[jboss-svn-commits] JBoss Common SVN: r2969 - common-core/trunk/src/main/java/org/jboss/util/collection.

jboss-svn-commits at lists.jboss.org jboss-svn-commits at lists.jboss.org
Tue Jan 20 15:41:04 EST 2009


Author: jason.greene at jboss.com
Date: 2009-01-20 15:41:04 -0500 (Tue, 20 Jan 2009)
New Revision: 2969

Added:
   common-core/trunk/src/main/java/org/jboss/util/collection/ConcurrentReferenceHashMap.java
   common-core/trunk/src/main/java/org/jboss/util/collection/FastCopyHashMap.java
Log:
Add ConcurrentReferenceHashMap for weak, soft, and strong key/value pairs
Add FastCopyHashMap which is optimized for quick shallow copying


Added: common-core/trunk/src/main/java/org/jboss/util/collection/ConcurrentReferenceHashMap.java
===================================================================
--- common-core/trunk/src/main/java/org/jboss/util/collection/ConcurrentReferenceHashMap.java	                        (rev 0)
+++ common-core/trunk/src/main/java/org/jboss/util/collection/ConcurrentReferenceHashMap.java	2009-01-20 20:41:04 UTC (rev 2969)
@@ -0,0 +1,1735 @@
+/*
+ * Written by Doug Lea with assistance from members of JCP JSR-166
+ * Expert Group and released to the public domain, as explained at
+ * http://creativecommons.org/licenses/publicdomain
+ */
+
+package org.jboss.util.collection;
+
+import java.io.IOException;
+import java.io.Serializable;
+import java.lang.ref.Reference;
+import java.lang.ref.ReferenceQueue;
+import java.lang.ref.SoftReference;
+import java.lang.ref.WeakReference;
+import java.util.AbstractCollection;
+import java.util.AbstractMap;
+import java.util.AbstractSet;
+import java.util.Collection;
+import java.util.ConcurrentModificationException;
+import java.util.EnumSet;
+import java.util.Enumeration;
+import java.util.HashMap;
+import java.util.Hashtable;
+import java.util.IdentityHashMap;
+import java.util.Iterator;
+import java.util.Map;
+import java.util.NoSuchElementException;
+import java.util.Set;
+import java.util.concurrent.locks.ReentrantLock;
+
+/**
+ * An advanced hash table supporting configurable garbage collection semantics
+ * of keys and values, optional referential-equality, full concurrency of
+ * retrievals, and adjustable expected concurrency for updates.
+ *
+ * This table is designed around specific advanced use-cases. If there is any
+ * doubt whether this table is for you, you most likely should be using
+ * {@link java.util.concurrent.ConcurrentHashMap} instead.
+ *
+ * This table supports strong, weak, and soft keys and values. By default keys
+ * are weak, and values are strong. Such a configuration offers similar behavior
+ * to {@link java.util.WeakHashMap}, entries of this table are periodically
+ * removed once their corresponding keys are no longer referenced outside of
+ * this table. In other words, this table will not prevent a key from being
+ * discarded by the garbage collector. Once a key has been discarded by the
+ * collector, the corresponding entry is no longer visible to this table;
+ * however, the entry may occupy space until a future table operation decides to
+ * reclaim it. For this reason, summary functions such as <tt>size</tt> and
+ * <tt>isEmpty</tt> might return a value greater than the observed number of
+ * entries. In order to support a high level of concurrency, stale entries are
+ * only reclaimed during blocking (usually mutating) operations.
+ *
+ * Enabling soft keys allows entries in this table to remain until their space
+ * is absolutely needed by the garbage collector. This is unlike weak keys which
+ * can be reclaimed as soon as they are no longer referenced by a normal strong
+ * reference. The primary use case for soft keys is a cache, which ideally
+ * occupies memory that is not in use for as long as possible.
+ *
+ * By default, values are held using a normal strong reference. This provides
+ * the commonly desired guarantee that a value will always have at least the
+ * same life-span as it's key. For this reason, care should be taken to ensure
+ * that a value never refers, either directly or indirectly, to its key, thereby
+ * preventing reclamation. If this is unavoidable, then it is recommended to use
+ * the same reference type in use for the key. However, it should be noted that
+ * non-strong values may disappear before their corresponding key.
+ *
+ * While this table does allow the use of both strong keys and values, it is
+ * recommended to use {@link java.util.concurrent.ConcurrentHashMap} for such a
+ * configuration, since it is optimized for that case.
+ *
+ * Just like {@link java.util.concurrent.ConcurrentHashMap}, this class obeys
+ * the same functional specification as {@link java.util.Hashtable}, and
+ * includes versions of methods corresponding to each method of
+ * <tt>Hashtable</tt>. However, even though all operations are thread-safe,
+ * retrieval operations do <em>not</em> entail locking, and there is
+ * <em>not</em> any support for locking the entire table in a way that
+ * prevents all access. This class is fully interoperable with
+ * <tt>Hashtable</tt> in programs that rely on its thread safety but not on
+ * its synchronization details.
+ *
+ * <p>
+ * Retrieval operations (including <tt>get</tt>) generally do not block, so
+ * may overlap with update operations (including <tt>put</tt> and
+ * <tt>remove</tt>). Retrievals reflect the results of the most recently
+ * <em>completed</em> update operations holding upon their onset. For
+ * aggregate operations such as <tt>putAll</tt> and <tt>clear</tt>,
+ * concurrent retrievals may reflect insertion or removal of only some entries.
+ * Similarly, Iterators and Enumerations return elements reflecting the state of
+ * the hash table at some point at or since the creation of the
+ * iterator/enumeration. They do <em>not</em> throw
+ * {@link ConcurrentModificationException}. However, iterators are designed to
+ * be used by only one thread at a time.
+ *
+ * <p>
+ * The allowed concurrency among update operations is guided by the optional
+ * <tt>concurrencyLevel</tt> constructor argument (default <tt>16</tt>),
+ * which is used as a hint for internal sizing. The table is internally
+ * partitioned to try to permit the indicated number of concurrent updates
+ * without contention. Because placement in hash tables is essentially random,
+ * the actual concurrency will vary. Ideally, you should choose a value to
+ * accommodate as many threads as will ever concurrently modify the table. Using
+ * a significantly higher value than you need can waste space and time, and a
+ * significantly lower value can lead to thread contention. But overestimates
+ * and underestimates within an order of magnitude do not usually have much
+ * noticeable impact. A value of one is appropriate when it is known that only
+ * one thread will modify and all others will only read. Also, resizing this or
+ * any other kind of hash table is a relatively slow operation, so, when
+ * possible, it is a good idea to provide estimates of expected table sizes in
+ * constructors.
+ *
+ * <p>
+ * This class and its views and iterators implement all of the <em>optional</em>
+ * methods of the {@link Map} and {@link Iterator} interfaces.
+ *
+ * <p>
+ * Like {@link Hashtable} but unlike {@link HashMap}, this class does
+ * <em>not</em> allow <tt>null</tt> to be used as a key or value.
+ *
+ * @author Doug Lea
+ * @author Jason T. Greene
+ * @param <K> the type of keys maintained by this map
+ * @param <V> the type of mapped values
+ */
+public class ConcurrentReferenceHashMap<K, V> extends AbstractMap<K, V>
+        implements java.util.concurrent.ConcurrentMap<K, V>, Serializable {
+    private static final long serialVersionUID = 7249069246763182397L;
+
+    /*
+     * The basic strategy is to subdivide the table among Segments,
+     * each of which itself is a concurrently readable hash table.
+     */
+
+    /**
+     * An option specifying which Java reference type should be used to refer
+     * to a key and/or value.
+     */
+    public static enum ReferenceType {
+        /** Indicates a normal Java strong reference should be used */
+        STRONG,
+        /** Indicates a {@link WeakReference} should be used */
+        WEAK,
+        /** Indicates a {@link SoftReference} should be used */
+        SOFT
+    };
+
+
+    public static enum Option {
+        /** Indicates that referential-equality (== instead of .equals()) should
+         * be used when locating keys. This offers similar behavior to {@link IdentityHashMap} */
+        IDENTITY_COMPARISONS
+    };
+
+    /* ---------------- Constants -------------- */
+
+    static final ReferenceType DEFAULT_KEY_TYPE = ReferenceType.WEAK;
+
+    static final ReferenceType DEFAULT_VALUE_TYPE = ReferenceType.STRONG;
+
+
+    /**
+     * The default initial capacity for this table,
+     * used when not otherwise specified in a constructor.
+     */
+    static final int DEFAULT_INITIAL_CAPACITY = 16;
+
+    /**
+     * The default load factor for this table, used when not
+     * otherwise specified in a constructor.
+     */
+    static final float DEFAULT_LOAD_FACTOR = 0.75f;
+
+    /**
+     * The default concurrency level for this table, used when not
+     * otherwise specified in a constructor.
+     */
+    static final int DEFAULT_CONCURRENCY_LEVEL = 16;
+
+    /**
+     * The maximum capacity, used if a higher value is implicitly
+     * specified by either of the constructors with arguments.  MUST
+     * be a power of two <= 1<<30 to ensure that entries are indexable
+     * using ints.
+     */
+    static final int MAXIMUM_CAPACITY = 1 << 30;
+
+    /**
+     * The maximum number of segments to allow; used to bound
+     * constructor arguments.
+     */
+    static final int MAX_SEGMENTS = 1 << 16; // slightly conservative
+
+    /**
+     * Number of unsynchronized retries in size and containsValue
+     * methods before resorting to locking. This is used to avoid
+     * unbounded retries if tables undergo continuous modification
+     * which would make it impossible to obtain an accurate result.
+     */
+    static final int RETRIES_BEFORE_LOCK = 2;
+
+    /* ---------------- Fields -------------- */
+
+    /**
+     * Mask value for indexing into segments. The upper bits of a
+     * key's hash code are used to choose the segment.
+     */
+    final int segmentMask;
+
+    /**
+     * Shift value for indexing within segments.
+     */
+    final int segmentShift;
+
+    /**
+     * The segments, each of which is a specialized hash table
+     */
+    final Segment<K,V>[] segments;
+
+    boolean identityComparisons;
+
+    transient Set<K> keySet;
+    transient Set<Map.Entry<K,V>> entrySet;
+    transient Collection<V> values;
+
+    /* ---------------- Small Utilities -------------- */
+
+    /**
+     * Applies a supplemental hash function to a given hashCode, which
+     * defends against poor quality hash functions.  This is critical
+     * because ConcurrentReferenceHashMap uses power-of-two length hash tables,
+     * that otherwise encounter collisions for hashCodes that do not
+     * differ in lower or upper bits.
+     */
+    private static int hash(int h) {
+        // Spread bits to regularize both segment and index locations,
+        // using variant of single-word Wang/Jenkins hash.
+        h += (h <<  15) ^ 0xffffcd7d;
+        h ^= (h >>> 10);
+        h += (h <<   3);
+        h ^= (h >>>  6);
+        h += (h <<   2) + (h << 14);
+        return h ^ (h >>> 16);
+    }
+
+    /**
+     * Returns the segment that should be used for key with given hash
+     * @param hash the hash code for the key
+     * @return the segment
+     */
+    final Segment<K,V> segmentFor(int hash) {
+        return segments[(hash >>> segmentShift) & segmentMask];
+    }
+
+    private int hashOf(Object key) {
+        return hash(identityComparisons ?
+                System.identityHashCode(key) : key.hashCode());
+    }
+
+    /* ---------------- Inner Classes -------------- */
+
+    static interface KeyReference {
+        int keyHash();
+        Object keyRef();
+    }
+
+    /**
+     * A weak-key reference which stores the key hash needed for reclamation.
+     */
+    static final class WeakKeyReference<K> extends WeakReference<K>  implements KeyReference {
+        final int hash;
+        WeakKeyReference(K key, int hash, ReferenceQueue<Object> refQueue) {
+            super(key, refQueue);
+            this.hash = hash;
+        }
+        public final int keyHash() {
+            return hash;
+        }
+
+        public final Object keyRef() {
+            return this;
+        }
+    }
+
+    /**
+     * A soft-key reference which stores the key hash needed for reclamation.
+     */
+    static final class SoftKeyReference<K> extends SoftReference<K> implements KeyReference {
+        final int hash;
+        SoftKeyReference(K key, int hash, ReferenceQueue<Object> refQueue) {
+            super(key, refQueue);
+            this.hash = hash;
+        }
+        public final int keyHash() {
+            return hash;
+        }
+
+        public final Object keyRef() {
+            return this;
+        }
+    }
+
+    static final class WeakValueReference<V> extends WeakReference<V>  implements KeyReference {
+        final Object keyRef;
+        final int hash;
+        WeakValueReference(V value, Object keyRef, int hash, ReferenceQueue<Object> refQueue) {
+            super(value, refQueue);
+            this.keyRef = keyRef;
+            this.hash = hash;
+        }
+
+        public final int keyHash() {
+            return hash;
+        }
+
+        public final Object keyRef() {
+            return keyRef;
+        }
+    }
+
+    static final class SoftValueReference<V> extends SoftReference<V>  implements KeyReference {
+        final Object keyRef;
+        final int hash;
+        SoftValueReference(V value, Object keyRef, int hash, ReferenceQueue<Object> refQueue) {
+            super(value, refQueue);
+            this.keyRef = keyRef;
+            this.hash = hash;
+        }
+        public final int keyHash() {
+            return hash;
+        }
+
+        public final Object keyRef() {
+            return keyRef;
+        }
+    }
+
+    /**
+     * ConcurrentReferenceHashMap list entry. Note that this is never exported
+     * out as a user-visible Map.Entry.
+     *
+     * Because the value field is volatile, not final, it is legal wrt
+     * the Java Memory Model for an unsynchronized reader to see null
+     * instead of initial value when read via a data race.  Although a
+     * reordering leading to this is not likely to ever actually
+     * occur, the Segment.readValueUnderLock method is used as a
+     * backup in case a null (pre-initialized) value is ever seen in
+     * an unsynchronized access method.
+     */
+    static final class HashEntry<K,V> {
+        final Object keyRef;
+        final int hash;
+        volatile Object valueRef;
+        final HashEntry<K,V> next;
+
+        HashEntry(K key, int hash,  HashEntry<K,V> next, V value,
+                ReferenceType keyType, ReferenceType valueType,
+                ReferenceQueue<Object> refQueue) {
+            this.hash = hash;
+            this.next = next;
+            this.keyRef = newKeyReference(key, keyType, refQueue);
+            this.valueRef = newValueReference(value, valueType, refQueue);
+        }
+
+        final Object newKeyReference(K key, ReferenceType keyType,
+                ReferenceQueue<Object> refQueue) {
+            if (keyType == ReferenceType.WEAK)
+                return new WeakKeyReference<K>(key, hash, refQueue);
+            if (keyType == ReferenceType.SOFT)
+                return new SoftKeyReference<K>(key, hash, refQueue);
+
+            return key;
+        }
+
+        final Object newValueReference(V value, ReferenceType valueType,
+                ReferenceQueue<Object> refQueue) {
+            if (valueType == ReferenceType.WEAK)
+                return new WeakValueReference<V>(value, keyRef, hash, refQueue);
+            if (valueType == ReferenceType.SOFT)
+                return new SoftValueReference<V>(value, keyRef, hash, refQueue);
+
+            return value;
+        }
+
+        @SuppressWarnings("unchecked")
+        final K key() {
+            if (keyRef instanceof KeyReference)
+                return ((Reference<K>)keyRef).get();
+
+            return (K) keyRef;
+        }
+
+        final V value() {
+            return dereferenceValue(valueRef);
+        }
+
+        @SuppressWarnings("unchecked")
+        final V dereferenceValue(Object value) {
+            if (value instanceof KeyReference)
+                return ((Reference<V>)value).get();
+
+            return (V) value;
+        }
+
+        final void setValue(V value, ReferenceType valueType, ReferenceQueue<Object> refQueue) {
+            this.valueRef = newValueReference(value, valueType, refQueue);
+        }
+
+        @SuppressWarnings("unchecked")
+        static final <K,V> HashEntry<K,V>[] newArray(int i) {
+            return new HashEntry[i];
+        }
+    }
+
+    /**
+     * Segments are specialized versions of hash tables.  This
+     * subclasses from ReentrantLock opportunistically, just to
+     * simplify some locking and avoid separate construction.
+     */
+    static final class Segment<K,V> extends ReentrantLock implements Serializable {
+        /*
+         * Segments maintain a table of entry lists that are ALWAYS
+         * kept in a consistent state, so can be read without locking.
+         * Next fields of nodes are immutable (final).  All list
+         * additions are performed at the front of each bin. This
+         * makes it easy to check changes, and also fast to traverse.
+         * When nodes would otherwise be changed, new nodes are
+         * created to replace them. This works well for hash tables
+         * since the bin lists tend to be short. (The average length
+         * is less than two for the default load factor threshold.)
+         *
+         * Read operations can thus proceed without locking, but rely
+         * on selected uses of volatiles to ensure that completed
+         * write operations performed by other threads are
+         * noticed. For most purposes, the "count" field, tracking the
+         * number of elements, serves as that volatile variable
+         * ensuring visibility.  This is convenient because this field
+         * needs to be read in many read operations anyway:
+         *
+         *   - All (unsynchronized) read operations must first read the
+         *     "count" field, and should not look at table entries if
+         *     it is 0.
+         *
+         *   - All (synchronized) write operations should write to
+         *     the "count" field after structurally changing any bin.
+         *     The operations must not take any action that could even
+         *     momentarily cause a concurrent read operation to see
+         *     inconsistent data. This is made easier by the nature of
+         *     the read operations in Map. For example, no operation
+         *     can reveal that the table has grown but the threshold
+         *     has not yet been updated, so there are no atomicity
+         *     requirements for this with respect to reads.
+         *
+         * As a guide, all critical volatile reads and writes to the
+         * count field are marked in code comments.
+         */
+
+        private static final long serialVersionUID = 2249069246763182397L;
+
+        /**
+         * The number of elements in this segment's region.
+         */
+        transient volatile int count;
+
+        /**
+         * Number of updates that alter the size of the table. This is
+         * used during bulk-read methods to make sure they see a
+         * consistent snapshot: If modCounts change during a traversal
+         * of segments computing size or checking containsValue, then
+         * we might have an inconsistent view of state so (usually)
+         * must retry.
+         */
+        transient int modCount;
+
+        /**
+         * The table is rehashed when its size exceeds this threshold.
+         * (The value of this field is always <tt>(int)(capacity *
+         * loadFactor)</tt>.)
+         */
+        transient int threshold;
+
+        /**
+         * The per-segment table.
+         */
+        transient volatile HashEntry<K,V>[] table;
+
+        /**
+         * The load factor for the hash table.  Even though this value
+         * is same for all segments, it is replicated to avoid needing
+         * links to outer object.
+         * @serial
+         */
+        final float loadFactor;
+
+        /**
+         * The collected weak-key reference queue for this segment.
+         * This should be (re)initialized whenever table is assigned,
+         */
+        transient volatile ReferenceQueue<Object> refQueue;
+
+        final ReferenceType keyType;
+
+        final ReferenceType valueType;
+
+        final boolean identityComparisons;
+
+        Segment(int initialCapacity, float lf, ReferenceType keyType,
+                ReferenceType valueType, boolean identityComparisons) {
+            loadFactor = lf;
+            this.keyType = keyType;
+            this.valueType = valueType;
+            this.identityComparisons = identityComparisons;
+            setTable(HashEntry.<K,V>newArray(initialCapacity));
+        }
+
+        @SuppressWarnings("unchecked")
+        static final <K,V> Segment<K,V>[] newArray(int i) {
+            return new Segment[i];
+        }
+
+        private boolean keyEq(Object src, Object dest) {
+            return identityComparisons ? src == dest : src.equals(dest);
+        }
+
+        /**
+         * Sets table to new HashEntry array.
+         * Call only while holding lock or in constructor.
+         */
+        void setTable(HashEntry<K,V>[] newTable) {
+            threshold = (int)(newTable.length * loadFactor);
+            table = newTable;
+            refQueue = new ReferenceQueue<Object>();
+        }
+
+        /**
+         * Returns properly casted first entry of bin for given hash.
+         */
+        HashEntry<K,V> getFirst(int hash) {
+            HashEntry<K,V>[] tab = table;
+            return tab[hash & (tab.length - 1)];
+        }
+
+        HashEntry<K,V> newHashEntry(K key, int hash, HashEntry<K, V> next, V value) {
+            return new HashEntry<K,V>(key, hash, next, value, keyType, valueType, refQueue);
+        }
+
+        /**
+         * Reads value field of an entry under lock. Called if value
+         * field ever appears to be null. This is possible only if a
+         * compiler happens to reorder a HashEntry initialization with
+         * its table assignment, which is legal under memory model
+         * but is not known to ever occur.
+         */
+        V readValueUnderLock(HashEntry<K,V> e) {
+            lock();
+            try {
+                removeStale();
+                return e.value();
+            } finally {
+                unlock();
+            }
+        }
+
+        /* Specialized implementations of map methods */
+
+        V get(Object key, int hash) {
+            if (count != 0) { // read-volatile
+                HashEntry<K,V> e = getFirst(hash);
+                while (e != null) {
+                    if (e.hash == hash && keyEq(key, e.key())) {
+                        Object opaque = e.valueRef;
+                        if (opaque != null)
+                            return e.dereferenceValue(opaque);
+
+                        return readValueUnderLock(e);  // recheck
+                    }
+                    e = e.next;
+                }
+            }
+            return null;
+        }
+
+        boolean containsKey(Object key, int hash) {
+            if (count != 0) { // read-volatile
+                HashEntry<K,V> e = getFirst(hash);
+                while (e != null) {
+                    if (e.hash == hash && keyEq(key, e.key()))
+                        return true;
+                    e = e.next;
+                }
+            }
+            return false;
+        }
+
+        boolean containsValue(Object value) {
+            if (count != 0) { // read-volatile
+                HashEntry<K,V>[] tab = table;
+                int len = tab.length;
+                for (int i = 0 ; i < len; i++) {
+                    for (HashEntry<K,V> e = tab[i]; e != null; e = e.next) {
+                        Object opaque = e.valueRef;
+                        V v;
+
+                        if (opaque == null)
+                            v = readValueUnderLock(e); // recheck
+                        else
+                            v = e.dereferenceValue(opaque);
+
+                        if (value.equals(v))
+                            return true;
+                    }
+                }
+            }
+            return false;
+        }
+
+        boolean replace(K key, int hash, V oldValue, V newValue) {
+            lock();
+            try {
+                removeStale();
+                HashEntry<K,V> e = getFirst(hash);
+                while (e != null && (e.hash != hash || !keyEq(key, e.key())))
+                    e = e.next;
+
+                boolean replaced = false;
+                if (e != null && oldValue.equals(e.value())) {
+                    replaced = true;
+                    e.setValue(newValue, valueType, refQueue);
+                }
+                return replaced;
+            } finally {
+                unlock();
+            }
+        }
+
+        V replace(K key, int hash, V newValue) {
+            lock();
+            try {
+                removeStale();
+                HashEntry<K,V> e = getFirst(hash);
+                while (e != null && (e.hash != hash || !keyEq(key, e.key())))
+                    e = e.next;
+
+                V oldValue = null;
+                if (e != null) {
+                    oldValue = e.value();
+                    e.setValue(newValue, valueType, refQueue);
+                }
+                return oldValue;
+            } finally {
+                unlock();
+            }
+        }
+
+
+        V put(K key, int hash, V value, boolean onlyIfAbsent) {
+            lock();
+            try {
+                removeStale();
+                int c = count;
+                if (c++ > threshold) {// ensure capacity
+                    int reduced = rehash();
+                    if (reduced > 0)  // adjust from possible weak cleanups
+                        count = (c -= reduced) - 1; // write-volatile
+                }
+
+                HashEntry<K,V>[] tab = table;
+                int index = hash & (tab.length - 1);
+                HashEntry<K,V> first = tab[index];
+                HashEntry<K,V> e = first;
+                while (e != null && (e.hash != hash || !keyEq(key, e.key())))
+                    e = e.next;
+
+                V oldValue;
+                if (e != null) {
+                    oldValue = e.value();
+                    if (!onlyIfAbsent)
+                        e.setValue(value, valueType, refQueue);
+                }
+                else {
+                    oldValue = null;
+                    ++modCount;
+                    tab[index] = newHashEntry(key, hash, first, value);
+                    count = c; // write-volatile
+                }
+                return oldValue;
+            } finally {
+                unlock();
+            }
+        }
+
+        int rehash() {
+            HashEntry<K,V>[] oldTable = table;
+            int oldCapacity = oldTable.length;
+            if (oldCapacity >= MAXIMUM_CAPACITY)
+                return 0;
+
+            /*
+             * Reclassify nodes in each list to new Map.  Because we are
+             * using power-of-two expansion, the elements from each bin
+             * must either stay at same index, or move with a power of two
+             * offset. We eliminate unnecessary node creation by catching
+             * cases where old nodes can be reused because their next
+             * fields won't change. Statistically, at the default
+             * threshold, only about one-sixth of them need cloning when
+             * a table doubles. The nodes they replace will be garbage
+             * collectable as soon as they are no longer referenced by any
+             * reader thread that may be in the midst of traversing table
+             * right now.
+             */
+
+            HashEntry<K,V>[] newTable = HashEntry.newArray(oldCapacity<<1);
+            threshold = (int)(newTable.length * loadFactor);
+            int sizeMask = newTable.length - 1;
+            int reduce = 0;
+            for (int i = 0; i < oldCapacity ; i++) {
+                // We need to guarantee that any existing reads of old Map can
+                //  proceed. So we cannot yet null out each bin.
+                HashEntry<K,V> e = oldTable[i];
+
+                if (e != null) {
+                    HashEntry<K,V> next = e.next;
+                    int idx = e.hash & sizeMask;
+
+                    //  Single node on list
+                    if (next == null)
+                        newTable[idx] = e;
+
+                    else {
+                        // Reuse trailing consecutive sequence at same slot
+                        HashEntry<K,V> lastRun = e;
+                        int lastIdx = idx;
+                        for (HashEntry<K,V> last = next;
+                             last != null;
+                             last = last.next) {
+                            int k = last.hash & sizeMask;
+                            if (k != lastIdx) {
+                                lastIdx = k;
+                                lastRun = last;
+                            }
+                        }
+                        newTable[lastIdx] = lastRun;
+                        // Clone all remaining nodes
+                        for (HashEntry<K,V> p = e; p != lastRun; p = p.next) {
+                            // Skip GC'd weak refs
+                            K key = p.key();
+                            if (key == null) {
+                                reduce++;
+                                continue;
+                            }
+                            int k = p.hash & sizeMask;
+                            HashEntry<K,V> n = newTable[k];
+                            newTable[k] = newHashEntry(key, p.hash, n, p.value());
+                        }
+                    }
+                }
+            }
+            table = newTable;
+            return reduce;
+        }
+
+        /**
+         * Remove; match on key only if value null, else match both.
+         */
+        V remove(Object key, int hash, Object value, boolean refRemove) {
+            lock();
+            try {
+                if (!refRemove)
+                    removeStale();
+                int c = count - 1;
+                HashEntry<K,V>[] tab = table;
+                int index = hash & (tab.length - 1);
+                HashEntry<K,V> first = tab[index];
+                HashEntry<K,V> e = first;
+                // a ref remove operation compares the Reference instance
+                while (e != null && key != e.keyRef
+                                 && (refRemove || hash != e.hash || !keyEq(key, e.key())))
+                    e = e.next;
+
+                V oldValue = null;
+                if (e != null) {
+                    V v = e.value();
+                    if (value == null || value.equals(v)) {
+                        oldValue = v;
+                        // All entries following removed node can stay
+                        // in list, but all preceding ones need to be
+                        // cloned.
+                        ++modCount;
+                        HashEntry<K,V> newFirst = e.next;
+                        for (HashEntry<K,V> p = first; p != e; p = p.next) {
+                            K pKey = p.key();
+                            if (pKey == null) { // Skip GC'd keys
+                                c--;
+                                continue;
+                            }
+
+                            newFirst = newHashEntry(pKey, p.hash, newFirst, p.value());
+                        }
+                        tab[index] = newFirst;
+                        count = c; // write-volatile
+                    }
+                }
+                return oldValue;
+            } finally {
+                unlock();
+            }
+        }
+
+        final void removeStale() {
+            KeyReference ref;
+            while ((ref = (KeyReference) refQueue.poll()) != null) {
+                remove(ref.keyRef(), ref.keyHash(), null, true);
+            }
+        }
+
+        void clear() {
+            if (count != 0) {
+                lock();
+                try {
+                    HashEntry<K,V>[] tab = table;
+                    for (int i = 0; i < tab.length ; i++)
+                        tab[i] = null;
+                    ++modCount;
+                    // replace the reference queue to avoid unnecessary stale cleanups
+                    refQueue = new ReferenceQueue<Object>();
+                    count = 0; // write-volatile
+                } finally {
+                    unlock();
+                }
+            }
+        }
+    }
+
+
+
+    /* ---------------- Public operations -------------- */
+
+    /**
+     * Creates a new, empty map with the specified initial
+     * capacity, reference types, load factor and concurrency level.
+     *
+     * Behavioral changing options such as {@link Option#IDENTITY_COMPARISONS}
+     * can also be specified.
+     *
+     * @param initialCapacity the initial capacity. The implementation
+     * performs internal sizing to accommodate this many elements.
+     * @param loadFactor  the load factor threshold, used to control resizing.
+     * Resizing may be performed when the average number of elements per
+     * bin exceeds this threshold.
+     * @param concurrencyLevel the estimated number of concurrently
+     * updating threads. The implementation performs internal sizing
+     * to try to accommodate this many threads.
+     * @param keyType the reference type to use for keys
+     * @param valueType the reference type to use for values
+     * @param options the behavioral options
+     * @throws IllegalArgumentException if the initial capacity is
+     * negative or the load factor or concurrencyLevel are
+     * nonpositive.
+     */
+    public ConcurrentReferenceHashMap(int initialCapacity,
+                             float loadFactor, int concurrencyLevel,
+                             ReferenceType keyType, ReferenceType valueType,
+                             EnumSet<Option> options) {
+        if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0)
+            throw new IllegalArgumentException();
+
+        if (concurrencyLevel > MAX_SEGMENTS)
+            concurrencyLevel = MAX_SEGMENTS;
+
+        // Find power-of-two sizes best matching arguments
+        int sshift = 0;
+        int ssize = 1;
+        while (ssize < concurrencyLevel) {
+            ++sshift;
+            ssize <<= 1;
+        }
+        segmentShift = 32 - sshift;
+        segmentMask = ssize - 1;
+        this.segments = Segment.newArray(ssize);
+
+        if (initialCapacity > MAXIMUM_CAPACITY)
+            initialCapacity = MAXIMUM_CAPACITY;
+        int c = initialCapacity / ssize;
+        if (c * ssize < initialCapacity)
+            ++c;
+        int cap = 1;
+        while (cap < c)
+            cap <<= 1;
+
+        identityComparisons = options != null && options.contains(Option.IDENTITY_COMPARISONS);
+
+        for (int i = 0; i < this.segments.length; ++i)
+            this.segments[i] = new Segment<K,V>(cap, loadFactor,
+                    keyType, valueType, identityComparisons);
+    }
+
+    /**
+     * Creates a new, empty map with the specified initial
+     * capacity, load factor and concurrency level.
+     *
+     * @param initialCapacity the initial capacity. The implementation
+     * performs internal sizing to accommodate this many elements.
+     * @param loadFactor  the load factor threshold, used to control resizing.
+     * Resizing may be performed when the average number of elements per
+     * bin exceeds this threshold.
+     * @param concurrencyLevel the estimated number of concurrently
+     * updating threads. The implementation performs internal sizing
+     * to try to accommodate this many threads.
+     * @throws IllegalArgumentException if the initial capacity is
+     * negative or the load factor or concurrencyLevel are
+     * nonpositive.
+     */
+    public ConcurrentReferenceHashMap(int initialCapacity,
+                             float loadFactor, int concurrencyLevel) {
+        this(initialCapacity, loadFactor, concurrencyLevel,
+                DEFAULT_KEY_TYPE, DEFAULT_VALUE_TYPE, null);
+    }
+
+    /**
+     * Creates a new, empty map with the specified initial capacity
+     * and load factor and with the default reference types (weak keys,
+     * strong values), and concurrencyLevel (16).
+     *
+     * @param initialCapacity The implementation performs internal
+     * sizing to accommodate this many elements.
+     * @param loadFactor  the load factor threshold, used to control resizing.
+     * Resizing may be performed when the average number of elements per
+     * bin exceeds this threshold.
+     * @throws IllegalArgumentException if the initial capacity of
+     * elements is negative or the load factor is nonpositive
+     *
+     * @since 1.6
+     */
+    public ConcurrentReferenceHashMap(int initialCapacity, float loadFactor) {
+        this(initialCapacity, loadFactor, DEFAULT_CONCURRENCY_LEVEL);
+    }
+
+
+    /**
+     * Creates a new, empty map with the specified initial capacity,
+     * reference types and with default load factor (0.75) and concurrencyLevel (16).
+     *
+     * @param initialCapacity the initial capacity. The implementation
+     * performs internal sizing to accommodate this many elements.
+     * @param keyType the reference type to use for keys
+     * @param valueType the reference type to use for values
+     * @throws IllegalArgumentException if the initial capacity of
+     * elements is negative.
+     */
+    public ConcurrentReferenceHashMap(int initialCapacity,
+            ReferenceType keyType, ReferenceType valueType) {
+        this(initialCapacity, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL,
+                keyType, valueType, null);
+    }
+
+    /**
+     * Creates a new, empty reference map with the specified key
+     * and value reference types.
+     *
+     * @param keyType the reference type to use for keys
+     * @param valueType the reference type to use for values
+     * @throws IllegalArgumentException if the initial capacity of
+     * elements is negative.
+     */
+    public ConcurrentReferenceHashMap(ReferenceType keyType, ReferenceType valueType) {
+        this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL,
+                keyType, valueType, null);
+    }
+
+    /**
+     * Creates a new, empty reference map with the specified reference types
+     * and behavioral options.
+     *
+     * @param keyType the reference type to use for keys
+     * @param valueType the reference type to use for values
+     * @throws IllegalArgumentException if the initial capacity of
+     * elements is negative.
+     */
+    public ConcurrentReferenceHashMap(ReferenceType keyType, ReferenceType valueType, EnumSet<Option> options) {
+        this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL,
+                keyType, valueType, options);
+    }
+
+
+    /**
+     * Creates a new, empty map with the specified initial capacity,
+     * and with default reference types (weak keys, strong values),
+     * load factor (0.75) and concurrencyLevel (16).
+     *
+     * @param initialCapacity the initial capacity. The implementation
+     * performs internal sizing to accommodate this many elements.
+     * @throws IllegalArgumentException if the initial capacity of
+     * elements is negative.
+     */
+    public ConcurrentReferenceHashMap(int initialCapacity) {
+        this(initialCapacity, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
+    }
+
+    /**
+     * Creates a new, empty map with a default initial capacity (16),
+     * reference types (weak keys, strong values), default
+     * load factor (0.75) and concurrencyLevel (16).
+     */
+    public ConcurrentReferenceHashMap() {
+        this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
+    }
+
+    /**
+     * Creates a new map with the same mappings as the given map.
+     * The map is created with a capacity of 1.5 times the number
+     * of mappings in the given map or 16 (whichever is greater),
+     * and a default load factor (0.75) and concurrencyLevel (16).
+     *
+     * @param m the map
+     */
+    public ConcurrentReferenceHashMap(Map<? extends K, ? extends V> m) {
+        this(Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) + 1,
+                      DEFAULT_INITIAL_CAPACITY),
+             DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
+        putAll(m);
+    }
+
+    /**
+     * Returns <tt>true</tt> if this map contains no key-value mappings.
+     *
+     * @return <tt>true</tt> if this map contains no key-value mappings
+     */
+    public boolean isEmpty() {
+        final Segment<K,V>[] segments = this.segments;
+        /*
+         * We keep track of per-segment modCounts to avoid ABA
+         * problems in which an element in one segment was added and
+         * in another removed during traversal, in which case the
+         * table was never actually empty at any point. Note the
+         * similar use of modCounts in the size() and containsValue()
+         * methods, which are the only other methods also susceptible
+         * to ABA problems.
+         */
+        int[] mc = new int[segments.length];
+        int mcsum = 0;
+        for (int i = 0; i < segments.length; ++i) {
+            if (segments[i].count != 0)
+                return false;
+            else
+                mcsum += mc[i] = segments[i].modCount;
+        }
+        // If mcsum happens to be zero, then we know we got a snapshot
+        // before any modifications at all were made.  This is
+        // probably common enough to bother tracking.
+        if (mcsum != 0) {
+            for (int i = 0; i < segments.length; ++i) {
+                if (segments[i].count != 0 ||
+                    mc[i] != segments[i].modCount)
+                    return false;
+            }
+        }
+        return true;
+    }
+
+    /**
+     * Returns the number of key-value mappings in this map.  If the
+     * map contains more than <tt>Integer.MAX_VALUE</tt> elements, returns
+     * <tt>Integer.MAX_VALUE</tt>.
+     *
+     * @return the number of key-value mappings in this map
+     */
+    public int size() {
+        final Segment<K,V>[] segments = this.segments;
+        long sum = 0;
+        long check = 0;
+        int[] mc = new int[segments.length];
+        // Try a few times to get accurate count. On failure due to
+        // continuous async changes in table, resort to locking.
+        for (int k = 0; k < RETRIES_BEFORE_LOCK; ++k) {
+            check = 0;
+            sum = 0;
+            int mcsum = 0;
+            for (int i = 0; i < segments.length; ++i) {
+                sum += segments[i].count;
+                mcsum += mc[i] = segments[i].modCount;
+            }
+            if (mcsum != 0) {
+                for (int i = 0; i < segments.length; ++i) {
+                    check += segments[i].count;
+                    if (mc[i] != segments[i].modCount) {
+                        check = -1; // force retry
+                        break;
+                    }
+                }
+            }
+            if (check == sum)
+                break;
+        }
+        if (check != sum) { // Resort to locking all segments
+            sum = 0;
+            for (int i = 0; i < segments.length; ++i)
+                segments[i].lock();
+            for (int i = 0; i < segments.length; ++i)
+                sum += segments[i].count;
+            for (int i = 0; i < segments.length; ++i)
+                segments[i].unlock();
+        }
+        if (sum > Integer.MAX_VALUE)
+            return Integer.MAX_VALUE;
+        else
+            return (int)sum;
+    }
+
+    /**
+     * Returns the value to which the specified key is mapped,
+     * or {@code null} if this map contains no mapping for the key.
+     *
+     * <p>More formally, if this map contains a mapping from a key
+     * {@code k} to a value {@code v} such that {@code key.equals(k)},
+     * then this method returns {@code v}; otherwise it returns
+     * {@code null}.  (There can be at most one such mapping.)
+     *
+     * @throws NullPointerException if the specified key is null
+     */
+    public V get(Object key) {
+        int hash = hashOf(key);
+        return segmentFor(hash).get(key, hash);
+    }
+
+    /**
+     * Tests if the specified object is a key in this table.
+     *
+     * @param  key   possible key
+     * @return <tt>true</tt> if and only if the specified object
+     *         is a key in this table, as determined by the
+     *         <tt>equals</tt> method; <tt>false</tt> otherwise.
+     * @throws NullPointerException if the specified key is null
+     */
+    public boolean containsKey(Object key) {
+        int hash = hashOf(key);
+        return segmentFor(hash).containsKey(key, hash);
+    }
+
+    /**
+     * Returns <tt>true</tt> if this map maps one or more keys to the
+     * specified value. Note: This method requires a full internal
+     * traversal of the hash table, and so is much slower than
+     * method <tt>containsKey</tt>.
+     *
+     * @param value value whose presence in this map is to be tested
+     * @return <tt>true</tt> if this map maps one or more keys to the
+     *         specified value
+     * @throws NullPointerException if the specified value is null
+     */
+    public boolean containsValue(Object value) {
+        if (value == null)
+            throw new NullPointerException();
+
+        // See explanation of modCount use above
+
+        final Segment<K,V>[] segments = this.segments;
+        int[] mc = new int[segments.length];
+
+        // Try a few times without locking
+        for (int k = 0; k < RETRIES_BEFORE_LOCK; ++k) {
+            int sum = 0;
+            int mcsum = 0;
+            for (int i = 0; i < segments.length; ++i) {
+                int c = segments[i].count;
+                mcsum += mc[i] = segments[i].modCount;
+                if (segments[i].containsValue(value))
+                    return true;
+            }
+            boolean cleanSweep = true;
+            if (mcsum != 0) {
+                for (int i = 0; i < segments.length; ++i) {
+                    int c = segments[i].count;
+                    if (mc[i] != segments[i].modCount) {
+                        cleanSweep = false;
+                        break;
+                    }
+                }
+            }
+            if (cleanSweep)
+                return false;
+        }
+        // Resort to locking all segments
+        for (int i = 0; i < segments.length; ++i)
+            segments[i].lock();
+        boolean found = false;
+        try {
+            for (int i = 0; i < segments.length; ++i) {
+                if (segments[i].containsValue(value)) {
+                    found = true;
+                    break;
+                }
+            }
+        } finally {
+            for (int i = 0; i < segments.length; ++i)
+                segments[i].unlock();
+        }
+        return found;
+    }
+
+    /**
+     * Legacy method testing if some key maps into the specified value
+     * in this table.  This method is identical in functionality to
+     * {@link #containsValue}, and exists solely to ensure
+     * full compatibility with class {@link java.util.Hashtable},
+     * which supported this method prior to introduction of the
+     * Java Collections framework.
+
+     * @param  value a value to search for
+     * @return <tt>true</tt> if and only if some key maps to the
+     *         <tt>value</tt> argument in this table as
+     *         determined by the <tt>equals</tt> method;
+     *         <tt>false</tt> otherwise
+     * @throws NullPointerException if the specified value is null
+     */
+    public boolean contains(Object value) {
+        return containsValue(value);
+    }
+
+    /**
+     * Maps the specified key to the specified value in this table.
+     * Neither the key nor the value can be null.
+     *
+     * <p> The value can be retrieved by calling the <tt>get</tt> method
+     * with a key that is equal to the original key.
+     *
+     * @param key key with which the specified value is to be associated
+     * @param value value to be associated with the specified key
+     * @return the previous value associated with <tt>key</tt>, or
+     *         <tt>null</tt> if there was no mapping for <tt>key</tt>
+     * @throws NullPointerException if the specified key or value is null
+     */
+    public V put(K key, V value) {
+        if (value == null)
+            throw new NullPointerException();
+        int hash = hashOf(key);
+        return segmentFor(hash).put(key, hash, value, false);
+    }
+
+    /**
+     * {@inheritDoc}
+     *
+     * @return the previous value associated with the specified key,
+     *         or <tt>null</tt> if there was no mapping for the key
+     * @throws NullPointerException if the specified key or value is null
+     */
+    public V putIfAbsent(K key, V value) {
+        if (value == null)
+            throw new NullPointerException();
+        int hash = hashOf(key);
+        return segmentFor(hash).put(key, hash, value, true);
+    }
+
+    /**
+     * Copies all of the mappings from the specified map to this one.
+     * These mappings replace any mappings that this map had for any of the
+     * keys currently in the specified map.
+     *
+     * @param m mappings to be stored in this map
+     */
+    public void putAll(Map<? extends K, ? extends V> m) {
+        for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
+            put(e.getKey(), e.getValue());
+    }
+
+    /**
+     * Removes the key (and its corresponding value) from this map.
+     * This method does nothing if the key is not in the map.
+     *
+     * @param  key the key that needs to be removed
+     * @return the previous value associated with <tt>key</tt>, or
+     *         <tt>null</tt> if there was no mapping for <tt>key</tt>
+     * @throws NullPointerException if the specified key is null
+     */
+    public V remove(Object key) {
+        int hash = hashOf(key);
+        return segmentFor(hash).remove(key, hash, null, false);
+    }
+
+    /**
+     * {@inheritDoc}
+     *
+     * @throws NullPointerException if the specified key is null
+     */
+    public boolean remove(Object key, Object value) {
+        int hash = hashOf(key);
+        if (value == null)
+            return false;
+        return segmentFor(hash).remove(key, hash, value, false) != null;
+    }
+
+    /**
+     * {@inheritDoc}
+     *
+     * @throws NullPointerException if any of the arguments are null
+     */
+    public boolean replace(K key, V oldValue, V newValue) {
+        if (oldValue == null || newValue == null)
+            throw new NullPointerException();
+        int hash = hashOf(key);
+        return segmentFor(hash).replace(key, hash, oldValue, newValue);
+    }
+
+    /**
+     * {@inheritDoc}
+     *
+     * @return the previous value associated with the specified key,
+     *         or <tt>null</tt> if there was no mapping for the key
+     * @throws NullPointerException if the specified key or value is null
+     */
+    public V replace(K key, V value) {
+        if (value == null)
+            throw new NullPointerException();
+        int hash = hashOf(key);
+        return segmentFor(hash).replace(key, hash, value);
+    }
+
+    /**
+     * Removes all of the mappings from this map.
+     */
+    public void clear() {
+        for (int i = 0; i < segments.length; ++i)
+            segments[i].clear();
+    }
+
+    /**
+     * Removes any stale entries whose keys have been finalized. Use of this
+     * method is normally not necessary since stale entries are automatically
+     * removed lazily, when blocking operations are required. However, there
+     * are some cases where this operation should be performed eagerly, such
+     * as cleaning up old references to a ClassLoader in a multi-classloader
+     * environment.
+     *
+     * Note: this method will acquire locks, one at a time, across all segments
+     * of this table, so if it is to be used, it should be used sparingly.
+     */
+    public void purgeStaleEntries() {
+        for (int i = 0; i < segments.length; ++i)
+            segments[i].removeStale();
+    }
+
+
+    /**
+     * Returns a {@link Set} view of the keys contained in this map.
+     * The set is backed by the map, so changes to the map are
+     * reflected in the set, and vice-versa.  The set supports element
+     * removal, which removes the corresponding mapping from this map,
+     * via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
+     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
+     * operations.  It does not support the <tt>add</tt> or
+     * <tt>addAll</tt> operations.
+     *
+     * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
+     * that will never throw {@link ConcurrentModificationException},
+     * and guarantees to traverse elements as they existed upon
+     * construction of the iterator, and may (but is not guaranteed to)
+     * reflect any modifications subsequent to construction.
+     */
+    public Set<K> keySet() {
+        Set<K> ks = keySet;
+        return (ks != null) ? ks : (keySet = new KeySet());
+    }
+
+    /**
+     * Returns a {@link Collection} view of the values contained in this map.
+     * The collection is backed by the map, so changes to the map are
+     * reflected in the collection, and vice-versa.  The collection
+     * supports element removal, which removes the corresponding
+     * mapping from this map, via the <tt>Iterator.remove</tt>,
+     * <tt>Collection.remove</tt>, <tt>removeAll</tt>,
+     * <tt>retainAll</tt>, and <tt>clear</tt> operations.  It does not
+     * support the <tt>add</tt> or <tt>addAll</tt> operations.
+     *
+     * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
+     * that will never throw {@link ConcurrentModificationException},
+     * and guarantees to traverse elements as they existed upon
+     * construction of the iterator, and may (but is not guaranteed to)
+     * reflect any modifications subsequent to construction.
+     */
+    public Collection<V> values() {
+        Collection<V> vs = values;
+        return (vs != null) ? vs : (values = new Values());
+    }
+
+    /**
+     * Returns a {@link Set} view of the mappings contained in this map.
+     * The set is backed by the map, so changes to the map are
+     * reflected in the set, and vice-versa.  The set supports element
+     * removal, which removes the corresponding mapping from the map,
+     * via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
+     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
+     * operations.  It does not support the <tt>add</tt> or
+     * <tt>addAll</tt> operations.
+     *
+     * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
+     * that will never throw {@link ConcurrentModificationException},
+     * and guarantees to traverse elements as they existed upon
+     * construction of the iterator, and may (but is not guaranteed to)
+     * reflect any modifications subsequent to construction.
+     */
+    public Set<Map.Entry<K,V>> entrySet() {
+        Set<Map.Entry<K,V>> es = entrySet;
+        return (es != null) ? es : (entrySet = new EntrySet());
+    }
+
+    /**
+     * Returns an enumeration of the keys in this table.
+     *
+     * @return an enumeration of the keys in this table
+     * @see #keySet()
+     */
+    public Enumeration<K> keys() {
+        return new KeyIterator();
+    }
+
+    /**
+     * Returns an enumeration of the values in this table.
+     *
+     * @return an enumeration of the values in this table
+     * @see #values()
+     */
+    public Enumeration<V> elements() {
+        return new ValueIterator();
+    }
+
+    /* ---------------- Iterator Support -------------- */
+
+    abstract class HashIterator {
+        int nextSegmentIndex;
+        int nextTableIndex;
+        HashEntry<K,V>[] currentTable;
+        HashEntry<K, V> nextEntry;
+        HashEntry<K, V> lastReturned;
+        K currentKey; // Strong reference to weak key (prevents gc)
+
+        HashIterator() {
+            nextSegmentIndex = segments.length - 1;
+            nextTableIndex = -1;
+            advance();
+        }
+
+        public boolean hasMoreElements() { return hasNext(); }
+
+        final void advance() {
+            if (nextEntry != null && (nextEntry = nextEntry.next) != null)
+                return;
+
+            while (nextTableIndex >= 0) {
+                if ( (nextEntry = currentTable[nextTableIndex--]) != null)
+                    return;
+            }
+
+            while (nextSegmentIndex >= 0) {
+                Segment<K,V> seg = segments[nextSegmentIndex--];
+                if (seg.count != 0) {
+                    currentTable = seg.table;
+                    for (int j = currentTable.length - 1; j >= 0; --j) {
+                        if ( (nextEntry = currentTable[j]) != null) {
+                            nextTableIndex = j - 1;
+                            return;
+                        }
+                    }
+                }
+            }
+        }
+
+        public boolean hasNext() {
+            while (nextEntry != null) {
+                if (nextEntry.key() != null)
+                    return true;
+                advance();
+            }
+
+            return false;
+        }
+
+        HashEntry<K,V> nextEntry() {
+            do {
+                if (nextEntry == null)
+                    throw new NoSuchElementException();
+
+                lastReturned = nextEntry;
+                currentKey = lastReturned.key();
+                advance();
+            } while (currentKey == null); // Skip GC'd keys
+
+            return lastReturned;
+        }
+
+        public void remove() {
+            if (lastReturned == null)
+                throw new IllegalStateException();
+            ConcurrentReferenceHashMap.this.remove(currentKey);
+            lastReturned = null;
+        }
+    }
+
+    final class KeyIterator
+        extends HashIterator
+        implements Iterator<K>, Enumeration<K>
+    {
+        public K next()        { return super.nextEntry().key(); }
+        public K nextElement() { return super.nextEntry().key(); }
+    }
+
+    final class ValueIterator
+        extends HashIterator
+        implements Iterator<V>, Enumeration<V>
+    {
+        public V next()        { return super.nextEntry().value(); }
+        public V nextElement() { return super.nextEntry().value(); }
+    }
+
+     /*
+      * This class is needed for JDK5 compatibility.
+      */
+     static class SimpleEntry<K, V> implements Entry<K, V>,
+            java.io.Serializable {
+        private static final long serialVersionUID = -8499721149061103585L;
+
+        private final K key;
+        private V value;
+
+        public SimpleEntry(K key, V value) {
+            this.key = key;
+            this.value = value;
+        }
+
+        public SimpleEntry(Entry<? extends K, ? extends V> entry) {
+            this.key = entry.getKey();
+            this.value = entry.getValue();
+        }
+
+        public K getKey() {
+            return key;
+        }
+
+        public V getValue() {
+            return value;
+        }
+
+        public V setValue(V value) {
+            V oldValue = this.value;
+            this.value = value;
+            return oldValue;
+        }
+
+        public boolean equals(Object o) {
+            if (!(o instanceof Map.Entry))
+                return false;
+            @SuppressWarnings("unchecked")
+            Map.Entry e = (Map.Entry) o;
+            return eq(key, e.getKey()) && eq(value, e.getValue());
+        }
+
+        public int hashCode() {
+            return (key == null ? 0 : key.hashCode())
+                    ^ (value == null ? 0 : value.hashCode());
+        }
+
+        public String toString() {
+            return key + "=" + value;
+        }
+
+        private static boolean eq(Object o1, Object o2) {
+            return o1 == null ? o2 == null : o1.equals(o2);
+        }
+    }
+
+
+    /**
+     * Custom Entry class used by EntryIterator.next(), that relays setValue
+     * changes to the underlying map.
+     */
+    final class WriteThroughEntry extends SimpleEntry<K,V>
+    {
+        private static final long serialVersionUID = -7900634345345313646L;
+
+        WriteThroughEntry(K k, V v) {
+            super(k,v);
+        }
+
+        /**
+         * Set our entry's value and write through to the map. The
+         * value to return is somewhat arbitrary here. Since a
+         * WriteThroughEntry does not necessarily track asynchronous
+         * changes, the most recent "previous" value could be
+         * different from what we return (or could even have been
+         * removed in which case the put will re-establish). We do not
+         * and cannot guarantee more.
+         */
+        public V setValue(V value) {
+            if (value == null) throw new NullPointerException();
+            V v = super.setValue(value);
+            ConcurrentReferenceHashMap.this.put(getKey(), value);
+            return v;
+        }
+    }
+
+    final class EntryIterator
+        extends HashIterator
+        implements Iterator<Entry<K,V>>
+    {
+        public Map.Entry<K,V> next() {
+            HashEntry<K,V> e = super.nextEntry();
+            return new WriteThroughEntry(e.key(), e.value());
+        }
+    }
+
+    final class KeySet extends AbstractSet<K> {
+        public Iterator<K> iterator() {
+            return new KeyIterator();
+        }
+        public int size() {
+            return ConcurrentReferenceHashMap.this.size();
+        }
+        public boolean isEmpty() {
+            return ConcurrentReferenceHashMap.this.isEmpty();
+        }
+        public boolean contains(Object o) {
+            return ConcurrentReferenceHashMap.this.containsKey(o);
+        }
+        public boolean remove(Object o) {
+            return ConcurrentReferenceHashMap.this.remove(o) != null;
+        }
+        public void clear() {
+            ConcurrentReferenceHashMap.this.clear();
+        }
+    }
+
+    final class Values extends AbstractCollection<V> {
+        public Iterator<V> iterator() {
+            return new ValueIterator();
+        }
+        public int size() {
+            return ConcurrentReferenceHashMap.this.size();
+        }
+        public boolean isEmpty() {
+            return ConcurrentReferenceHashMap.this.isEmpty();
+        }
+        public boolean contains(Object o) {
+            return ConcurrentReferenceHashMap.this.containsValue(o);
+        }
+        public void clear() {
+            ConcurrentReferenceHashMap.this.clear();
+        }
+    }
+
+    final class EntrySet extends AbstractSet<Map.Entry<K,V>> {
+        public Iterator<Map.Entry<K,V>> iterator() {
+            return new EntryIterator();
+        }
+        public boolean contains(Object o) {
+            if (!(o instanceof Map.Entry))
+                return false;
+            Map.Entry<?,?> e = (Map.Entry<?,?>)o;
+            V v = ConcurrentReferenceHashMap.this.get(e.getKey());
+            return v != null && v.equals(e.getValue());
+        }
+        public boolean remove(Object o) {
+            if (!(o instanceof Map.Entry))
+                return false;
+            Map.Entry<?,?> e = (Map.Entry<?,?>)o;
+            return ConcurrentReferenceHashMap.this.remove(e.getKey(), e.getValue());
+        }
+        public int size() {
+            return ConcurrentReferenceHashMap.this.size();
+        }
+        public boolean isEmpty() {
+            return ConcurrentReferenceHashMap.this.isEmpty();
+        }
+        public void clear() {
+            ConcurrentReferenceHashMap.this.clear();
+        }
+    }
+
+    /* ---------------- Serialization Support -------------- */
+
+    /**
+     * Save the state of the <tt>ConcurrentReferenceHashMap</tt> instance to a
+     * stream (i.e., serialize it).
+     * @param s the stream
+     * @serialData
+     * the key (Object) and value (Object)
+     * for each key-value mapping, followed by a null pair.
+     * The key-value mappings are emitted in no particular order.
+     */
+    private void writeObject(java.io.ObjectOutputStream s) throws IOException  {
+        s.defaultWriteObject();
+
+        for (int k = 0; k < segments.length; ++k) {
+            Segment<K,V> seg = segments[k];
+            seg.lock();
+            try {
+                HashEntry<K,V>[] tab = seg.table;
+                for (int i = 0; i < tab.length; ++i) {
+                    for (HashEntry<K,V> e = tab[i]; e != null; e = e.next) {
+                        K key = e.key();
+                        if (key == null) // Skip GC'd keys
+                            continue;
+
+                        s.writeObject(key);
+                        s.writeObject(e.value());
+                    }
+                }
+            } finally {
+                seg.unlock();
+            }
+        }
+        s.writeObject(null);
+        s.writeObject(null);
+    }
+
+    /**
+     * Reconstitute the <tt>ConcurrentReferenceHashMap</tt> instance from a
+     * stream (i.e., deserialize it).
+     * @param s the stream
+     */
+    @SuppressWarnings("unchecked")
+    private void readObject(java.io.ObjectInputStream s)
+        throws IOException, ClassNotFoundException  {
+        s.defaultReadObject();
+
+        // Initialize each segment to be minimally sized, and let grow.
+        for (int i = 0; i < segments.length; ++i) {
+            segments[i].setTable(new HashEntry[1]);
+        }
+
+        // Read the keys and values, and put the mappings in the table
+        for (;;) {
+            K key = (K) s.readObject();
+            V value = (V) s.readObject();
+            if (key == null)
+                break;
+            put(key, value);
+        }
+    }
+}


Property changes on: common-core/trunk/src/main/java/org/jboss/util/collection/ConcurrentReferenceHashMap.java
___________________________________________________________________
Name: svn:keywords
   + Id Revision
Name: svn:eol-style
   + LF

Added: common-core/trunk/src/main/java/org/jboss/util/collection/FastCopyHashMap.java
===================================================================
--- common-core/trunk/src/main/java/org/jboss/util/collection/FastCopyHashMap.java	                        (rev 0)
+++ common-core/trunk/src/main/java/org/jboss/util/collection/FastCopyHashMap.java	2009-01-20 20:41:04 UTC (rev 2969)
@@ -0,0 +1,855 @@
+/*
+ * JBoss, Home of Professional Open Source.
+ * Copyright 2000 - 2008, Red Hat Middleware LLC, and individual contributors
+ * as indicated by the @author tags. See the copyright.txt file in the
+ * distribution for a full listing of individual contributors.
+ *
+ * This is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU Lesser General Public License as
+ * published by the Free Software Foundation; either version 2.1 of
+ * the License, or (at your option) any later version.
+ *
+ * This software is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with this software; if not, write to the Free
+ * Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
+ * 02110-1301 USA, or see the FSF site: http://www.fsf.org.
+ */
+package org.jboss.util.collection;
+
+import java.io.IOException;
+import java.io.Serializable;
+import java.util.AbstractCollection;
+import java.util.AbstractMap;
+import java.util.AbstractSet;
+import java.util.Collection;
+import java.util.ConcurrentModificationException;
+import java.util.Iterator;
+import java.util.Map;
+import java.util.NoSuchElementException;
+import java.util.Set;
+
+/**
+ * A HashMap that is optimized for fast shallow copies. If the copy-ctor is
+ * passed another FastCopyHashMap, or clone is called on this map, the shallow
+ * copy can be performed using little more than a single array copy. In order to
+ * accomplish this, immutable objects must be used internally, so update
+ * operations result in slightly more object churn than <code>HashMap</code>.
+ *
+ * Note: It is very important to use a smaller load factor than you normally
+ * would for HashMap, since the implementation is open-addressed with linear
+ * probing. With a 50% load-factor a get is expected to return in only 2 probes.
+ * However, a 90% load-factor is expected to return in around 50 probes.
+ *
+ * @author Jason T. Greene
+ */
+public class FastCopyHashMap<K, V> extends AbstractMap<K, V> implements Map<K, V>, Cloneable, Serializable
+{
+   /**
+    * Marks null keys.
+    */
+   private static final Object NULL = new Object();
+
+   /**
+    * Serialization ID
+    */
+   private static final long serialVersionUID = 10929568968762L;
+
+   /**
+    * Same default as HashMap, must be a power of 2
+    */
+   private static final int DEFAULT_CAPACITY = 8;
+
+   /**
+    * MAX_INT - 1
+    */
+   private static final int MAXIMUM_CAPACITY = 1 << 30;
+
+   /**
+    * 67%, just like IdentityHashMap
+    */
+   private static final float DEFAULT_LOAD_FACTOR = 0.67f;
+
+   /**
+    * The open-addressed table
+    */
+   private transient Entry<K, V>[] table;
+
+   /**
+    * The current number of key-value pairs
+    */
+   private transient int size;
+
+   /**
+    * The next resize
+    */
+   private transient int threshold;
+
+   /**
+    * The user defined load factor which defines when to resize
+    */
+   private final float loadFactor;
+
+   /**
+    * Counter used to detect changes made outside of an iterator
+    */
+   private transient int modCount;
+
+   // Cached views
+   private transient KeySet keySet;
+   private transient Values values;
+   private transient EntrySet entrySet;
+
+   public FastCopyHashMap(int initialCapacity, float loadFactor)
+   {
+      if (initialCapacity < 0)
+         throw new IllegalArgumentException("Can not have a negative size table!");
+
+      if (initialCapacity > MAXIMUM_CAPACITY)
+         initialCapacity = MAXIMUM_CAPACITY;
+
+      if (!(loadFactor > 0F && loadFactor <= 1F))
+         throw new IllegalArgumentException("Load factor must be greater than 0 and less than or equal to 1");
+
+      this.loadFactor = loadFactor;
+      init(initialCapacity, loadFactor);
+   }
+
+   @SuppressWarnings("unchecked")
+   public FastCopyHashMap(Map<? extends K, ? extends V> map)
+   {
+      if (map instanceof FastCopyHashMap)
+      {
+         FastCopyHashMap<? extends K, ? extends V> fast = (FastCopyHashMap<? extends K, ? extends V>) map;
+         this.table = (Entry<K, V>[]) fast.table.clone();
+         this.loadFactor = fast.loadFactor;
+         this.size = fast.size;
+         this.threshold = fast.threshold;
+      }
+      else
+      {
+         this.loadFactor = DEFAULT_LOAD_FACTOR;
+         init(map.size(), this.loadFactor);
+         putAll(map);
+      }
+   }
+
+   @SuppressWarnings("unchecked")
+   private void init(int initialCapacity, float loadFactor)
+   {
+      int c = 1;
+      for (; c < initialCapacity; c <<= 1) ;
+      threshold = (int) (c * loadFactor);
+
+      // Include the load factor when sizing the table for the first time
+      if (initialCapacity > threshold && c < MAXIMUM_CAPACITY)
+      {
+         c <<= 1;
+         threshold = (int) (c * loadFactor);
+      }
+
+      this.table = (Entry<K, V>[]) new Entry[c];
+   }
+
+   public FastCopyHashMap(int initialCapacity)
+   {
+      this(initialCapacity, DEFAULT_LOAD_FACTOR);
+   }
+
+   public FastCopyHashMap()
+   {
+      this(DEFAULT_CAPACITY);
+   }
+
+   // The normal bit spreader...
+   private static final int hash(Object key)
+   {
+      int h = key.hashCode();
+      h ^= (h >>> 20) ^ (h >>> 12);
+      return h ^ (h >>> 7) ^ (h >>> 4);
+   }
+
+   @SuppressWarnings("unchecked")
+   private static final <K> K maskNull(K key)
+   {
+      return key == null ? (K) NULL : key;
+   }
+
+   private static final <K> K unmaskNull(K key)
+   {
+      return key == NULL ? null : key;
+   }
+
+   private int nextIndex(int index, int length)
+   {
+      index = (index >= length - 1) ? 0 : index + 1;
+      return index;
+   }
+
+   private static final boolean eq(Object o1, Object o2)
+   {
+      return o1 == o2 || (o1 != null && o1.equals(o2));
+   }
+
+   private static final int index(int hashCode, int length)
+   {
+      return hashCode & (length - 1);
+   }
+
+   public int size()
+   {
+      return size;
+   }
+
+   public boolean isEmpty()
+   {
+      return size == 0;
+   }
+
+   public V get(Object key)
+   {
+      key = maskNull(key);
+
+      int hash = hash(key);
+      int length = table.length;
+      int index = index(hash, length);
+
+      for (int start = index; ;)
+      {
+         Entry<K, V> e = table[index];
+         if (e == null)
+            return null;
+
+         if (e.hash == hash && eq(key, e.key))
+            return e.value;
+
+         index = nextIndex(index, length);
+         if (index == start) // Full table
+            return null;
+      }
+   }
+
+   public boolean containsKey(Object key)
+   {
+      key = maskNull(key);
+
+      int hash = hash(key);
+      int length = table.length;
+      int index = index(hash, length);
+
+      for (int start = index; ;)
+      {
+         Entry<K, V> e = table[index];
+         if (e == null)
+            return false;
+
+         if (e.hash == hash && eq(key, e.key))
+            return true;
+
+         index = nextIndex(index, length);
+         if (index == start) // Full table
+            return false;
+      }
+   }
+
+   public boolean containsValue(Object value)
+   {
+      for (Entry<K, V> e : table)
+         if (e != null && eq(value, e.value))
+            return true;
+
+      return false;
+   }
+
+   public V put(K key, V value)
+   {
+      key = maskNull(key);
+
+      Entry<K, V>[] table = this.table;
+      int hash = hash(key);
+      int length = table.length;
+      int index = index(hash, length);
+
+      for (int start = index; ;)
+      {
+         Entry<K, V> e = table[index];
+         if (e == null)
+            break;
+
+         if (e.hash == hash && eq(key, e.key))
+         {
+            table[index] = new Entry<K, V>(e.key, e.hash, value);
+            return e.value;
+         }
+
+         index = nextIndex(index, length);
+         if (index == start)
+            throw new IllegalStateException("Table is full!");
+      }
+
+      modCount++;
+      table[index] = new Entry<K, V>(key, hash, value);
+      if (++size >= threshold)
+         resize(length);
+
+      return null;
+   }
+
+
+   @SuppressWarnings("unchecked")
+   private void resize(int from)
+   {
+      int newLength = from << 1;
+
+      // Can't get any bigger
+      if (newLength > MAXIMUM_CAPACITY || newLength <= from)
+         return;
+
+      Entry<K, V>[] newTable = new Entry[newLength];
+      Entry<K, V>[] old = table;
+
+      for (Entry<K, V> e : old)
+      {
+         if (e == null)
+            continue;
+
+         int index = index(e.hash, newLength);
+         while (newTable[index] != null)
+            index = nextIndex(index, newLength);
+
+         newTable[index] = e;
+      }
+
+      threshold = (int) (loadFactor * newLength);
+      table = newTable;
+   }
+
+   public void putAll(Map<? extends K, ? extends V> map)
+   {
+      int size = map.size();
+      if (size == 0)
+         return;
+
+      if (size > threshold)
+      {
+         if (size > MAXIMUM_CAPACITY)
+            size = MAXIMUM_CAPACITY;
+
+         int length = table.length;
+         for (; length < size; length <<= 1) ;
+
+         resize(length);
+      }
+
+      for (Map.Entry<? extends K, ? extends V> e : map.entrySet())
+         put(e.getKey(), e.getValue());
+   }
+
+   public V remove(Object key)
+   {
+      key = maskNull(key);
+
+      Entry<K, V>[] table = this.table;
+      int length = table.length;
+      int hash = hash(key);
+      int start = index(hash, length);
+
+      for (int index = start; ;)
+      {
+         Entry<K, V> e = table[index];
+         if (e == null)
+            return null;
+
+         if (e.hash == hash && eq(key, e.key))
+         {
+            table[index] = null;
+            relocate(index);
+            modCount++;
+            size--;
+            return e.value;
+         }
+
+         index = nextIndex(index, length);
+         if (index == start)
+            return null;
+      }
+
+
+   }
+
+   private void relocate(int start)
+   {
+      Entry<K, V>[] table = this.table;
+      int length = table.length;
+      int current = nextIndex(start, length);
+
+      for (; ;)
+      {
+         Entry<K, V> e = table[current];
+         if (e == null)
+            return;
+
+         // A Doug Lea variant of Knuth's Section 6.4 Algorithm R.
+         // This provides a non-recursive method of relocating
+         // entries to their optimal positions once a gap is created.
+         int prefer = index(e.hash, length);
+         if ((current < prefer && (prefer <= start || start <= current))
+               || (prefer <= start && start <= current))
+         {
+            table[start] = e;
+            table[current] = null;
+            start = current;
+         }
+
+         current = nextIndex(current, length);
+      }
+   }
+
+   public void clear()
+   {
+      modCount++;
+      Entry<K, V>[] table = this.table;
+      for (int i = 0; i < table.length; i++)
+         table[i] = null;
+
+      size = 0;
+   }
+
+   @SuppressWarnings("unchecked")
+   public Object clone()
+   {
+      try
+      {
+         FastCopyHashMap<K, V> clone = (FastCopyHashMap<K, V>) super.clone();
+         clone.table = table.clone();
+         clone.entrySet = null;
+         clone.values = null;
+         clone.keySet = null;
+         return clone;
+      }
+      catch (CloneNotSupportedException e)
+      {
+         // should never happen
+         throw new IllegalStateException(e);
+      }
+   }
+
+   public void printDebugStats()
+   {
+      int optimal = 0;
+      int total = 0;
+      int totalSkew = 0;
+      int maxSkew = 0;
+      for (int i = 0; i < table.length; i++)
+      {
+         Entry<K, V> e = table[i];
+         if (e != null)
+         {
+
+            total++;
+            int target = index(e.hash, table.length);
+            if (i == target)
+               optimal++;
+            else
+            {
+               int skew = Math.abs(i - target);
+               if (skew > maxSkew) maxSkew = skew;
+               totalSkew += skew;
+            }
+
+         }
+      }
+
+      System.out.println(" Size:            " + size);
+      System.out.println(" Real Size:       " + total);
+      System.out.println(" Optimal:         " + optimal + " (" + (float) optimal * 100 / total + "%)");
+      System.out.println(" Average Distnce: " + ((float) totalSkew / (total - optimal)));
+      System.out.println(" Max Distance:    " + maxSkew);
+   }
+
+   public Set<Map.Entry<K, V>> entrySet()
+   {
+      if (entrySet == null)
+         entrySet = new EntrySet();
+
+      return entrySet;
+   }
+
+   public Set<K> keySet()
+   {
+      if (keySet == null)
+         keySet = new KeySet();
+
+      return keySet;
+   }
+
+   public Collection<V> values()
+   {
+      if (values == null)
+         values = new Values();
+
+      return values;
+   }
+
+   @SuppressWarnings("unchecked")
+   private void readObject(java.io.ObjectInputStream s) throws IOException, ClassNotFoundException
+   {
+      s.defaultReadObject();
+
+      int size = s.readInt();
+
+      init(size, loadFactor);
+
+      for (int i = 0; i < size; i++)
+      {
+         K key = (K) s.readObject();
+         V value = (V) s.readObject();
+         putForCreate(key, value);
+      }
+
+      this.size = size;
+   }
+
+   @SuppressWarnings("unchecked")
+   private void putForCreate(K key, V value)
+   {
+      key = maskNull(key);
+
+      Entry<K, V>[] table = this.table;
+      int hash = hash(key);
+      int length = table.length;
+      int index = index(hash, length);
+
+      Entry<K, V> e = table[index];
+      while (e != null)
+      {
+         index = nextIndex(index, length);
+         e = table[index];
+      }
+
+      table[index] = new Entry<K, V>(key, hash, value);
+   }
+
+   private void writeObject(java.io.ObjectOutputStream s) throws IOException
+   {
+      s.defaultWriteObject();
+      s.writeInt(size);
+
+      for (Entry<K, V> e : table)
+      {
+         if (e != null)
+         {
+            s.writeObject(unmaskNull(e.key));
+            s.writeObject(e.value);
+         }
+      }
+   }
+
+   private static final class Entry<K, V>
+   {
+      final K key;
+      final int hash;
+      final V value;
+
+      Entry(K key, int hash, V value)
+      {
+         this.key = key;
+         this.hash = hash;
+         this.value = value;
+      }
+   }
+
+   private abstract class FasyCopyHashMapIterator<E> implements Iterator<E>
+   {
+      private int next = 0;
+      private int expectedCount = modCount;
+      private int current = -1;
+      private boolean hasNext;
+      Entry<K, V> table[] = FastCopyHashMap.this.table;
+
+      public boolean hasNext()
+      {
+         if (hasNext == true)
+            return true;
+
+         Entry<K, V> table[] = this.table;
+         for (int i = next; i < table.length; i++)
+         {
+            if (table[i] != null)
+            {
+               next = i;
+               return hasNext = true;
+            }
+         }
+
+         next = table.length;
+         return false;
+      }
+
+      protected Entry<K, V> nextEntry()
+      {
+         if (modCount != expectedCount)
+            throw new ConcurrentModificationException();
+
+         if (!hasNext && !hasNext())
+            throw new NoSuchElementException();
+
+         current = next++;
+         hasNext = false;
+
+         return table[current];
+      }
+
+      @SuppressWarnings("unchecked")
+      public void remove()
+      {
+         if (modCount != expectedCount)
+            throw new ConcurrentModificationException();
+
+         int current = this.current;
+         int delete = current;
+
+         if (current == -1)
+            throw new IllegalStateException();
+
+         // Invalidate current (prevents multiple remove)
+         this.current = -1;
+
+         // Start were we relocate
+         next = delete;
+
+         Entry<K, V>[] table = this.table;
+         if (table != FastCopyHashMap.this.table)
+         {
+            FastCopyHashMap.this.remove(table[delete].key);
+            table[delete] = null;
+            expectedCount = modCount;
+            return;
+         }
+
+
+         int length = table.length;
+         int i = delete;
+
+         table[delete] = null;
+         size--;
+
+         for (; ;)
+         {
+            i = nextIndex(i, length);
+            Entry<K, V> e = table[i];
+            if (e == null)
+               break;
+
+            int prefer = index(e.hash, length);
+            if ((i < prefer && (prefer <= delete || delete <= i))
+                  || (prefer <= delete && delete <= i))
+            {
+               // Snapshot the unseen portion of the table if we have
+               // to relocate an entry that was already seen by this iterator
+               if (i < current && current <= delete && table == FastCopyHashMap.this.table)
+               {
+                  int remaining = length - current;
+                  Entry<K, V>[] newTable = (Entry<K, V>[]) new Entry[remaining];
+                  System.arraycopy(table, current, newTable, 0, remaining);
+
+                  // Replace iterator's table.
+                  // Leave table local var pointing to the real table
+                  this.table = newTable;
+                  next = 0;
+               }
+
+               // Do the swap on the real table
+               table[delete] = e;
+               table[i] = null;
+               delete = i;
+            }
+         }
+      }
+   }
+
+
+   private class KeyIterator extends FasyCopyHashMapIterator<K>
+   {
+      public K next()
+      {
+         return unmaskNull(nextEntry().key);
+      }
+   }
+
+   private class ValueIterator extends FasyCopyHashMapIterator<V>
+   {
+      public V next()
+      {
+         return nextEntry().value;
+      }
+   }
+
+   private class EntryIterator extends FasyCopyHashMapIterator<Map.Entry<K, V>>
+   {
+      private class WriteThroughEntry extends SimpleEntry<K, V>
+      {
+         WriteThroughEntry(K key, V value)
+         {
+            super(key, value);
+         }
+
+         public V setValue(V value)
+         {
+            if (table != FastCopyHashMap.this.table)
+               FastCopyHashMap.this.put(getKey(), value);
+
+            return super.setValue(value);
+         }
+      }
+
+      public Map.Entry<K, V> next()
+      {
+         Entry<K, V> e = nextEntry();
+         return new WriteThroughEntry(unmaskNull(e.key), e.value);
+      }
+
+   }
+
+   private class KeySet extends AbstractSet<K>
+   {
+      public Iterator<K> iterator()
+      {
+         return new KeyIterator();
+      }
+
+      public void clear()
+      {
+         FastCopyHashMap.this.clear();
+      }
+
+      public boolean contains(Object o)
+      {
+         return containsKey(o);
+      }
+
+      public boolean remove(Object o)
+      {
+         int size = size();
+         FastCopyHashMap.this.remove(o);
+         return size() < size;
+      }
+
+      public int size()
+      {
+         return FastCopyHashMap.this.size();
+      }
+   }
+
+   private class Values extends AbstractCollection<V>
+   {
+      public Iterator<V> iterator()
+      {
+         return new ValueIterator();
+      }
+
+      public void clear()
+      {
+         FastCopyHashMap.this.clear();
+      }
+
+      public int size()
+      {
+         return FastCopyHashMap.this.size();
+      }
+   }
+
+   private class EntrySet extends AbstractSet<Map.Entry<K, V>>
+   {
+      public Iterator<Map.Entry<K, V>> iterator()
+      {
+         return new EntryIterator();
+      }
+
+      public boolean contains(Object o)
+      {
+         if (!(o instanceof Map.Entry))
+            return false;
+
+         Map.Entry<?, ?> entry = (Map.Entry<?, ?>) o;
+         Object value = get(entry.getKey());
+         return eq(entry.getValue(), value);
+      }
+
+      public void clear()
+      {
+         FastCopyHashMap.this.clear();
+      }
+
+      public boolean isEmpty()
+      {
+         return FastCopyHashMap.this.isEmpty();
+      }
+
+      public int size()
+      {
+         return FastCopyHashMap.this.size();
+      }
+   }
+
+   protected static class SimpleEntry<K, V> implements Map.Entry<K, V>
+   {
+      private K key;
+      private V value;
+
+      SimpleEntry(K key, V value)
+      {
+         this.key = key;
+         this.value = value;
+      }
+
+      SimpleEntry(Map.Entry<K, V> entry)
+      {
+         this.key = entry.getKey();
+         this.value = entry.getValue();
+      }
+
+      public K getKey()
+      {
+         return key;
+      }
+
+      public V getValue()
+      {
+         return value;
+      }
+
+      public V setValue(V value)
+      {
+         V old = this.value;
+         this.value = value;
+         return old;
+      }
+
+      public boolean equals(Object o)
+      {
+         if (this == o)
+            return true;
+
+         if (!(o instanceof Map.Entry))
+            return false;
+         Map.Entry<?, ?> e = (Map.Entry<?, ?>) o;
+         return eq(key, e.getKey()) && eq(value, e.getValue());
+      }
+
+      public int hashCode()
+      {
+         return (key == null ? 0 : hash(key)) ^
+                (value == null ? 0 : hash(value));
+      }
+
+      public String toString()
+      {
+         return getKey() + "=" + getValue();
+      }
+   }
+}


Property changes on: common-core/trunk/src/main/java/org/jboss/util/collection/FastCopyHashMap.java
___________________________________________________________________
Name: svn:keywords
   + Id Revision
Name: svn:eol-style
   + LF




More information about the jboss-svn-commits mailing list