container invocations and interception”.

The container must pass the event object to the event parameter and an injectable instance to each injected method para-

meter. The container is also responsible for destroying dependent objects created during this invocation, as defined in Sec-
tion 6.4.2, “Destruction of objects with scope @Dependent”.

5.5.7. Injection point metadata

The interface j avax. enterpri se. i nj ect. spi . | nj ecti onPoi nt provides access to metadata about an injection point. An

JSR-299 Expert Group Draft 45

Dependency injection, lookup and EL

instance of 1 nj ecti onPoi nt May represent an injected field or a parameter of a bean constructor, initializer method, pro-
ducer method, disposer method or observer method.

public interface InjectionPoint {
public Type get Type();
publ i c Set<Annotation> getQualifiers();
publ i ¢ Bean<?> get Bean();
publ i c Menber get Menber ();
publ i c Annot at ed get Annot at ed() ;
publ i c bool ean isDel egate();
public bool ean isTransient();

e The get Bean() method returns the Bean object representing the bean that defines the injection point. If the injection
point does not belong to a bean, get Bean() returnsanull value.

e Theget Type() and get Qual i fi ers() methods return the required type and required qualifiers of the injection point.

e Theget Menber () method returns the Fi el d object in the case of field injection, the Met hod object in the case of meth-
od parameter injection or the Const r uct or object in the case of constructor parameter injection.

¢ The getAnnotated() method returns an instance of javax.enterprise.inject.spi.AnnotatedField oOr
javax. enterprise.inject.spi.Annot at edPar amet er , depending upon whether the injection point is an injected field
or a constructor/method parameter.

e TheisbDel egat e() method returnstrue if the injection point is a decorator delegate injection point, and f al se other-
wise.

e TheisTransient () method returnst r ue if theinjection point isatransient field, and f al se otherwise.

Occasionally, a component with scope @ependent needs to access metadata relating to the object into which it isinjected.
For example, the following producer method creates injectable Logger s. The log category of a Logger depends upon the
class of the object into which it isinjected:

@r oduces Logger createlogger(InjectionPoint injectionPoint) {

return Logger.getLogger(injectionPoint.getMenber().getDeclaringd ass().getNane());
}

The container must provide a bean with scope @ependent , bean type I nj ect i onPoi nt and qualifier @ef aul t, allowing
dependent objects, as defined in Section 6.4.1, “Dependent objects’, to obtain information about the injection point to
which they belong. The built-in implementation must be a passivation capable dependency, as defined in Section 6.6.2,
“Passivation capable dependencies’.

If a bean that declares any scope other than @ependent has an injection point of type I nj ecti onPoi nt and qualifier
@ef aul t, the container automatically detects the problem and treatsit as a definition error.

If a Java EE component class supporting injection that is not a bean has an injection point of type I nj ecti onPoi nt and
qualifier @ef aul t , the container automatically detects the problem and treats it as a definition error.

5.6. Programmatic lookup

In certain situations, injection is not the most convenient way to obtain a contextual reference. For example, it may not be
used when:

« thebean type or qualifiers vary dynamically at runtime, or

¢ depending upon the deployment, there may be no bean which satisfies the type and qualifiers, or

« wewould like to iterate over all beans of a certain type.

In these situations, an instance of thej avax. ent er pri se. i nj ect . | nst ance interface may be injected:

@ nj ect | nstance<Paynent Processor > paynent Processor;

The method get () returns a contextual reference:

JSR-299 Expert Group Draft 46

Dependency injection, lookup and EL

Payment Processor pp = paynent Processor.get();

Any combination of qualifiers may be specified at the injection point:

@ nj ect @PayBy(CHEQUE) | nst ance<Paynent Processor > chequePaynent Processor;

Or, the @ny qualifier may be used, allowing the application to specify qualifiers dynamically:

@nj ect @ny |nstance<Paynent Processor> anyPaynent Processor ;

Aﬁﬁot ation qualifier = synchronously ? new SynchronousQualifier() : new AsynchronousQualifier();
Payment Processor pp = anyPaynent Processor. sel ect(qualifier).get().process(paynent);

In this example, the returned bean has qualifier @ynchr onous or @synchr onous depending upon the value of synchr on-
ously.

Finally, the @vew qualifier may be used, allowing the application to obtain a @ew qualified bean, as defined in Sec-
tion 3.12, “ @New qualified beans’:

@ nj ect @lew ChequePaynent Processor. cl ass) | nstance<Paynent Processor> chequePaynent Processor;

It's even possible to iterate over a set of beans:

@nj ect @ny |nstance<Paynent Processor> anyPaynent Processor ;

for (Paynent Processor pp: anyPaynent Processor) pp.test();

5.6.1. The I nst ance interface

The I nst ance interface provides a method for obtaining instances of beans with a specified combination of required type
and qualifiers, and inherits the ability to iterate beans with that combination of required type and qualifiers from
java.lang. I terable:

public interface Instance<T> extends |terabl e<T> Provider<T> {

public I nstance<T> sel ect (Annotation... qualifiers);
public <U extends T> | nstance<U> sel ect (Cl ass<U> subtype, Annotation... qualifiers);
public <U extends T> |Instance<U> sel ect (TypelLiteral <U> subtype, Annotation... qualifiers);

publ i c bool ean isUnsatisfied();
publ i ¢ bool ean i sAnbi guous();

For an injected I nst ance:

< therequired typeisthe type parameter specified at the injection point, and
» therequired qualifiers are the qualifiers specified at the injection point.
For example, thisinjected I nst ance has required type Paynent Processor and required qualifier @ny:

@nject @\ny |nstance<Paynent Processor> anyPaynent Processor;

The sel ect () method returns a child | nst ance for a given required type and additional required qualifiers. If no required
typeisgiven, the required type is the same as the parent.

For example, this child I nst ance has required type Asynchr onousPaynent Processor and additional required qualifier
@\synchronous:

I nst ance<Asynchr onousPaynent Processor > async = anyPaynent Processor. sel ect (
Asynchr onousPayment Processor. cl ass, new AsynchronousQualifier());

If two instances of the same qualifier type are passed to sel ect (), an | | egal Ar gunent Except i on iSthrown.

If an instance of an annotation that is not a qualifier type ispassed to sel ect (), an |1 egal Ar gunent Except i on iSthrown.

JSR-299 Expert Group Draft 47

Dependency injection, lookup and EL

Theget () method must:

< ldentify a bean that has the required type and required qualifiers and is eligible for injection into the class into which
the parent | nst ance was injected, according to the rules of typesafe resolution, as defined in Section 5.2, “Typesafe
resolution”, resolving ambiguities according to Section 5.2.1, “Unsatisfied and ambiguous dependencies’.

« |If typesafe resolution results in an unsatisfied dependency, throw an Unsati sfi edResol uti onExcepti on. If typesafe
resolution resultsin an unresolvable ambiguous dependency, throw an Anbi guousResol ut i onExcept i on.

« Otherwise, obtain a contextual reference for the bean and the required type, as defined in Section 6.5.3, * Contextual
reference for abean”.

Theiterator() method must:

« ldentify the set of beans that have the required type and required qualifiers and are eligible for injection into the class
into which the parent | nst ance was injected, according to the rules of typesafe resolution, as defined in Section 5.2,
“Typesafe resolution”.

e Return an Iterator, that iterates over the set of contextual references for the resulting beans and required type, as
defined in Section 6.5.3, “ Contextual reference for abean”.

The method i sunsat i sfied() returnstrue if there is no bean that has the required type and qualifiers and is eligible for
injection into the class into which the parent | nst ance wasinjected, or f al se otherwise.

The method i sAnbi guous() returnstrue if there is more than one bean that has the required type and qualifiers and is €li-
giblefor injection into the class into which the parent | nst ance wasinjected, or f al se otherwise.

5.6.2. The built-in I nst ance

The container must provide a built-in bean with:

* Instance<X> and Provi der <x> for every legal bean type X in its set of bean types,
* every qualifier typeinits set of qualifier types,

* scope @ependent ,

* nobean EL name, and

* animplementation provided automatically by the container.

The built-in implementation must be a passivation capable dependency, as defined in Section 6.6.2, “Passivation capable
dependencies’.

5.6.3. Using Annot ati onLiteral and TypeLiteral

javax.enterprise.util.AnnotationLiteral makesiteasier to specify qualifierswhen calling sel ect () :

publ i ¢ Paynent Processor get Synchr onousPayment Processor (Paynment Met hod paynent Met hod) {

cl ass SynchronousQual ifier extends AnnotationLiteral <Synchronous>
i mpl enents Synchronous {}

cl ass PayByQualifier extends AnnotationLiteral <PayBy>
i mpl enents PayBy {
public Paynment Met hod val ue() { return paynent Met hod; }
}

return anyPaynent Processor. sel ect (new SynchronousQualifier(), new PayByQualifier()).get();

}

javax.enterprise. util.TypelLiteral makes it easier to specify a parameterized type with actual type parameters when
calling sel ect ():

publ i ¢ Paynent Processor <Cheque> get ChequePaynent Processor () {
Payment Pr ocessor <Cheque> pp = anyPaynent Processor

JSR-299 Expert Group Draft 48

Dependency injection, lookup and EL

.sel ect (new Typeliteral <Paynment Processor <Cheque>>() {}).get();

JSR-299 Expert Group Draft

49

Chapter 6. Scopes and contexts

Associated with every scope type is a context object. The context object determines the lifecycle and visibility of instances
of al beans with that scope. In particular, the context object defines:

* When anew instance of any bean with that scopeis created
« When an existing instance of any bean with that scope is destroyed
* Which injected references refer to any instance of a bean with that scope

The context implementation collaborates with the container via the Cont ext and Cont ext ual interfaces to create and des-
troy contextual instances.

6.1. The cont ext ual interface

The interface j avax. ent er pri se. cont ext . spi . Cont ext ual defines operations to create and destroy contextual instances
of acertain type. Any implementation of Cont ext ual is called a contextual type. In particular, the Bean interface defined in
Section 11.1, “The Bean interface” extends Cont ext ual , S0 all beans are contextual types.

public interface Contextual <T> {
public T create(Creational Context<T> creational Context);
public void destroy(T instance, Creational Context<T> creational Context);

e create() isresponsiblefor creating new contextual instances of the type.

e destroy() isresponsible for destroying instances of the type. In particular, it is responsible for destroying all depend-
ent objects of an instance.

If an exception occurs while creating an instance, the exception is rethrown by the creat e() method. If the exception is a
checked exception, it must be wrapped and rethrown as an (unchecked) Cr eat i onExcept i on.

If an exception occurs while destroying an instance, the exception must be caught by the dest r oy() method.
If the application invokes a contextual instance after it has been destroyed, the behavior is undefined.

The container and portable extensions may define implementations of the Cont ext ual interface that do not extend Bean,
but it is not recommended that applications directly implement Cont ext ual .

6.1.1. The Creati onal Context interface

The interface j avax. ent erpri se. context . spi . Creati onal Cont ext provides operations that are used by the Cont ext ual
implementation during instance creation and destruction.

public interface Creational Context<T> {
public void push(T inconpl etel nstance);
public void rel ease();

e push() registers an incompletely initialized contextual instance the with the container. A contextual instance is con-
sidered incompletely initialized until it isreturned by the cr eat e() method.

e release() destroys al dependent objects, as defined in Section 6.4.1, “Dependent objects’, of the instance which is
being destroyed, by passing each dependent object to the dest r oy() method of its Cont ext ual object.

The implementation of Cont ext ual isnot required to call push() . However, for certain bean scopes, invocation of push()
between instantiation and injection hel ps the container minimize the use of client proxy objects (which would otherwise be
required to allow circular dependencies).

If Context ual . create() callspush(), it must also return the instance passed to push() .

JSR-299 Expert Group Draft 50

Scopes and contexts

Cont ext ual . creat e() should use the given Cr eat i onal Cont ext When obtaining contextual references to inject, as defined
in Section 6.5.3, “Contextual reference for a bean”, in order to ensure that any dependent objects are associated with the
contextual instance that is being created.

Cont ext ual . destroy() should call rel ease() to alow the container to destroy dependent objects of the contextua in-
stance.

6.2. The cont ext interface

Thejavax. enterpri se. context . spi . Cont ext interface provides an operation for obtaining contextual instances with a
particular scope of any contextual type. Any instance of Cont ext iscalled a context object.

The context object is responsible for creating and destroying contextual instances by calling operations of the Cont ext ual
interface.

The cont ext interface is called by the container and may be called by portable extensions. It should not be called directly
by the application.

public interface Context {
public C ass<? extends Annotation> get Scope();
bool ean i sActive();
public <T> T get (Contextual <T> bean);
public <T> T get (Cont extual <T> bean, Creational Context<T> creational Context);

}

The method get Scope() returns the scope type of the context object.

At a particular point in the execution of the program a context object may be active with respect to the current thread.
When a context object is active thei sActi ve() method returnst r ue. Otherwise, we say that the context object is inactive
and thei sActi ve() method returnsf al se.

The get () method obtains contextual instances of the contextual type represented by the given instance of Cont ext ual .
The get () method may either:

< return an existing instance of the given contextual type, or
e if noCreational Cont ext isgiven, return anull value, or

« if aCreational Context iSgiven, create a new instance of the given contextual type by calling Cont ext ual . create(),
passing the given Cr eat i onal Cont ext , and return the new instance.

If the context object isinactive, the get () method must throw a Cont ext Not Act i veExcept i on.

The get () method may not return a null value unless no Cr eat i onal Cont ext IS @iven, or Cont ext ual . creat e() returns a
null value.

The get () method may not create a new instance of the given contextual type unlessacr eat i onal Cont ext iSgiven.

The context object is responsible for destroying any contextual instance it creates by passing the instance to the dest r oy ()
method of the Cont ext ual object representing the contextual type. A destroyed instance must not subsequently be returned
by the get () method.

The context object must pass the same instance of Creati onal Cont ext t0 Cont ext ual . destroy() that it passed to Con-
textual . create() when it created the instance.

6.3. Normal scopes and pseudo-scopes

Most scopes are normal scopes. The context object for a normal scope type is a mapping from each contextual type with
that scope to an instance of that contextual type. There may be no more than one mapped instance per contextual type per
thread. The set of all mapped instances of contextual types with a certain scope for a certain thread is called the context for
that scope associated with that thread.

A context may be associated with one or more threads. A context with a certain scopeis said to propagate from one point

JSR-299 Expert Group Draft 51

Scopes and contexts

in the execution of the program to another when the set of mapped instances of contextual types with that scope is pre-
served.

The context associated with the current thread is called the current context for the scope. The mapped instance of a contex-
tual type associated with a current context is called the current instance of the contextual type.

The get () operation of the context object for an active normal scope returns the current instance of the given contextual
type.

At certain points in the execution of the program a context may be destroyed. When a context is destroyed, all mapped in-
stances belonging to that context are destroyed by passing them to the Cont ext ual . dest roy() method.

Contexts with normal scopes must obey the following rule:

Suppose beans A, B and z all have normal scopes. Suppose A has an injection point x, and B has an injection point y. Sup-
pose further that both x and y resolve to bean z according to the rules of typesafe resolution. If a is the current instance of
A, and b isthe current instance of B, then both a. x and b. y refer to the same instance of z. This instance is the current in-
stance of z.

Any scope that is not a normal scope is called a pseudo-scope. The concept of a current instance is not well-defined in the
case of a pseudo-scope.

All normal scopes must be explicitly declared @or mal Scope, to indicate to the container that a client proxy is required.
All pseudo-scopes must be explicitly declared @cope, to indicate to the container that no client proxy is required.

All scopes defined by this specification, except for the @ependent pseudo-scope, are normal scopes.

6.4. Dependent pseudo-scope

The @ependent scope type is a pseudo-scope. Beans declared with scope type @ependent behave differently to beans
with other built-in scope types.

When abean is declared to have @ependent scope:

« Noinjected instance of the bean is ever shared between multiple injection points.

« Any instance of the bean injected into an object that is being created by the container is bound to the lifecycle of the
newly created object.

¢ When aUnified EL expression in a JSF or JSP page that refers to the bean by its EL name is evaluated, at most one in-
stance of the bean is instantiated. This instance exists to service just a single evaluation of the EL expression. It isre-
used if the bean EL name appears multiple times in the EL expression, but is never reused when the EL expression is
evaluated again, or when another EL expression is evaluated.

< Any instance of the bean that receives a producer method, producer field, disposer method or observer method invoca
tion exists to service that invocation only.

* Any instance of the bean injected into method parameters of a disposer method or observer method exists to service the
method invocation only (except for observer methods of container lifecycle events).

Every invocation of the get () operation of the Cont ext object for the @ependent scope with a Cr eat i onal Cont ext re-
turns a new instance of the given bean.

Every invocation of the get () operation of the Cont ext object for the @ependent scope with no Cr eat i onal Cont ext re-
turnsanull value.

The @ependent scopeis always active.

6.4.1. Dependent objects

Many instances of beans with scope @ependent belong to some other bean or Java EE component class instance and are
called dependent objects.

JSR-299 Expert Group Draft 52

Scopes and contexts

* Instances of decorators and interceptors are dependent objects of the bean instance they decorate.

« Aninstance of abean with scope @ependent injected into afield, bean constructor or initializer method is a dependent
object of the bean or Java EE component class instance into which it was injected.

e Aninstance of a bean with scope @ependent injected into a producer method is a dependent object of the producer
method bean instance that is being produced.

« Aninstance of abean with scope @ependent obtained by direct invocation of an I nst ance is a dependent object of the
instance of | nst ance.

6.4.2. Destruction of objects with scope @ependent

Dependent objects of a contextual instance are destroyed when Contextual . destroy() cals Creational Con-
text.rel ease(), asdefined in Section 6.1.1, “ The Creational Context interface”.

Additionally, the container must ensure that:

« all dependent objects of a non-contextual instance of a bean or other Java EE component class are destroyed when the
instance is destroyed by the container,

« al @ependent scoped contextual instances injected into method parameters of an observer method of any container li-
fecycle event, as defined in Section 11.5, “Container lifecycle events’, is destroyed after all observers of the Bef or e-
Shut down event complete,

e al @ependent scoped contextual instances injected into method parameters of a disposer method or observer method
of any other event are destroyed when the invocation completes,

e any @ependent scoped contextual instance created to receive a producer method, producer field, disposer method or
observer method invocation is destroyed when the invocation completes, and

e all @ependent scoped contextual instances created during evaluation of a Unified EL expression in a JSP or JSF page
are destroyed when the evaluation compl etes.

Finally, the container is permitted to destroy any @ependent scoped contextual instance at any time if the instance is no
longer referenced by the application (excluding weak, soft and phantom references).

6.4.3. Dependent pseudo-scope and Unified EL

Suppose a Unified EL expression in a JSF or JSP page refers to a bean with scope @ependent by its EL name. Each time
the EL expression is evaluated:

» thebeanisinstantiated at most once, and
« theresulting instance is reused for every appearance of the EL name, and
» theresulting instance is destroyed when the evaluation completes.

Portable extensions that integrate with the container via Unified EL should also ensure that these rules are enforced.

6.5. Contextual instances and contextual references

The cont ext object is the ultimate source of the contextual instances that underly contextual references.

6.5.1. The active context object for a scope

From time to time, the container must obtain an active context object for a certain scope type. The container must search
for an active instance of Cont ext associated with the scope type.

« |If no active context object exists for the scope type, the container throws a Cont ext Not Act i veExcept i on.

JSR-299 Expert Group Draft 53

Scopes and contexts

« If more than one active context object exists for the given scope type, the container must throw an 111 egal St at eEx-
cepti on.

If thereis exactly one active instance of Cont ext associated with the scope type, we say that the scopeis active.

6.5.2. Contextual instance of a bean

From time to time, the container must obtain a contextual instance of a bean. The container must:

« obtain the active context object for the bean scope, then

e obtain an instance of the bean by calling Cont ext . get (), passing the Bean instance representing the bean and an in-
stance of Cr eat i onal Cont ext .

From time to time, the container attempts to obtain a contextual instance of a bean that already exists, without creating a
new contextual instance. The container must determine if the scope of the bean isactive and if it is:

« obtain the active context object for the bean scope, then

e attempt to obtain an existing instance of the bean by calling Cont ext . get (), passing the Bean instance representing the
bean without passing any instance of Cr eat i onal Cont ext .

If the scopeis not active, or if Cont ext . get () returnsanull value, thereis no contextual instance that aready exists.

A contextual instance of any of the built-in kinds of bean defined in Chapter 3, Programming model is considered an in-
ternal container construct, and it is therefore not strictly required that a contextual instance of a built-in kind of bean dir-
ectly implement the bean types of the bean. However, in this case, the container is required to transform its internal repres-
entation to an object that does implement the bean types expected by the application before injecting or returning a contex-
tual instance to the application.

For a custom implementation of the Bean interface defined in Section 11.1, “The Bean interface”, the container calls get -
Scope() to determine the bean scope.

6.5.3. Contextual reference for a bean

From time to time, the container must obtain a contextual reference for a bean and a given bean type of the bean. A con-
textual reference implements the given bean type and all bean types of the bean which are Java interfaces. A contextual
reference is not, in general, required to implement all concrete bean types of the bean.

Contextual references must be obtained with a given cr eat i onal Cont ext , allowing any instance of scope @ependent that
is created to be later destroyed.

< |f the bean has a normal scope and the given bean type cannot be proxied by the container, as defined in Section 5.4.1,
“Unproxyable bean types’, the container throws an Unpr oxyabl eResol ut i onExcept i on.

* If the bean has a normal scope, then the contextual reference for the bean is a client proxy, as defined in Section 5.4,
“Client proxies’, created by the container, that implements the given bean type and all bean types of the bean which
are Javainterfaces.

* Otherwiseg, if the bean has a pseudo-scope, the container must obtain a contextual instance of the bean. If the bean has
scope @ependent , the container must associate it with the cr eat i onal Cont ext .

The container must ensure that every injection point of type | nj ecti onPoi nt and qualifier @ef aul t of any dependent ob-
ject instantiated during this process receives:

e aninstance of | nj ecti onPoi nt representing the injection point into which the dependent object will be injected, or

e anull valueif it isnot being injected into any injection point.

6.5.4. Contextual reference validity

JSR-299 Expert Group Draft 54

Scopes and contexts

A contextual reference for abean is valid only for a certain period of time. The application should not invoke a method of
aninvalid reference.

The validity of a contextual reference for a bean depends upon whether the scope of the bean is a normal scope or a
pseudo-scope.

« Any reference to a bean with a normal scope is valid as long as the application maintains a hard reference to it.
However, it may only be invoked when the context associated with the normal scope is active. If it isinvoked when the
context isinactive, a Cont ext Not Act i veExcept i on isthrown by the container.

* Any reference to a bean with a pseudo-scope (such as @ependent) is valid until the bean instance to which it refersis
destroyed. It may be invoked even if the context associated with the pseudo-scope is not active. If the application in-
vokes amethod of areference to an instance that has already been destroyed, the behavior is undefined.

6.5.5. Injectable references

From time to time, the container must obtain an injectable reference for an injection point. The container must:

e ldentify a bean according to the rules defined in Section 5.2, “ Typesafe resolution” and resolving ambiguities accord-
ing to Section 5.2.1, “Unsatisfied and ambiguous dependencies’.

« Obtain a contextual reference for this bean and the type of the injection point according to Section 6.5.3, “ Contextual
reference for abean”.

For certain combinations of scopes, the container is permitted to optimize the above procedure:

* The container is permitted to directly inject a contextual instance of the bean, as defined in Section 6.5.2, “ Contextual
instance of abean”.

e |If anincompletely initialized instance of the bean is registered with the current Cr eat i onal Cont ext , as defined in Sec-
tion 6.1, “The Contextual interface”, the container is permitted to directly inject this instance.

However, in performing these optimizations, the container must respect the rules of injectable reference validity.

6.5.6. Injectable reference validity

Injectable references to a bean must respect the rules of contextual reference validity, with the following exceptions:

« A reference to a bean injected into a field, bean constructor or initializer method is only valid until the object into
which it was injected is destroyed.

e A reference to a bean injected into a producer method is only valid until the producer method bean instance that is be-
ing produced is destroyed.

« A reference to abean injected into a disposer method or observer method is only valid until the invocation of the meth-
od completes.

The application should not invoke a method of an invalid injected reference. If the application invokes a method of an in-
valid injected reference, the behavior is undefined.
6.6. Passivation and passivating scopes

The temporary transfer of the state of an idle object held in memory to some form of secondary storage is called passiva-
tion. The transfer of the passivated state back into memory is called activation.

6.6.1. Passivation capable beans

A bean is called passivation capable if the container is able to temporarily transfer the state of any idle instance to second-
ary storage.

JSR-299 Expert Group Draft 55

Scopes and contexts

« Asdefined by the EJB specification, al stateful session beans are passivation capable. Stateless and singleton session
beans are not passivation capable.

« A managed bean is passivation capable if and only if the bean classis serializable and all interceptors and decorators of
the bean are seriaizable.

e A producer method is passivation capable if and only if it never returns a value which is not passivation capable at
runtime. A producer method with a primitive return type or areturn type that implements or extends Seri al i zabl e iS
passivation capable. A producer method with areturn type that is declared final and does not implement Seri al i zabl e
is not passivation capable.

e A producer field is passivation capable if and only if it never refers to a value which is not passivation capable at
runtime. A producer field with a primitive type or a type that implements or extends Seri al i zabl e iS passivation cap-
able. A producer field with a type that is declared final and does not implement Seri al i zabl e iS not passivation cap-
able.

A custom implementation of Bean is passivation capable if it implements the interface Passi vat i onCapabl e. An imple-
mentation of Cont ext ual that isnot a bean is passivation capable if it implements both Passi vat i onCapabl e and Seri al -
i zabl e.

public interface PassivationCapable {
public String getld();

The get 1 d() method must return a value that uniquely identifies the instance of Bean or Cont ext ual . It is recommended
that the string contain the package name of the class that implements Bean or Cont ext ual .

6.6.2. Passivation capable dependencies

A bean is called a passivation capable dependency if any contextual reference for that bean is preserved when the object
holding the reference is passivated and then activated.

The container must guarantee that:

« all session beans are passivation capable dependencies,

< al beanswith normal scope are passivation capable dependencies,

« al passivation capable beans with scope @ependent are passivation capable dependencies,

« all resources are passivation capable dependencies, and

e thebuilt-in beans of type | nst ance, Event , | nj ect i onPoi nt and BeanManager are passivation capable dependencies.

A custom implementation of Bean is a passivation capable dependency if it implements Passi vati onCapabl e oOr if get -
Scope() returnsanormal scope type.

6.6.3. Passivating scopes

A passivating scope requires that:

« beans with the scope are passivation capable, and

* implementations of Cont ext ual passed to any context object for the scope are passivation capable.
Passivating scopes must be explicitly declared @or mal Scope(passi vati ng=true).

For example, the built-in session and conversation scopes defined in Section 6.7, “Context management for built-in
scopes’ are passivating scopes. No other built-in scopes are passivating scopes.

6.6.4. Validation of passivation capable beans and dependencies

JSR-299 Expert Group Draft 56

Scopes and contexts

For every bean which declares a passivating scope, and for every stateful session bean, the container must validate that the
bean truly is passivation capable and that, in addition, its dependencies are passivation capable.

If amanaged bean which declares a passivating scope:

e isnot passivation capable,

* hasanon-transient injected field, bean constructor parameter or initializer method parameter that does not resolve to a
passivation capable dependency, or

e has an interceptor or decorator with a non-transient injected field, bean constructor parameter or initializer method
parameter that does not resolve to a passivation capable dependency,

then the container automatically detects the problem and treats it as a deployment problem.

If astateful session bean:

e hasanon-transient injected field, bean constructor parameter or initializer method parameter that does not resolveto a
passivation capable dependency, or

e has an interceptor or decorator with a non-transient injected field, bean constructor parameter or initializer method
parameter that does not resolve to a passivation capable dependency,

then the container automatically detects the problem and treats it as a deployment problem.

If aproducer method declares a passivating scope and:

« thecontainer is able to determine that it is not passivation capable by inspecting its return type, or
* hasaparameter that does not resolve to a passivation capable dependency,
then the container automatically detects the problem and treats it as a deployment problem.

If aproducer field declares a passivating scope and:

» thecontainer is able to determine that it is not passivation capable by inspecting its type,
then the container automatically detects the problem and treats it as a deployment problem.

In some cases, the container is not able to determine whether a producer method or field is passivation capable. If a produ-
cer method or field which declares a passivating scope returns an unseriaizable object at runtime, the container must
throw an 111 egal Product Except i on. If a producer method or field of scope @ependent returns an unserializable object
for injection into an injection point that requires a passivation capable dependency, the container must throw an 1 1 | egal -
Pr oduct Excepti on

For a custom implementation of Bean, the container calls get I nj ecti onPoi nt s() to determine the injection points, and
I nj ectionPoint.isTransient () to determine whether the injection point is atransient field.

If a bean which declares a passivating scope type, or any stateful session bean, has a decorator which is not a passivation
capabl e dependency, the container automatically detects the problem and treats it as a deployment problem.

6.7. Context management for built-in scopes

The container provides an implementation of the cont ext interface for each of the built-in scopes.

The built-in context object is active during servlet, web service and EJB invocations, or in the case of the conversation
context object, for JSF requests. For other kinds of invocations, a portable extension may define a custom context object
for any or al of the built-in scopes. For example, a third-party web application framework might provide a conversation
context object for the built-in conversation scope.

The context associated with a built-in normal scope propagates across local, synchronous Java method calls, including in-
vocation of EJB local business methods. The context does not propagate across remote method invocations or to asyn-

JSR-299 Expert Group Draft 57

Scopes and contexts

chronous processes such as JM S message listeners or EJB timer service timeouts.

6.7.1. Request context lifecycle

The request context is provided by a built-in context object for the built-in scope type @equest Scoped. The request scope
isactive:

e during the servi ce() method of any servlet in the web application, during the doFi I t er () method of any servlet filter
and when the container calls any Ser vl et Request Li st ener OF AsyncLi st ener,

e during any Java EE web service invocation,

e during any asynchronous observer method notification,

e during any remote method invocation of any EJB, during any asynchronous method invocation of any EJB, during any
call to an EJB timeout method and during message delivery to any EJB message-driven bean, and

e during any message delivery to a Messageli st ener for a IMS topic or queue obtained from the Java EE component
environment.

The request context is destroyed:

e at the end of the servlet request, after the servi ce() method, al doFi I ter () methods, and all request Dest royed()
and onConpl et e() notifications return,

» after the web service invocation completes,
< dfter the asynchronous observer notification compl etes,
« dfter the EJB remote method invocation, asynchronous method invocation, timeout or message delivery completes, or

» after the message delivery to the MessagelLi st ener completes.

6.7.2. Session context lifecycle

The session context is provided by a built-in context object for the built-in passivating scope type @essi onScoped. The
session scopeis active:

e during theservi ce() method of any servlet in the web application, during the doFi | t er () method of any servlet filter
and when the container calls any Ht t pSessi onLi st ener , AsyncLi st ener Of Ser vl et Request Li st ener .

The session context is shared between all servlet requests that occur in the same HT TP session. The session context is des-
troyed when the HTTPSessi on times out, after all Ht t pSessi onLi st ener S have been called, and at the very end of any re-
quest in whichi nval i dat e() was called, after all filtersand Ser vI et Request Li st ener S have been called.

6.7.3. Application context lifecycle

The application context is provided by a built-in context object for the built-in scope type @wppl i cati onScoped. The ap-
plication scopeis active:

e during theservi ce() method of any servlet in the web application, during the doFi | t er () method of any servlet filter
and when the container calls any Servl et Cont ext Li st ener, Ht t pSessi onLi st ener, AsyncLi stener Of Servl et Re-
quest Li st ener,

e during any Java EE web service invocation,
¢ during any asynchronous observer method notification,

* during any remote method invocation of any EJB, during any asynchronous method invocation of any EJB, during any
call to an EJB timeout method and during message delivery to any EJB message-driven bean,

JSR-299 Expert Group Draft 58

Scopes and contexts

e during any message delivery to a MessagelLi st ener for a IMS topic or queue obtained from the Java EE component
environment, and

e« when the disposer method or @reDestroy callback of any bean with any norma scope other than
@\ppl i cationScoped iscalled.

The application context is shared between all servlet requests, asynchronous observer method notifications, web servicein-
vocations, EJB remote method invocations, EJB asynchronous method invocations, EJB timeouts and message deliveries
to message-driven beans that execute within the same application. The application context is destroyed when the applica-
tion is shut down.

6.7.4. Conversation context lifecycle

The conversation context is provided by a built-in context object for the built-in passivating scope type
@onver sat i onScoped. The conversation scopeis active:

e during all standard lifecycle phases of any JSF faces or non-faces request.

The conversation context provides access to state associated with a particular conversation. Every JSF request has an asso-
ciated conversation. This association is managed automatically by the container according to the following rules:

* Any JSF request has exactly one associated conversation.

e The conversation associated with a JSF request is determined at the beginning of the restore view phase and does not
change during the request.

Any conversation isin one of two states: transient or long-running.

* By default, aconversation is transient
e A transient conversation may be marked long-running by calling Conver sat i on. begi n()
¢ A long-running conversation may be marked transient by calling Conver sati on. end()

All long-running conversations have a string-valued unique identifier, which may be set by the application when the con-
versation is marked long-running, or generated by the container.

If the conversation associated with the current JSF request is in the transient state at the end of a JSF request, it is des-
troyed, and the conversation context is also destroyed.

If the conversation associated with the current JSF request is in the long-running state at the end of a JSF request, it is not
destroyed. Instead, it may be propagated to other requests according to the following rules:

« Thelong-running conversation context associated with a request that renders a JSF view is automatically propagated to
any faces request (JSF form submission) that originates from that rendered page.

e Thelong-running conversation context associated with a request that results in a JSF redirect (a redirect resulting from
anavigation rule or JSF Navi gat i onHandl er) is automatically propagated to the resulting non-faces request, and to any
other subsequent request to the same URL. This is accomplished via use of a GET request parameter named ci d con-
taining the unique identifier of the conversation.

e Thelong-running conversation associated with a request may be propagated to any non-faces request via use of a GET
request parameter named ci d containing the unique identifier of the conversation. In this case, the application must
manage this request parameter.

When no conversation is propagated to a JSF request, the request is associated with a new transient conversation.
All long-running conversations are scoped to a particular HTTP servlet session and may not cross session boundaries.

In the following cases, a propagated long-running conversation cannot be restored and reassociated with the request:

e When the HTTP servlet session is invalidated, all long-running conversation contexts created during the current ses-

JSR-299 Expert Group Draft 59

Scopes and contexts

sion are destroyed, after the servlet servi ce() method completes.

e The container is permitted to arbitrarily destroy any long-running conversation that is associated with no current JSF
request, in order to conserve resources.

The conversation timeout, which may be specified by calling Conver sati on. set Ti neout () isa hint to the container that a
conversation should not be destroyed if it has been active within the last given interval in milliseconds.

If the propagated conversation cannot be restored, the container must associate the request with a new transient conversa-
tion and throw an exception of type j avax. ent er pri se. cont ext . Nonexi st ent Conver sat i onExcept i on from the restore
view phase of the JSF lifecycle. The application may handle this exception using the JSF Except i onHandl er .

The container ensures that a long-running conversation may be associated with at most one request at a time, by blocking
or rejecting concurrent requests. If the container rejects arequest, it must associate the request with a new transient conver-
sation and throw an exception of type j avax. ent er pri se. cont ext . BusyConver sat i onExcept i on from the restore view
phase of the JSF lifecycle. The application may handle this exception using the JSF Except i onHandl er .

6.7.5. The conversation interface

The container provides a built-in bean with bean type Conversati on, scope @equest Scoped, and qualifier @efaul t,
named j avax. ent er pri se. cont ext . conver sati on.

public interface Conversation {
public void begin();
public void begin(String id);
public void end();
public String getld();
public | ong getTineout();
public void setTineout(long mlliseconds);
public bool ean isTransient();

* begi n() marksthe current transient conversation long-running. A conversation identifier may, optionally, be specified.
If no conversation identifier is specified, an identifier is generated by the container.

¢ end() marksthe current long-running conversation transient.

e getld() returns the identifier of the current long-running conversation, or a null value if the current conversation is
transient.

e get Ti neout () returns the timeout, in milliseconds, of the current conversation.
e setTineout () setsthetimeout of the current conversation.
e isTransient() returnstrue if the conversation is marked transient, or f al se if it is marked long-running.

If any method of Conversation is called when the conversation scope is not active, a Cont ext Not Act i veExcepti on IS
thrown.

If end() iscalled, and the current conversation is marked transient, an 1 1 | egal St at eExcept i on iSthrown.
If begi n() iscalled, and the current conversation is already marked long-running, an 1 | | egal St at eExcept i on isthrown.

If begi n() is called with an explicit conversation identifier, and a long-running conversation with that identifier already
exists, an| | | egal Argunent Except i on isthrown.

JSR-299 Expert Group Draft 60

Chapter 7. Lifecycle of contextual instances

The lifecycle of a contextual instance of a bean is managed by the context object for the bean's scope, as defined in
Chapter 6, Scopes and contexts.

Every bean in the system is represented by an instance of the Bean interface defined in Section 11.1, “The Bean interface”.
This interface is a subtype of Cont extual . To create and destroy contextual instances, the context object calls the cr e-
ate() and destroy() operations defined by the interface Cont ext ual , as defined in Section 6.1, “The Contextual inter-
face”.

7.1. Restriction upon bean instantiation

The managed bean and EJB specifications place very few programming restrictions upon the bean class of a bean. In par-
ticular, the class is a concrete class and is not required to implement any special interface or extend any special superclass.
Therefore, bean classes are easy to instantiate and unit test.

However, if the application directly instantiates a bean class, instead of letting the container perform instantiation, the res-
ulting instance is not managed by the container and is not a contextual instance as defined by Section 6.5.2, “ Contextual
instance of a bean”. Furthermore, the capabilities listed in Section 2.1, “Functionality provided by the container to the
bean” will not be available to that particular instance. In a deployed application, it is the container that is responsible for
instantiating beans and initializing their dependencies.

If the application requires more control over instantiation of a contextual instance, a producer method or field may be used.
Any Java object may be returned by a producer method or field. It is not required that the returned object be a contextual
reference for a bean. However, if the object is not a contextual reference for another bean, the object will be contextua in-
stance of the producer method bean, and therefore available for injection into other objects and use in EL expressions, but
the other capabilitieslisted in Section 2.1, “Functionality provided by the container to the bean” will not be available to the
object.

In the following example, a producer method returns instances of other beans:

@essi onScoped
public class Paynent StrategyProducer {

private Paynent StrategyType paynent Strat egyType;

public void setPaynent Strat egyType(Paynent Strat egyType type) {
paynent Strat egyType = type;

@°r oduces Paynent Strat egy get Paynent Strat egy(@r edi t Card Paynment Strategy creditCard,
@heque Paynent Strat egy cheque,
@nl i ne Paynent Strategy online) {
switch (paynent StrategyType) {

case CREDIT_CARD: return creditCard;

case CHEQUE: return cheque;

case ONLINE: return online;

default: throw new |11| egal StateException();

}

In this case, any object returned by the producer method has already had its dependencies injected, receives lifecycle call-
backs and event natifications and may have interceptors.

But in this example, the returned objects are not contextual instances:

@sessi onScoped
public class Paynent StrategyProducer {

private Paynent StrategyType paynent Strat egyType;

public void setPayment StrategyType(Paynment StrategyType type) {
paynent Strat egyType = type;

@°r oduces Paynent Strategy getPaynent Strategy() {
switch (paynent StrategyType) {
case CREDI T_CARD: return new CreditCardPaynent Strategy();
case CHEQUE: return new ChequePaynent Strategy();

JSR-299 Expert Group Draft 61

Lifecycle of contextua instances

case ONLINE: return new OnlinePayment Strategy();
default: throw new ||| egal StateException();
}
}

}

In this case, any object returned by the producer method will not have any dependencies injected by the container, receives
no lifecycle callbacks or event notifications and does not have interceptors or decorators.

7.2. Container invocations and interception

When the application invokes:

+ a method of a bean via a contextua reference to the bean, as defined in Section 6.5.3, “Contextua reference for a
bean”, or

¢ abusiness method of a session bean viaan EJB remote or local reference,
the invocation is treated as a business method invocation.

When the container invokes a method of a bean, the invocation may or may not be treated as a business method invoca-
tion:

* Invocations of initializer methods by the container are not business method invocations.

* Invocations of producer, disposer and observer methods by the container are business method invocations and are in-
tercepted by method interceptors and decorators.

« Invocation of lifecycle callbacks by the container are not business method invocations, but are intercepted by intercept-
orsfor lifecycle callbacks.

¢ Invocation of EJB timer service timeouts by the container are not business method invocations, but are intercepted by
interceptors for EJB timeouts.

* Invocations of interceptors and decorator methods during method or lifecycle callback interception are not business
method invocations, and therefore no recursive interception occurs.

« Invocations of message listener methods of message-driven beans during message delivery are business method invoc-
ations.

If, and only if, an invocation is a business method invocation:

e it passes through method interceptors and decorators, and

« inthecase of asession bean, it is subject to EJB services such as declarative transaction management, concurrency, se-
curity and asynchronicity, as defined by the EJB specification.

Otherwise, the invocation is treated as a normal Java method call and is not intercepted by the container.

7.3. Lifecycle of contextual instances

The actual mechanics of bean creation and destruction varies according to what kind of bean is being created or destroyed.

7.3.1. Lifecycle of managed beans

When the cr eat () method of the Bean object that represents a managed bean is called, the container obtains an instance
of the bean, as defined by the Managed Beans specification, calling the bean constructor as defined by Section 5.5.1,
“Injection using the bean constructor”, and performing dependency injection as defined in Section 5.5.2, “Injection of
fields and initializer methods’.

When the dest roy() method is called, the container destroys the instance, as defined by the Managed Beans specification,

JSR-299 Expert Group Draft 62

Lifecycle of contextua instances

and any dependent objects, as defined in Section 5.5.3, “ Destruction of dependent objects’.

7.3.2. Lifecycle of stateful session beans

When the creat e() method of a Bean object that represents a stateful session bean that is called, the container creates and
returns a container-specific internal local reference to a new session bean instance. The reference must be passivation cap-
able. Thisreferenceis not directly exposed to the application.

Before injecting or returning a contextual instance to the application, the container transforms its internal reference into an
object that implements the bean types expected by the application and delegates method invocations to the underlying
stateful session bean instance. This object must be passivation capable.

When the dest roy() method is caled, and if the underlying EJB was not already removed by direct invocation of a re-
move method by the application, the container removes the stateful session bean. The @r eDest r oy callback must be in-
voked by the container.

Note that the container performs additional work when the underlying EJB is created and removed, as defined in Sec-
tion 5.5, “ Dependency injection”

7.3.3. Lifecycle of stateless session and singleton beans

When the creat e() method of a Bean object that represents a stateless session or singleton session bean is called, the con-
tainer creates and returns a container-specific internal local reference to the session bean. This reference is not directly ex-
posed to the application.

Before injecting or returning a contextual instance to the application, the container transforms its internal referenceinto an
object that implements the bean types expected by the application and delegates method invocations to the underlying ses-
sion bean. This object must be passivation capable.

When the dest r oy() method is called, the container simply discards thisinternal reference.

Note that the container performs additional work when the underlying EJB is created and removed, as defined in Sec-
tion 5.5, “ Dependency injection”

7.3.4. Lifecycle of producer methods

When the create() method of a Bean object that represents a producer method is called, the container must invoke the
producer method as defined by Section 5.5.4, “Invocation of producer or disposer methods’. The return value of the pro-
ducer method, after method interception completes, is the new contextual instance to be returned by Bean. create() .

If the producer method returns a null value and the producer method bean has the scope @ependent , thecr eat e() method
returns anull value.

Otherwise, if the producer method returns a null value, and the scope of the producer method is not @ependent , thecre-
at e() method throwsan 111 egal Product Excepti on.

When the dest roy() method is called, and if there is a disposer method for this producer method, the container must in-
voke the disposer method as defined by Section 5.5.4, “Invocation of producer or disposer methods’, passing the instance
given to destroy() to the disposed parameter. Finally, the container destroys dependent objects, as defined in Sec-
tion 5.5.3, “ Destruction of dependent objects’.

7.3.5. Lifecycle of producer fields

When the cr eat e() method of aBean object that represents a producer field is called, the container must access the produ-
cer field as defined by Section 5.5.5, “ Access to producer field values’ to obtain the current value of the field. The value of
the producer field is the new contextual instance to be returned by Bean. creat e() .

If the producer field contains a null value and the producer field bean has the scope @ependent , the creat e() method re-
turnsanull value.

Otherwise, if the producer field contains a null value, and the scope of the producer field is not @ependent , the creat e()
method throwsan I | | egal Pr oduct Except i on.

JSR-299 Expert Group Draft 63

Lifecycle of contextua instances

7.3.6. Lifecycle of resources

When the creat e() method of a Bean object that represents a resource is called, the container creates and returns a con-
tainer-specific internal reference to the Java EE component environment resource, entity manager, entity manager factory,
remote EJB instance or web service reference. Thisreference is not directly exposed to the application.

Before injecting or returning a contextual instance to the application, the container transforms its internal reference into an
object that implements the bean types expected by the application and delegates method invocations to the underlying re-
source, entity manager, entity manager factory, remote EJB instance or web service reference. This object must be passiva
tion capable.

When the dest roy() method is called, the container discards this internal reference and performs any cleanup required of
state associated with the client or transaction.

The container must perform ordinary Java EE component environment injection upon any non-static field that functions as
aresource declaration, as defined by the Java EE platform and Common Annotations for the Java platform specifications.
The container is not required to perform Java EE component environment injection upon a static field. Portable applica-
tions should not rely upon the value of a static field that functions as a resource declaration.

JSR-299 Expert Group Draft 64

Chapter 8. Decorators

A decorator implements one or more bean types and intercepts business method invocations of beans which implement
those bean types. These bean types are called decorated types.

Decorators are superficially similar to interceptors, but because they directly implement operations with business se-
mantics, they are able to implement business logic and, conversely, unable to implement the cross-cutting concerns for
which interceptors are optimized.

Decorators may be associated with any managed bean that is not itself an interceptor or decorator or with any EJB session
bean. A decorator instance is a dependent object of the object it decorates.

8.1. Decorator beans

A decorator is a managed bean. The set of decorated types of a decorator includes al bean types of the managed bean
which are Javainterfaces, except for j ava. i o. Seri al i zabl e. The decorator bean class and its superclasses are not decor-
ated types of the decorator. The decorator class may be abstract.

Decorators of a session bean must comply with the bean provider programming restrictions defined by the EJB specifica-
tion. Decorators of a stateful session bean must comply with the rules for instance passivation and conversational state
defined by the EJB specification.

8.1.1. Declaring a decorator
A decorator is declared by annotating the bean class with the @ avax. decor at or . Decor at or Stereotype.

@ecor at or
cl ass Ti mestanpLogger inplenments Logger { ... }

8.1.2. Decorator delegate injection points

All decorators have a delegate injection point. A delegate injection point is an injection point of the bean class. The type
and qualifiers of the injection point are called the delegate type and delegate qualifiers. The decorator applies to beans that
are assignabl e to the delegate injection point.

The delegate injection point must be declared by annotating the injection point with the annotation
@ avax. decor at or . Del egat e:

@ecor at or
cl ass Ti mestanplLogger inplenments Logger {
@nj ect @el egate @\ny Logger | ogger;

@ecor at or
cl ass Ti mest anpLogger inplenments Logger {
private Logger |ogger;

@ nj ect
public Ti nestanplLogger (@el egat e @ebug Logger | ogger) {
t hi s. |1 ogger =l ogger;

}
o

A decorator must have exactly one delegate injection point. If a decorator has more than one delegate injection point, or
does not have a delegate injection point, the container automatically detects the problem and treats it as a definition error.

The delegate injection point must be an injected field, initializer method parameter or bean constructor method parameter.
If an injection point that is not an injected field, initializer method parameter or bean constructor method parameter is an-
notated @el egat e, the container automatically detects the problem and treats it as a definition error.

If a bean class that is not a decorator has an injection point annotated @el egat e, the container automatically detects the
problem and treats it as a definition error.

JSR-299 Expert Group Draft 65

Decorators

The container must inject a delegate aobject to the delegate injection point. The delegate object implements the delegate
type and delegates method invocations to remaining uninvoked decorators and eventually to the bean. When the container
calls adecorator during business method interception, the decorator may invoke any method of the del egate object.

@ecor at or
cl ass Ti mest anpLogger inplenments Logger {
@nj ect @el egate @ny Logger | ogger;
void log(String nmessage) {
| ogger.log(tinestanp() + ": " + nessage)

}
, o

If a decorator invokes the delegate object at any other time, the invoked method throwsan 1 11 egal St at eExcept i on.

8.1.3. Decorated types of a decorator

The delegate type of a decorator must implement or extend every decorated type (with exactly the same type parameters).
If the delegate type does not implement or extend a decorated type of the decorator (or specifies different type parameters),
the container automatically detects the problem and treats it as a definition error.

A decorator is not required to implement the delegate type.
A decorator may be an abstract Java class, and is not required to implement every method of every decorated type.

The decorator intercepts every method:

e declared by a decorated type of the decorator

« that isimplemented by the bean class of the decorator.

8.2. Decorator enablement and ordering

By default, a bean deployment archive has no enabled decorators. A decorator must be explicitly enabled by listing its
bean class under the <decor at or s> element of the beans. xm file of the bean deployment archive.

<beans
xm ns="http://java. sun.com xm / ns/j avaee"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemaLocation="http://java. sun.com xm /ns/javaee http://java.sun. com xm /ns/javaeel/ beans_1 0. xsd">
<decor at or s>
<cl ass>or g. nyconpany. nyf wk. Ti nest anpLogger </ cl ass>
<cl ass>or g. nyconpany. nyf wk. | denti t yLogger </ cl ass>
</ decor at or s>
</ beans>

The order of the decorator declarations determines the decorator ordering. Decorators which occur earlier in the list are
caled first.

Each child <cl ass> element must specify the name of a decorator bean class. If there is no class with the specified name,
or if the class with the specified name is not a decorator bean class, the container automatically detects the problem and
treats it as a deployment problem.

If the same class is listed twice under the <decor at or s> element, the container automatically detects the problem and
treats it as a deployment problem.

Decorators are called after interceptors.

A decorator is said to be enabled if it is enabled in at |east one bean deployment archive.

8.3. Decorator resolution

The process of matching decorators to a certain bean is called decorator resolution. A decorator is bound to abean if:

JSR-299 Expert Group Draft 66

Decorators

* The bean is assignable to the delegate injection point according to the rules defined in Section 5.2, “Typesafe resolu-
tion” (using Section 8.3.1, “Assignability of raw and parameterized types for delegate injection points”).

« Thedecorator is enabled in the bean deployment archive of the bean.

If a decorator matches a managed bean, and the managed bean class is declared final, the container automatically detects
the problem and treats it as a deployment problem.

If adecorator matches a managed bean with a non-static, non-private, final method, and the decorator also implements that
method, the container automatically detects the problem and treats it as a deployment problem.

For a custom implementation of the Decor at or interface defined in Section 11.1.1, “ The Decorator interface’, the contain-
er calls get Del egat eType(), get Del egat eQual i fi ers() and get Decor at edTypes() to determine the delegate type and
qualifiers and decorated types of the decorator.

8.3.1. Assignability of raw and parameterized types for delegate injection points

Decorator delegate injection points have a special set of rules for determining assignability of raw and parameterized
types, as an exception to Section 5.2.3, “ Assignability of raw and parameterized types’.

A raw bean type is considered assignable to a parameterized delegate type if the raw types are identical and all type para-
meters of the delegate type are either unbounded type variablesor j ava. | ang. Qbj ect .

A parameterized bean type is considered assignable to a parameterized delegate type if they have identical raw type and
for each parameter:

« the delegate type parameter and the bean type parameter are actual types with identical raw type, and, if the type is
parameterized, the bean type parameter is assignable to the del egate type parameter according to these rules, or

» the delegate type parameter is a wildcard, the bean type parameter is an actual type and the actual type is assignable to
the upper bound, if any, of the wildcard and assignable from the lower bound, if any, of the wildcard, or

« the delegate type parameter is a wildcard, the bean type parameter is a type variable and the upper bound of the type
variable is assignable to the upper bound, if any, of the wildcard and assignable from the lower bound, if any, of the
wildcard, or

« the delegate type parameter and the bean type parameter are both type variables and the upper bound of the bean type
parameter is assignabl e to the upper bound, if any, of the delegate type parameter, or

« the delegate type parameter is a type variable, the bean type parameter is an actual type, and the actua type is as-
signable to the upper bound, if any, of the type variable.

8.4. Decorator invocation

Whenever a business method is invoked on an instance of a bean with decorators, the container intercepts the business
method invocation and, after processing all interceptors of the method, invokes decorators of the bean.

The container searches for the first decorator of the instance that implements the method that is being invoked as a busi-
ness method. If no such decorator exists, the container invokes the business method of the intercepted instance. Otherwise,
the container calls the method of the decorator.

When any decorator is invoked by the container, it may in turn invoke a method of the delegate. The container intercepts
the delegate invocation and searches for the first decorator of the instance such that:

» thedecorator occurs after the decorator invoking the delegate, and
« thedecorator implements the method that is being invoked upon the delegate.

If no such decorator exists, the container invokes the business method of the intercepted instance. Otherwise, the container
calls the method of the decorator.

JSR-299 Expert Group Draft 67

Chapter 9. Interceptor bindings

Managed beans and EJB session and message-driven beans support interception. Interceptors are used to separate cross-
cutting concerns from business logic. The Java Interceptors specification defines the basic programming model and se-
mantics. This specification defines a typesafe mechanism for associating interceptors to beans using interceptor bindings.

Interceptor bindings may be used to associate interceptors with any managed bean that is not itself an interceptor or decor-
ator or with any EJB session or message-driven bean. An interceptor instance is a dependent object of the object it inter-

cepts.

9.1. Interceptor binding types

An interceptor binding type is a Java annotation defined as @rarget ({TYPE, METHOD}) Ofr @arget(TYPE) and
@Ret ent i on(RUNTI ME) .

An interceptor binding type may be declared by specifying the @avax. i nterceptor. | nterceptorBi ndi ng meta-an-
notation.

@ nherited

@ nt er cept or Bi ndi ng

@rar get ({ TYPE, METHOD})

@Ret ent i on(RUNTI ME)

public @nterface Transactional {}

9.1.1. Interceptor binding types with additional interceptor bindings
An interceptor binding type may declare other interceptor bindings.

@nherited

@ nt er cept or Bi ndi ng
@arget ({ TYPE, METHOD})

@Ret ent i on(RUNTI MVE)

@r ansacti onal

public @nterface DataAccess {}

Interceptor bindings are transitive—an interceptor binding declared by an interceptor binding type is inherited by al beans
and other interceptor binding types that declare that interceptor binding type.

Interceptor binding types declared @rarget (TYPE) may not be applied to interceptor binding types declared
@rarget ({ TYPE, METHOD}).

9.1.2. Interceptor bindings for stereotypes
Interceptor bindings may be applied to a stereotype by annotating the stereotype annotation:

@ ansact i onal

@ecur e

@Request Scoped

@5t er eot ype

@rar get (TYPE)

@Ret ent i on(RUNTI MVE)

public @nterface Action {}

An interceptor binding declared by a stereotype isinherited by any bean that declares that stereotype.

If a stereotype declares interceptor bindings, it must be defined as @rar get (TYPE) .

9.2. Declaring the interceptor bindings of an interceptor

The interceptor bindings of an interceptor are specified by annotating the interceptor class with the binding types and the
@ avax. i nterceptor.|nterceptor annotation.

@ransacti onal @ nterceptor
public class Transactionlnterceptor {

JSR-299 Expert Group Draft 68

Interceptor bindings

@\r oundl nvoke
public Ooject manageTransaction(lnvocati onContext ctx) { ... }

}

An interceptor class may declare multiple interceptor bindings.

If an interceptor does not declare an @ nt er cept or annotation, it must be bound to beans using @ nt erceptors Or ej b-
jar.xm .

All interceptors declared using @ nt er cept or must specify at least one interceptor binding. If an interceptor declared using
@nterceptor does not declare any interceptor binding, the container automatically detects the problem and treats it as a
definition error.

An interceptor for lifecycle callbacks may only declare interceptor binding types that are defined as @rar get (TYPE) . If an
interceptor for lifecycle callbacks declares an interceptor binding type that is defined @rar get ({ TYPE, METHOD}), the con-
tainer automatically detects the problem and treats it as a definition error.

9.3. Binding an interceptor to a bean

An interceptor binding may be declared by annotating the bean class, or a method of the bean class, with the interceptor
binding type.

In the following example, the Tr ansact i onl nt er cept or Will be applied at the class level, and therefore appliesto al busi-
ness methods of the class:

@r ansacti ona
public class ShoppingCart { ... }

In this example, the Tr ansact i onl nt er cept or Will be applied at the method level:

public class ShoppingCart {

@ransacti ona
public void placeOder() { ... }

}

A bean class or method of a bean class may declare multiple interceptor bindings.

If the bean class of a managed bean declares or inherits a class level interceptor binding or a stereotype with interceptor
bindings, it must not be declared final, or have any non-static, non-private, fina methods. If a managed bean has a class-
level interceptor binding and is declared final or has a non-static, non-private, final method, the container automatically
detects the problem and treats it as a definition error.

If a non-static, non-private method of a bean class of a managed bean declares a method level interceptor binding, neither
the method nor the bean class may be declared final. If a non-static, non-private, final method of a managed bean has a
method level interceptor binding, the container automatically detects the problem and treats it as a definition error.

9.4. Interceptor enablement and ordering

By default, a bean deployment archive has no enabled interceptors bound via interceptor bindings. An interceptor must be
explicitly enabled by listing its class under the <i nt er cept or s> element of the beans. xm file for the bean deployment
archive,

<beans
xm ns="http://java. sun.com xm / ns/j avaee"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
Xsi : schemaLocation="http://java. sun.com xm / ns/javaee http://java.sun.com xm / ns/javaeel/ beans_1_0. xsd" >
<i nterceptors>
<cl ass>or g. myconpany. nyf wk. Transact i onl nt er cept or </ cl ass>
<cl ass>or g. nyconpany. nyf wk. Loggi ngl nt er cept or </ cl ass>
</interceptors>
</ beans>

JSR-299 Expert Group Draft 69

Interceptor bindings

The order of the interceptor declarations determines the interceptor ordering. Interceptors which occur earlier in thelist are
caled first.

Each child <cl ass> element must specify the name of an interceptor class. If there is no class with the specified name, or if
the class with the specified name is not an interceptor class, the container automatically detects the problem and treatsit as
a deployment problem.

If the same class is listed twice under the <i nt er cept or s> element, the container automatically detects the problem and
treats it as a deployment problem.

Interceptors declared using @nterceptors Or in ej b-jar.xm are called before interceptors declared using interceptor
bindings.

Interceptors are called before decorators.

An interceptor is said to be enabled if it is enabled in at least one bean deployment archive.

9.5. Interceptor resolution

The process of matching interceptors to a certain lifecycle callback method, EJB timeout method or business method of a
certain bean is called interceptor resolution.

For alifecycle callback method, the interceptor bindings include the interceptor bindings declared or inherited by the bean
at the class level, including interceptor bindings declared as meta-annotations of other interceptor bindings, recursively,
and of stereotypes.

For a business method or EJB timeout method, the interceptor bindings include the interceptor bindings declared or inher-
ited by the bean at the class level, including interceptor bindings declared as meta-annotations of other interceptor bind-
ings, recursively, and of stereotypes, together with all interceptor bindings declared at the method level, including inter-
ceptor bindings declared as meta-annotations of other interceptor bindings, recursively.

An interceptor is bound to a method if:

« The method has all the interceptor bindings of the interceptor. A method has an interceptor binding of an interceptor if
it has an interceptor binding with (a) the same type and (b) the same annotation member value for each member which
is not annotated @ avax. ent erpri se. uti | . Nonbi ndi ng.

e Theinterceptor intercepts the given kind of lifecycle callback or business method.
« Theinterceptor isenabled in the bean deployment archive of the bean.

For a custom implementation of the I nt er cept or interface defined in Section 11.1.2, “The Interceptor interface”, the con-
tainer calls get I nt er cept or Bi ndi ngs() to determine the interceptor bindings of the interceptor and i nt er cept s() to de-
termineif the interceptor intercepts agiven kind of lifecycle callback, EJB timeout or business method.

9.5.1. Interceptors with multiple bindings
An interceptor class may specify multiple interceptor bindings.

@ransacti onal @ecure @ nterceptor
public class Transactional Securitylnterceptor {

@\r oundl nvoke
public void aroundl nvoke() { ... }

}

This interceptor will be bound to all methods of this bean:

@ransacti onal @Becure
public class ShoppingCart { ... }

The interceptor will aso be bound to the pl acer der () method of this bean:

JSR-299 Expert Group Draft 70

Interceptor bindings

@r ansacti onal
public class ShoppingCart {

@vecure
public void placeOder() { ... }

However, it will not be bound to the pl aceor der () method of this bean, since the @ecur e interceptor binding does not
appear:

@r ansacti onal
public class ShoppingCart {

public void placeOder() { ... }

9.5.2. Interceptor binding types with members

Interceptor binding types may have annotation members.

@nherited
@ nt er cept or Bi ndi ng
@arget ({ TYPE, METHOD})
@Ret ent i on(RUNTI ME)
public @nterface Transactional {
bool ean requi resNew() default fal se;
}

Any interceptor with that interceptor binding type must select a member value:

@ransactional (requiresNew=true) @ nterceptor
public class RequiresNewlransactionl nterceptor {

@\r oundl nvoke
public nject manageTransaction(lnvocati onContext ctx) { ... }

The Requi r esNewTr ansact i onl nt er cept or appliesto this bean:

@ransacti onal (requiresNew=true)
public class ShoppingCart { ... }

But not to this bean:

@r ansact i onal
public class ShoppingCart { ... }

Annotation member values are compared using equal s() .
An annotation member may be excluded from consideration using the @onbi ndi ng annotation.

@ nherited
@ nt er cept or Bi ndi ng
@arget ({ TYPE, METHOD})
@Ret ent i on(RUNTI MVE)
public @nterface Transactional {
@Nonbi ndi ng bool ean requiresNew() default false;
}

Array-valued or annotation-valued members of an interceptor binding type should be annotated @wonbi ndi ng in a portable
application. If an array-valued or annotation-valued member of an interceptor binding type is not annotated @onbi ndi ng,
non-portable behavior results.

If the set of interceptor bindings of a bean or interceptor, including bindings inherited from stereotypes and other intercept-
or bindings, has two instances of a certain interceptor binding type and the instances have different values of some annota-
tion member, the container automatically detects the problem and treats it as a definition error.

JSR-299 Expert Group Draft 71

Chapter 10. Events

Beans may produce and consume events. This facility allows beans to interact in a completely decoupled fashion, with no
compile-time dependency between the interacting beans. Most importantly, it allows stateful beansin one architectural tier
of the application to synchronize their internal state with state changes that occur in a different tier.

An event comprises:

« A Javaobject—the event object
e A (possibly empty) set of instances of quaifier types—the event qualifiers

The event object acts as a payload, to propagate state from producer to consumer. The event qualifiers act as topic select-
ors, allowing the consumer to narrow the set of eventsit observes.

An observer method acts as event consumer, observing events of a specific type—the observed event type—with a specific
set of qualifiers—the observed event qualifiers. An observer method will be notified of an event if the event object is as-
signable to the observed event type, and if all the observed event qualifiers are event qualifiers of the event.

10.1. Event types and qualifier types

An event object is an instance of a concrete Java class with no type variables. The event types of the event include all su-
perclasses and interfaces of the runtime class of the event object.

An event type may not contain atype variable.

An event qualifier typeisjust an ordinary qualifier type as specified in Section 2.3.2, “Defining new qualifier types’ with
the exception that it may be declared @rar get ({ FI ELD, PARAMETER}) .

More formaly, an event qualifier type is a Java annotation defined as @arget ({FI ELD, PARAMETER}) Of
@ar get ({ METHOD, FIELD, PARAMETER, TYPE}) and @ret enti on(RUNTI ME). All event qualifier types must specify the
@avax. i nj ect. Qual i fi er meta-annotation.

Every event hasthe qualifier @ avax. enterpri se. i nj ect. Any, even if it does not explicitly declare this qualifier.

Any Javatype may be an observed event type.

10.2. Observer resolution

The process of matching an event to its observer methods is called observer resolution. The container considers event type
and qualifiers when resolving observers.

Observer resolution usually occurs at runtime.

An event isdelivered to an observer method if:

* The observer method belongs to an enabled bean.
e Theevent object is assignable to the observed event type, taking type parameters into consideration.

e The observer method has all the event qualifiers. An observer method has an event qudifier if it has an observed event
qualifier with (a) the same type and (b) the same annotation member value for each member which is not annotated
@ avax. enterprise. util.Nonbinding.

« Either the event is not a container lifecycle event, as defined in Section 11.5, “Container lifecycle events’, or the ob-
server method belongs to an extension.

If the runtime type of the event object contains atype variable, the container must throw an 1 1 | egal Ar gunent Except i on.

For a custom implementation of the tbser ver Met hod interface defined in Section 11.1.3, “The ObserverMethod interface”,
the container must call get CbservedType() and get CbservedQual i fiers() to determine the observed event type and
qualifiers.

JSR-299 Expert Group Draft 72

Events

10.2.1. Assignability of type variables, raw and parameterized types

An event typeis considered assignable to atype variable if the event type is assignable to the upper bound, if any.

A parameterized event type is considered assignable to araw observed event type if the raw types are identical.

A parameterized event type is considered assignable to a parameterized observed event type if they have identical raw type
and for each parameter:

the observed event type parameter is an actual type with identical raw type to the event type parameter, and, if the type
is parameterized, the event type parameter is assignable to the observed event type parameter according to these rules,
or

the observed event type parameter is a wildcard and the event type parameter is assignable to the upper bound, if any,
of the wildcard and assignable from the lower bound, if any, of the wildcard, or

the observed event type parameter is a type variable and the event type parameter is assignable to the upper bound, if
any, of thetype variable.

10.2.2. Event qualifier types with members

Asusual, the qualifier type may have annotation members:

@ualifier

@ar get (PARAVETER)

@Ret ent i on(RUNTI MVE)
public @nterface Role {

}

String val ue();

Consider the following event:

public void login() {

}

final User user = ...;
| oggedl nEvent . fire(new Loggedl nEvent (user),
new Rol eQualifier() { public String value() { return user.getRole(); });

Where Rol eQual i fi er isanimplementation of the qualifier type Rol e:

public abstract class Rol eQualifier

ext ends Annot ati onLiteral <Rol e>
i mpl enents Role {}

Then the following observer method will always be notified of the event:

public void afterLogi n(@bserves Loggedl nEvent event) { ... }

Whereas this observer method may or may not be notified, depending upon the value of user . get Rol e() :

public void afterAdm nLogi n(@bserves @Rol e("adm n") Loggedl nEvent event) { ... }

Asusual, the container uses equal s() to compare event qualifier type member values.

10.2.3. Multiple event qualifiers

An event parameter may have multiple qualifiers.

public void afterDocunment Updat edByAdm n(@bserves @Jpdated @yAdm n Docunment doc) { ... }

Then this observer method will only be notified if al the observed event qualifiers are specified when the event isfired:

docunent Event . fire(docunment, new UpdatedQualifier() {}, new ByAdm nQualifier() {});

Other, less specific, observers will also be notified of this event:

JSR-299 Expert Group Draft 73

Events

public void afterDocunment Updat ed(@bserves @Jpdated Docunent doc) { ... }

public void afterDocunment Event (@bserves Docunment doc) { ... }

10.3. Firing events
Beans fire events via an instance of thej avax. enterpri se. event . Event interface, which may be injected:

@nj ect @ny Event<Loggedl nEvent > | oggedl nEvent ;

Themethod fire() acceptsan event object:

public void login() {

i 6:tggedl nEvent.fire(new Loggedl nEvent (user));

Any combination of qualifiers may be specified at the injection point:

@nj ect @dni n Event <Loggedl nEvent > adm nLoggedl nEvent ;

Or, the @ny qualifier may be used, allowing the application to specify qualifiers dynamically:

@nj ect @ny Event<Loggedl nEvent > | oggedl nEvent ;

toiqgedl nEvent event = new Loggedl nEvent (user);
if (user.isAdmin()) {
| oggedl nEvent . sel ect (new Adm nQualifier()).fire(event);

el se {
| oggedl nEvent . fire(event);

In this example, the event sometimes has the qualifier @dni n, depending upon the value of user . i sAdmi n() .

10.3.1. The Event interface
The Event interface provides a method for firing events with a specified combination of type and qualifiers:

public interface Event<T> {
public void fire(T event);

public Event <T> sel ect (Annotation... qualifiers);
public <U extends T> Event <U> sel ect (Cl ass<U> subtype, Annotation... qualifiers);
public <U extends T> Event <U> sel ect (TypeLiteral <U> subtype, Annotation... qualifiers);

For an injected Event :

« the specified type is the type parameter specified at the injection point, and
« the specified qualifiers are the qualifiers specified at the injection point.
For example, thisinjected Event has specified type Logged! nEvent and specified qualifier @ny:

@nj ect @ny Event<Loggedl nEvent> any;

The sel ect () method returns a child Event for a given specified type and additional specified qualifiers. If no specified
typeisgiven, the specified type is the same as the parent.

For example, this child Event hasrequired type Adni nLoggedi nEvent and additional specified qualifier @dni n:

Event <Adm nLoggedl nEvent > adnmi n = any. sel ect (
Adm nLogged! nEvent . cl ass,
new Adm nQualifier());

JSR-299 Expert Group Draft 74

Events

If the specified type contains atype variable, an 111 egal Ar gument Except i on isthrown.
If two instances of the same qualifier type are passed to sel ect (), an ! | | egal Ar gunent Except i on isthrown.
If an instance of an annotation that is not a qualifier type is passed to sel ect (), an 1| egal Ar gunent Except i on iSthrown.

The method fire() fires an event with the specified qualifiers and notifies observers, as defined by Section 10.5,
“Observer notification”.

If the runtime type of the event object contains atype variable, an 111 egal Ar gument Except i on isthrown.

10.3.2. The built-in Event

The container must provide a built-in bean with:

e Event<X> inits set of bean types, for every Javatype X that does not contain atype variable,

e every event qualifier typein its set of qualifier types,

* SCOpE @ependent ,

* no bean EL name, and

* animplementation provided automatically by the container.

The built-in implementation must be a passivation capable dependency, as defined in Section 6.6.2, “Passivation capable

dependencies’.

10.4. Observer methods

An observer method allows the application to receive and respond to event notifications.

An observer method is a non-abstract method of a managed bean class or session bean class (or of an extension, as defined
in Section 11.5, “Container lifecycle events’). An observer method may be either static or non-static. If the bean is a ses-
sion bean, the observer method must be either a business method of the EJB or a static method of the bean class.

There may be arbitrarily many observer methods with the same event parameter type and qualifiers.

A bean (or extension) may declare multiple observer methods.

10.4.1. Event parameter of an observer method

Each observer method must have exactly one event parameter, of the same type as the event type it observes. When
searching for observer methods for an event, the container considers the type and qualifiers of the event parameter.

If the event parameter does not explicitly declare any qualifier, the observer method observes events with no qualifier.

The event parameter type may contain atype variable or wildcard.

10.4.2. Declaring an observer method

An observer method may be declared by annotating a parameter @ avax. ent er pri se. event . Chserves. That parameter is
the event parameter. The declared type of the parameter is the observed event type.

public void afterLogi n(@hbserves Loggedl nEvent event) { ... }

If a method has more than one parameter annotated @bser ves, the container automatically detects the problem and treats
it as a definition error.

Observed event qualifiers may be declared by annotating the event parameter:

public void afterLogi n(@bserves @dm n Loggedl nEvent event) { ... }

JSR-299 Expert Group Draft 75

Events

If an observer method is annotated @r oduces or @ nj ect or has a parameter annotated @i sposes, the container automat-
ically detects the problem and treats it as a definition error.

If anon-static method of a session bean class has a parameter annotated @bser ves, and the method is not a business meth-
od of the EJB, the container automatically detects the problem and treats it as a definition error.

Interceptors and decorators may not declare observer methods. If an interceptor or decorator has a method with a paramet-
er annotated @bser ves, the container automatically detects the problem and treats it as a definition error.

In addition to the event parameter, observer methods may declare additional parameters, which may declare qualifiers.
These additional parameters are injection points.

public void afterLogi n(@bserves Loggedl nEvent event, @manager User user, @ogger Log log) { ... }

public void after Adm nLogi n(@bserves @\.dn n Loggedl nEvent event, @uogger Log log) { ... }

10.4.3. Conditional observer methods

A conditional observer method is an observer method which is notified of an event only if an instance of the bean that
defines the observer method already exists in the current context.

A conditional observer method may be declared by specifying r ecei ve=I F_EXI STS.

public void refreshOnDocunent Updat e(@bserves(recei ve=l F_EXI STS) @Jpdat ed Docunent doc) { ... }

Beans with scope @ependent may not have conditional observer methods. If a bean with scope @ependent has an ob-
server method declared r ecei ve=I F_EXI STS, the container automatically detects the problem and treats it as a definition
error.

The enumeration j avax. ent er pri se. event . Recept i on identifies the possible values of r ecei ve:

public enum Reception { | F_EXISTS, ALWAYS }

10.4.4. Transactional observer methods

Transactional observer methods are observer methods which receive event notifications during the before or after comple-
tion phase of the transaction in which the event was fired. If no transaction is in progress when the event is fired, they are
notified at the same time as other observers.

« A before completion observer method is called during the before compl etion phase of the transaction.
< An after completion observer method is called during the after completion phase of the transaction.

« An after success observer method is called during the after completion phase of the transaction, only when the transac-
tion completes successfully.

« An after failure observer method is called during the after completion phase of the transaction, only when the transac-
tion fails.

The enumeration j avax. ent er pri se. event. Transact i onPhase identifies the kind of transactional observer method:

publi ¢ enum Transacti onPhase {
| N_PROGRESS,
BEFORE_COVPLETI ON,
AFTER_COVPLETI ON,
AFTER_FAI LURE,
AFTER_SUCCESS

}

A transactional observer method may be declared by specifying any value other than | N_PROGRESS for duri ng:

voi d onDocunent Updat e(@bser ves(duri ng=AFTER_SUCCESS) @Jpdat ed Docunment doc) { ... }

JSR-299 Expert Group Draft 76

Events

10.5. Observer notification

When an event is fired by the application, the container must:

» determine the observer methods for that event according to the rules of observer resolution defined by Section 10.2,
“Observer resolution”, then,

« for each observer method, either invoke the observer method immediately, or register the observer method for later in-
vocation during the transaction completion phase, using a JTA Synchr oni zat i on.

The container calls observer methods as defined in Section 5.5.6, “Invocation of observer methods”.

e |If the observer method is a transactional observer method and there is currently a JTA transaction in progress, the con-
tainer calls the observer method during the appropriate transaction completion phase.

e Otherwise, the container calls the observer immediately.

The order in which observer methods are called is not defined, and so portable applications should not rely upon the order
in which observers are called.

Any observer method called before completion of a transaction may call set Rol | backonl y() to force a transaction roll-
back. An observer method may not directly initiate, commit or rollback JTA transactions.

Observer methods may throw exceptions:

< |f the observer method is a transactional observer method, any exception is caught and logged by the container.

« Otherwise, the exception aborts processing of the event. No other observer methods of that event will be caled. The
BeanManager . fi reEvent () Of Event.fire() method rethrows the exception. If the exception is a checked exception,
it iswrapped and rethrown as an (unchecked) Gbser ver Excepti on.

For a custom implementation of the tbser ver Met hod interface defined in Section 11.1.3, “The ObserverMethod interface”,
the container must call get Recepti on() and get Transacti onPhase() to determine isthe observer method is a conditional
or transactional observer method, and not i fy() to invoke the method.

10.5.1. Observer method invocation context

The transaction context, client security context and lifecycle contexts active when an observer method is invoked depend
upon what kind of observer method it is.

» If the observer method is a before completion transactional observer method, it is called within the context of the trans-
action that is about to complete and with the same client security context and lifecycle contexts.

e Otherwisg, if the observer method is any other kind of transactional observer method, it is called in an unspecified
transaction context, but with the same client security context and lifecycle contexts as the transaction that just com-
pleted.

* Otherwise, the observer method is called in the same transaction context, client security context and lifecycle contexts
astheinvocation of Event . fire() or BeanManager . fireEvent ().

Of course, the transaction and security contexts for a business method of a session bean also depend upon the transaction
attribute and @unas descriptor, if any.

JSR-299 Expert Group Draft 77

Chapter 11. Portable extensions

A portable extension may integrate with the container by:

« Providing its own beans, interceptors and decorators to the container
« Injecting dependenciesinto its own objects using the dependency injection service
* Providing a context implementation for a custom scope

« Augmenting or overriding the annotation-based metadata with metadata from some other source

11.1. The Bean interface

The interface j avax. enter pri se. i nj ect . spi . Bean defines everything the container needs to manage instances of a cer-
tain bean.

public interface Bean<T> extends Contextual <T> {
publ i c Set<Type> get Types();
public Set<Annotation> getQualifiers();
public C ass<? extends Annotation> get Scope();
public String get Nanme();
public Set<C ass<? extends Annotati on>> get Stereotypes();
public C ass<?> get BeanC ass();
public bool ean isAlternative();
public bool ean isNullable();
publ i c Set<lnjectionPoint> getlnjectionPoints();

}

Note that implementations of Bean must also implement the inherited operations defined by the Cont ext ual interface
defined in Section 6.1, “ The Contextua interface”.

e getTypes(), getQualifiers(), getScope(), get Name() and get St er eot ypes() must return the bean types, quaifiers,
scope type, EL name and stereotypes of the bean, as defined in Chapter 2, Concepts.

e getBeand ass() returns the bean class of the managed bean or session bean or of the bean that declares the producer
method or field.

* isAlternative() mustreturntrue if thebeanisan aternative, and f al se otherwise.

e isNullable() must return true if the method create() sometimes returns a null value, and f al se otherwise, as
defined in Section 5.2.4, “ Primitive types and null values’.

e getlnjectionPoints() returnsaset of I nj ecti onPoi nt objects, defined in Section 5.5.7, “Injection point metadata’,
representing injection points of the bean, that will be validated by the container at initialization time.

An instance of Bean exists for every enabled bean.

A portable extension may add support for new kinds of beans beyond those defined by the this specification (managed
beans, session beans, producer methods, producer fields and resources) by implementing Bean and registering beans with
the container, using the mechanism defined in Section 11.5.2, “ AfterBeanDiscovery event”.

11.1.1. The Decor at or interface

The Bean object for adecorator must implement the interfacej avax. enterpri se. i nj ect . spi . Decor at or .

public interface Decorator<T> extends Bean<T> {
public Set <Type> get Decor at edTypes();
public Type get Del egat eType();
publ i c Set <Annot ati on> get Del egateQualifiers();

e getDecorat edTypes() returnsthe decorated types of the decorator.

JSR-299 Expert Group Draft 78

Portable extensions

e getDel egat eType() and get Del egat eQual i fi ers() return the delegate type and qualifiers of the decorator.

An instance of Decor at or existsfor every enabled decorator.

11.1.2. The Intercept or interface
The Bean object for an interceptor must implement j avax. ent erpri se. i nj ect. spi. I nterceptor.

public interface |Interceptor<T> extends Bean<T> {
publ i ¢ Set <Annot ati on> get | nterceptorBi ndi ngs();
public bool ean intercepts(lnterceptionType type);
public Object intercept(lnterceptionType type, T instance, |nvocationContext ctx);

e getlnterceptorBindings() returnstheinterceptor bindings of the interceptor.

e intercepts() returnstrue if the interceptor intercepts the specified kind of lifecycle callback or method invocation,
and f al se otherwise.

e intercept() invokes the specified kind of lifecycle callback or method invocation interception upon the given in-
stance of the interceptor.

AninterceptionType identifiesthe kind of lifecycle callback, EJB timeout method or business method.

public enum I nterceptionType {
AROUND_I NVOKE, POST_CONSTRUCT, PRE_DESTROY, PRE_PASSI VATE, POST_ACTI VATE, AROUND_TI MEQUT
}

Aninstance of I nter cept or existsfor every enabled interceptor.

11.1.3. The oserver Met hod interface

The interface j avax. enterpri se. i nj ect . spi . Chser ver Met hod defines everything the container needs to know about an
observer method.

public interface ObserverMet hod<T> {
public C ass<?> getBeanC ass();
public Type get CbservedType();
publ i c Set <Annot ati on> get ObservedQualifiers();
public Reception getReception();
public Transacti onPhase get Transacti onPhase();
public void notify(T event);

¢ getBeand ass() returnsthe bean class of the bean that declares the observer method.
e get servedType() and get CbservedQual i fiers() return the observed event type and qualifiers.
e getReception() returnsi F_gexi STS for a conditional observer and ALWAYS otherwise.

e getTransacti onPhase() returnsthe appropriate transaction phase for a transactional observer method or | N_PROGRESS
otherwise.

e notify() callsthe observer method, as defined in Section 5.5.6, “ Invocation of observer methods’.

An instance of Gbser ver Met hod exists for every observer method of every enabled bean.

11.2. The Producer and I nj ecti onTar get interfaces

Theinterfacej avax. ent erpri se. i nj ect. spi . Producer provides ageneric operation for producing an instance of atype.

public interface Producer<T> {
public T produce(Creational Context<T> ctx);
public void di spose(T instance);
publ i c Set<lnjectionPoint> getlnjectionPoints();

JSR-299 Expert Group Draft 79

Portable extensions

For aProducer that represents a class:

e produce() calls the constructor annotated @ nj ect if it exists, or the constructor with no parameters otherwise, as
defined in Section 5.5.1, “Injection using the bean constructor”, and returns the resulting instance. If the class has inter-
ceptors, produce() isresponsible for building the interceptors and decorators of the instance.

e dispose() doesnothing.

e getlnjectionPoints() returns the set of I nj ecti onPoi nt objects representing al injected fields, bean constructor
parameters and initializer method parameters.

For aProducer that represents a producer method or field:

e produce() calsthe producer method on, or accesses the producer field of, a contextua instance of the bean that de-
clares the producer method, as defined in Section 5.5.4, “Invocation of producer or disposer methods”.

* dispose() calsthe disposer method, if any, on a contextual instance of the bean that declares the disposer method, as
defined in Section 5.5.4, “Invocation of producer or disposer methods”, or performs any additional required cleanup, if
any, to destroy state associated with a resource.

e getlnjectionPoints() returnsthe set of I nj ecti onPoi nt objects representing all parameters of the producer method.

The subinterface j avax. enterpri se. i nj ect. spi. | njectionTarget provides operations for performing dependency in-
jection and lifecycle callbacks on an instance of atype.

public interface InjectionTarget<T> {
ext ends Producer <T>
public void inject (T instance, Creational Context<T> ctx);
public void postConstruct (T instance);
public void preDestroy(T instance);

e inject() performs dependency injection upon the given object. The container performs Java EE component environ-
ment injection, according to the semantics required by the Java EE platform specification, sets the value of all injected
fields, and calls all initializer methods, as defined in Section 5.5.2, “Injection of fields and initializer methods’.

e postConstruct () callsthe @ost Construct callback, if it exists, according to the semantics required by the Java EE
platform specification.

e preDestroy() callsthe @reDestroy calback, if it exists, according to the semantics required by the Java EE platform
specification.

11.3. The Beanmanager Object

Portable extensions sometimes interact directly with the container via programmatic APl cal. The interface
javax. enterprise.inject.spi.BeanManager provides operations for obtaining contextual references for beans, along
with many other operations of use to portable extensions.

The container provides a built-in bean with bean type BeanManager , scope @ependent and qualifier @ef aul t . The built-
in implementation must be a passivation capable dependency, as defined in Section 6.6.2, “ Passivation capable dependen-
cies’. Thus, any bean may obtain an instance of BeanManager by injecting it:

@ nj ect BeanManager manager;

Java EE components may obtain an instance of BeanManager from JNDI by looking up the namej ava: conp/ BeanManager .

Any operation of BeanManager may be called at any time during the execution of the application.

11.3.1. Obtaining a contextual reference for a bean

The method BeanManager . get Ref er ence() returns a contextual reference for a given bean and bean type, as defined in
Section 6.5.3, “ Contextual reference for abean”.

JSR-299 Expert Group Draft 80

Portable extensions

public Onject getReference(Bean<?> bean, Type beanType, Creational Context<?> ctx);

The first parameter is the Bean object representing the bean. The second parameter represents a bean type that must be im-
plemented by any client proxy that is returned. The third parameter is an instance of Cr eat i onal Cont ext that may be used
to destroy any object with scope @ependent that is created.

If the given typeis not a bean type of the given bean, an 1 1 | egal Ar gunent Except i on isthrown.

11.3.2. Obtaining an injectable reference

The method BeanManager . get | nj ect abl eRef erence() returns an injectable reference for a given injection point, as
defined in Section 6.5.5, “Injectable references’.

public Onject getlnjectabl eReference(lnjectionPoint ij, Creational Context<?> ctx);

The first parameter represents the target injection point. The second parameter is an instance of Cr eat i onal Cont ext that
may be used to destroy any object with scope @ependent that is created.

If the I nj ect i onPoi nt represents a decorator delegate injection point, get I nj ect abl eRef er ence() returns a delegate, as
defined in Section 8.1.2, “Decorator delegate injection points”.

If typesafe resolution results in an unsatisfied dependency, the container must throw an Unsat i sfi edResol uti onExcep-
ti on. If typesafe resolution results in an unresolvable ambiguous dependency, the container must throw an Anbi guousRes-

ol uti onExcepti on.

Implementations of Bean usually maintain a reference to an instance of BeanManager . When the Bean implementation per-
forms dependency injection, it must obtain the contextual instances to inject by calling BeanMman-
ager . get | nj ect abl eRef er ence(), passing an instance of 1 nj ecti onPoi nt that represents the injection point and the in-
stance of Cr eat i onal Cont ext that was passed to Bean. creat e() .

11.3.3. Obtaining a Creati onal Cont ext

An instance of Creational Context for a certain instance of Contextual may be obtained by calling Beanwvan-
ager . creat eCreational Context().

public <T> Creational Cont ext <T> creat eCreati onal Cont ext (Cont ext ual <T> cont extual);

An instance of Creational Context for a non-contextual object may be obtained by passing a null value to creat eCre-
ati onal Context ().

11.3.4. Obtaining a Bean by type

The method BeanManager . get Beans() returns the set of beans which have the given required type and qualifiers and are
available for injection in the module or library containing the class into which the Beanvanager was injected or the Java
EE component from whose JNDI environment namespace the BeanManager was obtained, according to the rules of
typesafe resolution defined in Section 5.2, “ Typesafe resolution”.

publ i ¢ Set <Bean<?>> get Beans(Type beanType, Annotation... qualifiers);

Thefirst parameter is arequired bean type. The remaining parameters are required qualifiers.

If no qualifiers are passed to get Beans() , the default qualifier @ef aul t isassumed.

If the given type represents atype variable, an 1 | | egal Ar gunent Except i on iSthrown.

If two instances of the same qualifier type are given, an 1 11 egal Ar gunent Except i on isthrown.

If an instance of an annotation that is not a qualifier typeisgiven, an 111 egal Ar gunent Except i on isthrown.

11.3.5. Obtaining a Bean by name

JSR-299 Expert Group Draft 81

Portable extensions

The method BeanManager . get Beans() which accepts a string returns the set of beans which have the given EL name and
are available for injection in the module or library containing the class into which the Beanvanager was injected or the
Java EE component from whose JNDI environment namespace the BeanManager was obtained, according to the rules of
EL name resolution defined in Section 5.3, “EL name resolution”.

publ i c Set <Bean<?>> get Beans(String nane);

The parameter isan EL name.

11.3.6. Obtaining a passivation capable bean by identifier

The method BeanManager . get Passi vat i onCapabl eBean() returns the Passi vat i onCapabl e bean with the given identifi-
€er.

publ i ¢ Bean<?> get Passi vati onCapabl eBean(String id);

11.3.7. Resolving an ambiguous dependency

The method BeanManager . resol ve() applies the ambiguous dependency resolution rules defined in Section 5.2.1,
“Unsatisfied and ambiguous dependencies’ to a set of Beans.

public <X> Bean<? extends X> resol ve(Set <Bean<? extends X>> beans);

If the ambiguous dependency resolution rules fail, the container must throw an Anbi guousResol ut i onExcept i on.

11.3.8. Validating a dependency
The BeanManager . val i dat e() operation validates a dependency:

public void validate(lnjectionPoint injectionPoint);

The method val i dat e() validates the dependency and throws an | nj ecti onExcepti on if there is a deployment problem
(for example, an unsatisfied or unresolvable ambiguous dependency) associated with the injection point.

11.3.9. Firing an event

The method BeanManager . fi reEvent () fires an event and notifies observers, according to Section 10.5, “ Observer notific-
ation”.

public void fireEvent (Cbject event, Annotation... qualifiers);
Thefirst argument is the event object. The remaining parameters are event qualifiers.
If the runtime type of the event object contains atype variable, an 111 egal Ar gument Except i on isthrown.
If two instances of the same qualifier type are given, an 1 11 egal Ar gunent Except i on isthrown.

If an instance of an annotation that is not a qualifier typeisgiven, an 111 egal Ar gunent Except i on iSthrown.

11.3.10. Observer method resolution

The method BeanManager . r esol veCbser ver Met hods() resolves observer methods for an event according to the rules of
observer resolution defined in Section 10.2, “ Observer resolution”.

public <T> Set <Cbserver Met hod<? super T>> resol veObserver Met hods(T event, Annotation... qualifiers);

Thefirst parameter of resol veObser ver Met hods() iSthe event object. The remaining parameters are event qualifiers.

If the runtime type of the event object contains atype variable, an 111 egal Ar gument Except i on isthrown.

JSR-299 Expert Group Draft 82

Portable extensions

If two instances of the same qualifier type are given, an 111 egal Ar gunent Except i on isthrown.

If an instance of an annotation that is not a qualifier typeisgiven, ani 11 egal Ar gunent Except i on isthrown.

11.3.11. Decorator resolution

The method BeanManager . r esol veDecor at or s() returns the ordered list of decorators for a set of bean types and a set of
qualifiers and which are enabled in the module or library containing the class into which the BeanManager was injected or
the Java EE component from whose JNDI environment namespace the BeanManager was obtained, as defined in Sec-
tion 8.3, “Decorator resolution”.

Li st <Decor at or <?>> resol veDecor at or s(Set <Type> types, Annotation... qualifiers);

The first argument is the set of bean types of the decorated bean. The annotations are qualifiers declared by the decorated
bean.

If two instances of the same qualifier type are given, an 111 egal Ar gunent Except i on isthrown.
If an instance of an annotation that is not a qualifier typeisgiven, an 111 egal Ar gunent Except i on isthrown.

If the set of bean typesisempty, an111 egal Ar gunent Except i on isthrown.

11.3.12. Interceptor resolution

The method BeanManager . resol vel nt ercept or s() returns the ordered list of interceptors for a set of interceptor bindings
and a type of interception and which are enabled in the module or library containing the class into which the BeanManager
was injected or the Java EE component from whose JNDI environment namespace the BeanManager was obtained, as
defined in Section 9.5, “Interceptor resolution”.

Li st <I ntercept or<?>> resol vel nterceptors(lnterceptionType type,
Annot ation... interceptorBindings);

If two instances of the same interceptor binding type are given, an | | | egal Ar gunent Except i on iSthrown.
If no interceptor binding type instanceis given, an | | | egal Ar gunent Except i on isthrown.

If an instance of an annotation that is not an interceptor binding typeisgiven, an 111 egal Ar gument Except i on isthrown.

11.3.13. Determining if an annotation is a qualifier type, scope type, stereotype or interceptor
binding type

A portable extension may test an annotation to determineif it isa qualifier type, scope type, stereotype or interceptor bind-
ing type, obtain the set of meta-annotations declared by a stereotype or interceptor binding type, or determine if a scope
typeisanormal or passivating scope.

publ i c bool ean i sScope(d ass<? extends Annotation> annotationType);

public bool ean isQualifier(C ass<? extends Annotation> annotati onType);

publ i ¢ bool ean i sl nterceptorBindi ng(d ass<? extends Annotati on> annotationType);
public bool ean isStereotype(C ass<? extends Annotati on> annotati onType);

publ i ¢ bool ean i sNornmal Scope(d ass<? extends Annotati on> scopeType);

publ i ¢ bool ean i sPassi vati ngScope(d ass<? extends Annot ati on> scopeType);

publ i ¢ Set <Annot ati on> get | nterceptor Bi ndi ngDefi niti on(Cd ass<? extends Annotation> qualifierType);
publ i c Set <Annot ati on> get St er eot ypeDefiniti on(Cl ass<? extends Annotati on> stereotype);

11.3.14. Obtaining the active cont ext for a scope

The method BeanManager . get Cont ext () retrieves an active context object associated with the a given scope, as defined in
Section 6.5.1, “The active context object for a scope’”.

publi ¢ Cont ext get Context(C ass<? extends Annotation> scopeType);

11.3.15. Obtaining the ELResol ver

JSR-299 Expert Group Draft 83

Portable extensions

The method BeanManager . get ELResol ver () returns the j avax. el . ELResol ver specified in Section 12.4, “Integration
with Unified EL”.

publ i c ELResol ver get ELResol ver();

11.3.16. Wrapping a Unified EL Expr essi onFact ory

The method BeanManager . wr apExpr essi onFact ory() returns a wrapper j avax. el . Expressi onFactory that delegates
Met hodExpr essi on and Val ueExpr essi on creation to the given Expr essi onFact ory. When a Unified EL expression is
evaluated using a Met hodExpr essi on Of Val ueExpr essi on returned by the wrapper Expr essi onFact ory, the rules defined
in Section 6.4.3, “Dependent pseudo-scope and Unified EL” are enforced by the container.

publ i ¢ Expressi onFactory wr apExpressi onFact ory(Expressi onFactory expressi onFactory);

11.3.17. Obtaining an Annot at edType for a class
The method BeanManager . cr eat eAnnot at edType() returnsan Annot at edType for the given Java class.

public <T> Annot at edType<T> cr eat eAnnot at edType(d ass<T> type);

11.3.18. Obtaining an I nj ect i onTar get

The method BeanManager . cr eat el nj ecti onTar get () returns a container provided implementation of | nj ecti onTar get
for a given Annot at edType Of throws an 11| egal Argunent Except i on if there is a definition error associated with any in-
jection point of the type.

public <T> InjectionTarget<T> createlnjectionTarget (Annot at edType<T> type);

11.4. Alternative metadata sources

A portable extension may provide an alternative metadata source, such as configuration by XML.

The interfaces Annot at edType, Annot at edFi el d, Annot at edMet hod, Annot at edConst r uct or and Annot at edPar anet er in
the package j avax. ent erpri se. i nj ect. spi alow a portable extension to specify metadata that overrides the annotations
that exist on a bean class. The portable extension is responsible for implementing the interfaces, thereby exposing the
metadata to the container.

public interface AnnotatedType<X>
ext ends Annotated {
public C ass<X> getJavaC ass();
publ i ¢ Set <Annot at edConst r uct or <X>> get Constructors();
publ i ¢ Set <Annot at edMet hod<? super X>> get Met hods();
publ i ¢ Set <Annot at edFi el d<? super X>> getFiel ds();

public interface AnnotatedFi el d<X>
ext ends Annot at edMenber <X> {
public Field getJavaMenber();

public interface Annotat edMet hod<X>
ext ends Annot at edCal | abl e<X> {
public Met hod get JavaMenber ();

public interface AnnotatedConstructor<X>
ext ends Annot at edCal | abl e<X> {
publ i ¢ Constructor<X> getJavaMenber();

public interface AnnotatedParanet er <xX>
ext ends Annotated {
public int getPosition();
publ i ¢ Annot at edCal | abl e<X> get Decl ari ngCal | abl e();

JSR-299 Expert Group Draft 84

Portable extensions

public interface AnnotatedMenber <X>
ext ends Annotated {
public Menber getJavaMenber();
public boolean isStatic();
publ i ¢ Annot at edType<X> get Decl ari ngType();

public interface AnnotatedCall abl e<X>
ext ends Annot at edMenber <X> {
publi ¢ Li st <Annot at edPar anet er <X>> get Par aneters();

Theinterfacej avax. enterpri se. i nj ect. spi . Annot at ed exposes the overriding annotations and type declarations.

public interface Annotated {
public Type getBaseType();
public Set<Type> get TypeC osure();
public <T extends Annotation> T get Annot ati on(Cl ass<T> annot ati onType);
public Set <Annotation> get Annotations();
publi ¢ bool ean i sAnnot ati onPresent (O ass<? extends Annotati on> annotationType);

e getBaseType() returnsthe type of the program element.

e get Typed osure() returnsall typesto which the base type should be considered assignable.

e get Annotation() returnsthe program element annotation of the given annotation type, or anull value.
e getAnnotations() returnsall annotations of the program element.

* isAnnotationPresent() returnstrue if the program element has an annotation of the given annotation type, or f al se
otherwise.

The container must use the operations of Annot at ed and its subinterfaces to discover program element types and annota-
tions, instead of directly calling the Java Reflection API. In particular, the container must:

e call Annot at ed. get BaseType() to determine the type of an injection point, event parameter or disposed parameter,
e call Annot at ed. get Typed osur e() to determine the bean types of any kind of bean,
e cal Annot at ed. get Annot at i ons() to determine the scope, qualifiers, stereotypes and interceptor bindings of a bean,

e call Annotat ed. i sAnnot ati onPresent () and Annot at ed. get Annot ati on() to read any bean annotations defined by
this specification, and

e cal AnnotatedType. get Constructors(), AnnotatedType. get Met hods() and Annot at edType. get Fi el ds() to de-
termine the members of a bean class.

11.5. Container lifecycle events

During the application initialization process, the container fires a series of events, allowing portable extensions to integrate
with the container initialization process defined in Section 12.2, “Application initialization lifecycle”.

Observer methods of these events must be belong to extensions. An extension is a service provider of the service
j avax. enterprise.inject.spi.Extension declared in META- | NF/ servi ces.

public interface Extension {}

Service providers may have observer methods, which may observe any event, including any container lifecycle event, and
obtain an injected BeanManager reference.

The container instantiates a single instance of each extension at the beginning of the application initialization process and
maintains a reference to it until the application shuts down. The container delivers event notifications to this instance by

JSR-299 Expert Group Draft 85

Portable extensions

calling its observer methods.

For each service provider, the container must provide a bean of scope @wppl i cati onScoped and qualifier @ef aul t, sup-
porting injection of areference to the service provider instance. The bean types of this bean include the class of the service
provider and all superclasses and interfaces.

11.5.1. Bef or eBeanDi scovery event

The container must fire an event before it begins the bean discovery process. The event object must be of type
javax.enterprise.inject.spi.BeforeBeanDi scovery:

public interface BeforeBeanDi scovery {
public void addQualifier(C ass<? extends Annotation> qualifier);
public void addScope(d ass<? extends Annotation> scopeType, bool ean normal, bool ean passivating);
public void addStereotype(C ass<? extends Annotation> stereotype, Annotation... stereotypeDef);

public void addl nt ercept or Bi ndi ng(Cl ass<? extends Annotati on> bi ndi ngType, Annotation... bindingTypeDef);

public void addAnnot at edType(Annot at edType<?> type);

e addQualifier() declaresan annotation type asaqualifier type.
e addScope() declaresan annotation type as a scope type.
e addStereotype() declaresan annotation type as a stereotype, and specifies its meta-annotations.

e addl nterceptorBinding() declares an annotation type as an interceptor binding type, and specifies its meta-an-
notations.

e addAnnot at edType() adds a given Annot at edType t0 the set of types which will be scanned during bean discovery.

voi d bef oreBeanDi scovery(@bserves Bef oreBeanDi scovery event) { ... }

If any observer method of the Bef or eBeanDi scovery event throws an exception, the exception is treated as a definition er-
ror by the container.

11.5.2. Aft er BeanDi scovery event

The container must fire a second event when it has fully completed the bean discovery process, validated that there are no
definition errors relating to the discovered beans, and registered Bean and Qbserver Met hod objects for the discovered
beans, but before detecting deployment problems.

The event object must be of typej avax. enterpri se. i nj ect. spi . Aft er BeanDi scovery:

public interface AfterBeanDi scovery {
public void addDefinitionError(Throwable t);
public void addBean(Bean<?> bean);
public void addCbserver Met hod(Gbser ver Met hod<?> obser ver Met hod) ;
public void addCont ext (Cont ext context);

e addDefinitionError() registersadefinition error with the container, causing the container to abort deployment after
all observers have been notified.

* addBean() firesan event of type Pr ocessBean containing the given Bean and then registers the Bean with the container,
thereby making it available for injection into other beans. The given Bean may implement | nt er cept or Or Decor at or .

e addOoserver Met hod() fires an event of type Processoser ver Met hod containing the given oser ver Met hod and then
registers the bser ver Met hod with the container, thereby making it available for event notifications.

e addContext () registersacustom Cont ext object with the container.

A portable extension may take advantage of this event to register beans, interceptors, decorators, observer methods and
custom context objects with the container.

voi d afterBeanDi scovery(@bserves AfterBeanD scovery event, BeanManager nanager) { ... }

JSR-299 Expert Group Draft 86

Portable extensions

If any observer method of the Af t er BeanDi scovery event throws an exception, the exception is treated as a definition er-
ror by the container.

11.5.3. Aft er Depl oynent Val i dati on event

The container must fire a third event after it has validated that there are no deployment problems and before creating con-
texts or processing requests.

The event object must be of typej avax. enterpri se. i nj ect. spi . Aft er Depl oynent Val i dat i on:

public interface AfterDepl oynentValidation {
public void addDepl oynment Probl en(Throwabl e t);
}

e addDepl oyrent Probl en() registers a deployment problem with the container, causing the container to abort deploy-
ment after all observers have been notified.

voi d afterDepl oynent Val i dati on(@bserves AfterDepl oynment Val i dati on event, BeanManager nmanager) { ... }

If any observer method of the Aft er Depl oynent Val i dat i on event throws an exception, the exception is treated as a de-
ployment problem by the container.

The container must not allow any request to be processed by the deployment until all observers of this event return.

11.5.4. Bef or eShut down event
The container must fire afinal event after it has finished processing requests and destroyed all contexts.
The event object must be of typej avax. enterpri se. i nj ect . spi . Bef or eShut down:

public interface BeforeShutdown {}
voi d bef or eShut down(@bserves Bef or eShut down event, BeanManager manager) { ... }

If any observer method of the Bef or eShut down event throws an exception, the exception isignored by the container.

11.5.5. ProcessAnnot at edType event

The container must fire an event for each Java class or interface it discovers in a bean deployment archive, before it reads
the declared annotations.

The event object must be of typej avax. ent er pri se. i nj ect . spi . ProcessAnnot at edType<X>, where X is the class.

public interface ProcessAnnotatedType<X> {
publ i ¢ Annot at edType<X> get Annot at edType() ;
public void set Annot at edType(Annot at edType<X> type);
public void veto();

e get Annot at edType() returns the Annot at edType object that will be used by the container to read the declared annota-
tions.

e set Annot at edType() replacesthe Annot at edType.
e veto() forcesthe container to ignore the type.

Any observer of this event is permitted to wrap and/or replace the Annot at edType. The container must use the final value
of this property, after all observers have been called, to discover the types and read the annotations of the program ele-
ments.

For example, the following observer decorates the Annot at edType for every classthat is discovered by the container.

<T> voi d decor at eAnnot at edType(@bserves ProcessAnnot at edType<T> pat) {

JSR-299 Expert Group Draft 87

Portable extensions

pat . set Annot at edType(decorate(pat.get Annot atedType()));

If any observer method of a ProcessAnnot at edType event throws an exception, the exception is treated as a definition er-
ror by the container.

11.5.6. Processl nj ecti onTar get event

The container must fire an event for every Java EE component class supporting injection that may be instantiated by the
container at runtime, including every managed bean declared using @knagedBean, EJB session or message-driven bean,
enabled bean, enabled interceptor or enabled decorator.

The event object must be of typej avax. enterpri se. i nj ect. spi . Processl nj ecti onTar get <X>, where X is the managed
bean class, session bean class or Java EE component class supporting injection.

public interface ProcesslnjectionTarget<X> {
publ i c Annot at edType<X> get Annot at edType() ;
public | njectionTarget<X> getlnjectionTarget();
public void setlnjectionTarget(lnjectionTarget<X> injectionTarget);
public void addDefinitionError(Throwable t);

e get Annot at edType() returnsthe Annot at edType representing the managed bean class, session bean class or other Java
EE component class supporting injection.

e getlnjectionTarget() returnsthei nj ecti onTar get object that will be used by the container to perform injection.
e setlnjectionTarget () replacesthel nj ectionTarget .

e addDefinitionError() registersadefinition error with the container, causing the container to abort deployment after
bean discovery is complete.

Any observer of this event is permitted to wrap and/or replace the I nj ecti onTar get . The container must use the final
value of this property, after all observers have been called, whenever it performs injection upon the managed bean, session
bean or other Java EE component class supporting injection.

For example, this observer decoratesthe | nj ecti onTar get for the al servlets.

<T extends Servlet> void decorateServlet(@bserves ProcesslnjectionTarget<T> pit) {
pit.setlnjectionTarget(decorate(pit.getlnjectionTarget()));
}

If any observer method of a Processi nj ecti onTar get event throws an exception, the exception is treated as a definition
error by the container.

11.5.7. ProcessProducer event

The container must fire an event for each producer method or field of each enabled bean, including resources.

The event object must be of type j avax. ent er pri se. i nj ect. spi . ProcessProducer <T, X>, where T is the bean class of
the bean that declares the producer method or field and X is the return type of the producer method or the type of the pro-
ducer field.

public interface ProcessProducer<T, X> {
publ i ¢ Annot at edMenber <T> get Annot at edMenber () ;
publ i ¢ Producer <X> get Producer();
public void setProducer (Producer<X> producer);
public void addDefinitionError(Throwable t);

e get Annot at edMenber () returns the Annot at edFi el d representing the producer field or the Annot at edMet hod repres-
enting the producer method.

e getProducer () returns the producer object that will be used by the container to call the producer method or read the
producer field.

JSR-299 Expert Group Draft 88

Portable extensions

e setProducer () replacesthe Producer .

e addDefinitionError() registersadefinition error with the container, causing the container to abort deployment after
bean discovery is complete.

Any observer of this event is permitted to wrap and/or replace the Pr oducer . The container must use the final value of this
property, after all observers have been called, whenever it calls the producer or disposer.

For example, this observer decorates the Producer for the all producer methods and field of type Ent i t yManager .
voi d decorat eEntit yManager (@bserves ProcessProducer<?, EntityManager> pp) {

pi t.set Producer(decorate(pp.getProducer()));
}

If any observer method of a ProcessProducer event throws an exception, the exception is treated as a definition error by
the container.

11.5.8. ProcessBean event

The container must fire an event for each enabled bean, interceptor or decorator deployed in a bean deployment archive,
before registering the Bean object. No event isfired for any @sew qualified bean, defined in Section 3.12, “ @New qualified
beans’.

The event object type in the package j avax. enterpri se. i nj ect . spi depends upon what kind of bean was discovered:

« For amanaged bean with bean class X, the container must raise an event of type Pr ocessManagedBean<X>.
« For asession bean with bean class X, the container must raise an event of type Pr ocessSessi onBean<X>.

e For aproducer method with method return type X of a bean with bean class T, the container must raise an event of type
ProcessProducer Met hod<T, X>.

» For a producer field with field type x of a bean with bean class T, the container must raise an event of type Process-
Producer Fi el d<T, X>.

Resources are considered to be producer fields.
Theinterfacej avax. enterpri se. i nj ect. spi . ProcessBean isasupertype of all these event types:

public interface ProcessBean<X> {
publi ¢ Annot at ed get Annot at ed() ;
publ i ¢ Bean<X> get Bean();
public void addDefinitionError(Throwable t);

e getAnnot at ed() returnsthe Annot at edType representing the bean class, the Annot at edMet hod representing the produ-
cer method, or the Annot at edFi el d representing the producer field.

e getBean() returnsthe Bean object that is about to be registered. The Bean may implement | nt er cept or Or Decor at or.

e addDefinitionError() registersadefinition error with the container, causing the container to abort deployment after
bean discovery is complete.

public interface ProcessSessi onBean<X>
ext ends ProcessManagedBean<Obj ect > {
public String getEj bNane();
publ i c Sessi onBeanType get Sessi onBeanType();

* get E bName() returnsthe EJB name of the session bean.

e get Sessi onBeanType() returns aj avax. enterprise.inject.spi. Sessi onBeanType representing the kind of session
bean.

publ i c enum Sessi onBeanType { STATELESS, STATEFUL, SINGLETON }

JSR-299 Expert Group Draft 89

Portable extensions

public interface ProcessManagedBean<X>
ext ends ProcessBean<X> {
publ i c Annot at edType<X> get Annot at edBeanCl ass() ;

public interface ProcessProducer Met hod<T, X>
ext ends ProcessBean<X> {
publ i ¢ Annot at edMet hod<T> get Annot at edPr oducer Met hod() ;
publ i ¢ Annot at edPar anet er <T> get Annot at edDi sposedPar anet er () ;

public interface ProcessProducerFi el d<T, X>
ext ends ProcessBean<X> {
publ i ¢ Annot at edFi el d<T> get Annot at edPr oducer Fi el d();

If any observer method of a ProcessBean event throws an exception, the exception is treated as a definition error by the
container.

11.5.9. ProcessOhser ver Met hod event

The container must fire an event for each observer method of each enabled bean, before registering the tser ver Met hod
object.

The event object must be of type j avax. enterpri se. i nj ect. spi . ProcessCbhserver Met hod<T, X>, where T is the bean
class of the bean that declares the observer method and X is the observed event type of the observer method.

public interface ProcessObserver Met hod<T, X> {
publ i ¢ Annot at edPar anet er <T> get Annot at edEvent Par anet er () ;
publ i c Qobserver Met hod<X> get Cbserver Met hod() ;
public void addDefinitionError(Throwable t);

e get Annot at edEvent Par anet er () returnsthe Annot at edPar anet er representing the event parameter.

e get oserver Met hod() returns the tbser ver Met hod object that will be used by the container to call the observer meth-
od.

e addDefinitionError() registersadefinition error with the container, causing the container to abort deployment after
bean discovery is complete.

If any observer method of aProcessser ver Met hod event throws an exception, the exception is treated as a definition er-
ror by the container.

JSR-299 Expert Group Draft 20

Chapter 12. Packaging and deployment

When an application is started, the container must perform bean discovery, detect definition errors and deployment prob-
lems and raise events that allow portable extensions to integrate with the deployment lifecycle.

Bean discovery isthe process of determining:

e The bean deployment archives that exist in the application, and the beans they contain
« Which alternatives, interceptors and decorators are enabled for each bean deployment archive
* Theordering of enabled interceptors and decorators

Additional beans may be registered programmatically with the container by the application or a portable extension after
the automatic bean discovery completes. Portable extensions may even integrate with the process of building the Bean ob-
ject for a bean, to enhance the container's built-in functionality.

12.1. Bean deployment archives

Bean classes of enabled beans must be deployed in bean deployment archives.

e Alibrary jar, EJB jar, application client jar or rar archive is a bean deployment archiveif it has afile named beans. xm
in the META- | NF directory.

e TheVEB- I NF/ cl asses directory of awar is a bean deployment archive if there is a file named beans. xm in the WeB-
I NF directory of the war.

e A directory in the VM classpath is a bean deployment archiveif it has afile named beans. xni in the META- | NF direct-
ory.

The container is not required to support application client jar bean deployment archives.

The container searches for beansin all bean deployment archivesin the application classpath:

< Inan application deployed as an ear, the container searches every bean deployment archive bundled with or referenced
by the ear, including bean deployment archives bundled with or referenced by wars and EJB jars contained in the ear.
The bean deployment archives might be library jars, EJB jars, rars or war WEB- | NF/ ¢l asses directories.

e Inan application deployed as a war, the container searches every bean deployment archive bundled with or referenced
by the war. The bean deployment archives might be library jars or the WeB- | NF/ cl asses directory.

e In an application deployed as an EJB jar, the container searches the EJB jar, if it is a bean deployment archive, and
every bean deployment archive referenced by the EJB jar.

« An embeddable EJB container searches each bean deployment archive in the VM classpath that is listed in the value
of the embeddable container initialization property j avax. ej b. enbeddabl e. nodul es, or every bean deployment
archive in the VM classpath if the property is not specified. The bean deployment archives might be directories, lib-
rary jarsor EJB jars.

When searching for beans, the container considers:

e any Javaclassin any bean deployment archive,

e anyejb-jar.xm fileinthe metadata directory of any EJB bean deployment archive,

« any Javaclass referenced by the @avew qualifier of an injection point of another bean, and

e any interceptor or decorator class declared in the beans. xni file of any bean deployment archive.

If abean classis deployed in two different bean deployment archives, non-portable behavior results. Portable applications
must deploy each bean class in exactly one bean deployment archive.

JSR-299 Expert Group Draft 91

Packaging and deployment

12.2. Application initialization lifecycle

When an application is started, the container performs the following steps:

e Firg, the container must search for service providers for the service javax. enterprise.inject. spi.Extension
defined in Section 11.5, “Container lifecycle events’, instantiate a single instance of each service provider, and search
the service provider class for observer methods of initialization events.

 Next, the container must fire an event of type BeforeBeanDiscovery, a defined in Section 11.5.1,
“BeforeBeanDiscovery event”.

« Next, the container must perform bean discovery, and abort initialization of the application if any definition errors ex-
ist, as defined in Section 2.8, “Problems detected automatically by the container”. Additionally, for every Java EE
component class supporting injection that may be instantiated by the container at runtime, the container must create an
I nj ectionTarget for the class, as defined in Section 11.2, “The Producer and InjectionTarget interfaces’, and fire an
event of type Process| nj ecti onTar get , as defined in Section 11.5.6, “Processl njectionTarget event”.

¢ Next, the container must fire an event of type AfterBeanDiscovery, as defined in Section 11.5.2,
“ AfterBeanDiscovery event”, and abort initialization of the application if any observer registers a definition error.

* Next, the container must detect deployment problems by validating bean dependencies and specialization and abort ini-
tialization of the application if any deployment problems exist, as defined in Section 2.8, “Problems detected automat-
ically by the container”.

¢ Next, the container must fire an event of type AfterDeploynentValidation, as defined in Section 11.5.3,
“ AfterDeploymentValidation event”, and abort initialization of the application if any observer registers a deployment
problem.

< Finaly, the container begins directing requests to the application.

12.3. Bean discovery

The container automatically discovers managed beans (according to the rules of Section 3.1.1, “Which Java classes are
managed beans?’) and session beans in bean deployment archives and searches the bean classes for producer methods,
producer fields, disposer methods and observer methods.

For each Java class or interface deployed in a bean deployment archive, the container must:

e create an Annot at edType representing the type and fire an event of type ProcessAnnot at edType, as defined in Sec-
tion 11.5.5, “ProcessAnnotatedType event”, and then

« inspect the type metadata to determineif it is a bean or other Java EE component class supporting injection, and then
* detect definition errors by validating the class and its metadata, and then

< if the class is a managed bean, session bean, or other Java EE component class supporting injection, create an | nj ec-
ti onTarget for the class, as defined in Section 11.2, “The Producer and InjectionTarget interfaces’, and fire an event
of type Processl nj ecti onTar get , as defined in Section 11.5.6, “ Processl njectionTarget event”, and then

« if the classis an enabled bean, interceptor or decorator, create a Bean object that implements the rules defined in Sec-
tion 7.3.1, “Lifecycle of managed beans’, Section 7.3.2, “Lifecycle of stateful session beans’ or Section 7.3.3,
“Lifecycle of stateless session and singleton beans’, and fire an event which is a subtype of ProcessBean, asdefined in
Section 11.5.8, “ProcessBean event”.

For each enabled bean, the container must search the class for producer methods and fields, including resources, and for
each producer method or field:

e create aProducer, as defined in Section 11.2, “The Producer and InjectionTarget interfaces’, and fire an event of type
ProcessProducer , as defined in Section 11.5.7, “ProcessProducer event”, and then

« if the producer method or field is enabled, create a Bean object that implements the rules defined in Section 7.3.4,
“Lifecycle of producer methods’, Section 7.3.5, “Lifecycle of producer fields’ or Section 7.3.6, “Lifecycle of re-

JSR-299 Expert Group Draft 92

Packaging and deployment

sources’, and fire an event which is a subtype of Pr ocessBean, as defined in Section 11.5.8, “ProcessBean event”.

For each enabled bean, the container must search the class for observer methods, and for each observer method:

e create an oserver Met hod object, as defined in Section 11.1.3, “The ObserverMethod interface” and fire an event of
type Pr ocessCbser ver Met hod, as defined in Section 11.5.9, “ProcessObserverMethod event”.

The container determines which alternatives, interceptors and decorators are enabled, according to the rules defined in Sec-
tion 5.1.2, “Enabled and disabled beans’, Section 9.4, “Interceptor enablement and ordering” and Section 8.2, “ Decorator
enablement and ordering”, taking into account any <enabl e>, <i nterceptors> and <decor at or s> declarations in the
beans. xn files, and registers the Bean and Qbser ver Met hod objects:

» For each enabled bean that is not an interceptor or decorator, the container registers an instance of the Bean interface
defined in Section 11.1, “ The Bean interface”.

e For each enabled interceptor, the container registers an instance of the Interceptor interface defined in Sec-
tion 11.1.2, “The Interceptor interface”.

« For each enabled decorator, the container registers an instance of the Decor at or interface defined in Section 11.1.1,
“The Decorator interface”.

« For each observer method of every enabled bean, the container registers an instance of the thser ver Met hod interface
defined in Section 11.1.3, “ The ObserverMethod interface”.

12.4. Integration with Unified EL

The container must provide a Unified EL ELResol ver to the servlet engine and JSF implementation that resolves bean EL
names using the rules of name resolution defined in Section 5.3, “EL name resolution” and resolving ambiguities accord-
ing to Section 5.3.1, “Ambiguous EL names’.

* If anameusedin an EL expression does not resolve to any bean, the ELResol ver must return anull value.

e Otherwisg, if a name used in an EL expression resolves to exactly one bean, the ELResol ver must return a contextual
instance of the bean, as defined in Section 6.5.2, “ Contextual instance of abean”.

JSR-299 Expert Group Draft 93

	JSR-299: Contexts and Dependency Injection for the Java EE platform
	Table of Contents
	Evaluation license
	Chapter 1. Architecture
	1.1. Contracts
	1.2. Relationship to other specifications
	1.2.1. Relationship to the Java EE platform specification
	1.2.2. Relationship to EJB
	1.2.3. Relationship to managed beans
	1.2.4. Relationship to Dependency Injection for Java
	1.2.5. Relationship to Java Interceptors
	1.2.6. Relationship to JSF

	1.3. Introductory examples
	1.3.1. JSF example
	1.3.2. EJB example
	1.3.3. Java EE component environment example
	1.3.4. Event example
	1.3.5. Injection point metadata example
	1.3.6. Interceptor example
	1.3.7. Decorator example

	Chapter 2. Concepts
	2.1. Functionality provided by the container to the bean
	2.2. Bean types
	2.2.1. Legal bean types
	2.2.2. Restricting the bean types of a bean
	2.2.3. Typecasting between bean types

	2.3. Qualifiers
	2.3.1. Built-in qualifier types
	2.3.2. Defining new qualifier types
	2.3.3. Declaring the qualifiers of a bean
	2.3.4. Specifying qualifiers of an injected field
	2.3.5. Specifying qualifiers of a method or constructor parameter

	2.4. Scopes
	2.4.1. Built-in scope types
	2.4.2. Defining new scope types
	2.4.3. Declaring the bean scope
	2.4.4. Default scope

	2.5. Bean EL names
	2.5.1. Declaring the bean EL name
	2.5.2. Default bean EL names
	2.5.3. Beans with no EL name

	2.6. Alternatives
	2.6.1. Declaring an alternative

	2.7. Stereotypes
	2.7.1. Defining new stereotypes
	2.7.1.1. Declaring the default scope for a stereotype
	2.7.1.2. Specifying interceptor bindings for a stereotype
	2.7.1.3. Declaring a @Named stereotype
	2.7.1.4. Declaring an @Alternative stereotype
	2.7.1.5. Stereotypes with additional stereotypes

	2.7.2. Declaring the stereotypes for a bean
	2.7.3. Built-in stereotypes

	2.8. Problems detected automatically by the container

	Chapter 3. Programming model
	3.1. Managed beans
	3.1.1. Which Java classes are managed beans?
	3.1.2. Bean types of a managed bean
	3.1.3. Declaring a managed bean
	3.1.4. Specializing a managed bean
	3.1.5. Default name for a managed bean

	3.2. Session beans
	3.2.1. EJB remove methods of session beans
	3.2.2. Bean types of a session bean
	3.2.3. Declaring a session bean
	3.2.4. Specializing a session bean
	3.2.5. Default name for a session bean

	3.3. Producer methods
	3.3.1. Bean types of a producer method
	3.3.2. Declaring a producer method
	3.3.3. Specializing a producer method
	3.3.4. Disposer methods
	3.3.5. Disposed parameter of a disposer method
	3.3.6. Declaring a disposer method
	3.3.7. Disposer method resolution
	3.3.8. Default name for a producer method

	3.4. Producer fields
	3.4.1. Bean types of a producer field
	3.4.2. Declaring a producer field
	3.4.3. Default name for a producer field

	3.5. Resources
	3.5.1. Declaring a resource
	3.5.2. Bean types of a resource

	3.6. Additional built-in beans
	3.7. Bean constructors
	3.7.1. Declaring a bean constructor

	3.8. Injected fields
	3.8.1. Declaring an injected field

	3.9. Initializer methods
	3.9.1. Declaring an initializer method

	3.10. The default qualifier at injection points
	3.11. The qualifier @Named at injection points
	3.12. @New qualified beans

	Chapter 4. Inheritance and specialization
	4.1. Inheritance of type-level metadata
	4.2. Inheritance of member-level metadata
	4.3. Specialization
	4.3.1. Direct and indirect specialization

	Chapter 5. Dependency injection, lookup and EL
	5.1. Modularity
	5.1.1. Declaring selected alternatives for a bean deployment archive
	5.1.2. Enabled and disabled beans
	5.1.3. Inconsistent specialization
	5.1.4. Inter-module injection

	5.2. Typesafe resolution
	5.2.1. Unsatisfied and ambiguous dependencies
	5.2.2. Legal injection point types
	5.2.3. Assignability of raw and parameterized types
	5.2.4. Primitive types and null values
	5.2.5. Qualifier annotations with members
	5.2.6. Multiple qualifiers

	5.3. EL name resolution
	5.3.1. Ambiguous EL names

	5.4. Client proxies
	5.4.1. Unproxyable bean types
	5.4.2. Client proxy invocation

	5.5. Dependency injection
	5.5.1. Injection using the bean constructor
	5.5.2. Injection of fields and initializer methods
	5.5.3. Destruction of dependent objects
	5.5.4. Invocation of producer or disposer methods
	5.5.5. Access to producer field values
	5.5.6. Invocation of observer methods
	5.5.7. Injection point metadata

	5.6. Programmatic lookup
	5.6.1. The Instance interface
	5.6.2. The built-in Instance
	5.6.3. Using AnnotationLiteral and TypeLiteral

	Chapter 6. Scopes and contexts
	6.1. The Contextual interface
	6.1.1. The CreationalContext interface

	6.2. The Context interface
	6.3. Normal scopes and pseudo-scopes
	6.4. Dependent pseudo-scope
	6.4.1. Dependent objects
	6.4.2. Destruction of objects with scope @Dependent
	6.4.3. Dependent pseudo-scope and Unified EL

	6.5. Contextual instances and contextual references
	6.5.1. The active context object for a scope
	6.5.2. Contextual instance of a bean
	6.5.3. Contextual reference for a bean
	6.5.4. Contextual reference validity
	6.5.5. Injectable references
	6.5.6. Injectable reference validity

	6.6. Passivation and passivating scopes
	6.6.1. Passivation capable beans
	6.6.2. Passivation capable dependencies
	6.6.3. Passivating scopes
	6.6.4. Validation of passivation capable beans and dependencies

	6.7. Context management for built-in scopes
	6.7.1. Request context lifecycle
	6.7.2. Session context lifecycle
	6.7.3. Application context lifecycle
	6.7.4. Conversation context lifecycle
	6.7.5. The Conversation interface

	Chapter 7. Lifecycle of contextual instances
	7.1. Restriction upon bean instantiation
	7.2. Container invocations and interception
	7.3. Lifecycle of contextual instances
	7.3.1. Lifecycle of managed beans
	7.3.2. Lifecycle of stateful session beans
	7.3.3. Lifecycle of stateless session and singleton beans
	7.3.4. Lifecycle of producer methods
	7.3.5. Lifecycle of producer fields
	7.3.6. Lifecycle of resources

	Chapter 8. Decorators
	8.1. Decorator beans
	8.1.1. Declaring a decorator
	8.1.2. Decorator delegate injection points
	8.1.3. Decorated types of a decorator

	8.2. Decorator enablement and ordering
	8.3. Decorator resolution
	8.3.1. Assignability of raw and parameterized types for delegate injection points

	8.4. Decorator invocation

	Chapter 9. Interceptor bindings
	9.1. Interceptor binding types
	9.1.1. Interceptor binding types with additional interceptor bindings
	9.1.2. Interceptor bindings for stereotypes

	9.2. Declaring the interceptor bindings of an interceptor
	9.3. Binding an interceptor to a bean
	9.4. Interceptor enablement and ordering
	9.5. Interceptor resolution
	9.5.1. Interceptors with multiple bindings
	9.5.2. Interceptor binding types with members

	Chapter 10. Events
	10.1. Event types and qualifier types
	10.2. Observer resolution
	10.2.1. Assignability of type variables, raw and parameterized types
	10.2.2. Event qualifier types with members
	10.2.3. Multiple event qualifiers

	10.3. Firing events
	10.3.1. The Event interface
	10.3.2. The built-in Event

	10.4. Observer methods
	10.4.1. Event parameter of an observer method
	10.4.2. Declaring an observer method
	10.4.3. Conditional observer methods
	10.4.4. Transactional observer methods

	10.5. Observer notification
	10.5.1. Observer method invocation context

	Chapter 11. Portable extensions
	11.1. The Bean interface
	11.1.1. The Decorator interface
	11.1.2. The Interceptor interface
	11.1.3. The ObserverMethod interface

	11.2. The Producer and InjectionTarget interfaces
	11.3. The BeanManager object
	11.3.1. Obtaining a contextual reference for a bean
	11.3.2. Obtaining an injectable reference
	11.3.3. Obtaining a CreationalContext
	11.3.4. Obtaining a Bean by type
	11.3.5. Obtaining a Bean by name
	11.3.6. Obtaining a passivation capable bean by identifier
	11.3.7. Resolving an ambiguous dependency
	11.3.8. Validating a dependency
	11.3.9. Firing an event
	11.3.10. Observer method resolution
	11.3.11. Decorator resolution
	11.3.12. Interceptor resolution
	11.3.13. Determining if an annotation is a qualifier type, scope type, stereotype or interceptor binding type
	11.3.14. Obtaining the active Context for a scope
	11.3.15. Obtaining the ELResolver
	11.3.16. Wrapping a Unified EL ExpressionFactory
	11.3.17. Obtaining an AnnotatedType for a class
	11.3.18. Obtaining an InjectionTarget

	11.4. Alternative metadata sources
	11.5. Container lifecycle events
	11.5.1. BeforeBeanDiscovery event
	11.5.2. AfterBeanDiscovery event
	11.5.3. AfterDeploymentValidation event
	11.5.4. BeforeShutdown event
	11.5.5. ProcessAnnotatedType event
	11.5.6. ProcessInjectionTarget event
	11.5.7. ProcessProducer event
	11.5.8. ProcessBean event
	11.5.9. ProcessObserverMethod event

	Chapter 12. Packaging and deployment
	12.1. Bean deployment archives
	12.2. Application initialization lifecycle
	12.3. Bean discovery
	12.4. Integration with Unified EL

