[jboss-svn-commits] JBL Code SVN: r19045 - in labs/jbossrules/contrib/machinelearning/decisiontree: src and 1 other directories.

jboss-svn-commits at lists.jboss.org jboss-svn-commits at lists.jboss.org
Mon Mar 17 19:56:56 EDT 2008


Author: gizil
Date: 2008-03-17 19:56:55 -0400 (Mon, 17 Mar 2008)
New Revision: 19045

Added:
   labs/jbossrules/contrib/machinelearning/decisiontree/src/
   labs/jbossrules/contrib/machinelearning/decisiontree/src/id3/
   labs/jbossrules/contrib/machinelearning/decisiontree/src/id3/BocukFileExample.java
   labs/jbossrules/contrib/machinelearning/decisiontree/src/id3/BocukObjectExample.java
   labs/jbossrules/contrib/machinelearning/decisiontree/src/id3/BooleanDomain.java
   labs/jbossrules/contrib/machinelearning/decisiontree/src/id3/DBFactSet.java
   labs/jbossrules/contrib/machinelearning/decisiontree/src/id3/DecisionTree.java
   labs/jbossrules/contrib/machinelearning/decisiontree/src/id3/DecisionTreeBuilder.java
   labs/jbossrules/contrib/machinelearning/decisiontree/src/id3/DecisionTreeBuilderMT.java
   labs/jbossrules/contrib/machinelearning/decisiontree/src/id3/Domain.java
   labs/jbossrules/contrib/machinelearning/decisiontree/src/id3/DomainFactory.java
   labs/jbossrules/contrib/machinelearning/decisiontree/src/id3/FSFactSet.java
   labs/jbossrules/contrib/machinelearning/decisiontree/src/id3/Fact.java
   labs/jbossrules/contrib/machinelearning/decisiontree/src/id3/FactSet.java
   labs/jbossrules/contrib/machinelearning/decisiontree/src/id3/FactSetFactory.java
   labs/jbossrules/contrib/machinelearning/decisiontree/src/id3/LeafNode.java
   labs/jbossrules/contrib/machinelearning/decisiontree/src/id3/LiteralDomain.java
   labs/jbossrules/contrib/machinelearning/decisiontree/src/id3/NumericDomain.java
   labs/jbossrules/contrib/machinelearning/decisiontree/src/id3/OOFactSet.java
   labs/jbossrules/contrib/machinelearning/decisiontree/src/id3/Restaurant.java
   labs/jbossrules/contrib/machinelearning/decisiontree/src/id3/RulePrinter.java
   labs/jbossrules/contrib/machinelearning/decisiontree/src/id3/TreeNode.java
   labs/jbossrules/contrib/machinelearning/decisiontree/src/id3/Util.java
   labs/jbossrules/contrib/machinelearning/decisiontree/src/id3/WorkingMemory.java
Log:
first commit, id3 without discretization


Added: labs/jbossrules/contrib/machinelearning/decisiontree/src/id3/BocukFileExample.java
===================================================================
--- labs/jbossrules/contrib/machinelearning/decisiontree/src/id3/BocukFileExample.java	                        (rev 0)
+++ labs/jbossrules/contrib/machinelearning/decisiontree/src/id3/BocukFileExample.java	2008-03-17 23:56:55 UTC (rev 19045)
@@ -0,0 +1,44 @@
+package id3;
+
+
+public class BocukFileExample {
+
+	public static void main(String[] args) {
+		
+
+		WorkingMemory simple = new WorkingMemory();
+
+
+		/* insert the guys */
+		//String klassCar =  FactSetFactory.insertCarSet(simple);
+		String klassNursery =  FactSetFactory.insertNurserySet(simple);
+		
+		//String klassAdvertisement = FactSetFactory.insertAdvertisementSet(simple);
+
+		
+		boolean buildTree = true;
+		if (buildTree) {
+
+			DecisionTreeBuilder bocuk = new DecisionTreeBuilder();
+			//DecisionTreeBuilderMT bocuk = new DecisionTreeBuilderMT();
+
+			long dt = System.currentTimeMillis();
+			//DecisionTree bocuksTree = bocuk.build(simple, klassCar, "classCar", null);
+			DecisionTree bocuksTree = bocuk.build(simple, klassNursery, "classnursery", null);
+			
+			//DecisionTree bocuksTree = bocuk.build(simple, klassAdvertisement, "classAdvertisement", FactSetFactory.attributesOfAdvertisement);
+			
+			
+			dt = System.currentTimeMillis() - dt;
+			System.out.println("Time"+dt + " facts read: "+bocuksTree.getNumRead() + " num call: "+ bocuk.getNumCall() );
+			//System.out.println(bocuksTree);
+
+			RulePrinter my_printer = new RulePrinter();
+			my_printer.printer(bocuksTree);
+		}
+	}
+
+
+
+}
+

Added: labs/jbossrules/contrib/machinelearning/decisiontree/src/id3/BocukObjectExample.java
===================================================================
--- labs/jbossrules/contrib/machinelearning/decisiontree/src/id3/BocukObjectExample.java	                        (rev 0)
+++ labs/jbossrules/contrib/machinelearning/decisiontree/src/id3/BocukObjectExample.java	2008-03-17 23:56:55 UTC (rev 19045)
@@ -0,0 +1,45 @@
+package id3;
+
+import java.util.ArrayList;
+
+public class BocukObjectExample {
+
+	public static void main(String[] args) {
+		Restaurant arest = new Restaurant(true, false,  false,  true, "Full", 1,   false,   false,  "Thai",    "30-60",  false);
+		Class<?> k = arest.getClass();
+		ArrayList<Object> facts = new ArrayList<Object>();
+		facts.add(new Restaurant(true, false,  false,  true, "Full", 1,   false,   false,  "Thai",    "30-60",  false));
+		facts.add(new Restaurant(false,  true, false,  false,  "Some", 1,   false,   false,  "Burger",  "0-10",   true));
+		facts.add(new Restaurant(true, false,  true, true, "Full", 1,   true,   false,  "Thai",    "10-30",  true));
+		facts.add(new Restaurant(true, false,  true, false,  "Full", 3, false,   true, "French",  ">60",    false)); 
+		facts.add(new Restaurant(false,  true, false,  true, "Some", 2,  true,  true, "Italian", "0-10",   true));
+		facts.add(new Restaurant(false,  true, false,  false,  "None", 1,   true,  false,  "Burger",  "0-10",   false));
+		facts.add(new Restaurant(false,  false,  false,  true, "Some", 2,  true,  true, "Thai",    "0-10",   true));
+		facts.add(new Restaurant(false,  true, true, false,  "Full", 1,   true,  false,  "Burger",  ">60",    false)); 
+		facts.add(new Restaurant(true, true, true, true, "Full", 3, false,   true, "Italian", "10-30",  false)); 
+		facts.add(new Restaurant(false,  false,  false,  false,  "None", 1,   false,   false,  "Thai",    "0-10",   false)); 
+		facts.add(new Restaurant(true, true, true, true, "Full", 1,   false,   false,  "Burger",  "30-60",  true));
+
+		WorkingMemory simple = new WorkingMemory();
+
+
+		for(Object r: facts) {
+			try {
+				simple.insert(r);
+
+			} catch (Exception e) {
+				System.out.println("Inserting element "+ r + " and "+ e);
+			}
+		}
+		
+		DecisionTreeBuilder bocuk = new DecisionTreeBuilder();
+		
+		long dt = System.currentTimeMillis();
+		DecisionTree bocuksTree = bocuk.build(simple, k, "will_wait", null);
+		dt = System.currentTimeMillis() - dt;
+		System.out.println("Time"+dt+"\n"+bocuksTree);
+		
+		RulePrinter my_printer = new RulePrinter();
+		my_printer.printer(bocuksTree);
+	}
+}

Added: labs/jbossrules/contrib/machinelearning/decisiontree/src/id3/BooleanDomain.java
===================================================================
--- labs/jbossrules/contrib/machinelearning/decisiontree/src/id3/BooleanDomain.java	                        (rev 0)
+++ labs/jbossrules/contrib/machinelearning/decisiontree/src/id3/BooleanDomain.java	2008-03-17 23:56:55 UTC (rev 19045)
@@ -0,0 +1,82 @@
+package id3;
+
+import java.util.ArrayList;
+import java.util.List;
+
+public class BooleanDomain implements Domain<Boolean> {
+
+	private String fName;
+	private ArrayList<Boolean> fValues;
+	private boolean constant;
+
+
+	public BooleanDomain(String _name) {
+		fName = _name.trim();
+		fValues = new ArrayList<Boolean>();
+		fValues.add(Boolean.TRUE);
+		fValues.add(Boolean.FALSE);
+	}
+	
+	public boolean isDiscrete() {
+		return true;
+	}
+
+	public String getName() {
+		return fName;
+	}
+
+	public boolean contains(Boolean value) {
+		return true;
+	}
+
+	public void addValue(Boolean value) {
+		// TODO Auto-generated method stub
+		
+	}
+
+	public List<Boolean> getValues() {
+		return fValues;
+	}
+	
+	public int hashCode() {
+		return fName.hashCode();
+	}
+
+	public boolean isConstant() {
+		return this.constant;
+	}
+
+	public void setConstant() {
+		this.constant = true;	
+	}
+	
+	public Object readString(String data) {
+		if (isValid(data))
+			return Boolean.parseBoolean(data);
+		else 
+			return null;
+	}
+	
+	public boolean isValid(String string) {
+		try{
+			Boolean.parseBoolean(string);
+			return true;
+		}
+		catch (Exception e){
+			return false;
+		}
+	}
+	
+	public boolean isPossible(Object value) {
+		//if (isDiscrete() && constant)
+		if (value instanceof Boolean && fValues.contains(value))
+			return true;
+		return false;
+	}
+	
+	public String toString() {
+		String out = fName;
+		return out;
+	}
+
+}

Added: labs/jbossrules/contrib/machinelearning/decisiontree/src/id3/DBFactSet.java
===================================================================
--- labs/jbossrules/contrib/machinelearning/decisiontree/src/id3/DBFactSet.java	                        (rev 0)
+++ labs/jbossrules/contrib/machinelearning/decisiontree/src/id3/DBFactSet.java	2008-03-17 23:56:55 UTC (rev 19045)
@@ -0,0 +1,32 @@
+package id3;
+
+import java.util.Collection;
+
+public class DBFactSet implements FactSet{
+
+	public void assignTo(Collection<Fact> c) {
+		// TODO Auto-generated method stub
+		
+	}
+
+	public String getClassName() {
+		// TODO Auto-generated method stub
+		return null;
+	}
+
+	public Domain<?> getDomain(String attr) {
+		// TODO Auto-generated method stub
+		return null;
+	}
+
+	public Collection<Domain<?>> getDomains() {
+		// TODO Auto-generated method stub
+		return null;
+	}
+
+	public int getSize() {
+		// TODO Auto-generated method stub
+		return 0;
+	}
+
+}

Added: labs/jbossrules/contrib/machinelearning/decisiontree/src/id3/DecisionTree.java
===================================================================
--- labs/jbossrules/contrib/machinelearning/decisiontree/src/id3/DecisionTree.java	                        (rev 0)
+++ labs/jbossrules/contrib/machinelearning/decisiontree/src/id3/DecisionTree.java	2008-03-17 23:56:55 UTC (rev 19045)
@@ -0,0 +1,235 @@
+package id3;
+
+import java.util.ArrayList;
+import java.util.Hashtable;
+import java.util.List;
+
+public class DecisionTree {
+	
+	public long FACTS_READ = 0;
+	
+	/* set of the attributes, their types*/
+	private Hashtable<String, Domain<?>> domainSet; 
+
+	/* the class of the objects */
+	private String className;
+
+	/* the target attribute */
+	private String target;
+
+	
+	private TreeNode root;
+
+	/* all attributes that can be used during classification */
+	private ArrayList<String> attrsToClassify;
+
+	DecisionTree(String klass) {
+		this.className = klass;
+		this.domainSet = new Hashtable<String, Domain<?>>();
+		this.attrsToClassify = new ArrayList<String>();
+	}
+	
+	
+	private Object getConsensus(List<Fact> facts) {
+		List<?> targetValues = getPossibleValues(this.target);	
+		Hashtable<Object, Integer> facts_in_class = getStatistics(facts, target, targetValues);
+		
+		int winner_vote = 0;
+		Object winner = null;
+		for (Object key: targetValues) {
+
+			int num_in_class = facts_in_class.get(key).intValue();
+			if (num_in_class > winner_vote) {
+				winner_vote = num_in_class;
+				winner = key;
+			}
+		}
+		return winner;
+	}
+
+
+//*OPT*	public double calculateGain(List<FactSet> facts, String attributeName) {	
+	public double calculateGain(List<Fact> facts, String attributeName) {
+		return getInformation(facts) - getGain(facts, attributeName);
+	}
+
+//*OPT*	public double getGain(List<FactSet> facts, String attributeToSplit) {
+	public double getGain(List<Fact> facts, String attributeToSplit) {
+		System.out.println("What is the attributeToSplit? "+attributeToSplit);
+		List<?> attributeValues = getPossibleValues(attributeToSplit);
+
+		String attr_sum = "sum";
+
+		List<?> targetValues = getPossibleValues(target);
+		//Hashtable<Object, Integer> facts_in_class = new Hashtable<Object, Integer>(targetValues.size());
+
+		/* initialize the hashtable */
+		Hashtable<Object, Hashtable<Object, Integer>> facts_of_attribute = new Hashtable<Object, Hashtable<Object, Integer>>(attributeValues.size());
+		for (Object attr: attributeValues) {
+			facts_of_attribute.put(attr, new Hashtable<Object, Integer>(targetValues.size()+1));
+			for (Object t: targetValues) {
+				facts_of_attribute.get(attr).put(t, 0);
+			}
+			facts_of_attribute.get(attr).put(attr_sum, 0);
+		}
+
+
+		int total_num_facts= 0;
+//*OPT*		for (FactSet fs: facts) {
+//*OPT*			for (Fact f: fs.getFacts()) {
+		for (Fact f: facts) {
+				total_num_facts ++;
+				Object targetKey = f.getFieldValue(target);
+				//System.out.println("My key: "+ targetKey.toString());
+
+				Object attr_key = f.getFieldValue(attributeToSplit);
+				int num = facts_of_attribute.get(attr_key).get(targetKey).intValue();
+				num ++;
+				facts_of_attribute.get(attr_key).put(targetKey, num);
+
+				int total_num = facts_of_attribute.get(attr_key).get(attr_sum).intValue();
+				total_num ++;
+				facts_of_attribute.get(attr_key).put(attr_sum, total_num);
+
+//				System.out.println("getGain of "+attributeToSplit+
+//				": total_num "+ facts_of_attribute.get(attr_key).get(attr_sum) +
+//				" and "+facts_of_attribute.get(attr_key).get(targetKey) +
+//				" at attr=" + attr_key + " of t:"+targetKey);
+		}
+		FACTS_READ += facts.size();
+//*OPT*			}
+//*OPT*		}
+
+		double sum = 0.0;
+		for (Object attr: attributeValues) {
+			int total_num_attr = facts_of_attribute.get(attr).get(attr_sum).intValue();
+			
+			double sum_attr = 0.0;
+			if (total_num_attr > 0)
+				for (Object t: targetValues) {
+					int num_attr_target = facts_of_attribute.get(attr).get(t).intValue();
+
+					double prob = (double)num_attr_target/total_num_attr;
+					//System.out.println("prob "+ prob);
+					sum_attr += (prob == 0.0) ? 0.0 : (-1* prob * Util.log2(prob));
+				}
+			sum += ((double)total_num_attr/(double)total_num_facts) * sum_attr;
+		}
+		return sum;
+	}
+	
+//*OPT*		public double getInformation(List<FactSet> facts) {	
+	Hashtable<Object, Integer> getStatistics(List<Fact> facts, String target, List<?> targetValues) {
+		Hashtable<Object, Integer> facts_in_class = new Hashtable<Object, Integer>(targetValues.size());
+
+		for (Object t: targetValues) {
+			facts_in_class.put(t, 0);
+		}
+
+		int total_num_facts= 0;
+//*OPT*		for (FactSet fs: facts) {
+//*OPT*			for (Fact f: fs.getFacts()) {
+		for (Fact f: facts) {
+				total_num_facts++;
+				Object key = f.getFieldValue(target);
+				//System.out.println("My key: "+ key.toString());
+				facts_in_class.put(key, facts_in_class.get(key).intValue() + 1); // bocuk kafa :P
+		}
+		FACTS_READ += facts.size();
+//*OPT*			}
+//*OPT*		}
+		return facts_in_class;
+	}
+
+
+//*OPT*	public double getInformation(List<FactSet> facts) {
+	/** it returns the information value of facts
+	 *  entropy that characterizes the (im)purity of an arbitrary collection of examples
+	 *  @param facts list of facts
+	 */ 
+	public double getInformation(List<Fact> facts) {
+
+		List<?> targetValues = getPossibleValues(this.target);
+		
+		Hashtable<Object, Integer> facts_in_class = getStatistics(facts, target, targetValues);
+		int total_num_facts = facts.size();
+		double sum = 0;
+		for (Object key: targetValues) {
+			int num_in_class = facts_in_class.get(key).intValue();
+			//System.out.println("num_in_class : "+ num_in_class + " key "+ key + " and the total num "+ total_num_facts);
+			double prob = (double) num_in_class / (double) total_num_facts;
+			
+			//double log2= Util.log2(prob);
+			//double plog2p= prob*log2;
+			sum += (prob == 0.0) ? 0.0 :-1* prob * Util.log2(prob);
+			//System.out.println("prob "+ prob +" and the plog(p)"+plog2p+" where the sum: "+sum);
+		}
+		return sum;
+	}
+	
+	public void setTarget(String targetField) {
+		target = targetField;
+		attrsToClassify.remove(target);
+	}
+
+	public void addDomain(Domain<?> domain) {
+		domainSet.put(domain.getName(), domain);
+		if (!domain.getName().equals(this.target))
+			attrsToClassify.add(domain.getName());
+			
+	}
+
+	public List<?> getPossibleValues(String fieldName) {
+		return domainSet.get(fieldName).getValues();
+	}
+	
+	public List<String> getAttributes() {
+		return attrsToClassify;
+	}
+
+	public String getTarget() {
+		return target;
+	}
+	
+	public String getName() {
+		return className;
+	}
+
+
+	public Domain<?> getDomain(String key) {
+		return domainSet.get(key);
+	}
+
+	
+	public TreeNode getRoot() {
+		return(root);
+		
+	}
+	
+	public void setRoot(TreeNode root) {
+		this.root = root;
+		
+	}
+	
+	public long getNumRead() {
+		return FACTS_READ;
+	}
+	@Override
+	public String toString() {
+		return "Facts scanned " + FACTS_READ + "\n" + root.toString();
+	}
+	
+	
+	/* **OPT
+		int getTotalSize(List<FactSet> facts) {
+
+			int num = 0;
+			for(FactSet fs : facts) {
+				num += fs.getSize();
+			}
+
+			return num;
+		}
+	*/
+
+}

Added: labs/jbossrules/contrib/machinelearning/decisiontree/src/id3/DecisionTreeBuilder.java
===================================================================
--- labs/jbossrules/contrib/machinelearning/decisiontree/src/id3/DecisionTreeBuilder.java	                        (rev 0)
+++ labs/jbossrules/contrib/machinelearning/decisiontree/src/id3/DecisionTreeBuilder.java	2008-03-17 23:56:55 UTC (rev 19045)
@@ -0,0 +1,248 @@
+package id3;
+
+
+import java.util.ArrayList;
+import java.util.Collection;
+import java.util.Collections;
+import java.util.Hashtable;
+import java.util.List;
+
+public class DecisionTreeBuilder {
+
+	class MyThread extends Thread {
+		DecisionTreeBuilder builder;
+		DecisionTree dt;
+		List<Fact> facts;
+		List<String> attributeNames;
+		TreeNode currentNode = null;
+		Object value = null;
+		TreeNode result = null;
+		@Override
+		public void run() {
+			result = builder.id3(dt, facts, attributeNames);
+			currentNode.addNode(value, result);
+		}
+	}
+	
+	MyThread helper;
+	private int FUNC_CALL = 0;
+	private int num_fact_processed = 0;
+	
+	/* 
+	 * treebuilder.execute(workingmemory, classtoexecute, attributestoprocess)
+
+	foreach factset in workingmemory
+		if classtoexecute.isAssignableFrom( factset.class )
+			internaladd(factset)
+
+	internalprocess(attributestoprocess)
+	 */
+
+	public DecisionTree build(WorkingMemory wm, Class<?> klass, String targetField, Collection<String> workingAttributes) {
+
+		DecisionTree dt = new DecisionTree(klass.getName());
+//		**OPT		List<FactSet> facts = new ArrayList<FactSet>();
+		ArrayList<Fact> facts = new ArrayList<Fact>();
+		FactSet klass_fs = null;
+		for (FactSet fs: wm.getFactsets()) {
+			if (fs instanceof OOFactSet) {
+				if (klass.isAssignableFrom(((OOFactSet) fs).getFactClass())) {
+//					**OPT		facts.add(fs);
+					fs.assignTo(facts); // adding all facts of fs to "facts
+				}
+			}
+			if (klass.getName() == fs.getClassName()) {
+				klass_fs = fs;
+			}
+		}
+		dt.FACTS_READ += facts.size();
+		
+		num_fact_processed = facts.size();
+			
+		if (workingAttributes != null)
+			for (String attr: workingAttributes) {
+				dt.addDomain(klass_fs.getDomain(attr));
+			}
+		else 
+			for (Domain<?> d: klass_fs.getDomains())
+				dt.addDomain(d);
+
+		dt.setTarget(targetField);
+		
+		ArrayList<String> attrs = new ArrayList<String>(dt.getAttributes());
+		Collections.sort(attrs);
+
+		TreeNode root = id3(dt, facts, attrs);
+		dt.setRoot(root);
+
+		return dt;
+	}
+
+	
+	public DecisionTree build(WorkingMemory wm, String klass, String targetField, Collection<String> workingAttributes) {
+
+		DecisionTree dt = new DecisionTree(klass);
+//		**OPT		List<FactSet> facts = new ArrayList<FactSet>();
+		ArrayList<Fact> facts = new ArrayList<Fact>();
+		FactSet klass_fs = null;
+		for (FactSet fs: wm.getFactsets()) {
+			if (klass == fs.getClassName()) {
+//				**OPT		facts.add(fs);
+				fs.assignTo(facts); // adding all facts of fs to "facts"
+
+				klass_fs = fs;
+				break;
+			}
+		}
+		dt.FACTS_READ += facts.size();
+		num_fact_processed = facts.size(); 
+			
+		if (workingAttributes != null)
+			for (String attr: workingAttributes) {
+				System.out.println("Bok degil "+ attr);
+				if (attr =="aratio") {
+					System.out.println("Bok");
+					System.exit(0);
+				}
+				dt.addDomain(klass_fs.getDomain(attr));
+			}
+		else 
+			for (Domain<?> d: klass_fs.getDomains())
+				dt.addDomain(d);
+
+		dt.setTarget(targetField);
+		
+		ArrayList<String> attrs = new ArrayList<String>(dt.getAttributes());
+		Collections.sort(attrs);
+
+		TreeNode root = id3(dt, facts, attrs);
+		dt.setRoot(root);
+
+		return dt;
+	}
+	//*OPT*	private TreeNode decisionTreeLearning(List<FactSet> facts,
+	//*OPT*										  List<String> attributeNames) {
+	private TreeNode id3(DecisionTree dt, List<Fact> facts, List<String> attributeNames) {
+		
+		FUNC_CALL  ++;
+		if (facts.size() == 0) {
+			throw new RuntimeException("Nothing to classify, factlist is empty");
+		}
+		/* let's get the statistics of the results */
+		List<?> targetValues = dt.getPossibleValues(dt.getTarget());	
+		Hashtable<Object, Integer> stats = dt.getStatistics(facts, dt.getTarget(), targetValues);
+
+		int winner_vote = 0;
+		int num_supporters = 0;
+		Object winner = null;		
+		for (Object key: targetValues) {
+
+			int num_in_class = stats.get(key).intValue();
+			if (num_in_class>0)
+				num_supporters ++;
+			if (num_in_class > winner_vote) {
+				winner_vote = num_in_class;
+				winner = key;
+			}
+		}
+
+		/* if all elements are classified to the same value */
+		if (num_supporters == 1) {
+			//*OPT*			return new LeafNode(facts.get(0).getFact(0).getFieldValue(target));
+			LeafNode classifiedNode = new LeafNode(dt.getDomain(dt.getTarget()), winner);
+			classifiedNode.setRank((double)facts.size()/(double)num_fact_processed);
+			return classifiedNode;
+		}
+
+		/* if  there is no attribute left in order to continue */
+		if (attributeNames.size() == 0) {
+			/* an heuristic of the leaf classification*/
+			LeafNode noAttributeLeftNode = new LeafNode(dt.getDomain(dt.getTarget()), winner);
+			noAttributeLeftNode.setRank((double)winner_vote/(double)num_fact_processed);
+			return noAttributeLeftNode;
+		}
+
+		/* id3 starts */
+		String chosenAttribute = attributeWithGreatestGain(dt, facts, attributeNames);
+
+		System.out.println(Util.ntimes("*", 20)+" 1st best attr: "+ chosenAttribute);
+
+		TreeNode currentNode = new TreeNode(dt.getDomain(chosenAttribute));
+		//ConstantDecisionTree m = majorityValue(ds);
+		/* the majority */
+
+		List<?> attributeValues = dt.getPossibleValues(chosenAttribute);
+		Hashtable<Object, List<Fact> > filtered_facts = splitFacts(facts, chosenAttribute, attributeValues);
+		dt.FACTS_READ += facts.size();
+		
+		 
+//		if (FUNC_CALL ==5) {
+//			System.out.println("FUNC_CALL:" +FUNC_CALL);
+//			System.exit(0);
+//		}
+		for (int i = 0; i < attributeValues.size(); i++) {
+			/* split the last two class at the same time */
+			Object value = attributeValues.get(i);
+			
+			ArrayList<String> attributeNames_copy = new ArrayList<String>(attributeNames);
+			attributeNames_copy.remove(chosenAttribute);
+			
+			if (filtered_facts.get(value).isEmpty()) {
+				/* majority !!!! */
+				LeafNode majorityNode = new LeafNode(dt.getDomain(dt.getTarget()), winner);
+				majorityNode.setRank(0.0);
+				currentNode.addNode(value, majorityNode);
+			} else {
+				TreeNode newNode = id3(dt, filtered_facts.get(value), attributeNames_copy);
+				currentNode.addNode(value, newNode);
+			}
+		}
+
+		return currentNode;
+	}
+	
+	//String chooseAttribute(List<FactSet> facts, List<String> attrs) {
+	public String attributeWithGreatestGain(DecisionTree dt, List<Fact> facts, List<String> attrs) {
+
+		double dt_info = dt.getInformation(facts);
+		double greatestGain = 0.0;
+		String attributeWithGreatestGain = attrs.get(0);
+		for (String attr : attrs) {
+			double gain = dt_info - dt.getGain(facts, attr);
+			System.out.println("Attribute: "+attr +" the gain: "+gain);
+			if (gain > greatestGain) {
+				greatestGain = gain;
+				attributeWithGreatestGain = attr;
+			}
+		}
+
+		return attributeWithGreatestGain;
+	}
+	
+	public Hashtable<Object, List<Fact> > splitFacts(List<Fact> facts, String attributeName, 
+													 List<?> attributeValues) {		
+		Hashtable<Object, List<Fact> > factLists = new Hashtable<Object, List<Fact> >(attributeValues.size());
+		for (Object v: attributeValues) {
+			factLists.put(v, new ArrayList<Fact>());
+		}
+		for (Fact f : facts) {
+			factLists.get(f.getFieldValue(attributeName)).add(f);
+		}
+		return factLists;
+	}
+
+	public void testEntropy(DecisionTree dt, List<Fact> facts) {
+		double initial_info = dt.getInformation(facts); //entropy value
+
+		System.out.println("initial_information: "+ initial_info);
+
+		String first_attr = attributeWithGreatestGain(dt, facts, dt.getAttributes());
+
+		System.out.println("best attr: "+ first_attr);
+	}
+	
+	public int getNumCall() {
+		return FUNC_CALL;
+	}
+
+}

Added: labs/jbossrules/contrib/machinelearning/decisiontree/src/id3/DecisionTreeBuilderMT.java
===================================================================
--- labs/jbossrules/contrib/machinelearning/decisiontree/src/id3/DecisionTreeBuilderMT.java	                        (rev 0)
+++ labs/jbossrules/contrib/machinelearning/decisiontree/src/id3/DecisionTreeBuilderMT.java	2008-03-17 23:56:55 UTC (rev 19045)
@@ -0,0 +1,310 @@
+package id3;
+
+
+import java.util.ArrayList;
+import java.util.Collection;
+import java.util.Collections;
+import java.util.Hashtable;
+import java.util.List;
+
+public class DecisionTreeBuilderMT {
+
+	class MyThread extends Thread {
+		DecisionTreeBuilderMT builder;
+		DecisionTree dt;
+		List<Fact> facts;
+		List<String> attributeNames;
+		TreeNode currentNode = null;
+		Object value = null;
+		TreeNode result = null;
+		@Override
+		public void run() {
+			result = builder.id3(dt, facts, attributeNames);
+			currentNode.addNode(value, result);
+		}
+	}
+
+	MyThread helper;
+	private int FUNC_CALL = 0;
+	private int num_fact_processed = 0;
+
+	/* 
+	 * treebuilder.execute(workingmemory, classtoexecute, attributestoprocess)
+
+	foreach factset in workingmemory
+		if classtoexecute.isAssignableFrom( factset.class )
+			internaladd(factset)
+
+	internalprocess(attributestoprocess)
+	 */
+
+	public DecisionTree build(WorkingMemory wm, Class<?> klass, String targetField, Collection<String> workingAttributes) {
+
+		DecisionTree dt = new DecisionTree(klass.getName());
+//		**OPT		List<FactSet> facts = new ArrayList<FactSet>();
+		ArrayList<Fact> facts = new ArrayList<Fact>();
+		FactSet klass_fs = null;
+		for (FactSet fs: wm.getFactsets()) {
+			if (fs instanceof OOFactSet) {
+				if (klass.isAssignableFrom(((OOFactSet)fs).getFactClass())) {
+//					**OPT		facts.add(fs);
+					((OOFactSet)fs).assignTo(facts); // adding all facts of fs to "facts"
+
+					if (klass == ((OOFactSet)fs).getFactClass()) {
+						klass_fs = fs;
+					}
+				}
+			} else if (klass.getName()== fs.getClassName()) {
+
+			}
+
+		}
+		dt.FACTS_READ += facts.size();
+
+		num_fact_processed = facts.size();
+
+		if (workingAttributes != null)
+			for (String attr: workingAttributes) {
+				dt.addDomain(klass_fs.getDomain(attr));
+			}
+		else 
+			for (Domain<?> d: klass_fs.getDomains())
+				dt.addDomain(d);
+
+		dt.setTarget(targetField);
+
+		ArrayList<String> attrs = new ArrayList<String>(dt.getAttributes());
+		Collections.sort(attrs);
+
+		helper = new MyThread();
+//		System.out.println("IS ALIVE"+helper.isAlive());
+		TreeNode root = id3(dt, facts, attrs);
+		try {
+			helper.join();
+		} catch (InterruptedException e) {
+			// TODO Auto-generated catch block
+			e.printStackTrace();
+		}
+		dt.setRoot(root);
+
+		return dt;
+	}
+
+	public DecisionTree build(WorkingMemory wm, String klass, String targetField, Collection<String> workingAttributes) {
+
+		DecisionTree dt = new DecisionTree(klass);
+//		**OPT		List<FactSet> facts = new ArrayList<FactSet>();
+		ArrayList<Fact> facts = new ArrayList<Fact>();
+		FactSet klass_fs = null;
+		for (FactSet fs: wm.getFactsets()) {
+			if (klass == fs.getClassName()) {
+//				**OPT		facts.add(fs);
+				fs.assignTo(facts); // adding all facts of fs to "facts"
+
+				klass_fs = fs;
+				break;
+			}
+		}
+		dt.FACTS_READ += facts.size();
+		num_fact_processed = facts.size(); 
+
+		if (workingAttributes != null)
+			for (String attr: workingAttributes) {
+				System.out.println("Bok degil "+ attr);
+				if (attr =="aratio") {
+					System.out.println("Bok");
+					System.exit(0);
+				}
+				dt.addDomain(klass_fs.getDomain(attr));
+			}
+		else 
+			for (Domain<?> d: klass_fs.getDomains())
+				dt.addDomain(d);
+
+		dt.setTarget(targetField);
+
+		ArrayList<String> attrs = new ArrayList<String>(dt.getAttributes());
+		Collections.sort(attrs);
+
+		helper = new MyThread();
+		//System.out.println("IS ALIVE"+helper.isAlive());
+		TreeNode root = id3(dt, facts, attrs);
+		try {
+			helper.join();
+		} catch (InterruptedException e) {
+			// TODO Auto-generated catch block
+			e.printStackTrace();
+		}
+		dt.setRoot(root);
+
+		return dt;
+	}
+
+	/*
+	 function ID3
+		Input:   (R: a set of non-target attributes,
+          		  C: the target attribute,
+          		  S: a training set) returns a decision tree;
+		begin
+   			If S is empty, return a single node with 
+      			value Failure;
+   			If S consists of records all with the same 
+      			value for the target attribute, 
+      			return a single leaf node with that value;
+   			If R is empty, 
+   				then return a single node with the value of the most frequent of the values of the target attribute 
+   				that are found in records of S; [in that case there may be be errors, 
+   				examples that will be improperly classified];
+   			Let A be the attribute with largest 
+      			Gain(A,S) among attributes in R;
+   			Let {aj| j=1,2, .., m} be the values of attribute A;
+   			Let {Sj| j=1,2, .., m} be the subsets of S consisting respectively of records with value aj for A;
+   			Return a tree with root labeled A and arcs labeled a1, a2, .., am going respectively 
+      			to the trees (ID3(R-{A}, C, S1), ID3(R-{A}, C, S2),.....,ID3(R-{A}, C, Sm);
+   			Recursively apply ID3 to subsets {Sj| j=1,2, .., m} until they are empty
+		end
+
+
+	 */
+	//*OPT*	private TreeNode decisionTreeLearning(List<FactSet> facts,
+	//*OPT*										  List<String> attributeNames) {
+	//*OPT*	private TreeNode decisionTreeLearning(List<FactSet> facts,
+	//*OPT*										  List<String> attributeNames) {
+	private TreeNode id3(DecisionTree dt, List<Fact> facts, List<String> attributeNames) {
+
+		FUNC_CALL  ++;
+		if (facts.size() == 0) {
+			throw new RuntimeException("Nothing to classify, factlist is empty");
+		}
+		/* let's get the statistics of the results */
+		List<?> targetValues = dt.getPossibleValues(dt.getTarget());	
+		Hashtable<Object, Integer> stats = dt.getStatistics(facts, dt.getTarget(), targetValues);
+
+		int winner_vote = 0;
+		int num_supporters = 0;
+		Object winner = null;		
+		for (Object key: targetValues) {
+
+			int num_in_class = stats.get(key).intValue();
+			if (num_in_class>0)
+				num_supporters ++;
+			if (num_in_class > winner_vote) {
+				winner_vote = num_in_class;
+				winner = key;
+			}
+		}
+
+		/* if all elements are classified to the same value */
+		if (num_supporters == 1) {
+			//*OPT*			return new LeafNode(facts.get(0).getFact(0).getFieldValue(target));
+			LeafNode classifiedNode = new LeafNode(dt.getDomain(dt.getTarget()), winner);
+			classifiedNode.setRank((double)facts.size()/(double)num_fact_processed);
+			return classifiedNode;
+		}
+
+		/* if  there is no attribute left in order to continue */
+		if (attributeNames.size() == 0) {
+			/* an heuristic of the leaf classification*/
+			LeafNode noAttributeLeftNode = new LeafNode(dt.getDomain(dt.getTarget()), winner);
+			noAttributeLeftNode.setRank((double)winner_vote/(double)num_fact_processed);
+			return noAttributeLeftNode;
+		}
+
+		/* id3 starts */
+		String chosenAttribute = attributeWithGreatestGain(dt, facts, attributeNames);
+
+		System.out.println(Util.ntimes("*", 20)+" 1st best attr: "+ chosenAttribute);
+
+		TreeNode currentNode = new TreeNode(dt.getDomain(chosenAttribute));
+		//ConstantDecisionTree m = majorityValue(ds);
+		/* the majority */
+
+		List<?> attributeValues = dt.getPossibleValues(chosenAttribute);
+		Hashtable<Object, List<Fact> > filtered_facts = splitFacts(facts, chosenAttribute, attributeValues);
+		dt.FACTS_READ += facts.size();
+
+
+//		if (FUNC_CALL ==5) {
+//		System.out.println("FUNC_CALL:" +FUNC_CALL);
+//		System.exit(0);
+//		}
+		for (int i = 0; i < attributeValues.size(); i++) {
+			/* split the last two class at the same time */
+			Object value = attributeValues.get(i);
+
+			ArrayList<String> attributeNames_copy = new ArrayList<String>(attributeNames);
+			attributeNames_copy.remove(chosenAttribute);
+
+			if (filtered_facts.get(value).isEmpty()) {
+				/* majority !!!! */
+				LeafNode majorityNode = new LeafNode(dt.getDomain(dt.getTarget()), winner);
+				majorityNode.setRank(0.0);
+				currentNode.addNode(value, majorityNode);
+			} else {
+//				TreeNode newNode = id3(dt, filtered_facts.get(value), attributeNames_copy);
+//				currentNode.addNode(value, newNode);
+				if (helper.isAlive()) {
+					TreeNode newNode = id3(dt, filtered_facts.get(value), attributeNames_copy);
+					currentNode.addNode(value, newNode);
+				}
+				else {
+					helper.attributeNames = attributeNames_copy;
+					helper.builder = this;
+					helper.dt = dt;
+					helper.facts = filtered_facts.get(value);
+					helper.value = value;
+					helper.currentNode = currentNode;
+					helper.start();
+					System.out.println("helper thread launched");
+				}
+			}
+		}
+
+		return currentNode;
+	}
+
+	//String chooseAttribute(List<FactSet> facts, List<String> attrs) {
+	public String attributeWithGreatestGain(DecisionTree dt, List<Fact> facts, List<String> attrs) {
+
+		double dt_info = dt.getInformation(facts);
+		double greatestGain = 0.0;
+		String attributeWithGreatestGain = attrs.get(0);
+		for (String attr : attrs) {
+			double gain = dt_info - dt.getGain(facts, attr);
+			System.out.println("Attribute: "+attr +" the gain: "+gain);
+			if (gain > greatestGain) {
+				greatestGain = gain;
+				attributeWithGreatestGain = attr;
+			}
+		}
+
+		return attributeWithGreatestGain;
+	}
+
+	public Hashtable<Object, List<Fact> > splitFacts(List<Fact> facts, String attributeName, 
+			List<?> attributeValues) {		
+		Hashtable<Object, List<Fact> > factLists = new Hashtable<Object, List<Fact> >(attributeValues.size());
+		for (Object v: attributeValues) {
+			factLists.put(v, new ArrayList<Fact>());
+		}
+		for (Fact f : facts) {
+			factLists.get(f.getFieldValue(attributeName)).add(f);
+		}
+		return factLists;
+	}
+
+	public void testEntropy(DecisionTree dt, List<Fact> facts) {
+		double initial_info = dt.getInformation(facts); //entropy value
+
+		System.out.println("initial_information: "+ initial_info);
+
+		String first_attr = attributeWithGreatestGain(dt, facts, dt.getAttributes());
+
+		System.out.println("best attr: "+ first_attr);
+	}
+	
+	public int getNumCall() {
+		return FUNC_CALL;
+	}
+
+}

Added: labs/jbossrules/contrib/machinelearning/decisiontree/src/id3/Domain.java
===================================================================
--- labs/jbossrules/contrib/machinelearning/decisiontree/src/id3/Domain.java	                        (rev 0)
+++ labs/jbossrules/contrib/machinelearning/decisiontree/src/id3/Domain.java	2008-03-17 23:56:55 UTC (rev 19045)
@@ -0,0 +1,65 @@
+package id3;
+
+import java.util.List;
+
+public interface Domain<T> {
+	
+	boolean isConstant();
+	void setConstant();
+	
+	boolean contains(T value);
+
+	String getName();
+
+	void addValue(T value);
+	
+	List<T> getValues();
+	
+	Object readString(String data);
+	
+	String toString();
+	boolean isPossible(Object value) throws Exception;
+}
+
+
+
+/*
+workingmemory.insert(object)
+
+	factset f = factsets_hashtable[object.class]
+	if f == null
+		f = createnew_factset(object.class);
+	f.insert(object)
+	
+	
+factset workingmemory.createnew_factset(class)
+
+	factset newfs = new newfactset(class) 
+	foreach field in class
+		domain d = domainset_hashtable[field]
+		if d == null
+			d = createnew_domain(field)
+		newfs.adddomain(d)
+
+
+factset.insert(object)
+
+	fact f;
+	foreach field in object
+		domain d = domainset_hashtable[field];
+		attribute attr = d.createattribute(field.value)
+		f.add(attr)
+	addfact(f)
+
+
+treebuilder.execute(workingmemory, classtoexecute, attributestoprocess)
+
+	foreach factset in workingmemory
+		if classtoexecute.isAssignableFrom( factset.class )
+			internaladd(factset)
+
+	internalprocess(attributestoprocess)
+
+
+*/
+

Added: labs/jbossrules/contrib/machinelearning/decisiontree/src/id3/DomainFactory.java
===================================================================
--- labs/jbossrules/contrib/machinelearning/decisiontree/src/id3/DomainFactory.java	                        (rev 0)
+++ labs/jbossrules/contrib/machinelearning/decisiontree/src/id3/DomainFactory.java	2008-03-17 23:56:55 UTC (rev 19045)
@@ -0,0 +1,61 @@
+package id3;
+
+public class DomainFactory {
+	public static BooleanDomain createBooleanDomain(String name) {
+		return new BooleanDomain(name);
+		
+	}
+	
+	public static NumericDomain createNumericDomain(String name) {
+		return new NumericDomain(name);
+	}
+
+	public static LiteralDomain createLiteralDomain(String name) {
+		return new LiteralDomain(name);
+	}
+	
+	public static Domain<?> createDomainFromClass(Class<?> c, String domainName) {
+		if (c.isPrimitive())
+			if (c.getName().equalsIgnoreCase("boolean")) {
+				System.out.println("Yuuuupiii boolean");
+				return createBooleanDomain(domainName);
+			} else if (c.getName().equalsIgnoreCase("int") || 
+					 c.getName().equalsIgnoreCase("double") || 
+					 c.getName().equalsIgnoreCase("float")) {
+				System.out.println("Yuuuupiii number");
+				return createNumericDomain(domainName);
+			} else
+				return createComplexDomain(c,"kicimi ye simple: "+domainName);
+		else if (c.isAssignableFrom(String.class)) {
+			System.out.println("Yuuuupiii string");
+			return createLiteralDomain(domainName);
+		} else if (c.isAssignableFrom(Integer.class) || 
+			c.isAssignableFrom(Double.class)  ||
+			c.isAssignableFrom(Float.class)) {
+			return createNumericDomain(domainName);
+		} else if (c.isAssignableFrom(Boolean.class))
+			return createBooleanDomain(domainName);
+		else
+			return createComplexDomain(c,domainName);
+	}
+
+	private static Domain<?> createComplexDomain(Class<?> c, String domainName) {
+		System.out.println("Bok ye this is complex type: "+ c);
+		return null;
+	}
+	
+//	public static Domain<?> createDomainFromString(String data, String domainName) {
+//		if (c.isNumeric()) {
+//			System.out.println("Yuuuupiii string");
+//			return createNumericDomain(domainName);
+//		} else if (c.true/false || 
+//			c.isAssignableFrom(Double.class)  ||
+//			c.isAssignableFrom(Float.class)) {
+//			return createNumericDomain(domainName);
+//		} else if (c.is literal )
+//			return createLiteral(domainName);
+//		else
+//			return createComplexDomain(c,domainName);
+//	}
+
+}
\ No newline at end of file

Added: labs/jbossrules/contrib/machinelearning/decisiontree/src/id3/FSFactSet.java
===================================================================
--- labs/jbossrules/contrib/machinelearning/decisiontree/src/id3/FSFactSet.java	                        (rev 0)
+++ labs/jbossrules/contrib/machinelearning/decisiontree/src/id3/FSFactSet.java	2008-03-17 23:56:55 UTC (rev 19045)
@@ -0,0 +1,133 @@
+package id3;
+
+import java.util.ArrayList;
+import java.util.Arrays;
+import java.util.Collection;
+import java.util.Hashtable;
+import java.util.Iterator;
+import java.util.List;
+
+public class FSFactSet implements FactSet{
+
+	private List<Fact> facts;
+
+	/* set of attributes defining the type of the fact */
+	//private Set<T> validDomains;
+	private Hashtable<String, Domain<?>> validDomains;
+
+	private String fs_class; 
+	
+	
+	public FSFactSet(String element_class) {
+		this.facts = new ArrayList<Fact>();
+		this.validDomains = new Hashtable<String, Domain<?>>();
+		this.fs_class = element_class;
+	}
+
+
+	public FSFactSet(String element_class, List<Domain<?>> domains) {
+		this.facts = new ArrayList<Fact>();
+		this.validDomains = new Hashtable<String, Domain<?>>(domains.size());
+		this.fs_class = element_class;
+		
+		for (Domain<?> d: domains) {
+			//d.setConstant();
+			validDomains.put(d.getName(), d);
+		}
+		
+	}
+	public boolean insert(String data, List<Domain<?>> domains, String separator){
+		// assume the domains are in the same order with value
+		Fact newfact = new Fact();
+		//Hashtable<String,Object> attributes = new Hashtable<String,Object>();
+		if (data.endsWith("."))
+			data = data.substring(0, data.length()-1);
+		List<String> attributeValues = Arrays.asList(data.split(separator));
+		
+		if (domains.size()== attributeValues.size()){
+
+			Iterator<Domain<?>> domain_it = domains.iterator();
+			Iterator<String> value_it = attributeValues.iterator();
+			while(domain_it.hasNext() && value_it.hasNext()){
+				Domain attr_domain = domain_it.next();
+				//String name = attr_domain.getName();
+
+				Object value =  attr_domain.readString(value_it.next());
+				
+				//System.out.println("Domain "+ name+ " and the value"+value);
+				try {
+					if (value == null) {
+						value = new Double(-1);
+					} else {
+						if (attr_domain.isPossible(value))
+							attr_domain.addValue(value);
+					}
+					newfact.add(attr_domain, value);
+				} catch (Exception e) {
+					System.out.println(e+ " the domain: "+attr_domain.getName()+ " does not accept "+ value);
+					//e.printStackTrace();
+				}
+			}
+			//String targetAttributeName = dataSetSpec.getTarget();
+			//AttributeSpecification attributeSpec =dataSetSpec.getAttributeSpecFor(targetAttributeName );
+			//System.out.println("Fact: "+newfact);
+			boolean result = facts.add(newfact);
+			return result;
+		}
+		else{
+			throw new RuntimeException("Unable to construct Example from " + data);
+		}
+	}
+	
+
+
+	public void add(Fact newFact) {
+		facts.add(newFact);
+	}
+
+
+	public Fact getFact(int index) {
+		return facts.get(index);
+	}
+	
+	public void assignTo(Collection<Fact> c) {
+		c.addAll(facts);
+	}
+	
+	public int getSize() {
+		return facts.size();
+	}
+	
+	/* TODO iterator */ 
+	public Collection<Domain<?>> getDomains() {
+		return validDomains.values();
+	} 
+	
+	/* TODO iterator */ 
+	public Collection<String> getDomainKeys() {
+		return validDomains.keySet();
+	} 
+	
+	public Domain<?> getDomain(String field) {
+		return validDomains.get(field);	
+	}
+
+	public void addDomain(String field, Domain<?> fieldDomain) {
+		validDomains.put(field, fieldDomain);	
+	}
+	
+
+	public String getClassName() {
+		return fs_class;
+	}
+	
+	public String toString() {
+		String out = "";
+		for (Fact f: facts) {
+			out += f.toString() +"\n";
+		}
+		return out;
+	}
+	
+
+}

Added: labs/jbossrules/contrib/machinelearning/decisiontree/src/id3/Fact.java
===================================================================
--- labs/jbossrules/contrib/machinelearning/decisiontree/src/id3/Fact.java	                        (rev 0)
+++ labs/jbossrules/contrib/machinelearning/decisiontree/src/id3/Fact.java	2008-03-17 23:56:55 UTC (rev 19045)
@@ -0,0 +1,75 @@
+package id3;
+import java.util.Hashtable;
+import java.util.Set;
+
+
+public class Fact {
+
+	private Hashtable<String, Domain<?>> fields;
+	private Hashtable<String, Object> values;
+
+	public Fact() {
+		this.values = new Hashtable<String, Object>();
+		this.fields = new Hashtable<String, Domain<?>>();
+		/* while creating the fact i should add the possible keys, the valid domains */
+	}
+	
+	public Fact(Set<Domain<?>> domains) {
+		this.fields = new Hashtable<String, Domain<?>>();
+		for (Domain<?> d: domains)
+			this.fields.put(d.getName(), d);
+		this.values = new Hashtable<String, Object>();
+		//this.attributes. of the keys are only these domains
+		/* while creating the fact i should add the possible keys, the valid domains */
+	}
+
+	/*public Fact(Hashtable<Domain<?>, Attribute<?>> attributes) {
+		this.attributes = attributes;
+	}*/
+	
+	/* 
+	 * TODO do i need to check anything before adding 
+	 * maybe i should check if the domain specifications are written somewhere
+	 * 
+	 */
+	public void add(Domain<?> its_domain, Object value) throws Exception {
+		if (!its_domain.isPossible(value))
+			throw new Exception("The value "+value +" is not possible what is going on in domain: "+ its_domain.getName());
+		//System.out.println("Bocuk wants to see the names of the domains "+ its_domain.getName());
+		fields.put(its_domain.getName(), its_domain);
+		values.put(its_domain.getName(), value);
+	}
+
+	public Object getFieldValue(String field_name) {
+		return values.get(field_name);
+	}
+
+	public String getAttributeValueAsString(String name) {
+		Object attr = getFieldValue(name);
+		return (attr != null) ? attr.toString() : null;
+	}
+
+	public boolean equals(Object o) {
+		if (this == o) {
+			return true;
+		}
+		if ((o == null) || (this.getClass() != o.getClass())) {
+			return false;
+		}
+		Fact other = (Fact) o;
+		return fields.equals(other.fields); //TODO work on the equals() fnc
+	}
+
+	public int hashCode() {
+		return fields.hashCode();
+	}
+
+	public String toString() {
+		String out = "";
+		for (String key: fields.keySet())
+		{
+			out += fields.get(key) +"="+values.get(key)+",";
+		}
+		return out;
+	}
+}

Added: labs/jbossrules/contrib/machinelearning/decisiontree/src/id3/FactSet.java
===================================================================
--- labs/jbossrules/contrib/machinelearning/decisiontree/src/id3/FactSet.java	                        (rev 0)
+++ labs/jbossrules/contrib/machinelearning/decisiontree/src/id3/FactSet.java	2008-03-17 23:56:55 UTC (rev 19045)
@@ -0,0 +1,19 @@
+package id3;
+
+import java.util.Collection;
+
+public interface FactSet {
+
+	String getClassName();
+	
+	void assignTo(Collection<Fact> c);
+
+	Domain<?> getDomain(String attr);
+
+	/* TODO iterator */ 
+	public Collection<Domain<?>> getDomains();
+
+	public int getSize();
+	
+	public String toString();
+}

Added: labs/jbossrules/contrib/machinelearning/decisiontree/src/id3/FactSetFactory.java
===================================================================
--- labs/jbossrules/contrib/machinelearning/decisiontree/src/id3/FactSetFactory.java	                        (rev 0)
+++ labs/jbossrules/contrib/machinelearning/decisiontree/src/id3/FactSetFactory.java	2008-03-17 23:56:55 UTC (rev 19045)
@@ -0,0 +1,196 @@
+package id3;
+
+import java.io.BufferedReader;
+import java.io.InputStreamReader;
+import java.util.ArrayList;
+import java.util.Arrays;
+import java.util.List;
+
+public class FactSetFactory {
+	
+	public static String insertNurserySet(WorkingMemory simple) {
+		/*
+		 * not_recom, recommend, very_recom, priority, spec_prior
+
+		| attributes
+
+	parents:     usual, pretentious, great_pret.
+	has_nurs:    proper, less_proper, improper, critical, very_crit.
+	form:        complete, completed, incomplete, foster.
+	children:    1, 2, 3, more.
+	housing:     convenient, less_conv, critical.
+	finance:     convenient, inconv.
+	social:      nonprob, slightly_prob, problematic.
+	health:      recommended, priority, not_recom.
+
+		 */
+
+		String filename = "../data/nursery/nursery.data.txt";
+		String separator = ",";
+		String klass = "Nursey";
+		ArrayList<Domain<?>> domains = new ArrayList<Domain<?>>();
+		domains.add(new LiteralDomain("parents", new String[]{"usual", "pretentious", "great_pret"}));
+		domains.add(new LiteralDomain("has_nurs", new String[]{"proper", "less_proper", "improper", "critical", "very_crit"}));
+		domains.add(new LiteralDomain("form", new String[]{"complete", "completed", "incomplete", "foster"}));
+		domains.add(new LiteralDomain("children", new String[]{"1", "2", "3", "more"}));
+		domains.add(new LiteralDomain("housing", new String[]{"convenient", "less_conv", "critical"}));
+		domains.add(new LiteralDomain("finance", new String[]{"convenient", "inconv"}));
+		domains.add(new LiteralDomain("social", new String[]{"nonprob", "slightly_prob", "problematic"}));
+		domains.add(new LiteralDomain("health", new String[]{"recommended", "priority", "not_recom"}));
+		domains.add(new LiteralDomain("classnursery", new String[]{"not_recom", "recommend", "very_recom", "priority", "spec_prior"}));
+
+		for (Domain<?> d: domains) {
+			d.setConstant();
+		}
+
+		try {
+			FactSetFactory.fromFile(simple, filename, klass, domains , separator);
+			//simple.insert(facts);
+		} catch (Exception e) {
+			// TODO Auto-generated catch block
+			e.printStackTrace();
+		}
+		
+		return klass;
+	}
+
+	public static String insertCarSet(WorkingMemory simple) {
+		/*
+		 * | class values
+
+				unacc, acc, good, vgood
+
+		   | attributes
+
+				buying:   vhigh, high, med, low.
+				maint:    vhigh, high, med, low.
+				doors:    2, 3, 4, 5, more.
+				persons:  2, 4, more.
+				lug_boot: small, med, big.
+				safety:   low, med, high.
+
+		 */
+
+		String filename = "../data/car/car.data.txt";
+		String separator = ",";
+		String klass = "Car";
+		ArrayList<Domain<?>> domains = new ArrayList<Domain<?>>();
+		domains.add(new LiteralDomain("buying", new String[]{"vhigh", "high", "med", "low"}));
+		domains.add(new LiteralDomain("maint", new String[]{"vhigh", "high", "med", "low"}));
+		domains.add(new LiteralDomain("doors", new String[]{"2", "3", "4", "5more"}));
+		domains.add(new LiteralDomain("persons", new String[]{"2", "4", "more"}));
+		domains.add(new LiteralDomain("lug_boot", new String[]{"small", "med", "big"}));
+		domains.add(new LiteralDomain("safety", new String[]{"low", "med", "high"}));
+		domains.add(new LiteralDomain("classCar", new String[]{"unacc", "acc", "good", "vgood"}));
+
+		for (Domain<?> d: domains) {
+			d.setConstant();
+		}
+
+		try {
+			FactSetFactory.fromFile(simple, filename, klass, domains , separator);
+			//simple.insert(facts);
+		} catch (Exception e) {
+			// TODO Auto-generated catch block
+			e.printStackTrace();
+		}
+		
+		return klass;
+	}
+
+	public static String insertAdvertisementSet(WorkingMemory simple) {
+
+		String filename = "../data/advertisement/ad.data.txt";
+		String separator = ",";
+		String klass = "Advertisement";
+		
+		String domainFileName = "../data/advertisement/data_domains.txt";
+		String separatorDomain = ":";
+		ArrayList<Domain<?>> domains;
+		//FSFactSet facts;
+		try {
+			domains = FactSetFactory.fromFileDomain(domainFileName, separatorDomain);
+			
+			FactSetFactory.fromFile(simple, filename, klass, domains , separator);
+			//simple.insert(facts);
+		} catch (Exception e1) {
+			// TODO Auto-generated catch block
+			e1.printStackTrace();
+		}
+		return klass;
+
+	}
+
+
+
+	public static ArrayList<String> attributesOfAdvertisement = new ArrayList<String>();
+
+	
+
+	public static ArrayList<Domain<?>> fromFileDomain(String domainFileName, String separator) 
+	throws Exception {
+
+		ArrayList<Domain<?>> domains = new ArrayList<Domain<?>>();
+		NumericDomain height = new NumericDomain("height");
+		height.setContinuous();
+		
+		NumericDomain width = new NumericDomain("width");
+		height.setContinuous();
+		
+		NumericDomain aratio = new NumericDomain("aratio");
+		height.setContinuous();
+		domains.add(height);
+		domains.add(width);
+		domains.add(aratio);
+
+		BufferedReader reader = new BufferedReader(new InputStreamReader(
+				FactSetFactory.class.getResourceAsStream( domainFileName )));//"../data/" +
+		String line;
+		while ((line = reader.readLine()) != null) {
+			if (!line.startsWith("|")) {
+				List<String> attributeValues = Arrays.asList(line.split(separator, 2));
+				//BooleanDomain newDomain = 
+				attributesOfAdvertisement.add(attributeValues.get(0));
+				domains.add(new BooleanDomain(attributeValues.get(0)));
+			}
+		}
+		
+		domains.add(new LiteralDomain("classAdvertisement", new String[]{"ad", "nonad"}));
+		attributesOfAdvertisement.add("classAdvertisement");
+		System.out.println("# of domains:"+ domains.size());
+
+		return domains;
+
+	}
+	public static void fromFile(WorkingMemory wm, String filename, String klass,List<Domain<?>> domains,String separator) 
+	throws Exception {
+//		FSFactSet fs  = new FSFactSet(klass, domains);
+//
+//		for (Domain<?> d: domains) {
+//			fs.addDomain(d.getName(), d);
+//		}
+
+		BufferedReader reader = new BufferedReader(new InputStreamReader(
+				FactSetFactory.class.getResourceAsStream( filename )));//"../data/" +
+		String line;
+		while ((line = reader.readLine()) != null) {
+//			Fact newFact = fromString(line,domains,separator);
+//			fs.add(newFact);
+			//String element, String name, String separator, List<Domain<?>> domains
+			line = line.trim();
+			if (line.length()==0)
+				break;
+			wm.insert(line,klass, separator,domains);
+		}
+	}
+
+	
+
+	public static Fact fromObject(Object data, List<Domain<?>> domains) {
+		Fact newfact = new Fact();
+		return newfact;
+	}
+
+
+
+}

Added: labs/jbossrules/contrib/machinelearning/decisiontree/src/id3/LeafNode.java
===================================================================
--- labs/jbossrules/contrib/machinelearning/decisiontree/src/id3/LeafNode.java	                        (rev 0)
+++ labs/jbossrules/contrib/machinelearning/decisiontree/src/id3/LeafNode.java	2008-03-17 23:56:55 UTC (rev 19045)
@@ -0,0 +1,43 @@
+package id3;
+
+
+public class LeafNode extends TreeNode {
+	//represents leaf nodes with the target value
+	private Object targetValue;
+	private double rank;
+
+	public LeafNode(Domain<?> targetDomain, Object value){
+		super(targetDomain);
+		this.targetValue = value;
+	}
+	
+	public void addNode(Object attributeValue, TreeNode node) {
+		throw new RuntimeException("cannot add Node to a leaf node");
+	}
+	
+	public void addLeaf(Object attributeValue, String target, Boolean targetValue) {
+		throw new RuntimeException("cannot add Leaf to a final node");
+	}
+	
+	public Object getValue() {
+		return targetValue;
+	}
+	
+	public double getRank() {
+		return rank;
+	}
+
+	public void setRank(double rank) {
+		this.rank = rank;
+	}
+	
+	public String toString(){
+		return "DECISION -> " + targetValue.toString();
+	}
+	
+	public String toString(int depth, StringBuffer buf) {
+		buf.append(Util.ntimes("\t",depth+1));
+		buf.append("DECISION -> " +targetValue.toString()+"\n");
+		return buf.toString();
+	}
+}

Added: labs/jbossrules/contrib/machinelearning/decisiontree/src/id3/LiteralDomain.java
===================================================================
--- labs/jbossrules/contrib/machinelearning/decisiontree/src/id3/LiteralDomain.java	                        (rev 0)
+++ labs/jbossrules/contrib/machinelearning/decisiontree/src/id3/LiteralDomain.java	2008-03-17 23:56:55 UTC (rev 19045)
@@ -0,0 +1,94 @@
+package id3;
+
+import java.util.ArrayList;
+import java.util.Arrays;
+import java.util.List;
+
+public class LiteralDomain implements Domain<String> {
+
+	private String fName;
+	private List<String> fValues;
+	private boolean constant;
+	//private boolean discrete;
+
+
+	public LiteralDomain(String _name) {
+		fName = _name.trim();
+		fValues = new ArrayList<String>();
+		//discrete = true;
+	}
+	
+	public LiteralDomain(String _name, String[] possibleValues) {
+		fName = _name;
+		fValues = Arrays.asList(possibleValues);
+		//discrete = true;
+	}
+	
+//	public void setContinuous() {
+//		discrete = false;
+//	}
+
+	
+//	public boolean isDiscrete() {
+//		return discrete;
+//	}
+
+	public String getName() {
+		return fName;
+	}
+	
+	public void addValue(String value) {
+		if (constant)
+			return;
+		//if (discrete) {
+		if (!fValues.contains(value))
+			fValues.add(value);
+//		} else {
+//			fValues.add(value);
+//		}
+		
+	}
+
+	public boolean contains(String value) {
+		for(String n: fValues) {
+			if (value.equalsIgnoreCase(n))
+				return true;
+		}
+		return false;
+	}
+
+	public List<String> getValues() {
+		return fValues;
+	}
+	
+	public int hashCode() {
+		return fName.hashCode();
+	}
+
+	public boolean isConstant() {
+		return this.constant;
+	}
+
+	public void setConstant() {
+		this.constant = true;
+		
+	}
+	
+	public Object readString(String data) {
+		return data.trim();
+	}
+	
+	public boolean isPossible(Object value) {
+		if (!(value instanceof String))
+			return false;
+		if (constant && !fValues.contains(value))
+			return false;
+		return true;
+	}
+	
+	public String toString() {
+		String out = fName;
+		return out;
+	}
+
+}

Added: labs/jbossrules/contrib/machinelearning/decisiontree/src/id3/NumericDomain.java
===================================================================
--- labs/jbossrules/contrib/machinelearning/decisiontree/src/id3/NumericDomain.java	                        (rev 0)
+++ labs/jbossrules/contrib/machinelearning/decisiontree/src/id3/NumericDomain.java	2008-03-17 23:56:55 UTC (rev 19045)
@@ -0,0 +1,153 @@
+package id3;
+
+import java.util.ArrayList;
+import java.util.List;
+
+public class NumericDomain implements Domain<Number> {
+
+	private String fName;
+	private ArrayList<Number> fValues;
+	private boolean constant;
+	private boolean discrete;
+
+
+	public NumericDomain(String _name) {
+		fName = _name.trim();
+		fValues = new ArrayList<Number>();
+		discrete = true;
+	}
+	public void setContinuous() {
+		discrete = false;
+	}
+	
+	public boolean isDiscrete() {
+		return discrete;
+	}
+
+	public String getName() {
+		return fName;
+	}
+
+	public void addValue(Number value) {
+		if (constant)
+			return;
+		if (discrete) {
+			if (!fValues.contains(value))
+				fValues.add(value);
+		} else {
+			if (fValues.isEmpty()) {
+				fValues.add(value);
+				return;
+			} else if (fValues.size()==1) {
+				if (value.doubleValue() < fValues.get(0).doubleValue()) {
+					Number first = fValues.remove(0);
+					fValues.add(value);
+					fValues.add(first);
+				} else if (value.doubleValue() > fValues.get(0).doubleValue()) {
+					fValues.add(value);
+				}	
+				return;
+			} else {
+				if (value.doubleValue() > fValues.get(1).doubleValue()) {
+					fValues.remove(1);
+					fValues.add(1, value);
+					return;
+				}
+				if (value.doubleValue() < fValues.get(0).doubleValue()) {
+					fValues.remove(0);
+					fValues.add(0, value);	
+					return;
+				}
+			}
+		}
+		
+	}
+
+	public boolean contains(Number value) {
+		for(Number n: fValues) {
+			if (value.intValue() == n.intValue() ||
+				value.doubleValue() == n.doubleValue() ||
+				value.floatValue() == n.floatValue())
+				return true;
+		}
+		return false;
+	}
+
+	public List<Number> getValues() {
+		return fValues;
+	}
+	
+	public int hashCode() {
+		return fName.hashCode();
+	}
+
+	public boolean isConstant() {
+		return this.constant;
+	}
+
+	public void setConstant() {
+		this.constant = true;	
+	}
+
+	public Object readString(String data) {
+		if (isValid(data))
+			return Double.parseDouble(data);
+		else 
+			return null;
+	}
+	
+	public boolean isValid(String string) {
+		if (string == null)
+			return true;
+		try{
+			Double.parseDouble(string);
+			return true;
+		}
+		catch (Exception e){
+			return false;
+		}
+	}
+
+	public boolean isPossible(Object value) throws Exception {
+		//System.out.println("NumericDomain.isPossible() start "+ value+ " ?");
+		
+		if (!(value instanceof Number))
+			return false;
+		//System.exit(0);
+		if (constant) {
+			//System.out.println("NumericDomain.isPossible() constant "+ value+ " ?");
+			//System.exit(0);
+			
+			if (discrete) {
+				if (fValues.contains(value))
+					return true;
+				
+				//System.out.println("NumericDomain.isPossible() constant && discrete "+ value+ " ?");
+				//System.exit(0);
+			} else {
+				if (fValues.isEmpty() || fValues.size()==1)
+					throw new Exception("Numerical domain "+fName+" is constant and not discrete but bounds are not set: possible values size: "+ fValues.size());
+				if (((Number)value).doubleValue() >= fValues.get(0).doubleValue() && 
+					((Number)value).doubleValue() <= fValues.get(1).doubleValue()) {
+					return true;	
+				}
+				//System.out.println("NumericDomain.isPossible() "+ value+ " ?");
+			}
+		} else {
+			return true;
+		}
+		
+		//System.out.println("NumericDomain.isPossible() end "+ value+ " ?");
+		//System.exit(0);
+		
+		return false;
+	}
+	
+	public String toString() {
+		String out = fName;
+		return out;
+	}
+	
+
+
+}

Added: labs/jbossrules/contrib/machinelearning/decisiontree/src/id3/OOFactSet.java
===================================================================
--- labs/jbossrules/contrib/machinelearning/decisiontree/src/id3/OOFactSet.java	                        (rev 0)
+++ labs/jbossrules/contrib/machinelearning/decisiontree/src/id3/OOFactSet.java	2008-03-17 23:56:55 UTC (rev 19045)
@@ -0,0 +1,133 @@
+package id3;
+
+import java.lang.reflect.InvocationTargetException;
+import java.lang.reflect.Method;
+import java.util.ArrayList;
+import java.util.Collection;
+import java.util.Hashtable;
+import java.util.List;
+
+public class OOFactSet implements FactSet{
+
+	private List<Fact> facts;
+
+	/* set of attributes defining the type of the fact */
+	//private Set<T> validDomains;
+	private Hashtable<String, Domain<?>> validDomains;
+
+	private Class<?> fs_class;
+	
+	public OOFactSet(Class<?> fact_class) {//Class<? extends Object>
+		this.facts = new ArrayList<Fact>();
+		this.validDomains = new Hashtable<String, Domain<?>>();
+		this.fs_class = fact_class;
+	}
+
+	/*
+	 	factset.insert(object)
+			fact f;
+			foreach field in object
+				domain d = domainset_hashtable[field];
+				attribute attr = d.createattribute(field.value)
+				f.add(attr)
+			addfact(f)
+	 */
+	public boolean insert(Object element) {
+		Fact f = new Fact();
+
+		Class<?> element_class = element.getClass();
+		Method [] element_methods = element_class.getDeclaredMethods();
+		for (Method m: element_methods) {
+			String m_name = m.getName();
+			String return_type_name = m.getReturnType().getName();
+			if (Util.isGetter(m_name) & Util.isSimpleType(return_type_name) ) {
+//				if (!Util.isSimpleType(return_type_name))
+//					continue; // in the future we should support classes
+				String field = Util.getAttributeName(m_name);
+
+				/*
+				 * when u first read the element
+				 * 	if the domain specifications are already given 
+				 * 		then read from there and 
+				 * 			 dont add each new value you read, just check if it is valid
+				 * otherwise you create a new domain for that attribute
+				 * Domain attributeSpec = dataSetSpec.getDomain(attr_name);
+				 */
+				Domain fieldDomain = validDomains.get(field);
+				
+				//String
+				Object field_value;
+				try {
+					field_value = m.invoke(element);
+					
+					//Object attribute =  fieldDomain.createAttribute(field_value);
+					if (fieldDomain.isPossible(field_value))
+						fieldDomain.addValue(field_value);
+					f.add(fieldDomain, field_value);
+					//System.out.println("FactSet.insert f "+ f + " fielddomain name "+fieldDomain.getName()+" value: "+field_value+".");
+					
+				} catch (IllegalArgumentException e) {
+					// TODO Auto-generated catch block
+					e.printStackTrace();
+				} catch (IllegalAccessException e) {
+					// TODO Auto-generated catch block
+					e.printStackTrace();
+				} catch (InvocationTargetException e) {
+					// TODO Auto-generated catch block
+					e.printStackTrace();
+				} catch (Exception e) {
+					e.printStackTrace();
+				}
+				
+				
+				
+			}
+		}
+		
+		boolean result = facts.add(f);
+		//System.out.println("FactSet.insert f "+ f + " result "+result+" facts.size(): "+facts.size()+".");
+		return result;
+		
+		
+	}
+	
+	public Fact getFact(int index) {
+		return facts.get(index);
+	}
+	
+	public void assignTo(Collection<Fact> c) {
+		c.addAll(facts);
+	}
+	
+	public int getSize() {
+		return facts.size();
+	}
+	
+	/* TODO iterator */ 
+	public Collection<Domain<?>> getDomains() {
+		return validDomains.values();
+	} 
+	
+	/* TODO iterator */ 
+	public Collection<String> getDomainKeys() {
+		return validDomains.keySet();
+	} 
+	
+	public Domain<?> getDomain(String field) {
+		return validDomains.get(field);	
+	}
+
+	public void addDomain(String field, Domain<?> fieldDomain) {
+		validDomains.put(field, fieldDomain);	
+	}
+	
+	public Class<?> getFactClass() {
+		return fs_class;
+	}
+
+	public String getClassName() {
+		return fs_class.getName();
+	}
+
+	
+}

Added: labs/jbossrules/contrib/machinelearning/decisiontree/src/id3/Restaurant.java
===================================================================
--- labs/jbossrules/contrib/machinelearning/decisiontree/src/id3/Restaurant.java	                        (rev 0)
+++ labs/jbossrules/contrib/machinelearning/decisiontree/src/id3/Restaurant.java	2008-03-17 23:56:55 UTC (rev 19045)
@@ -0,0 +1,147 @@
+package id3;
+
+
+public class Restaurant {
+	
+
+	private boolean alternate; 	//yesno
+	private boolean bar; 		//yesno
+	private boolean fri_sat ;	//yesno
+	private boolean hungry; 		//yesno
+	private String patrons; 	//String[]{"None","Some","Full"});
+	private int price; 		//",new String[]{"$","$$","$$$"});
+	private boolean raining; 	//yesno
+	private boolean reservation; //yesno
+	private String type; 		//",new String[]{"French","Italian","Thai","Burger"});
+	private String wait_estimate;	//",new String[]{"0-10","10-30","30-60",">60"});
+	private boolean will_wait; 	//yesno
+	
+	
+	public Restaurant (boolean alt, boolean b, boolean f_s, boolean hung, String pat, int pri, 
+				boolean rain, boolean reserv, String t, String wait, boolean will) {
+		alternate = alt; 		//yesno
+		bar = b; 				//yesno
+		fri_sat = f_s;			//yesno
+		hungry = hung; 			//yesno
+		patrons = pat; 			//",new String[]{"None","Some","Full"});
+		price = pri; 			//",new String[]{"$","$$","$$$"});
+		raining = rain; 		//yesno
+		reservation = reserv; 	//yesno
+		type = t; 				//",new String[]{"French","Italian","Thai","Burger"});
+		wait_estimate = wait; 	//",new String[]{"0-10","10-30","30-60",">60"});
+		will_wait = will; 		//yesno
+	}
+
+
+	public boolean getAlternate() {
+		return alternate;
+	}
+
+
+	public void setAlternate(boolean alternate) {
+		this.alternate = alternate;
+	}
+
+
+	public boolean getBar() {
+		return bar;
+	}
+
+
+	public void setBar(boolean bar) {
+		this.bar = bar;
+	}
+
+
+	public boolean getFri_sat() {
+		return fri_sat;
+	}
+
+
+	public void setFri_sat(boolean fri_sat) {
+		this.fri_sat = fri_sat;
+	}
+
+
+	public boolean getHungry() {
+		return hungry;
+	}
+
+
+	public void setHungry(boolean hungry) {
+		this.hungry = hungry;
+	}
+
+
+	public String getPatrons() {
+		return patrons;
+	}
+
+
+	public void setPatrons(String patrons) {
+		this.patrons = patrons;
+	}
+
+
+	public int getPrice() {
+		return price;
+	}
+
+
+	public void setPrice(int price) {
+		this.price = price;
+	}
+
+
+	public boolean getRaining() {
+		return raining;
+	}
+
+
+	public void setRaining(boolean raining) {
+		this.raining = raining;
+	}
+
+
+	public boolean getReservation() {
+		return reservation;
+	}
+
+
+	public void setReservation(boolean reservation) {
+		this.reservation = reservation;
+	}
+
+
+	public String getType() {
+		return type;
+	}
+
+
+	public void setType(String type) {
+		this.type = type;
+	}
+
+
+	public String getWait_estimate() {
+		return wait_estimate;
+	}
+
+
+	public void setWait_estimate(String wait_estimate) {
+		this.wait_estimate = wait_estimate;
+	}
+
+
+	public boolean getWill_wait() {
+		return will_wait;
+	}
+
+
+	public void setWill_wait(boolean will_wait) {
+		this.will_wait = will_wait;
+	}
+	
+	
+
+}

Added: labs/jbossrules/contrib/machinelearning/decisiontree/src/id3/RulePrinter.java
===================================================================
--- labs/jbossrules/contrib/machinelearning/decisiontree/src/id3/RulePrinter.java	                        (rev 0)
+++ labs/jbossrules/contrib/machinelearning/decisiontree/src/id3/RulePrinter.java	2008-03-17 23:56:55 UTC (rev 19045)
@@ -0,0 +1,252 @@
+package id3;
+
+import java.util.ArrayList;
+import java.util.Collections;
+import java.util.Comparator;
+import java.util.Hashtable;
+import java.util.Iterator;
+import java.util.Stack;
+
+public class RulePrinter {
+	
+	private ArrayList<String> ruleText;
+	//private ArrayList<ArrayList<NodeValue>> rule_list;
+	private ArrayList<Rule> rules;
+	
+	private Stack<NodeValue> nodes;
+	
+	private Object ruleObject;
+	//private RuleComparator rule_comp = new RuleComparator();
+	
+	public RulePrinter() {
+		ruleText = new ArrayList<String>();
+		//rule_list = new ArrayList<ArrayList<NodeValue>>();
+		rules = new ArrayList<Rule>();
+		
+		/* most important */
+		nodes = new Stack<NodeValue>();
+	}
+	
+	public void printer(DecisionTree dt) {//, PrintStream object
+		ruleObject = dt.getName();
+		dfs(dt.getRoot());
+		
+//		int j = 0;
+//		for( String rule: ruleText) {
+//			j++;
+//			System.out.println("Rule " +j + " suggests that \n"+ rule +".\n");
+//		}
+		
+		int i = 0;
+		Collections.sort(rules, Rule.getRankComparator());
+		for( Rule rule: rules) {
+			i++;
+			System.out.println("//rule " +i + " write to drl \n"+ rule +"\n");
+		}
+	}
+	
+	private void dfs(TreeNode my_node) {
+		NodeValue node_value = new NodeValue(my_node);
+		nodes.push(node_value);
+		
+		if (my_node instanceof LeafNode) {
+			node_value.setNodeValue(((LeafNode) my_node).getValue());
+			ruleText.add(print(nodes));
+			//rule_list.add(spit(nodes));
+			// what if more than one condition (more than one leafNode)
+			
+			rules.add(spitRule(nodes));
+			return;
+		}
+		
+		Hashtable<Object,TreeNode> children = my_node.getChildren();
+		for (Object attributeValue : children.keySet()) {
+			//System.out.println("Domain: "+ my_node.getDomain().getName() + " the value:"+ attributeValue);
+			node_value.setNodeValue(attributeValue);		
+			TreeNode child = children.get(attributeValue);
+			dfs(child);
+			nodes.pop();
+		}
+		return;
+		
+		
+			
+		
+	}
+	private ArrayList<NodeValue> spit(Stack<NodeValue> nodes) {
+		ArrayList<NodeValue> list_nodes = new ArrayList<NodeValue>(nodes.size());
+		Iterator<NodeValue> it = nodes.iterator();
+
+		while (it.hasNext()) {
+			
+			NodeValue current = it.next();
+			list_nodes.add(current);
+		}
+		return list_nodes;	
+	}
+	
+	private Rule spitRule(Stack<NodeValue> nodes) {
+						//, Stack<NodeValue> leaves // if more than one leaf
+		Rule newRule = new Rule(nodes.size());// (nodes, leaves) //if more than one leaf
+		Iterator<NodeValue> it = nodes.iterator();
+
+		while (it.hasNext()) {
+			
+			NodeValue current = it.next();
+			if (it.hasNext()) { 
+				newRule.addCondition(current);
+			} else {
+				newRule.addAction(current);
+			}
+		}
+		return newRule;	
+	}
+	
+	private String print(Stack<NodeValue> nodes) {
+		Iterator<NodeValue> it = nodes.iterator();
+		
+		String out = "rule \"1 rank:\" \n";
+		out += "\t when";
+		out += "\t\t "+ruleObject+"Object("+ "";
+		while (it.hasNext()) {
+			
+			NodeValue current = it.next();
+			if (it.hasNext()) { 
+				out += "" + current.getDomain() + " == "+ current.getNodeValue() +" & " ;
+			} else {
+				out = out.substring(0, out.length()-2) + ")\n";
+				out += "\n\t then ";
+				out += "\n\t\t System.out.println(\"Decision (\"" + current.getDomain() + "\") = \""+ current.getNodeValue()+");";
+			}
+		}
+		
+		/*
+		 
+		rule "Good Bye"
+    		dialect "java"
+			when
+				Message( status == Message.GOODBYE, message : message )
+			then
+				System.out.println( "Goodbye: " + message ); 
+		end
+		 */
+		return out;	
+	}
+	
+}
+
+
+
+
+class Rule {
+
+	private double rank;
+	private ArrayList<NodeValue> conditions;
+	private ArrayList<NodeValue>  actions;
+	
+	Rule(int numCond) {
+		conditions = new ArrayList<NodeValue>(numCond);
+		actions = new ArrayList<NodeValue>(1);
+	}
+
+	public double getRank() {
+		return rank;
+	}
+
+	public void addCondition(NodeValue current) {
+		conditions.add(new NodeValue(current.getNode(), current.getNodeValue()));
+	}
+	public void addAction(NodeValue current) {
+		actions.add(new NodeValue(current.getNode(), current.getNodeValue()));
+		rank = ((LeafNode)current.getNode()).getRank();
+	}
+	
+	
+	public String toString() {
+		/*
+		 
+		rule "Good Bye"
+    		dialect "java"
+			when
+				Message( status == Message.GOODBYE, message : message )
+			then
+				System.out.println( "Goodbye: " + message ); 
+		end
+		 */
+
+		String out = "rule \"#x rank:"+rank+"\" \n";
+		out += "\t when";
+		out += "\n\t\t Object("+ "";
+		for (NodeValue cond: conditions) {
+			out += cond + " & ";
+		}
+	
+		out = out.substring(0, out.length()-3) + ")\n";
+		
+		
+		String action = "";
+		for (NodeValue act: actions) {
+			action += act.getNodeValue() + " & ";
+		}
+		action = action.substring(0, action.length()-3);
+		
+		out += "\n\t then ";
+		out += "\n\t\t System.out.println(\"Decision (\"+" + action + "+\")\");";
+
+		return out;
+	}
+	
+
+	public static Comparator<Rule> getRankComparator() {
+		return new RuleComparator();
+	}
+	
+	private static class RuleComparator implements Comparator<Rule>{
+		public int compare(Rule r1, Rule r2) {
+			if (r1.getRank() < r2.getRank())
+				return -1;
+			else if (r1.getRank() > r2.getRank())
+				return 1;
+			else
+				return 0;
+		}	
+	}
+}
+
+
+class NodeValue {
+	
+	private TreeNode node;
+	private Object nodeValue;
+	
+	
+	NodeValue(TreeNode n) {
+		this.node = n;
+	}
+	
+	NodeValue(TreeNode n, Object value) {
+		this.node = n;
+		this.nodeValue = value;
+	}
+	public String getDomain() {
+		return node.getDomain().getName();
+	}
+	
+	public TreeNode getNode() {
+		return node;
+	}
+	public void setNode(TreeNode node) {
+		this.node = node;
+	}
+	public Object getNodeValue() {
+		return nodeValue;
+	}
+	public void setNodeValue(Object nodeValue) {
+		this.nodeValue = nodeValue;
+	}
+	public String toString() {
+		return node.getDomain() + " == "+ nodeValue; 
+	}
+		
+}
+

Added: labs/jbossrules/contrib/machinelearning/decisiontree/src/id3/TreeNode.java
===================================================================
--- labs/jbossrules/contrib/machinelearning/decisiontree/src/id3/TreeNode.java	                        (rev 0)
+++ labs/jbossrules/contrib/machinelearning/decisiontree/src/id3/TreeNode.java	2008-03-17 23:56:55 UTC (rev 19045)
@@ -0,0 +1,58 @@
+package id3;
+import java.util.Hashtable;
+
+
+public class TreeNode {
+	
+	private Domain<?> domain;
+	private Hashtable<Object, TreeNode> children;
+	
+	
+	public TreeNode(Domain<?> domain)
+	{
+		this.domain = domain;
+		this.children = new Hashtable<Object, TreeNode>();
+	}
+	
+	
+	public void addNode(Object attributeValue, TreeNode node) {
+		children.put(attributeValue, node);
+	}
+
+	public Domain<?> getDomain() {
+		return domain;
+	}
+
+	public void setDomain(Domain<?> domain) {
+		this.domain = domain;
+	}
+
+	public Hashtable<Object, TreeNode> getChildren() {
+		return children;
+	}
+
+	public void setChildren(Hashtable<Object, TreeNode> children) {
+		this.children = children;
+	}
+	
+	public String toString() {
+		return toString(1, new StringBuffer());
+	}
+
+	public String toString(int depth, StringBuffer buf) {
+		if (domain != null) {
+			buf.append(Util.ntimes("\t", depth));
+			buf.append(Util.ntimes("***",1));
+			buf.append( domain.getName() + " \n");
+			for (Object attributeValue : children.keySet()) {
+				buf.append(Util.ntimes("\t", depth + 1));
+				buf.append("+" + attributeValue );
+				buf.append("\n");
+				TreeNode child = children.get(attributeValue);
+				buf.append(child.toString(depth + 1, new StringBuffer()));
+			}
+		}
+		return buf.toString();
+	}
+	
+}

Added: labs/jbossrules/contrib/machinelearning/decisiontree/src/id3/Util.java
===================================================================
--- labs/jbossrules/contrib/machinelearning/decisiontree/src/id3/Util.java	                        (rev 0)
+++ labs/jbossrules/contrib/machinelearning/decisiontree/src/id3/Util.java	2008-03-17 23:56:55 UTC (rev 19045)
@@ -0,0 +1,43 @@
+package id3;
+
+public class Util {
+	
+	public static String ntimes(String s,int n){
+		StringBuffer buf = new StringBuffer();
+		for (int i = 0; i < n; i++) {
+			buf.append(s);
+		}
+		return buf.toString();
+	}
+	
+	//private static HashSet<String> simpletype = new HashSet<String>(0);
+	public static boolean isSimpleType(String type_name) {
+//		simpletype.contains(type_name)
+		if (type_name.equalsIgnoreCase("boolean") ||
+			type_name.equalsIgnoreCase("int") ||
+			type_name.equalsIgnoreCase("double") ||
+			type_name.equalsIgnoreCase("float") ||
+			type_name.equalsIgnoreCase("java.lang.String"))
+			return true;
+		return false;
+	}
+
+	public static boolean isGetter(String method_name) {
+		if (method_name.startsWith("get") || method_name.startsWith("is") )
+			return true;
+		return false;
+	}
+
+	public static String getAttributeName(String method_name) {
+		if (method_name.startsWith("get"))
+			return method_name.substring(3, method_name.length()).toLowerCase();
+		else if (method_name.startsWith("is"))
+			return method_name.substring(2, method_name.length()).toLowerCase();
+		return null;
+	}
+
+	public static double log2(double prob) {
+		return Math.log(prob) / Math.log(2);
+	}
+
+}
\ No newline at end of file

Added: labs/jbossrules/contrib/machinelearning/decisiontree/src/id3/WorkingMemory.java
===================================================================
--- labs/jbossrules/contrib/machinelearning/decisiontree/src/id3/WorkingMemory.java	                        (rev 0)
+++ labs/jbossrules/contrib/machinelearning/decisiontree/src/id3/WorkingMemory.java	2008-03-17 23:56:55 UTC (rev 19045)
@@ -0,0 +1,196 @@
+package id3;
+
+import java.lang.reflect.Method;
+import java.util.Collection;
+import java.util.Hashtable;
+import java.util.List;
+
+public class WorkingMemory {
+	
+	private Hashtable<String, FactSet> factsets;
+
+	private Hashtable<String, Domain<?>> domainset;
+	
+	public WorkingMemory() {
+		factsets = new Hashtable<String, FactSet>();
+		domainset = new Hashtable<String, Domain<?>>();
+	}
+
+	public void insert(Object element) {
+		String element_class = element.getClass().getName();
+		//System.out.println("Get the keys:"+ factsets.keys());
+		//System.out.println("WorkingMemory.get class "+ element_class + " exist? "+ factsets.containsKey(element_class));
+		
+		OOFactSet fs;
+		if (!factsets.containsKey(element_class))
+			fs = create_factset(element);
+		else
+			fs = (OOFactSet) factsets.get(element_class);//TODO should i cast
+		
+		fs.insert(element);
+		System.out.println("WorkingMemory.insert(object) inserted element fs.size() "+ fs.getSize());
+	}
+	
+	public void insert(String element, String name, String separator, List<Domain<?>> domains) {
+
+		FSFactSet fs;
+		if (!factsets.containsKey(name)) {
+			fs =  new FSFactSet(name, domains);
+			for (Domain<?> d: domains) {
+				fs.addDomain(d.getName(), d);
+				if (domainset.containsKey(d.getName()) || domainset.contains(d)) {
+					System.out.println("WorkingMemory.insert Already exist domain bla????? name: "+name+ " domain: "+d.getName());
+					System.exit(0);
+				} else
+					domainset.put(d.getName(), d);
+			}
+			factsets.put(name, fs);
+		} else
+			fs = (FSFactSet) factsets.get(name);//TODO should i cast
+		
+		fs.insert(element, domains, separator);
+		//System.out.println("WorkingMemory.insert(string) inserted element fs.size() "+ fs.getSize());
+	}
+	
+//	public void insert(FactSet fs) {
+//		System.out.println("factset : "+ fs.getSize());
+//		if (!factsets.containsKey(fs.getClassName())) {
+//			for (Domain<?> d : fs.getDomains()) {
+//				System.out.println("Domain"+ d.getName());
+//				if (domainset.containsKey(d.getName()) || domainset.contains(d))
+//					System.out.println("Already exist domain bla?????");
+//				else
+//					domainset.put(d.getName(), d);
+//				
+//				//System.out.println("WorkingMemory.create_factset field "+ field + " fielddomain name "+fieldDomain.getName()+" return_type_name: "+return_type_name+".");
+//				
+//				
+//			}
+//			factsets.put(fs.getClassName(), fs);
+//		} else {
+//			System.out.println("Already exist bla?????");
+//		}
+//	}
+
+	
+	/* factset workingmemory.createnew_factset(class) 
+	 * 	=> instead of the class i have to pass the object itself because i am going to invoke the method
+	 * 	=> no actually i will not invoke
+	 * 		factset newfs = new newfactset(class) 
+	 *			foreach field in class
+	 *			domain d = domainset_hashtable[field]
+	 *			if d == null
+	 *				d = createnew_domain(field)
+	 *			newfs.adddomain(d)=> why do you add this the factset? 
+	 *								 we said that the domains should be independent from the factset
+	 */
+	private OOFactSet create_factset(Object element) {
+		//System.out.println("WorkingMemory.create_factset element "+ element );
+		
+		Class<?> element_class = element.getClass();
+		OOFactSet newfs = new OOFactSet(element_class);
+
+		Method [] element_methods = element_class.getDeclaredMethods();
+		for( Method m: element_methods) {
+			
+			
+			String m_name = m.getName();
+			String return_type_name = m.getReturnType().getName();
+			//System.out.println("WorkingMemory.create_factset m "+ m + " method name "+m_name+" return_type_name: "+return_type_name+".");
+			if (Util.isGetter(m_name) & Util.isSimpleType(return_type_name)) {
+				String field = Util.getAttributeName(m_name);
+				/*
+				 * when u first read the element
+				 * 	if the domain specifications are already given 
+				 * 		then read from there and 
+				 * 			 dont add each new value you read, just check if it is valid
+				 * otherwise you create a new domain for that attribute
+				 * Domain attributeSpec = dataSetSpec.getDomain(attr_name);
+				 */
+				Domain<?> fieldDomain;
+				if (!domainset.containsKey(field))
+					fieldDomain = DomainFactory.createDomainFromClass(m.getReturnType(), field);
+				else
+					fieldDomain = domainset.get(field);
+				
+				//System.out.println("WorkingMemory.create_factset field "+ field + " fielddomain name "+fieldDomain.getName()+" return_type_name: "+return_type_name+".");
+				
+				domainset.put(field, fieldDomain);
+				newfs.addDomain(field, fieldDomain);
+				
+				//System.out.println("START: WorkingMemory.create_factset domainset size "+ domainset.size() + " newfs size "+newfs.getFacts().size()+".");
+				
+			}
+		}
+		
+		factsets.put(element_class.getName(), newfs);
+		return newfs;
+	}
+	
+	/* TODO: iterator */ 
+	public Collection<FactSet> getFactsets() {
+		return factsets.values();
+	}
+
+	public Domain<?> getDomain(String field) {
+		return domainset.get(field);
+	}
+
+	public boolean containsDomainKey(String field) {
+		return domainset.containsKey(field);
+	}
+
+	public void putDomain(String field, Domain<?> fieldDomain) {
+		this.domainset.put(field, fieldDomain);
+		
+	}
+
+	public void putFactSet(String klass_name, FactSet newfs) {
+		factsets.put(klass_name, newfs);	
+	}
+
+	public boolean containsFactSetKey(String field) {
+		return factsets.containsKey(field);
+	}
+}
+
+
+/*
+workingmemory.insert(object)
+
+	factset fs = factsets_hashtable[object.class]
+	if fs == null
+		fs = createnew_factset(object.class);
+	fs.insert(object)
+	
+	
+factset workingmemory.createnew_factset(class)
+
+	factset newfs = new newfactset(class) 
+	foreach field in class
+		domain d = domainset_hashtable[field]
+		if d == null
+			d = createnew_domain(field)
+		newfs.adddomain(d)
+
+
+factset.insert(object)
+
+	fact f;
+	foreach field in object
+		domain d = domainset_hashtable[field];
+		attribute attr = d.createattribute(field.value)
+		f.add(attr)
+	addfact(f)
+
+
+treebuilder.execute(workingmemory, classtoexecute, attributestoprocess)
+
+	foreach factset in workingmemory
+		if classtoexecute.isAssignableFrom( factset.class )
+			internaladd(factset)
+
+	internalprocess(attributestoprocess)
+
+
+*/
\ No newline at end of file




More information about the jboss-svn-commits mailing list